CN114989279A - 调控细胞程序化死亡与抗病性的水稻类病斑基因rcd2及其应用 - Google Patents

调控细胞程序化死亡与抗病性的水稻类病斑基因rcd2及其应用 Download PDF

Info

Publication number
CN114989279A
CN114989279A CN202210479330.8A CN202210479330A CN114989279A CN 114989279 A CN114989279 A CN 114989279A CN 202210479330 A CN202210479330 A CN 202210479330A CN 114989279 A CN114989279 A CN 114989279A
Authority
CN
China
Prior art keywords
rcd2
rice
gene
ala
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210479330.8A
Other languages
English (en)
Other versions
CN114989279B (zh
Inventor
田大刚
王�锋
陈子强
李刚
郭新睿
刘华清
陈松彪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Biotechnology of Fujian Academy of Agricultural Science
Original Assignee
Institute of Biotechnology of Fujian Academy of Agricultural Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Biotechnology of Fujian Academy of Agricultural Science filed Critical Institute of Biotechnology of Fujian Academy of Agricultural Science
Priority to CN202210479330.8A priority Critical patent/CN114989279B/zh
Publication of CN114989279A publication Critical patent/CN114989279A/zh
Application granted granted Critical
Publication of CN114989279B publication Critical patent/CN114989279B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8281Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for bacterial resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Virology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一种调控细胞程序性死亡和抗病性的水稻类病斑基因RCD2及其应用。本发明以水稻类病斑突变体rcd2为实验材料,通过图位克隆策略分离到一个控制水稻类病斑性状的基因RCD2,该基因的核苷酸序列如SEQ ID NO:1所示。RCD2基因的突变激活水稻抗病反应,对稻瘟病和白叶枯病的抗性显著增强。本发明初步解析了RCD2基因的生物学功能,为阐明植物程序化死亡机制提供了理论依据;特别地,该基因可以显著提高抗病性,在植物抗病育种方面具有重要应用价值。

Description

调控细胞程序化死亡与抗病性的水稻类病斑基因RCD2及其 应用
技术领域
本发明属于生物技术及水稻育种领域,具体涉及一种调控水稻细胞程序性死亡与抗病性的水稻类病斑基因基因RCD2及其应用。
背景技术
类病斑突变体(Lesion mimic mutant,LMM)是一类在没有遭受病原物侵染条件下在植物的叶片、叶鞘或植株上自发形成坏死病斑的一类突变体。
已有研究表明,LMM上形成病斑时的生理生化过程与受到病原物侵染时发生超敏反应(hypersensitive response,HR)时非常相似。HR发生时,受病原物侵染的部位以及周围的寄主细胞会发生细胞程序性死亡(Programmed cell death,PCD),形成坏死斑,以限制病原物的进一步蔓延。
大多数LMM除了形成类病斑之外,还会激活植物抗病反应,常伴随着植物抗病能力的增强。因此,对LMM形成机制、相关调控因子的研究,对抗病机制及其应用的研究具有重要的意义。
近年来,随着分子生物学的发展,已克隆并分析了数十个水稻类病斑突变体基因及其形成机制,它们为今后应用基因工程手段培育抗病性更好的水稻品种积累了丰富的种质资源。然而,目前已知这些基因相较于整个水稻抗病反应调控网络来说还远远不够,还有许多未知的部分需要进一步研究。
发明内容
本发明的目的在于深入解析水稻抗病反应调控网络,我们从三系恢复系明恢86组织培养的突变体库中克隆了一个新的控制水稻类病斑形成的基因RCD2,水稻类病斑基因RCD2的突变使水稻产生类病斑的表型,在病斑形成过程中发生类似过敏反应的细胞坏死,激活水稻抗病反应,并使水稻对稻瘟病和白叶枯病的抗性显著增强。
为实现上述目的,本发明采用如下技术方案:
本发明首先提供了一种调控水稻细胞程序性死亡与抗病性的水稻类病斑基因RCD2,所述水稻类病斑基因RCD2的核苷酸序列如SEQ ID NO:1所示。
上述水稻类病斑基因RCD2是从三系恢复系明恢86组织培养的突变体库中筛选到的一个类病斑突变体rcd2,rcd2突变体在病斑形成过程中发生类似过敏反应的细胞坏死。通过图位克隆的方法,发现rcd2突变体中的位于3号染色体上的基因Os03g0264400的外显子区发生了1个碱基G的缺失。因突变体形成过程类型于细胞失控性坏死,因此将这个突变体命名为rcd2。在rcd2突变体中,与抗病相关的水杨酸(SA)和 茉莉酸异亮氨酸共轭物(JA-Ile)的水平相对于野生型明恢86显著增加,并且rcd2突变体对稻瘟病和白叶枯病的抗性也显著增强。
本发明进一步提供了上述一种水稻类病斑基因RCD2所编码的蛋白质,其氨基酸序列如SEQ ID NO:2所示。
本发明进一步提供了上述一种水稻类病斑基因RCD2在培育抗病植物品种中的应用,所述植物为水稻,所述抗病是抗稻瘟病或抗白叶枯病。
本发明进一步提供了一种利用上述水稻类病斑基因RCD2培育抗病作物品种的方法,通过基因工程手段在目标植物中敲除水稻类病斑基因RCD2使目的植物显著增强对稻瘟病和白叶枯病的抗性,所述基因工程手段为CRISPR-Cas9基因编辑技术。
本发明的显著优点在于:
本发明提供了一个新的控制水稻类病斑形成的基因RCD2,并用基因编辑技术将野生型水稻中的RCD2基因敲除,发现RCD2基因的突变可使水稻产生类病斑的表型,激活水稻抗病反应,并使水稻对稻瘟病和白叶枯病的抗性显著增强,验证了rcd2类病斑突变体的表型是由于RCD2基因的突变产生的。水稻类病斑基因RCD2的发现和克隆,为通过基因工程手段进行水稻抗稻瘟病和白叶枯病的抗性育种提供了新的靶点。
附图说明
图1为rcd2突变体的表型。
图2为目的基因RCD2的定位和克隆。
图3为rcd2突变体次生代谢产物的含量变化。
图4为目的基因RCD2的CRISPR/Cas9基因编辑。A,rcd2-1,rcd2-2和rcd2-3突变体的突变位点;B,明恢86 和RCD2敲除突变体rcd2-1, rcd2-2和rcd2-3体内RCD2基因的转录水平;C,rcd2-1,rcd2-2和rcd2-3突变体叶片上形成的坏死斑。
图5为rcd2突变体稻瘟病和白叶枯病接种试验结果。A,RCD2敲除突变体rcd2-1、rcd2-2和rcd2-3造伤接菌稻瘟菌FJ-1后的发病表型;B,RCD2敲除突变体rcd2-1、rcd2-2和rcd2-3造伤接菌后稻瘟病菌真菌生物量检测;C,RCD2敲除突变体rcd2-1、rcd2-2和rcd2-3接种白叶枯病菌P6生理小种后的发病表型;D,RCD2敲除突变体rcd2-1、rcd2-2和rcd2-3接种白叶枯病菌P6生理小种后的细菌生长量。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。实施例中如无特殊说明,所采用的实验方法,均为常规方法;所用的实验材料、试剂等,均可通过商业途径得到。
实施例1: 类病斑突变体rcd2的表型鉴定
类病斑突变体rcd2是从三系恢复系明恢86组织培养的突变体库中筛选到的。rcd2突变体植株生长至分蘖期时,在叶片上出现1-2个橙黄色的块状类病斑,且随着植株的发育生长,类病斑的数量逐渐增加,且单个类病斑的面积变大,呈现失控性坏死现象(图1)。
实施例2: 水稻类病斑基因RCD2的定位和克隆
亲本与定位群体的构建:以rcd2突变体和水稻品种93-11为亲本构建F2群体,用于水稻类病斑基因RCD2的初步定位。用于BSA初定位的包括两个亲本的DNA、用于基因池构建的F2代正常株和F2代突变体的DNA。
目的基因的初步定位:选择在水稻品种明恢86和水稻品种93-11之间具有多态性的SSR标记,对亲本rcd2突变体和93-11的DNA、F2正常表型植株DNA池和突变表型植株DNA池进行多态性检测。结果将目的基因RCD2定位于第三号染色体上的SF49和SF30之间(图2)。
目的基因的精细定位:The Rice Annotation Project 数据库 ( http://rapdb.dna.affrc.go.jp)中下载水稻日本晴基因组在上述区间的序列进行测序。 根据rcd2突变体基因精细定位的结果,测序该区间在The Rice Annotation Project 数据库( http://rapdb.dna.affrc.go.jp) 的候选基因RCD2基因编码区在496bp处发生了一个G单碱基缺失(图2),导致基因翻译提前终止,使其无法发挥功能。
实施例3:rcd2突变体次生代谢产物的含量变化
在培养箱中培养一批健康且无胁迫的明恢86和rcd2突变体水稻苗子,并将这批水稻材料分为实验组与空白对照组,萌发后生长了18~20 d 后将实验组做接种稻瘟菌FJ-1处理,对照组则喷水处理,并于接菌后48 h时取样,检测样品中SA、和JA-Ile的水平。经分析统计后结果发现(图3),接种病菌后rcd2突变体的JA-Ile水平约为明恢86的2.5倍,SA水平在野生型明恢86和rcd2突变体中一直处于高积累状态,而且无论接种病菌与否,rcd2突变体的SA水平都比野生型明恢86高。上述结果暗示着RCD2基因的突变会导致 JA-Ile的高积累,同时SA水平也会有一定程度的增加。
实施例4: RCD2基因的CRISPR/Cas9基因编辑
利用CRISPR/Cas9方法构建敲除RCD2基因的重组载体:所用靶序列为:GAGGCGCGAGGGCGTGAACG。根据靶序列合成两条单核苷酸引物:
RCD2-F1:5’-GAGGCGCGAGGGCGTGAACG-3’,
RCD2-R1:5’-CGTTCACGCCCTCGCGCCTC-3’。
委托武汉伯远生物(http://admin.biorun.cn/)进行载体构建及水稻转化,获得20株转化苗,经测序结果共获得了3个RCD2基因编辑的株系,这3个基因编辑株系的基因型见图4。这3个RCD2基因编辑株系的表型与rcd2突变体的表型一致(图4)。
实施例5:rcd2突变体稻瘟病和白叶枯病接种实验
对3种突变类型的rcd2敲除突变体进行接菌试验。
首先在1/2MS培养基中萌发明恢86和rcd2-1 、rcd2-2和 rcd2-3种子,7 d后转移到水稻28 ℃光照培养箱,之后挑选出从萌发后生长了16~18 d且没有受到胁迫的水稻苗子,对叶片进行造伤接种稻瘟菌(FJ-1毒性菌株),5~7 d后统计发病表型,并对感染区域内的相对真菌生长量进行检测。结果发现,从表型上看,接种稻瘟菌FJ-1后,较野生型的典型稻瘟菌病斑相比,突变体的病斑更类似于细胞死亡,且接菌后会产生橙黄色坏死斑(图5A);从相对真菌生长量上看,突变体的相对真菌生长量明显少于野生型(图5B)。
首先在1/2MS培养基中萌发明恢86和rcd2-1 、rcd2-2和 rcd2-3种子,7 d后转移到水稻28 ℃光照培养箱,之后挑选出从萌发后生长了16~18 d且没有受到胁迫的水稻苗子,从培养箱环境转移到自然光热条件下,待水稻苗子长至两个月左右,挑选出健壮生长的水稻材料,利用剪刀蘸取提前培养好的白叶枯菌株PXO99菌液,剪除距离叶尖1/3处的水稻叶子,并作好标记,通过制造伤口使得白叶枯菌成功侵染水稻,40 d后统计其发病表型,并对感染区域内的细菌生长量进行检测。结果发现,从表型上看,rcd2突变体的发病情况总体上弱于明恢86(图5C);从细菌生长数量上看,3个rcd2突变体的细菌生长量也明显少于野生型(图5D)。
以上实施例仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。
SEQUENCE LISTING
<110> 福建省农业科学院生物技术研究所
<120> 调控细胞程序化死亡与抗病性的水稻类病斑基因RCD2及其应用
<130>
<160> 5
<170> PatentIn version 3.3
<210> 1
<211> 2124
<212> DNA
<213> 人工序列
<400> 1
ggcttaaagc ctatcgcaat ggagtccatc gccgccgcca cgttcacgcc ctcgcgcctc 60
gccgcccgcc ccgccactcc ggcggcggcg gcggccccgg ttagagcgag ggcggcggta 120
gcggcaggag ggaggaggag gacgagtagg cgcggcggcg tgaggtgctc cgcggggaag 180
ccagaggcaa gcgcggtgat caacgggagc gcggcggcgc gggcggcgga ggaggacagg 240
aggcgcttct tcgaggcggc ggagcgtggg agcgggaagg gcaacctggt gcccatgtgg 300
gagtgcatcg tctccgacca cctcaccccc gtgctcgcct accgctgcct cgtccccgag 360
gacaacatgg agacgcccag cttcctcttc gagtccgtcg agcaggggcc cgagggcacc 420
accaacgtcg gtcgctatag catggtggga gcccacccag tgatggaggt cgtggcaaag 480
gagcacaagg tcacaatcat ggaccacgag aagggcaagg tgacggagca ggtcgtggat 540
gatcctatgc agatccccag gagcatgatg gaaggatggc acccgcagca gatcgatcag 600
ctccccgatt ccttcaccgg tggatgggtc gggttctttt cctatgatac agtccgttat 660
gttgaaaaga agaagctgcc cttctccggt gctccccagg acgataggaa ccttcctgat 720
gttcaccttg ggctttatga tgatgttctc gtcttcgaca atgtcgagaa gaaagtatat 780
gtcatccatt gggtaaatct tgatcggcat gcaaccaccg aggatgcatt ccaagatggc 840
aagtcccggc tgaacctgtt gctatctaaa gtgcacaatt caaatgtacc caagctttct 900
ccaggatttg taaagttaca cactcggcag tttggtacac ctttgaacaa atcaaccatg 960
acaagtgatg agtacaagaa tgctgttatg caggctaagg agcatattat ggctggtgat 1020
attttccaga ttgttttaag ccagaggttt gagaggcgaa catacgccaa tccatttgaa 1080
gtctatcgag ctttacgaat tgtgaaccca agtccataca tggcatatgt acaggcaaga 1140
ggctgtgtcc tggtagcatc tagtccagaa attcttactc gtgtgaggaa gggtaaaatt 1200
attaaccgtc cacttgctgg gactgttcga aggggcaaga cagagaagga agatgaaatg 1260
caagagcaac agctactaag tgatgaaaaa cagtgtgctg aacatattat gcttgtagat 1320
ttgggaagga atgatgttgg aaaggtctcc aaacctggat ctgtgaaggt ggagaaatta 1380
atgaacattg aacgctactc ccatgtcatg cacatcagtt ccacggtgag tggagagttg 1440
gatgatcatc tccaaagttg ggatgccctg cgagccgcgt tgcctgttgg aacagttagt 1500
ggagcaccaa aggtgaaagc catggagctg atagacgagc tagaggtcac aagacgagga 1560
ccatacagtg gcggccttgg agggatatca tttgacggag acatgcttat cgctcttgca 1620
ctccgcacca ttgtgttctc aacagcgcca agccacaaca cgatgtactc atacaaagac 1680
accgagaggc gccgggagtg ggtcgctcac cttcaggctg gtgctggcat tgtcgctgat 1740
agcagcccag acgacgagca acgtgaatgc gagaacaagg cagccgctct ggctcgagcc 1800
atcgatcttg ctgaatcagc tttcgtagac aaggaataga gtctctctca agagagttga 1860
ttttgttagt tcttgttcat ggttcttctc gctgcatgtt tagcaggaaa ggtatcatca 1920
gtgagttgag agaagcaata agcctatgtt gtcatgtgaa tcgaataaac tggaggttat 1980
ggtcgtgagc tattattagc tgtgttcatt agaaaggtat atgcttttag attgttttgt 2040
ttggtggagg catgtatagt gcgctctctg gctaaatcaa gcaagggctt aacaggggta 2100
ttgtcaaaaa aaaaaagcgg ccgc 2124
<210> 2
<211> 606
<212> PRT
<213> 人工序列
<400> 2
Met Glu Ser Ile Ala Ala Ala Thr Phe Thr Pro Ser Arg Leu Ala Ala
1 5 10 15
Arg Pro Ala Thr Pro Ala Ala Ala Ala Ala Pro Val Arg Ala Arg Ala
20 25 30
Ala Val Ala Ala Gly Gly Arg Arg Arg Thr Ser Arg Arg Gly Gly Val
35 40 45
Arg Cys Ser Ala Gly Lys Pro Glu Ala Ser Ala Val Ile Asn Gly Ser
50 55 60
Ala Ala Ala Arg Ala Ala Glu Glu Asp Arg Arg Arg Phe Phe Glu Ala
65 70 75 80
Ala Glu Arg Gly Ser Gly Lys Gly Asn Leu Val Pro Met Trp Glu Cys
85 90 95
Ile Val Ser Asp His Leu Thr Pro Val Leu Ala Tyr Arg Cys Leu Val
100 105 110
Pro Glu Asp Asn Met Glu Thr Pro Ser Phe Leu Phe Glu Ser Val Glu
115 120 125
Gln Gly Pro Glu Gly Thr Thr Asn Val Gly Arg Tyr Ser Met Val Gly
130 135 140
Ala His Pro Val Met Glu Val Val Ala Lys Glu His Lys Val Thr Ile
145 150 155 160
Met Asp His Glu Lys Gly Lys Val Thr Glu Gln Val Val Asp Asp Pro
165 170 175
Met Gln Ile Pro Arg Ser Met Met Glu Gly Trp His Pro Gln Gln Ile
180 185 190
Asp Gln Leu Pro Asp Ser Phe Thr Gly Gly Trp Val Gly Phe Phe Ser
195 200 205
Tyr Asp Thr Val Arg Tyr Val Glu Lys Lys Lys Leu Pro Phe Ser Gly
210 215 220
Ala Pro Gln Asp Asp Arg Asn Leu Pro Asp Val His Leu Gly Leu Tyr
225 230 235 240
Asp Asp Val Leu Val Phe Asp Asn Val Glu Lys Lys Val Tyr Val Ile
245 250 255
His Trp Val Asn Leu Asp Arg His Ala Thr Thr Glu Asp Ala Phe Gln
260 265 270
Asp Gly Lys Ser Arg Leu Asn Leu Leu Leu Ser Lys Val His Asn Ser
275 280 285
Asn Val Pro Lys Leu Ser Pro Gly Phe Val Lys Leu His Thr Arg Gln
290 295 300
Phe Gly Thr Pro Leu Asn Lys Ser Thr Met Thr Ser Asp Glu Tyr Lys
305 310 315 320
Asn Ala Val Met Gln Ala Lys Glu His Ile Met Ala Gly Asp Ile Phe
325 330 335
Gln Ile Val Leu Ser Gln Arg Phe Glu Arg Arg Thr Tyr Ala Asn Pro
340 345 350
Phe Glu Val Tyr Arg Ala Leu Arg Ile Val Asn Pro Ser Pro Tyr Met
355 360 365
Ala Tyr Val Gln Ala Arg Gly Cys Val Leu Val Ala Ser Ser Pro Glu
370 375 380
Ile Leu Thr Arg Val Arg Lys Gly Lys Ile Ile Asn Arg Pro Leu Ala
385 390 395 400
Gly Thr Val Arg Arg Gly Lys Thr Glu Lys Glu Asp Glu Met Gln Glu
405 410 415
Gln Gln Leu Leu Ser Asp Glu Lys Gln Cys Ala Glu His Ile Met Leu
420 425 430
Val Asp Leu Gly Arg Asn Asp Val Gly Lys Val Ser Lys Pro Gly Ser
435 440 445
Val Lys Val Glu Lys Leu Met Asn Ile Glu Arg Tyr Ser His Val Met
450 455 460
His Ile Ser Ser Thr Val Ser Gly Glu Leu Asp Asp His Leu Gln Ser
465 470 475 480
Trp Asp Ala Leu Arg Ala Ala Leu Pro Val Gly Thr Val Ser Gly Ala
485 490 495
Pro Lys Val Lys Ala Met Glu Leu Ile Asp Glu Leu Glu Val Thr Arg
500 505 510
Arg Gly Pro Tyr Ser Gly Gly Leu Gly Gly Ile Ser Phe Asp Gly Asp
515 520 525
Met Leu Ile Ala Leu Ala Leu Arg Thr Ile Val Phe Ser Thr Ala Pro
530 535 540
Ser His Asn Thr Met Tyr Ser Tyr Lys Asp Thr Glu Arg Arg Arg Glu
545 550 555 560
Trp Val Ala His Leu Gln Ala Gly Ala Gly Ile Val Ala Asp Ser Ser
565 570 575
Pro Asp Asp Glu Gln Arg Glu Cys Glu Asn Lys Ala Ala Ala Leu Ala
580 585 590
Arg Ala Ile Asp Leu Ala Glu Ser Ala Phe Val Asp Lys Glu
595 600 605
<210> 3
<211> 20
<212> DNA
<213> 人工序列
<400> 3
gaggcgcgag ggcgtgaacg 20
<210> 4
<211> 20
<212> DNA
<213> 人工序列
<400> 4
gaggcgcgag ggcgtgaacg 20
<210> 5
<211> 20
<212> DNA
<213> 人工序列
<400> 5
cgttcacgcc ctcgcgcctc 20

Claims (6)

1.一种调控细胞程序性死亡与抗病性的水稻类病斑基因RCD2,其特征在于,其核苷酸序列如SEQ ID NO:1所示。
2.根据权利要求1所述的水稻类病斑基因RCD2,其特征在于,其编码的蛋白质的氨基酸序列如SEQ ID NO.2所示。
3.如权利要求1所述的水稻类病斑基因RCD2在培育抗病植物品种中的应用。
4.根据权利要求3所述的应用,其特征在于:所述植物品种是水稻品种。
5.根据权利要求3所述的应用,其特征在于:所述抗病是指抗稻瘟病或抗白叶枯病。
6.根据权利要求3所述的应用,其特征在于:所述培育的方法是设计水稻类病斑基因RCD2的敲除靶点构建基因敲除载体,并在水稻中进行遗传转化。
CN202210479330.8A 2022-05-05 2022-05-05 调控细胞程序化死亡与抗病性的水稻类病斑基因rcd2及其应用 Active CN114989279B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210479330.8A CN114989279B (zh) 2022-05-05 2022-05-05 调控细胞程序化死亡与抗病性的水稻类病斑基因rcd2及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210479330.8A CN114989279B (zh) 2022-05-05 2022-05-05 调控细胞程序化死亡与抗病性的水稻类病斑基因rcd2及其应用

Publications (2)

Publication Number Publication Date
CN114989279A true CN114989279A (zh) 2022-09-02
CN114989279B CN114989279B (zh) 2023-06-09

Family

ID=83024558

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210479330.8A Active CN114989279B (zh) 2022-05-05 2022-05-05 调控细胞程序化死亡与抗病性的水稻类病斑基因rcd2及其应用

Country Status (1)

Country Link
CN (1) CN114989279B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287288A (zh) * 2022-01-24 2022-11-04 浙江师范大学 水稻类病斑突变体及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103993017A (zh) * 2013-12-05 2014-08-20 合肥工业大学 一种调控水稻叶形的锌指蛋白基因OsRLZP及其应用
CN104531693A (zh) * 2014-12-31 2015-04-22 广西壮族自治区农业科学院水稻研究所 水稻不育基因pms3的特异性功能标记及其应用
CN107523574A (zh) * 2017-10-10 2017-12-29 中国农业科学院作物科学研究所 调控细胞程序化死亡与抗病性的水稻类病斑基因spl35及其应用
CN112175973A (zh) * 2020-09-30 2021-01-05 浙江师范大学 水稻类病斑控制基因spl36及其应用
CN113637684A (zh) * 2021-08-24 2021-11-12 上海市农业科学院 一种水稻类病斑突变体基因scyl2及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103993017A (zh) * 2013-12-05 2014-08-20 合肥工业大学 一种调控水稻叶形的锌指蛋白基因OsRLZP及其应用
CN104531693A (zh) * 2014-12-31 2015-04-22 广西壮族自治区农业科学院水稻研究所 水稻不育基因pms3的特异性功能标记及其应用
CN107523574A (zh) * 2017-10-10 2017-12-29 中国农业科学院作物科学研究所 调控细胞程序化死亡与抗病性的水稻类病斑基因spl35及其应用
CN112175973A (zh) * 2020-09-30 2021-01-05 浙江师范大学 水稻类病斑控制基因spl36及其应用
CN113637684A (zh) * 2021-08-24 2021-11-12 上海市农业科学院 一种水稻类病斑突变体基因scyl2及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287288A (zh) * 2022-01-24 2022-11-04 浙江师范大学 水稻类病斑突变体及其应用
CN115287288B (zh) * 2022-01-24 2023-05-16 浙江师范大学 水稻类病斑突变体及其应用

Also Published As

Publication number Publication date
CN114989279B (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
WO2013065517A1 (ja) カドミウム吸収制御遺伝子、タンパク質、及びカドミウム吸収抑制イネ
US11692200B2 (en) Method for improving rice yield and/or rice blast resistance and protein used thereof
CN112011567B (zh) 水稻pal1基因及其编码蛋白与应用
CN114990139B (zh) CsHLS1基因或其编码的蛋白在调控黄瓜植株器官大小中的应用
US20120317676A1 (en) Method of producing plants having enhanced transpiration efficiency and plants produced therefrom
CN109609527A (zh) Cdpk18l基因作为负调控因子在提高番茄细菌性叶斑病抗性和高温抗性中的应用
CN114805517A (zh) 大豆GmCOL2b基因在调控种子大小中的应用
CA3129973A1 (en) Gene for resistance to plant disease
CN114989279B (zh) 调控细胞程序化死亡与抗病性的水稻类病斑基因rcd2及其应用
CN113265401B (zh) 一种通过基因编辑提高水稻对HPPD抑制剂类除草剂抗性的方法及其专用sgRNA
JP2011120597A (ja) ゲノムdna断片の選抜方法
CN112210566B (zh) 水稻OsS6K1基因或OsS6K2基因在提高水稻产量和/或抗旱性中的应用
CN111304219B (zh) 一种分离自水稻wz1中的gl1基因及其在增加水稻粒长中的应用
CN109371041A (zh) 一种增加穗粒数的水稻基因OsHGN及其应用
CN112410314B (zh) 乙酰转移酶OsG2基因及其编码的蛋白质的应用
CN114395580A (zh) 用于控制玉米株高的基因
Min et al. RL3 (t), responsible for leaf shape formation, delimited to a 46-kb DNA fragment in Rice
CN116200423B (zh) 大豆GmGS1β2基因在调控大豆农艺和品质性状中的应用
CN118620952B (zh) ZmGPAT10基因在提高玉米耐盐中的应用
NL2028064B1 (en) Gene for controlling small grain and semi-dwarf of oryza sativa and application thereof
CN113667731B (zh) 一种基于基因组学途径快速鉴定调控油菜含油量基因的方法及其应用
CN111647578B (zh) Usb1蛋白在调控植物抗旱性中的应用
Vaughan Investigating the genetic basis of natural leaf shape variation in Arabidopsis thaliana
Nakamura Check for updates Chapter 10 Map-Based Cloning of the Causal Gene for a Seed Dormancy Quantitative Trait Locus in Barley Shingo Nakamura and Kazuhiro Sato
CN116837001A (zh) ZmPIF2基因或其蛋白在调控玉米株高中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant