CN114985015A - NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂及其制备方法与应用 - Google Patents

NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN114985015A
CN114985015A CN202210760870.3A CN202210760870A CN114985015A CN 114985015 A CN114985015 A CN 114985015A CN 202210760870 A CN202210760870 A CN 202210760870A CN 114985015 A CN114985015 A CN 114985015A
Authority
CN
China
Prior art keywords
mil
photo
preparation
powder
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210760870.3A
Other languages
English (en)
Inventor
黄洪
陈碧玉
吴银萍
司徒粤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202210760870.3A priority Critical patent/CN114985015A/zh
Publication of CN114985015A publication Critical patent/CN114985015A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/2243At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种NH2‑MIL‑53(Fe)/Ag@g‑C3N4光芬顿催化剂及其制备方法与应用;本发明的光芬顿催化剂包括NH2‑MIL‑53(Fe)晶粒和Ag@g‑C3N4,所述Ag@g‑C3N4分布在NH2‑MIL‑53(Fe)晶粒表面。本发明通过将三聚氰胺煅烧得到g‑C3N4粉末;通过光沉积法在g‑C3N4粉末上沉积银制备Ag@g‑C3N4粉末;Ag@g‑C3N4悬浮液中加入可溶性铁盐和2‑氨基对苯二甲酸,水热反应得到光芬顿催化剂。本发明的光芬顿催化剂与H2O2的可见光诱导光芬顿体系,产生羟基自由基、超氧自由基等活性氧物种,实现了可见光条件下对苯酚和甲基橙等有机物的优良氧化降解效果。

Description

NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂及其制备方法与 应用
技术领域
本发明属于高级氧化处理技术领域,具体涉及一种NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂及其制备方法与应用。
背景技术
光芬顿技术是近年被广泛关注的一种高级氧化处理技术,光芬顿技术能结合光催化和芬顿技术的优势,利用光能产生羟基自由基、超氧自由基等多种活性氧物种。这类活性氧物种在处理有机污水时不会产生二次污染物,符合绿色环保的理念。当前有机染料和酚类污染物对水体环境造成的污染问题备受社会关注,这些有机染料对人体具有毒性、致癌性和诱变性,而苯酚对人体皮肤、黏膜、呼吸道都具有腐蚀性,长期接触可能导致中枢神经系统和肾脏等器官出现病症,已被列为重点污染物。这些污染物对全球地表水安全造成严重影响,对人们健康安全和生态系统构成威胁。
传统的均相芬顿技术需要在pH为2-3的强酸性介质中进行,而且二价铁离子易沉降形成大量铁泥,导致铁物种循环不畅,芬顿反应难以维持。近年来,采用含有固定化铁物种的固体催化剂被尝试应用于非均相芬顿技术,能在一定程度上缓解芬顿过程铁物种沉降流失的问题,具有较好的应用前景。但固定化铁物种芬顿催化剂存在负载量低、催化活性不高等问题。铁基金属有机框架(MOFs)被认为是有价值的非均相芬顿催化剂材料。因为铁基MOFs中含有分散于有机配体中的金属铁节点,同时具有吸附性能,能在污水处理过程中对污染物进行“先吸附,后降解”两步处理,提高降解效率。部分铁基MOFs还具有光响应特性,可构建成光芬顿体系,结合光催化与芬顿技术,实现高效的污水处理过程。
NH2-MIL-53(Fe)是一种具有可见光响应特性的铁基MOFs材料,其有机配体为氨基改性对苯二甲酸,经氨基改性后的有机配体能有效提升铁基MOF材料的可见光吸收性能。该MOFs材料中包含的Fe33-oxo团簇,能被光能直接激发,电子从电负性的氧桥原子转移到铁离子上,促进Fe(III)转化为Fe(II),有助于光芬顿中的铁物种循环。
目前以NH2-MIL-53(Fe)为主体的复合光芬顿催化剂主要应用于单纯的光催化体系以降解污染物。如Dandan Wang等人曾报道了一种BiVO4/NH2-MIL-53(Fe)复合光催化剂,该催化剂需先通过水热法合成NH2-MIL-53(Fe),再将BiVO4和NH2-MIL-53(Fe)分散于DMF中进行二次水热反应合成,合成工艺比较复杂。该催化剂循环4次实验后,对亚甲基蓝的降解效率仅余为80%左右,说明催化剂的稳定性有待提升(Optimized design of BiVO4/NH2-MIL-53(Fe)heterostructure for enhanced photocatalytic degradation ofmethylene blue and ciprofloxacin under visible light)。
含三嗪环的g-C3N4可以与MOFs材料复合形成异质结,提高光催化性能。但g-C3N4存在可见光吸收能力弱、光生载流子复合速率快等问题。
因此,有必要开发一种基于有固定化铁物种和有效异质结的光芬顿催化剂的氧化降解方法,对水体中的有机污染物进行高效氧化降解。
发明内容
针对上述现有技术存在的不足,本发明的目的是提供一种NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂及其制备方法与应用。
本发明利用过渡金属修饰g-C3N4,可以有效地捕获g-C3N4中的光电子,提高催化效率。经过Ag改性后,g-C3N4上产生的光生电子能够通过Ag迅速转移,抑制光生载流子复合过程。
本发明制备的NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂在Ag@g-C3N4上原位合成NH2-MIL-53(Fe),二者充分接触并有效形成了异质结,Ag提供了良好的光生电子传输路径,适用于较宽的pH范围,在强酸性环境中铁浸出浓度低。
本发明以NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂为基础,以H2O2为辅助,构建可见光诱导光芬顿体系,产生羟基自由基和超氧自由基等活性氧物种,实现对苯酚等有机物的高效氧化降解。
本发明构建的光芬顿降解方法在优选的实验条件(催化剂浓度为0.4g/L、初始pH为4.0、H2O2浓度为10mM)下,极大促进了有机污染物的降解效率,以优选的催化剂FMAG-2,得到100min苯酚去除率为100%,40min甲基橙去除率为100%。该方法拓宽了光芬顿技术的适用初始pH范围,改善了铁物种循环过程,具有更广泛的有机废水降解适用性。
为实现上述目的,本发明通过如下技术方案实现:
一种NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂,包括NH2-MIL-53(Fe)晶粒和Ag@g-C3N4,所述Ag@g-C3N4分布在NH2-MIL-53(Fe)晶粒表面。
优选的,所述NH2-MIL-53(Fe)晶粒为六棱短棒状团簇结构;所述NH2-MIL-53(Fe)晶粒的宽度为0.4~0.8μm,长度为2~3μm。所述Ag@g-C3N4为片层状。
上述的NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂的制备方法,包括以下步骤:
(1)g-C3N4的制备
将三聚氰胺煅烧得到g-C3N4粉末;
(2)Ag@g-C3N4的制备
通过光沉积法在步骤(1)的g-C3N4粉末上沉积银制备Ag@g-C3N4粉末;
(3)NH2-MIL-53(Fe)/Ag@g-C3N4的制备
将步骤(2)的Ag@g-C3N4粉末分散在有机溶剂中得到Ag@g-C3N4悬浮液;加入可溶性铁盐和有机配体2-氨基对苯二甲酸,水热反应得到NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂。
优选的,步骤(1)所述g-C3N4的制备具体为:将三聚氰胺530℃~570℃第一次煅烧4~5小时;研磨后,470℃~530℃第二次煅烧3~4小时;
进一步优选的,步骤(1)所述第一次煅烧的升温速率为1~2℃/min;第二次煅烧的升温速率为3~5℃/min;所述研磨的时间为20-60min。
优选的,步骤(2)Ag@g-C3N4的制备具体为:将g-C3N4粉末分散在体积比为(2.5~3.5):1的水-乙醇溶液中得到g-C3N4悬浮液,紫外光照射下,加入可溶性银盐溶液,搅拌下进行光沉积反应。
进一步优选的,步骤(2)所述加入可溶性银盐溶液的方式为逐滴滴加;所述g-C3N4悬浮液的浓度为1~1.5mg/mL;所述紫外光为装有紫外滤光片的氙灯,所述紫外滤光片的截止波长为220nm;所述可溶性银盐为AgNO3;所述加入的可溶性银盐中Ag与g-C3N4粉末质量比为(0.3~0.5):1;所述可溶性银盐溶液的浓度为1.30~1.50mg/mL;所述光沉积反应的时间为1~1.5小时。
优选的,步骤(3)所述可溶性铁盐为的氯化铁或硝酸铁;所述有机溶剂为N,N-二甲基甲酰胺。所述Ag@g-C3N4粉末和有机溶剂的质量体积比为(5~15):1g/L。
优选的,步骤(3)所述可溶性铁盐与有机配体2-氨基对苯二甲酸的摩尔比为(1~1.2):1,Ag@g-C3N4粉末的质量用量为可溶性铁盐与有机配体2-氨基对苯二甲酸总质量的20%~60%。
优选的,步骤(3)所述水热反应反应的温度为140~160℃,时间为22~26小时。
上述的NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂在可见光诱导降解有机污染物中的应用。
优选的,可见光诱导降解有机污染物具体为:将NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂加入含有有机污染物的溶液中,可见光照射下加入H2O2进行降解反应。
优选的,所述有机污染物为苯酚、甲基橙中的至少一种;
优选的,降解体系中NH2-MIL-53(Fe)/Ag@g-C3N4催化剂的浓度为0.1g/L~0.5g/L;
进一步优选的,降解体系中NH2-MIL-53(Fe)/Ag@g-C3N4催化剂的浓度为0.4g/L;
优选的,所述含有有机污染物的溶液的初始pH为3.0~5.0;
进一步优选的,所述含有有机污染物的溶液的初始pH为4.0;
优选的,加入H2O2后降解体系中H2O2的浓度为0mM~10mM且不为0;
优选的,所述可见光为装有可见光滤光片的氙灯,所述可见光滤光片的截止波长为420nm。
本发明基于NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂进行可见光诱导降解污染物,催化剂与双氧水能有效形成光芬顿体系,在可见光照射下产生羟基自由基、超氧自由基等活性氧物种,提高降解酚类废水效率。NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂以g-C3N4为基底、以Ag为改性剂,合成Ag@g-C3N4二元催化剂,再在二元催化剂上原位合成NH2-MIL-53(Fe),得到NH2-MIL-53(Fe)/Ag@g-C3N4。该催化剂制备过程简便,制备条件温和,原位合成方法能使NH2-MIL-53(Fe)与Ag@g-C3N4有效形成异质结,促进光生载流子分离。该催化剂具有固定化铁物种,有效减少光芬顿过程中的铁流失。该方法拓宽了光芬顿体系适用的水体初始pH范围,在双氧水辅助下有效利用光能降解水体中的酚类和有机染料等污染物,在废水处理领域具有广泛的适用性。
与现有技术相比,本发明的有益效果:
(1)本发明制备了NH2-MIL-53(Fe)/Ag@g-C3N4可见光诱导光芬顿催化剂,其中的NH2-MIL-53(Fe)能对污染物起到吸附作用,将污染物吸附在催化剂表面;NH2-MIL-53(Fe)与Ag@g-C3N4有效形成了异质结,催化剂能受可见光激发产生大量光生载流子,其中的光生电子可以将NH2-MIL-53(Fe)中的Fe(III)还原为Fe(II),极大促进了芬顿过程中的铁物种循环。
(2)本发明通过构建NH2-MIL-53(Fe)/Ag@g-C3N4-H2O2可见光诱导光芬顿体系,产生羟基自由基、超氧自由基等活性氧物种,实现了可见光条件下对苯酚和甲基橙的优良氧化降解效果。
(3)本发明构建的NH2-MIL-53(Fe)/Ag@g-C3N4-H2O2可见光诱导光芬顿体系,有效抑制了芬顿过程的铁物种流失,对降解过程结束后的悬浮液取样进行铁含量检测,铁含量低于2ppm。
(4)本发明拓宽了光芬顿技术的适用初始pH范围,构建更为高效稳定的光芬顿过程,且催化剂制备工艺简便,反应条件相对温和,具有优良的可见光吸收能力。
附图说明
图1为实施例1制备的Ag@g-C3N4、NH2-MIL-53(Fe)和NH2-MIL-53(Fe)/Ag@g-C3N4(FMAG-2)光芬顿催化剂的XRD图谱。
图2为实施例1制备的NH2-MIL-53(Fe)/Ag@g-C3N4(FMAG-2)光芬顿催化剂的SEM图像。
图3为实施例1制备的g-C3N4、Ag@g-C3N4、NH2-MIL-53(Fe)、NH2-MIL-53(Fe)/Ag@g-C3N4(FMAG-2)光芬顿催化剂的DRS图谱。
图4为实施例1制备的g-C3N4、Ag@g-C3N4、NH2-MIL-53(Fe)、NH2-MIL-53(Fe)/Ag@g-C3N4(FMAG-2)光芬顿催化剂的PL图谱。
图5为实施例2和对比例1-3中空白对照及Ag@g-C3N4、Ag@g-C3N4+Fe3+、NH2-MIL-53(Fe)、NH2-MIL-53(Fe)/g-C3N4、NH2-MIL-53(Fe)/Ag@g-C3N4可见光诱导光芬顿体系对30mg/L的苯酚降解效果图。
图6为实施例3中空白对照及Ag@g-C3N4、NH2-MIL-53(Fe)/Ag@g-C3N4可见光诱导光芬顿体系对50mg/L的甲基橙降解效果图。
图7为实施例2与实施例4中不同催化剂浓度的NH2-MIL-53(Fe)/Ag@g-C3N4可见光诱导光芬顿体系对30mg/L的苯酚降解效果图。
图8为实施例2与实施例5中不同H2O2用量的NH2-MIL-53(Fe)/Ag@g-C3N4可见光诱导光芬顿体系对30mg/L的苯酚降解效果图。
图9为实施例2与实施例6中不同溶液初始pH的NH2-MIL-53(Fe)/Ag@g-C3N4可见光诱导光芬顿体系对30mg/L的苯酚降解效果图及铁含量图,a为苯酚降解效果图,b为铁含量图。
图10为实施例1制备的NH2-MIL-53(Fe)/Ag@g-C3N4(FMAG-2)体系产生不同活性氧物种的ESR谱图,a为羟基自由基的ESR谱图,b为超氧自由基的ESR谱图。
图11为实施例1制备的NH2-MIL-53(Fe)/Ag@g-C3N4(FMAG-2)体系对30mg/L的苯酚循环降解5次的降解效果图。
具体实施方式
下面结合实施例对本发明进行具体描述,但本发明的保护范围不限于以下实施例。
实施例1
NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂的制备方法包括以下步骤:
(1)通过两步煅烧法制备g-C3N4
取5.0g三聚氰胺置于带盖坩埚中,经马弗炉两步煅烧得到g-C3N4。一次煅烧条件为550℃4小时,升温速率为2℃/min,煅烧后得到黄色块状物。用研钵将黄色块状物研磨半小时后,得到黄色粉末。取1.0g黄色粉末铺平于瓷舟中进行二次煅烧,二次煅烧条件为500℃3小时,升温速率为5℃/min。冷却至室温后得到淡黄色g-C3N4粉末。
(2)通过光沉积法制备Ag@g-C3N4
取一定量g-C3N4粉末放入体积比为3:1的水-乙醇溶液中,超声分散2小时,形成浓度为1mg/mL的g-C3N4悬浮液。取30mL g-C3N4悬浮液置于带夹套的反应器中,将反应器放在氙灯下,并为反应器接上循环冷却水。打开氙灯,在磁力搅拌下向悬浮液逐滴滴加10mL1.47mg/mL的AgNO3溶液。随后在磁力搅拌下进行1小时光沉积反应,反应期间悬浮液从淡黄色变成浅褐色。反应结束后,离心分离出沉淀,用去离子水洗涤,干燥后研磨得到浅褐色Ag@g-C3N4粉末,命名为AG。
(3)通过水热法制备NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂
取一定量的Ag@g-C3N4粉末超声分散于36mL N,N-二甲基甲酰胺中,形成Ag@g-C3N4悬浮液。取540.6mg(2mmol)六水合氯化铁作为铁源、取362.3mg(2mmol)2-氨基对苯二甲酸作为有机配体,放入Ag@g-C3N4悬浮液中,并超声分散半小时得到混合液。将混合液转移到50mL的聚四氟乙烯内衬不锈钢水热釜中,将水热釜放入烘箱并以150℃进行水热反应,反应时长为24小时。待冷却后,用N,N-二甲基甲酰胺和甲醇分别洗涤三次,离心分离出沉淀物。将沉淀物置于真空干燥箱中干燥至恒重,经研磨后得到棕褐色粉末,即NH2-MIL-53(Fe)/Ag@g-C3N4催化剂。其中Ag@g-C3N4的添加量为六水合氯化铁和2-氨基对苯二甲酸总质量的20%、40%、60%,即Ag@g-C3N4的添加量分别为180.6mg、361.2mg、541.8mg,催化剂分别命名为FMAG-1、FMAG-2、FMAG-3。
(4)NH2-MIL-53(Fe)的制备
取540.6mg六水合氯化铁作为铁源、取362.3mg 2-氨基对苯二甲酸作为有机配体,搅拌分散于36mL N,N-二甲基甲酰胺中,形成均匀溶液。将溶液转移到50mL的聚四氟乙烯内衬不锈钢水热釜中,将水热釜放入烘箱并以150℃进行水热反应,反应时长为24小时。待冷却后,用N,N-二甲基甲酰胺和甲醇分别洗涤三次,离心分离出沉淀物。将沉淀物置于真空干燥箱中干燥至恒重,经研磨后得到深褐色粉末,即NH2-MIL-53(Fe)。
实施例2
一种基于NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂的可见光诱导降解污染物方法,该方法包括步骤如下:
将NH2-MIL-53(Fe)/Ag@g-C3N4(FMAG-1、FMAG-2、FMAG-3)可见光诱导光芬顿催化剂用于降解50mL 30mg/L苯酚溶液,催化剂浓度为0.4g/L,降解过程在夹套反应器中进行,反应器接上循环冷却水。将苯酚溶液倒入夹套反应器中,以0.1M H2SO4调节溶液初始pH为4.0,在磁力搅拌下加入光芬顿催化剂,形成均匀悬浮液。首先在避光伴随磁力搅拌条件下进行半小时暗吸附,以达到催化剂达到吸附-解吸平衡状态;然后将反应器置于装有可见光滤光片(截止波长为420nm)的氙灯光源下,往反应器中加入H2O2,使其体系浓度为10mM,进行2小时可见光光芬顿氧化降解反应。每隔20min吸取约3mL反应器中的悬浮液,并用0.22μm针头式膜过滤器将悬浮液中的光芬顿催化剂分离,保留滤液,并用高效液相色谱对滤液中苯酚浓度进行测定。
根据公式(1)计算污染物的去除率(Removal efficiency):
Figure BDA0003724019520000101
其中,C0为污染物溶液的初始浓度,单位为mg/L;C为每次取样时刻污染物溶液的浓度,单位为mg/L。
空白对照为不添加催化剂进行降解,其余实验条件同上。
实施例3
同实施例2所述的基于NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂的可见光诱导降解污染物方法,不同之处在于:
污染物为50mL 50mg/L甲基橙溶液,光芬顿催化剂为FMAG-2,降解反应时长为1小时,每隔10min吸取悬浮液作为测试样品,用紫外可见分光光度计对滤液中甲基橙浓度进行测定。
空白对照为不添加催化剂进行降解,其余实验条件同上。
将光芬顿催化剂FMAG-2替换为Ag@g-C3N4作为对照组。
实施例4
同实施例2所述的基于NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂的可见光诱导降解污染物方法,不同之处在于:
NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂浓度为0.1g/L、0.2g/L、0.3g/L、0.5g/L,光芬顿催化剂为FMAG-2。
实施例5
同实施例2所述的基于NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂的可见光诱导降解污染物方法,不同之处在于:
加入H2O2浓度为0mM、3mM、5mM,光芬顿催化剂为FMAG-2。
实施例6
同实施例2所述的基于NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂的可见光诱导降解污染物方法,不同之处在于:
溶液初始pH为3.0、3.5、5.0,光芬顿催化剂为FMAG-2。
对比例1
同实施例2所述的降解污染物方法,不同之处在于:
用Ag@g-C3N4代替NH2-MIL-53(Fe)/Ag@g-C3N4
对比例2
同实施例2所述的降解污染物方法,不同之处在于:
用Ag@g-C3N4并同时加入FeCl3(体系浓度为0.1mM),即AG+Fe3+代替NH2-MIL-53(Fe)/Ag@g-C3N4
对比例3
同实施例2所述的降解污染物方法,不同之处在于:
用NH2-MIL-53(Fe)代替NH2-MIL-53(Fe)/Ag@g-C3N4
测试数据分析
(1)实施例1制备的Ag@g-C3N4、NH2-MIL-53(Fe)和NH2-MIL-53(Fe)/Ag@g-C3N4(FMAG-2)光芬顿催化剂的XRD图谱如图1。
实施例1制备的NH2-MIL-53(Fe)/Ag@g-C3N4(FMAG-2)光芬顿催化剂的SEM图像如图2。
实施例1制备的g-C3N4、Ag@g-C3N4、NH2-MIL-53(Fe)、NH2-MIL-53(Fe)/Ag@g-C3N4(FMAG-2)光芬顿催化剂的DRS图谱如图3。
实施例1制备的g-C3N4、Ag@g-C3N4、NH2-MIL-53(Fe)、NH2-MIL-53(Fe)/Ag@g-C3N4(FMAG-2)光芬顿催化剂的PL图谱如图4。
图1中可以看到Ag@g-C3N4催化剂的谱图在13.1°和27.3°处出现两个明显的宽峰,分别对应于g-C3N4(JCPDS Card#87-1526)的(100)面和(002)面;在38.1°和44.3°附近观察到Ag(JCPDS Card#04-0783)的(111)面和(200)面特征峰。FMAG-2谱图中的特征峰与NH2-MIL-53(Fe)的特征峰重合,并在27.3°左右出现小峰,说明FMAG-2中Fe MOF晶粒成功在Ag@g-C3N4上合成。可能是由于Ag沉积量较少,FMAG-2谱图中未见Ag特征峰。
图2可以观察到,FMAG-2中有呈六棱短棒状结构的NH2-MIL-53(Fe)晶粒并形成团簇状,这些晶粒宽度约为0.4~0.8μm,长度约为(2~3)μm。晶粒外部包裹着片层,说明NH2-MIL-53(Fe)晶粒成功在Ag@g-C3N4片层上合成。
图3中可以看到,g-C3N4的可见光吸收能力较低,经过光沉积Ag后,得到了一定程度的提升。纯NH2-MIL-53(Fe)在整个测试波长范围内表现出最好的可见光吸收性能。这是由于合成过程中使用了氨基修饰的对苯二甲酸作为有机配体,氨基的引入能使带隙收窄,有助于提高光吸收性能。FMAG-2催化剂的可见光吸收能力略低于纯NH2-MIL-53(Fe)。
图4展示了催化剂在325nm光激发下的光致发光光谱,分析光生电子-空穴对的复合效率,通常复合速率随着PL发射强度的增加而增加。Ag@g-C3N4显著降低了g-C3N4的峰强,说明Ag沉积有利于抑制复合过程。而纯NH2-MIL-53(Fe)本身呈现出更低的PL峰强,在与Ag@g-C3N4复合后,峰强度进一步下降,FMAG-2催化剂处于峰强度最低的位置,说明FMAG-2催化剂中异质结的形成,促进了光生电子空穴的快速分离。
(2)实施例2和对比例1-3中,空白对照、AG、AG+Fe3+、FMAG-1、FMAG-2、FMAG-3光芬顿催化剂对苯酚降解效果如图5所示。从图5可以看出,苯酚在无催化剂条件下不能分解;AG、AG+Fe3+、NH2-MIL-53(Fe)、FMAG-1、FMAG-2、FMAG-3体系对苯酚的暗吸附量分别为1.4%、1.4%、32.7%、9.8%、8.3%、5.4%,纯NH2-MIL-53(Fe)的吸附性能最佳;120min对苯酚的去除率分别为43.9%、72.9%、58.8%、99.7%、100%(100min)、93.2%。代表传统均相芬顿体系的AG+Fe3+对苯酚的去除率低于非均相体系,而在非均相体系中,FMAG-2降解速率最高,为最佳催化体系。
(3)实施例3中,空白对照、AG、FMAG-2光芬顿催化剂对甲基橙降解效果如图6所示。从图6可以看出,甲基橙在无催化剂条件下不能分解;AG、FMAG-2对甲基橙的暗吸附量分别为3.4%、11.3%;可见光照射1小时内,AG、FMAG-2对苯酚的去除率分别为43.3%、100%(40min)。
(4)实施例2与实施例4中加入不同浓度的FMAG-2催化剂对苯酚的降解效果如图7所示。从图7可以看出,随着催化剂浓度的升高,苯酚降解速率逐步提高。但0.4g/L条件下的降解速率与0.5g/L条件下的接近,降解过程均在100分钟内完成,基于节约成本的原则,0.4g/L为最佳浓度条件。
(5)实施例2与实施例5中加入不同浓度的H2O2对苯酚的降解效果如图8所示。从图8可以看出,在0mM~10mM范围内,随着H2O2浓度的升高,苯酚降解速率逐步提高。
(6)实施例2与实施例6中不同溶液初始pH对苯酚的降解效果如图9所示。从图9中的a可以看出,苯酚降解速率最高是pH=3.5和pH=4.0时;当pH=3.0时,苯酚降解速率略微下降;当pH=5.0时,苯酚降解速率明显降低。从图9中的b可以看出,pH越低,催化剂的铁物种浸出浓度越高,铁物种的流失不利于光芬顿过程的铁循环。因此,最佳pH为4.0。
(7)实施例1制备的NH2-MIL-53(Fe)/Ag@g-C3N4(FMAG-2)体系在可见光照射下产生不同活性氧物种的ESR谱图,a为羟基自由基的ESR谱图,b为超氧自由基的ESR谱图如图10。
图10中的a,以DMPO为捕获剂,检测到的ESR信号呈四个峰,峰高比例接近1:2:2:1,是典型的羟基自由基信号峰;图10中的b,ESR信号出现六重峰,符合超氧自由基信号峰特征,说明在可见光照射下,FMAG-2体系能产生羟基自由基和超氧自由基等活性氧物种。
(8)实施例1制备的NH2-MIL-53(Fe)/Ag@g-C3N4(FMAG-2)体系在可见光照射下对30mg/L的苯酚进行循环降解5次,第1次降解在100min时苯酚彻底降解;第5次降解在120min时达到苯酚去除率为83.3%。
以上实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂,其特征在于,包括NH2-MIL-53(Fe)晶粒和Ag@g-C3N4,所述Ag@g-C3N4分布在NH2-MIL-53(Fe)晶粒表面。
2.根据权利要求1所述的NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂,其特征在于,所述NH2-MIL-53(Fe)晶粒为六棱短棒状团簇结构;所述NH2-MIL-53(Fe)晶粒的宽度为0.4~0.8μm,长度为2~3μm;所述Ag@g-C3N4为片层状。
3.权利要求1-2任一项所述的NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂的制备方法,其特征在于,包括以下步骤:
(1)g-C3N4的制备
将三聚氰胺煅烧得到g-C3N4粉末;
(2)Ag@g-C3N4的制备
通过光沉积法在步骤(1)的g-C3N4粉末上沉积银制备Ag@g-C3N4粉末;(3)NH2-MIL-53(Fe)/Ag@g-C3N4的制备
将步骤(2)的Ag@g-C3N4粉末分散在有机溶剂中得到Ag@g-C3N4悬浮液;加入可溶性铁盐和有机配体2-氨基对苯二甲酸,水热反应得到NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂。
4.根据权利要求3所述的制备方法,其特征在于,步骤(1)所述g-C3N4的制备具体为:将三聚氰胺530℃~570℃第一次煅烧4~5小时;研磨后,470℃~530℃第二次煅烧3~4小时;
步骤(2)Ag@g-C3N4的制备具体为:将g-C3N4粉末分散在体积比为(2.5~3.5):1的水-乙醇溶液中得到g-C3N4悬浮液,紫外光照射下,加入可溶性银盐溶液,搅拌下进行光沉积反应。
5.根据权利要求4所述的制备方法,其特征在于,步骤(1)所述第一次煅烧的升温速率为1~2℃/min;第二次煅烧的升温速率为3~5℃/min;
步骤(2)所述加入可溶性银盐溶液的方式为逐滴滴加;所述g-C3N4悬浮液的浓度为1~1.5mg/mL;所述紫外光为装有紫外滤光片的氙灯,所述紫外滤光片的截止波长为220nm;所述可溶性银盐为AgNO3;所述加入的可溶性银盐中Ag与g-C3N4粉末质量比为(0.3~0.5):1;所述可溶性银盐溶液的浓度为1.30~1.50mg/mL;所述光沉积反应的时间为1~1.5小时。
6.根据权利要求3所述的制备方法,其特征在于,步骤(3)所述可溶性铁盐为的氯化铁或硝酸铁;所述有机溶剂为N,N-二甲基甲酰胺;所述Ag@g-C3N4粉末和有机溶剂的质量体积比为(5~15):1g/L。
7.根据权利要求3所述的制备方法,其特征在于,步骤(3)所述可溶性铁盐与有机配体2-氨基对苯二甲酸的摩尔比为(1~1.2):1,Ag@g-C3N4粉末的质量用量为可溶性铁盐与有机配体2-氨基对苯二甲酸总质量的20%~60%;
所述水热反应反应的温度为140~160℃,时间为22~26小时。
8.权利要求1-2任一项所述的NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂在可见光诱导降解有机污染物中的应用。
9.根据权利要求8所述的应用,其特征在于,可见光诱导降解有机污染物具体为:将NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂加入含有有机污染物的溶液中,可见光照射下加入H2O2进行降解反应。
10.根据权利要求9所述的应用,其特征在于,所述有机污染物为苯酚、甲基橙中的至少一种;
降解体系中NH2-MIL-53(Fe)/Ag@g-C3N4催化剂的浓度为0.1g/L~0.5g/L;
所述含有有机污染物的溶液的初始pH为3.0~5.0;
加入H2O2后降解体系中H2O2的浓度为0mM~10mM且不为0;
所述可见光为装有可见光滤光片的氙灯,所述可见光滤光片的截止波长为420nm。
CN202210760870.3A 2022-06-30 2022-06-30 NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂及其制备方法与应用 Pending CN114985015A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210760870.3A CN114985015A (zh) 2022-06-30 2022-06-30 NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210760870.3A CN114985015A (zh) 2022-06-30 2022-06-30 NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN114985015A true CN114985015A (zh) 2022-09-02

Family

ID=83019917

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210760870.3A Pending CN114985015A (zh) 2022-06-30 2022-06-30 NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114985015A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328843A (zh) * 2022-12-29 2023-06-27 广西民族大学 一种异质光催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107876080A (zh) * 2017-11-17 2018-04-06 阜阳师范学院 一种新颖光催化剂Ag/g‑C3N4B及其制备和应用
US20200360905A1 (en) * 2019-05-16 2020-11-19 Soochow University Novel in-nh2/g-c3n4 nanocomposite with visible-light photocatalytic activity and preparation and application thereof
AU2020102640A4 (en) * 2020-09-18 2020-11-26 Qilu University Of Technology PREPARATION METHOD AND APPLICATION OF g-C3N4/(101)-(001)-TiO2 COMPOSITE MATERIAL
CN113398968A (zh) * 2021-05-24 2021-09-17 河南师范大学 一种MOF衍生的TiO2/多孔g-C3N4复合光催化剂及其制备方法和应用
CN113663730A (zh) * 2021-07-14 2021-11-19 中国地质大学(武汉) 一种铁基有机骨架复合材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107876080A (zh) * 2017-11-17 2018-04-06 阜阳师范学院 一种新颖光催化剂Ag/g‑C3N4B及其制备和应用
US20200360905A1 (en) * 2019-05-16 2020-11-19 Soochow University Novel in-nh2/g-c3n4 nanocomposite with visible-light photocatalytic activity and preparation and application thereof
AU2020102640A4 (en) * 2020-09-18 2020-11-26 Qilu University Of Technology PREPARATION METHOD AND APPLICATION OF g-C3N4/(101)-(001)-TiO2 COMPOSITE MATERIAL
CN113398968A (zh) * 2021-05-24 2021-09-17 河南师范大学 一种MOF衍生的TiO2/多孔g-C3N4复合光催化剂及其制备方法和应用
CN113663730A (zh) * 2021-07-14 2021-11-19 中国地质大学(武汉) 一种铁基有机骨架复合材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SOVAN KUMAR PATRA ET AL.: "Enhanced Z-scheme photocatalytic activity of a π-conjugated heterojunction: MIL-53(Fe)/Ag/g-C3N4" *
XIAOSI WANG ET AL.: "Imide modification coupling with NH2-MIL-53(Fe) boosts the photocatalytic performance of graphitic carbon nitride for efficient water remediation" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328843A (zh) * 2022-12-29 2023-06-27 广西民族大学 一种异质光催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
Zhang et al. Critical role of oxygen vacancies in heterogeneous Fenton oxidation over ceria-based catalysts
CN108435225B (zh) 一种Fe-N/C复合催化剂及其制备方法和应用
CN109248704B (zh) 碳、氧共掺杂石墨相氮化碳的制备及其在催化活化过硫酸盐降解水中污染物中的应用
CN111359650B (zh) 铁、镍、钯共掺杂石墨相氮化碳复合催化剂的制备方法、产品及应用
Chen et al. S-scheme-enhanced PMS activation for rapidly degrading tetracycline using CuWO4− x/Bi12O17Cl2 heterostructures
CN109012724B (zh) 一种CoMoO4/g-C3N4复合光催化剂及其制备方法和应用
CN108816268B (zh) 复合光催化纳米材料及其制备方法、以及降解污染物方法
Li et al. Activation of peroxymonosulfate by a waste red mud-supported Co3O4 quantum dots under visible light for the degradation of levofloxacin
CN108503015A (zh) 一种污泥热解制备光Fenton催化剂的方法及催化剂和应用
CN108906090B (zh) 一种具有p-n异质结的光催化复合材料及其制备方法和应用
CN109806900B (zh) 一种分子印迹型Ag/Ag3VO4/CN纳米片复合光催化剂的制备方法及应用
Liu et al. Fe-MOF by ligand selective pyrolysis for Fenton-like process and photocatalysis: Accelerating effect of oxygen vacancy
CN112337490A (zh) 一种Mn-FeOCl材料制备及其催化降解水中孔雀石绿使用方法
CN111992255B (zh) 用于去除水中双酚A的片状g-C3N4/ZIF-8/AgBr复合材料及其制备方法
CN110841669B (zh) 利用零维黑磷量子点/一维管状氮化碳复合光催化剂处理重金属和有机污染物的方法
CN113398974A (zh) 一种Fe掺杂g-C3N4光催化剂及其制备方法和应用
CN113663730A (zh) 一种铁基有机骨架复合材料及其制备方法和应用
CN114985015A (zh) NH2-MIL-53(Fe)/Ag@g-C3N4光芬顿催化剂及其制备方法与应用
CN111359676B (zh) 一种mof基复合材料及其制备方法和应用
Li et al. Glucose-induced fabrication of Bi/α-FeC 2 O 4· 2H 2 O heterojunctions: a bifunctional catalyst with enhanced photocatalytic and Fenton oxidation efficiency
CN108435191A (zh) 一种SnNb2O6/CoFe-LDH片片复合磁性异质结构催化剂及其制备方法和应用
CN108144585B (zh) 一种用于重金属和染料废水处理的三元磁性复合材料及其制备方法
CN113457704B (zh) 一种Fe2O3-ZnO/g-C3N4复合材料及其制备方法和应用
CN111215116A (zh) 一种3d缺陷氮化碳光催化材料及其制备方法与用途
CN112573636B (zh) 一种利用铁锰氧体-金纳米催化剂处理有机污染物的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination