CN109012724B - 一种CoMoO4/g-C3N4复合光催化剂及其制备方法和应用 - Google Patents

一种CoMoO4/g-C3N4复合光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN109012724B
CN109012724B CN201810775701.0A CN201810775701A CN109012724B CN 109012724 B CN109012724 B CN 109012724B CN 201810775701 A CN201810775701 A CN 201810775701A CN 109012724 B CN109012724 B CN 109012724B
Authority
CN
China
Prior art keywords
comoo
water
humic acid
degrading
adsorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810775701.0A
Other languages
English (en)
Other versions
CN109012724A (zh
Inventor
杨汉培
高照
黄俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201810775701.0A priority Critical patent/CN109012724B/zh
Publication of CN109012724A publication Critical patent/CN109012724A/zh
Application granted granted Critical
Publication of CN109012724B publication Critical patent/CN109012724B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种CoMoO4/g‑C3N4复合光催化剂,所述光催化剂为二维片层状的g‑C3N4上负载有一定量的CoMoO4纳米棒;g‑C3N4上CoMoO4纳米棒的负载量为5%~15%(质量百分比)。本发明还公开了上述CoMoO4/g‑C3N4复合光催化剂的制备方法及其在缺氧水体中吸附降解腐植酸的应用。本发明CoMoO4/g‑C3N4复合材料可见光下对水体中的腐植酸具有良好的吸附能力和降解能力,尤其在水体中有过硫酸盐存在的情况下,CoMoO4/g‑C3N4能够有效活化过硫酸盐生成硫酸根自由基,从而进一步提高其降解水体中有机污染物的能力。

Description

一种CoMoO4/g-C3N4复合光催化剂及其制备方法和应用
技术领域
本发明涉及一种CoMoO4/g-C3N4复合光催化剂,还涉及上述CoMoO4/g-C3N4复合光催化剂的制备方法和应用,属于光催化剂技术领域。
背景技术
腐植酸(HA)作为天然存在的有机电解质,能够用于处理水体中重金属。但是饮用水氯化过程中由于腐植酸的存在通常会产生致癌的含氯有机化合物,严重威胁人体健康。研究表明,改性TiO2对水体中HA的降解具有一定的处理效果,但处理效率很低,且往往极度依赖水体中的氧气产生超氧自由基氧化水中的有机物。
石墨相氮化碳(g-C3N4)由于其独特的二维类石墨结构,低成本无毒性,优异的化学稳定性以及可见光响应等特点,成为目前最具前景的光催化剂之一,在水的光解产氢产氧,CO2还原,以及污染物降解方面有了越来越多的研究。虽然g-C3N4具有中等的禁带宽度,约为2.7eV,不含金属、稳定性较好,在可见光利用方面有着巨大的优势,但纯g-C3N4催化剂在光催化性能方面不能令人满意,主要在于其比表面积小,团聚严重,吸附性能较差,同时由于价带电势较低,空穴不能与H2O 发生反应,一方面体系中不能生产·OH自由基进行氧化,另一方面造成体系中电子-空穴复合速率快,光生载流子传输慢,光催化活性低,反应速率慢。因此其吸附性能差、光量子效率低的缺点限制了其进一步应用于水处理中。将CoMoO4单独投入水体中用于降解污染物时,一方面Co2+在还原过硫酸盐时容易造成Co2+的泄露;另一方面CoMoO4本身具有毒性,对水体容易造成二次污染。
因此一种无毒、高效降解腐殖酸的催化剂的开发很有必要。
发明内容
发明目的:本发明所要解决的技术问题是提供一种CoMoO4/g-C3N4复合光催化剂,将CoMoO4负载于g-C3N4的表面,抑制了Co2+的泄露和有毒的CoMoO4对水体造成二次污染的可能性,该复合材料能够提高g-C3N4的吸附性能,并通过有效促进电子传递和抑制电子空穴对的复合提高复合材料的降解性能,复合材料能通过促进过硫酸钾的活化产生硫酸根自由基(E(·SO4 2-)=2.7-3.1eV),硫酸根自由基对水体中的腐植酸降解效果极佳,同时在水体中含有过硫酸钾的情况下该复合材料不受水溶液中氧气浓度的限制,可应用于光催化降解缺氧的有机污染废水中。
本发明还要解决的技术问题是提供上述CoMoO4/g-C3N4复合光催化剂的制备方法。
本发明最后要解决的技术问题是提供上述CoMoO4/g-C3N4复合光催化剂在缺氧水体中吸附降解腐植酸的应用。
为解决上述技术问题,本发明所采用的技术方案为:
一种CoMoO4/g-C3N4复合光催化剂,所述光催化剂为二维片层状的g-C3N4上负载有一定量的CoMoO4纳米棒;g-C3N4上CoMoO4纳米棒的负载量为5%~15%(质量百分比)。
其中,所述二维片层状的g-C3N4上生长的棒状CoMoO4纵横交错,从而形成具有多个孔隙的复合材料,孔隙的孔径为15~25nm。复合光催化剂为介孔材料,其二维片层状的g-C3N4上生长的CoMoO4纳米棒的为长250nm,宽为50nm。
上述CoMoO4/g-C3N4复合光催化剂的制备方法,包括如下步骤:
步骤1:制备g-C3N4粉末:取一定量的三聚氰胺于惰性气体氛围下以一定的升温速度进行煅烧;其中,在0~500℃温度区间以升温速率为5℃/min升温至500℃后煅烧2h,然后在500-550℃温度区间以升温速率为5℃/min升温至550℃后煅烧2h;得到淡黄色固体后研磨得到g-C3N4粉末;
步骤2,将所需量的Na2MoO4·2H2O和Co(NO3)2·6H2O加入一定体积的水中,并于室温下磁力搅拌数小时再超声一定时间得到混合液A;
步骤3,将步骤1得到的g-C3N4粉末加入混合液A中,调节混合反应液的pH至6~9,在室温下将混合反应液磁力搅拌数小时再超声一定时间得到混合液B;
步骤4,将混合液B于160℃~180℃下反应4~6h;将反应后得到的产物清洗、干燥得到 CoMoO4/g-C3N4复合材料。
其中,步骤2中,Na2MoO4·2H2O和Co(NO3)2·6H2O的加入摩尔比为1∶1。
其中,步骤3中,g-C3N4粉末与钼酸钠的混合摩尔比约为2.3∶1;g-C3N4粉末与硝酸钴的混合摩尔比约为2.3∶1。
其中,步骤4中,CoMoO4/g-C3N4复合材料中,CoMoO4与g-C3N4的质量百分比为5%~15%。
上述CoMoO4/g-C3N4复合光催化剂在吸附降解水体中腐植酸方面的应用。
相比于现有技术,本发明的技术方案所具有的有益效果为:
本发明CoMoO4/g-C3N4复合材料可见光下对水体中的腐植酸具有良好的吸附能力和降解能力,尤其在水体中有过硫酸盐存在的情况下,CoMoO4/g-C3N4能够有效活化过硫酸盐生成硫酸根自由基,从而进一步提高其降解水体中有机污染物的能力。
本发明CoMoO4/g-C3N4复合材料降解腐殖酸的原理如下:当CoMoO4/g-C3N4受到可见光激发后,电子分别从各自的价带(VB)跃迁到导带(CB)。由于g-C3N4的导带(ECB=-1.3eV)比CoMoO4的导带位置(ECB=-0.32eV)更负,因此g-C3N4表面的电子会转移到CoMoO4的导带上;同理,由于CoMoO4的价带比(EVB=2.48eV)g-C3N4的价带(EVB=1.4eV)更正,空穴从CoMoO4的价带转移到g-C3N4上,这样电子空穴对得到有效的分离,因此复合材料通过促进电子传递和抑制电子空穴对的复合,能够有效提高g-C3N4对腐殖酸的降解性能。
本发明CoMoO4/g-C3N4复合材料通过活化过硫酸盐生成硫酸根自由基降解有机物的原理:由于过硫酸根(S2O8 2-)的氧化还原电位为2.01eV,O2/O2-的氧化还原电位为-0.048eV,所以处于CoMoO4导带上的电子更易于和52O8 2-反应,产生硫酸根自由基(SO4 .-)。Co2 +和52O8 2-反应产生SO4 .-的过程和Co2+/Co3+循环的过程如下:
Co2++S2O8 2-→Co3++SO4 .-+SO4 2-
Co3++e-→Co2+
一般情况下,Co3+会通过消耗SO4 .-再生Co2+,但由于本体系中光生电子产量丰富,则能通过电子捕获Co3+形成Co2+。这样,HA分子能在SO4 .-以及空穴的作用下被氧化成CO2和H2O,反应机理如图9所示。
附图说明
图1为制备本发明g-C3N4/CoMoO4复合材料的工艺流程图;
图2a为g-C3N4的SEM图;图2b为g-C3N4/CoMoO4复合材料的SEM图;
图3为本发明g-C3N4/CoMoO4复合材料的透射电镜图;其中,图3a为TEM图,图3b为HRT′EM 图;
图4为g-C3N4、CoMoO4和g-C3N4/CoMoO4复合材料的XRD图;
图5为g-C3N4、CoMoO4和g-C3N4/CoMoO4复合材料的FT-IR图;
图6a为g-C3N4、CoMoO4和g-C3N4/CoMoO4复合材料的N2吸附-解吸等温线图;图6b为g-C3N4、 CoMoO4和g-C3N4/CoMoO4复合材料的孔径分布图;
图7为不同条件下g-C3N4、CoMoO4和g-C3N4/CoMoO4复合材料吸附-光催化活化过硫酸盐氧化腐植酸的图;
图8为无氧条件下CoMoO4/g-C3N4/PS系统对腐植酸的吸附-光催化降解图;
图9为CoMoO4/g-C3N4/PS系统中HA的降解原理图。
具体实施方式
下面结合具体实施例和附图对本发明做进一步详细说明。
实施例1
一种g-C3N4粉末的制备方法:取5g三聚氰胺置于玻璃磁舟中,然后将盛有三聚氰胺的玻璃磁舟放入管式炉中,于N2气氛下程序升温:0-500,5℃/min;500℃,2h;500-550,5℃/min;550℃, 2h,即在0~500℃温度区间以升温速率为5℃/min升温至500℃后煅烧2h,然后在500-550℃温度区间以升温速率为5℃/min升温至550℃后煅烧2h;得到淡黄色固体后研磨得到g-C3N4粉末。
实施例2
一种CoMoO4纳米棒的制备方法:称取0.24195gNa2MoO4·2H2O和0.29103gCo(NO3)2·6H2O加入到50mL去离子水中,搅拌30min后超声10min后得到混合液;将混合液置于100mL反应釜中,于180℃下反应5h;反应结束后,自然冷却至室温,取出反应釜中的沉淀物,用去离子水和无水乙醇洗涤3次,最后于60℃下干燥,得到CoMoO4纳米棒。
实施例3
本发明g-C3N4/CoMoO4复合材料的制备方法:
步骤1,取5g三聚氰胺置于玻璃磁舟中,然后将盛有三聚氰胺的玻璃磁舟放入管式炉中,于 N2气氛下程序升温:0-500,5℃/min;500℃,2h;500-550,5℃/min;550℃,2h,即在0~500℃温度区间以升温速率为5℃/min升温至500℃后煅烧2h,然后在500-550℃温度区间以升温速率为5℃ /min升温至550℃后煅烧2h;得到淡黄色固体后研磨得到g-C3N4粉末;
步骤2,称取0.24195gNa2MoO4·2H2O和0.29103gCo(NO3)2·6H2O加入到50mL去离子水中,搅拌30min后超声10min后得到混合液A;
步骤3,称取0.2187g步骤1制得的g-C3N4粉末加入到混合液A中,调节混合反应液的pH至 7,搅拌30min并超声5min后得混合液B;
步骤4,将混合液B置于100mL反应釜中,于180℃下反应5h;
步骤5,反应结束后,自然冷却至室温,取出反应釜中的沉淀物,用去离子水和无水乙醇洗涤 3次,最后于60℃下干燥,得到CoMoO4/g-C3N4复合材料。
对实施例1、3制备的g-C3N4和CoMoO4/g-C3N4复合材料进行SEM表征分析:从图2可以看出,经过二维片层状的g-C3N4表面负载了CoMoO4纳米棒。
对实施例3制备的CoMoO4/g-C3N4复合材料进行TEM表征分析:从图3a可以看出,CoMoO4纳米棒成功的负载在g-C3N4的表面;图3b显示了两种间距的晶格条纹,为0.35和0.336nm,分别对应于g-C3N4的(22-40)晶面和CoMoO4的(002)晶面,这也表明CoMoO4已成功负载于g-C3N4上。
对实施例1、2和3制备的g-C3N4、CoMoO4和CoMoO4/g-C3N4复合材料进行XRD表征分析:从图4可以看出,CoMoO4/g-C3N4复合材料的XRD图具有g-C3N4的(100)和(002)衍射晶面的峰,分别位于13.2°和27.8°;CoMoO4(JCPDS No.15-0439)的XRD衍射峰也明显的出现在CoMoO4/g-C3N4的XRD图中,这表明CoMoO4已成功负载于g-C3N4上。
对实施例1、2和3制备的g-C3N4、CoMoO4和CoMoO4/g-C3N4复合材料进行FT-IR表征分析:从图5可以看出,g-C3N4中在1200-1650cm-1范围内的芳香CN杂环的典型振动峰和位于810cm-1的三嗪单元以及CoMoO4中的位于737、867和957cm-1处Mo-O-Mo伸缩振动峰、MoO4正四面体单元的变形振动均出现在了CoMoO4/g-C3N4的FT-IR光谱中。另外,在CoMoO4/g-C3N4的红外图谱中出现的新峰(1467cm-1)可归于CoMoO4和g-C3N4之间形成的Co-O-C键。这与SEM、TEM和XRD 的结果一致,均表明CoMoO4已成功负载于g-C3N4上。
对实施例1、2和3制备的g-C3N4、CoMoO4和CoMoO4/g-C3N4复合材料进行吸附-解吸等温线和孔径分布图分析:从图6可以看出,三种材料的吸附等温线均呈现IV型,这表明污染物在材料表面的吸附与介孔的毛细凝聚吸附有关;g-C3N4、CoMoO4和CoMoO4/g-C3N4的比表面积分别为9.45, 15.63和30.14m2/g,相比于g-C3N4和CoMoO4,复合材料的比表面积大大提升,从而有效提高对腐殖酸的吸附性能;CoMoO4/g-C3N4复合材料的孔径主要在20nm左右,增大的比表面积和孔体积有利于材料的吸附-光催化反应的进行。
利用实施例1、2和3制得的g-C3N4、CoMoO4和CoMoO4/g-C3N4对腐植酸进行吸附-光催化降解实验:
(1)无过硫酸钾条件下的光催化实验:
取四份100mL腐植酸初始浓度为10mg/L的溶液分别置于光催化反应器中,四份100mL腐植酸中分别加入50mg的g-C3N4、CoMoO4和CoMoO4/g-C3N4材料以及(CoMoO4∶g-C3N4=1∶10)机械混合的 CoMoO4+g-C3N4,无光条件下吸附30min至吸附平衡,间断取样,离心后过0.45μm的滤膜并测试溶液中腐植酸的浓度。在可见光照射下,每间隔30min取样,离心后过0.45μm的滤膜并测试溶液中的腐植酸浓度。绘制t时刻的浓度/初始浓度(Ct/C0)~t曲线图。
(2)加入过硫酸钾的条件下的光催化实验:
取四份100ml腐植酸初始浓度为10mg/L的溶液分别置于光催化反应器中,四份100mL腐植酸中分别加入50mg的g-C3N4、CoMoO4/g-C3N4、CoMoO4/g-C3N4和(CoMoO4∶g-C3N4=1∶10)的机械混合物,无光条件下吸附30min至吸附平衡,间断取样,离心后过0.45μm的滤膜并测试溶液中腐植酸的浓度。可见光照射之前,分别加入1mmol,1mmol,2mmol和1mmol的过硫酸钾溶液,每间隔30min 取样,离心后过0.45μm的滤膜并测试溶液中腐植酸的浓度。绘制t时刻的浓度/初始浓度(Ct/C0)~ t曲线图。
从图7中可以看出,单纯的CoMoO4、g-C3N4以及CoMoO4和g-C3N4的机械混合物对腐植酸几乎没有吸附和降解效果,但CoMoO4/g-C3N4复合材料对腐植酸的吸附率达50%左右,可见光下光催化2.5h后降解率约为73.7%。CoMoO4/g-C3N4复合后,复合材料的比表面积远远大于g-C3N4和 CoMoO4的比表面积;同时g-C3N4上生长的棒状CoMoO4纵横交错,从而形成具有多个孔隙的表面 (复合材料整体为介孔材料),复合材料比表面积的增大和以及其具有多个孔隙的表面协同大大增强了复合材料对腐殖酸的吸附能力。
可见光下,g-C3N4对过硫酸钾具有一定的活化作用,2.5h可见光光催化下腐植酸的降解率约为 26.4%;CoMoO4和g-C3N4的机械混合物对腐植酸的降解率约为22.2%。但在相同的过硫酸钾浓度下 (2mmol),可见光照射2h后,CoMoO4/g-C3N4复合材料对腐植酸的降解率达到100%,且经过了测定总有机碳(TOC)去除率(约为96.5%)来证实这一数据。这说明通过改性,CoMoO4/g-C3N4复合材料能大大提高对水体中腐植酸的吸附能力和降解能力,且能通过有效的活化过硫酸钾来快速去除水体中的腐植酸。
从图8中可以看出,当光催化环境处于无氧条件时,CoMoO4/g-C3N4复合材料对腐植酸的降解率几乎没有受到影响,CoMoO4/g-C3N4/PS系统降解污染物不受水体中氧浓度的影响,因此可用于缺氧条件下的污染物的降解,例如黑臭水体的治理等。

Claims (6)

1.CoMoO4/g-C3N4复合光催化剂在吸附降解水体中腐植酸方面的应用,其特征在于:所述CoMoO4/g-C3N4复合光催化剂为二维片层状的g-C3N4上负载有一定量的CoMoO4纳米棒;g-C3N4上CoMoO4纳米棒的负载量为5 wt %~15wt%。
2.根据权利要求1所述的CoMoO4/g-C3N4复合光催化剂在吸附降解水体中腐植酸方面的应用,其特征在于:所述二维片层状的g-C3N4上生长的棒状CoMoO4 纵横交错,从而形成具有多个孔隙的复合材料,孔隙的孔径为15~25nm。
3.根据权利要求1所述的CoMoO4/g-C3N4复合光催化剂在吸附降解水体中腐植酸方面的应用,其特征在于,CoMoO4/g-C3N4复合光催化剂的制备方法包括如下步骤:
步骤1:取一定量的三聚氰胺于惰性气体氛围下以一定的升温速度进行煅烧;其中,在0~500℃温度区间以升温速率为5℃/min升温至500℃后煅烧2h,然后在500-550℃温度区间以升温速率为5℃/min升温至550℃后煅烧2h;得到淡黄色固体后研磨得到g-C3N4粉末;
步骤2,将所需量的Na2MoO4‧2H2O和Co(NO3)2‧6H2O加入一定体积的水中,并于室温下磁力搅拌数小时再超声一定时间得到混合液A;
步骤3,将步骤1得到的g-C3N4粉末加入混合液A中,调节混合反应液的pH至6~9,在室温下将混合反应液磁力搅拌数小时再超声一定时间得到混合液B;
步骤4,将混合液B于160℃~180℃下反应4~6h;将反应后得到的产物清洗、干燥得到CoMoO4/g-C3N4复合材料。
4.根据权利要求3所述的CoMoO4/g-C3N4复合光催化剂在吸附降解水体中腐植酸方面的应用,其特征在于:步骤2中,Na2MoO4‧2H2O和Co(NO3)2‧6H2O的加入摩尔比为1:1。
5.根据权利要求3所述的CoMoO4/g-C3N4复合光催化剂在吸附降解水体中腐植酸方面的应用,其特征在于:步骤3中,g-C3N4粉末与钼酸钠的摩尔比为2.3:1;g-C3N4粉末与硝酸钴的摩尔比为2.3:1。
6.根据权利要求3所述的CoMoO4/g-C3N4复合光催化剂在吸附降解水体中腐植酸方面的应用,其特征在于:步骤4中,CoMoO4/g-C3N4复合材料中,CoMoO4与g-C3N4的质量百分比为5%~15%。
CN201810775701.0A 2018-07-13 2018-07-13 一种CoMoO4/g-C3N4复合光催化剂及其制备方法和应用 Expired - Fee Related CN109012724B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810775701.0A CN109012724B (zh) 2018-07-13 2018-07-13 一种CoMoO4/g-C3N4复合光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810775701.0A CN109012724B (zh) 2018-07-13 2018-07-13 一种CoMoO4/g-C3N4复合光催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109012724A CN109012724A (zh) 2018-12-18
CN109012724B true CN109012724B (zh) 2021-02-26

Family

ID=64642635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810775701.0A Expired - Fee Related CN109012724B (zh) 2018-07-13 2018-07-13 一种CoMoO4/g-C3N4复合光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109012724B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113351220B (zh) * 2021-05-19 2022-08-05 四川农业大学 一种作为多功能类漆酶样的CuNi/CoMoO4的制备方法及应用
CN114192102B (zh) * 2021-11-29 2023-12-12 吉林工程技术师范学院 一种一步制备多酸改性的石墨相氮化碳材料及其应用
CN114057406B (zh) * 2022-01-17 2022-04-19 青岛理工大学 复合光阳极膜及其制备方法和应用
CN114849724A (zh) * 2022-06-09 2022-08-05 华东理工大学 高活性钴-钼双金属位点非均相芬顿单原子催化剂及用其去除有机污染物的方法
CN115041213B (zh) * 2022-06-21 2023-08-11 嘉兴学院 一种g-C3N4改性FeMoS4材料的方法与应用
CN115463663A (zh) * 2022-08-01 2022-12-13 广西大学 一种磁性还原氧化石墨烯/钼酸钴复合催化剂及其制备方法与应用
CN115555025B (zh) * 2022-10-31 2024-01-26 河北建材职业技术学院 一种高分散钴钼双金属催化剂的制备方法
CN116116368A (zh) * 2022-12-26 2023-05-16 中国矿业大学(北京) 一种选择性吸附腐植酸材料及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811189A (zh) * 2014-02-12 2014-05-21 东华大学 一种钼酸钴与石墨烯纳米复合材料的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811189A (zh) * 2014-02-12 2014-05-21 东华大学 一种钼酸钴与石墨烯纳米复合材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Photocatalytic degradation of sulfamethazine by graphitic carbon nitride-modified zinc molybdate: Effects of synthesis method on performance, degradation kinetics, and mechanism;Jing Zhang et al.;《Chinese Journal of Catalysis》;20171205;第38卷(第12期);第2009-2020页 *
农庆燕.钒酸铁、钼酸铁和钒酸镉掺杂石墨相氮化碳材料的光催化性能研究.《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》.2017,(第2期), *
钒酸铁、钼酸铁和钒酸镉掺杂石墨相氮化碳材料的光催化性能研究;农庆燕;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20170215(第2期);第B014-1294页 *

Also Published As

Publication number Publication date
CN109012724A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
CN109012724B (zh) 一种CoMoO4/g-C3N4复合光催化剂及其制备方法和应用
Ismael et al. Novel TiO 2/GO/CuFe 2 O 4 nanocomposite: a magnetic, reusable and visible-light-driven photocatalyst for efficient photocatalytic removal of chlorinated pesticides from wastewater
Beura et al. Structural, optical and photocatalytic properties of graphene-ZnO nanocomposites for varied compositions
Xu et al. Constructing Z-scheme β-Bi2O3/ZrO2 heterojunctions with 3D mesoporous SiO2 nanospheres for efficient antibiotic remediation via synergistic adsorption and photocatalysis
Cheng et al. A novel preparation method for ZnO/γ-Al 2 O 3 nanofibers with enhanced absorbability and improved photocatalytic water-treatment performance by Ag nanoparticles
Feng et al. Coupling Bi 2 MoO 6 with persulfate for photocatalytic oxidation of tetracycline hydrochloride under visible light
Wang et al. Magnetic cobalt ferrite/reduced graphene oxide (CF/rGO) porous balls for efficient photocatalytic degradation of oxytetracycline
Zhang et al. Synthesis and photocatalytic activity of g-C3N4/ZnO composite microspheres under visible light exposure
CN109179594B (zh) 核壳式铁碳微电解材料高效Fenton催化剂的制备及应用
Jiao et al. Recyclable adsorbent of BiFeO3/Carbon for purifying industrial dye wastewater via photocatalytic reproducible
CN110776049A (zh) 功能化锆基金属有机骨架/质子化氮化碳复合材料活化过一硫酸盐处理有机废水的方法
Wang et al. Enhancement mechanism of full-solar-spectrum catalytic activity of g-C3N4-x/Bi/Bi2O2 (CO3) 1-x (Br, I) x heterojunction: The roles of plasma Bi and oxygen vacancies
Deng et al. Rare metal doping of the hexahydroxy strontium stannate with enhanced photocatalytic performance for organic pollutants
CN111097449B (zh) 一种具有超强还原性和光催化性能的纳米零价铁复合材料
Zhi et al. Hierarchically porous BiOCl@ NiCo 2 O 4 nanoplates as low-cost and highly efficient catalysts for the discoloration of organic contaminants in aqueous media
Wu et al. In situ synthesis of adsorptive β-Bi2O3/BiOBr photocatalyst with enhanced degradation efficiency
Cheng et al. Synthesis of Fly Ash Magnetic Glass Microsphere@ BiVO 4 and Its Hybrid Action of Visible-Light Photocatalysis and Adsorption Process.
Anusha et al. Improved CeMnO3 perovskite framework for visible-light-aided degradation of tetracycline hydrochloride antibiotic residue and methylene blue dye
CN108940348B (zh) 铬酸银/硫掺氮化碳z型光催化剂及其制备方法
Niu et al. Construction of F–F@ FeVO4/ZnCo2O4 photocatalysts with heterojunction interfacial enhancement and surface oxygen vacancies for the removal of tetracycline, sulfamethoxazole, ciprofloxacin and Cr (VI)
CN114768857A (zh) 一种纳米零价铁复合材料及其制备方法和应用
CN108940349B (zh) 利用铬酸银/硫掺氮化碳z型光催化剂去除染料污染物的方法
Zhu et al. Synthesis of high crystallinity g-C3N4 hollow spheres for efficient photocatalytic removal of U (VI) under visible light
Peng et al. In situ growth of carbon nitride on titanium dioxide/hemp stem biochar toward 2D heterostructured photocatalysts for highly photocatalytic activity
Raza et al. Adsorption kinetics and photocatalytic properties of Cu2ZnSnS4@ porous g-C3N4 for contaminant removal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210226