CN114958905A - 水稻OsFLZ18基因在调控水稻抽穗期中的应用 - Google Patents

水稻OsFLZ18基因在调控水稻抽穗期中的应用 Download PDF

Info

Publication number
CN114958905A
CN114958905A CN202210622551.6A CN202210622551A CN114958905A CN 114958905 A CN114958905 A CN 114958905A CN 202210622551 A CN202210622551 A CN 202210622551A CN 114958905 A CN114958905 A CN 114958905A
Authority
CN
China
Prior art keywords
rice
osflz18
gene
seq
heading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210622551.6A
Other languages
English (en)
Other versions
CN114958905B (zh
Inventor
马雅美
张少红
赵均良
刘斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rice Research Institute Guangdong Academy Of Agricultural Sciences
Original Assignee
Rice Research Institute Guangdong Academy Of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rice Research Institute Guangdong Academy Of Agricultural Sciences filed Critical Rice Research Institute Guangdong Academy Of Agricultural Sciences
Priority to CN202210622551.6A priority Critical patent/CN114958905B/zh
Publication of CN114958905A publication Critical patent/CN114958905A/zh
Application granted granted Critical
Publication of CN114958905B publication Critical patent/CN114958905B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了水稻OsFLZ18基因在调控水稻抽穗期中的应用,属于基因工程技术领域。OsFLZ18基因核苷酸序列如SEQIDNO.1所示,或与SEQIDNO.1所示序列完全互补配对,或为编码如SEQIDNO.2所示氨基酸序列的核苷酸序列。过量表达OsFLZ18可以延迟水稻抽穗,该基因有望应用于水稻遗传工程育种,为水稻不同抽穗期新种质的创制或改良提供理论基础。

Description

水稻OsFLZ18基因在调控水稻抽穗期中的应用
技术领域
本发明属于基因工程技术领域,具体涉及水稻OsFLZ18基因在调控水稻抽穗期中的应用。
背景技术
水稻抽穗期是影响水稻分布和区域适应性的重要农艺性状,水稻能否在合适的时间抽穗直接影响水稻产量。水稻通过感知光周期和温度等环境因子,启动内部基因表达的表达从而在最适宜的时期抽穗,以获得最大的生殖生长量。晚抽穗使得水稻营养生长期增长,有利于种子中干物质的积累,但是过晚抽穗会由于外界环境的变化(如错过抽穗的最适合温度)导致种子成熟度降低或者减产;早抽穗则会使得水稻营养积累不充分,最终也会造成减产。所以,适宜的抽穗期对于保障水稻高产稳产至关重要。
水稻是一种短日照植物,短日条件下促进抽穗,长日条件下延迟抽穗。水稻抽穗调控的遗传调控网络比较复杂,因此,亟待对水稻抽穗期相关基因进行发掘和克隆研究,进而为阐明水稻抽穗期的遗传基础,弱感光或非感光型品种的选育、品种改良提供指导。
发明内容
本发明通过抽穗表型分析、基因表达分析等一系列实验验证了水稻OsFLZ18基因对于水稻抽穗期调控作用,OsFLZ18基因核苷酸序列如SEQ ID NO.1所示,或与SEQ ID NO.1所示序列完全互补配对,或为编码如SEQ ID NO.2所示氨基酸序列的核苷酸序列。
考虑到密码子的简并性,在不改变氨基酸序列的前提下,对上述碱基序列进行修改,也属于本发明的保护范围。
进一步地,本发明通过过量表达OsFLZ18基因延迟水稻抽穗期。
进一步地,水稻OsFLZ18蛋白对于水稻抽穗期具有调控作用,OsFLZ18蛋白氨基酸序列如SEQ ID NO.2所示。
上述水稻OsFLZ18基因可应用于水稻育种,通过对水稻OsFLZ18基因进行分子操作获得不同抽穗期水稻品种。
上述水稻OsFLZ18基因或OsFLZ18蛋白可应用于水稻育种,通过对水稻OsFLZ18基因或水稻OsFLZ18蛋白进行检测,筛选不同抽穗期的水稻品种。
上述水稻OsFLZ18基因或OsFLZ18蛋白可用于制备水稻抽穗期检测试剂盒。
综上所述,本发明首次证明了水稻OsFLZ18基因在调控水稻抽穗期中的作用,该基因的生物学功能验证对于水稻抽穗期调控的分子机制研究有重要的参考意义。过量表达OsFLZ18可以延迟水稻抽穗,该基因有望应用于水稻遗传工程育种,为水稻不同抽穗期新种质的创制或改良提供理论基础。
附图说明
图1所示为基于Crispr-Cas9系统构建的OsFLZ18敲除转基因植株DNA序列突变分析;
其中,Nip表示对照基因组(日本晴)DNA序列,Crispr-21和Crispr-25为纯合的敲除植株;黑色下划线表示PAM位点,“-”表示缺失序列,浅色字体表示插入序列。
图2所示为短日照条件下(广州8-11月)OsFLZ18转基因植株的表型分析;
其中,Nip表示日本晴;OE-2、OE-3表示过表达植株;Crispr-21、Crispr-25表示敲除植株。
图3所示为OsFLZ18转基因和Nip植株抽穗时间统计结果;
其中,Nip表示日本晴;OE-2、OE-3表示过表达植株;Crispr-21、Crispr-25表示敲除植株。
图4所示为人工短日条件下,花期重要调控基因的表达量检测;
白色和黑色矩形分别表示一天24h内的光照和黑暗时段;ZT,Zeitgebertime。
图5所示为酵母双杂结果。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例中水稻OsFLZ18基因核苷酸序列如SEQ ID NO.1所示:
ATGATGGAGTCGAGGTACGTCAAGGTGGATTCGCGCTTCTTCCTCGTCGACGACAACTCCTCCTCCTCCTCCTCCTCCTGCGCCGCCGCCGGCGGCGGTGGCGGCGACGGCGATTACCACTACCTCGACGCCTGCTTCCTCTGCAAGCGGGACATCACCTTCAACCGCCACATCTTCATGTACAAGGGGAACGCGGCGTTCTGCAGCGACGACTGCAGGCAGGACCAGATGGACATGGACTCCGCGCTCGCCGCCGTCAAGCGCCGCCACCGCACGCTGCAACGCAGCAGGGACATGTCGTCCTCCTCCTCGCCGGCGCCGGCTGCGGCACAGTGCGCCGCCAACGAGGCGGGCCTCTTCGCGGTGATCCCCCGCCGCCCCACCGTCGCTGACCTCACCACCCACGCTGCTCCCGCCGTGTCTGGCACTGTGTGA。
水稻OsFLZ18的表达蛋白氨基酸序列如SEQ ID NO.2所示:
MMESRYVKVDSRFFLVDDNSSSSSSSCAAAGGGGGDGDYHYLDACFLCKRDITFNRHIFMYKGNAAFCSDDCRQDQMDMDSALAAVKRRHRTLQRSRDMSSSSSPAPAAAQCAANEAGLFAVIPRRPTVADLTTHAAPAVSGTV。
实施例1水稻OsFLZ18基因过量表达载体及敲除载体的构建
1)水稻OsFLZ18基因过量表达载体构建方法同ZL202110055421.4实施例1。
2)水稻OsFLZ18基因敲除载体构建方法如下:
根据OsFLZ18的基因序列,设计Crispr的靶点和引物,选择的两个靶点分别为:
靶点1:5’-CGCCTGCTTCCTCTGCAAGC-3’;
靶点2:5’-CGTTCTGCAGCGACGACTGC-3’;
设计的引物为:
OsFLZ18-6aF:CGCCTGCTTCCTCTGCAAGCgttttagagctagaaat,
OsFLZ18-6aR:GCTTGCAGAGGAAGCAGGCGCggcagccaagccagca,
OsFLZ18-6bF:CGTTCTGCAGCGACGACTGCgttttagagctagaaat,
OsFLZ18-6bR:GCAGTCGTCGCTGCAGAACGCaacacaagcggcagc,
U-F:CTCCGTTTTACCTGTGGAATCG;
gR-R:CGGAGGAAAATTCCATCCAC;
Pps-GGL:TTCAGAggtctcTctcgACTAGTATGGAATCGGCAGCAAAGG;
Pgs-GG2:AGCGTGggtctcGtcagggTCCATCCACTCCAAGCTC;
Pps-GG2:TTCAGAggtctcTctgacacTGGAATCGGCAGCAAAGG;
Pgs-GGR:AGCGTGggtctcGaccgACGCGTATCCATCCACTCCAAGCTC。
以OsU6a(A robust CRISPR/Cas9 system for convenient,highefficiencymultiplex genome editing in monocot and dicot plants;Ma XL,Zhang QY,Zhu QL,etal.,MolecularPlant,2015,8:1274–1284.)为模板,用引物U-F,OsFLZ18-6aF,OsFLZ18-6aR,gR-R进行PCR扩增,得到靶点1的PCR产物。以OsU6b(Arobust CRISPR/Cas9 system forconvenient,highefficiency multiplex genome editing in monocot anddicotplants;MaXL,Zhang QY,Zhu QL,et al.,MolecularPlant,2015,8:1274–1284.)为模板,用引物U-F,OsFLZ18-6bF,OsFLZ18-6bR,gR-R进行PCR扩增,得到靶点2的PCR产物。PCR体系为:OsU6a或者OsU6b 2-5ng,每条引物0.1μM,KOD 0.5μL,2*Buffer 7.5μL,dNTP 1μL,加水至15μL。PCR程序为:95℃,2min;94℃20s,60℃20S,68℃25S,25-28循环,68℃10min。将上述得到的PCR产物分别稀释10倍,进行下一轮PCR扩增。
以上述稀释后的靶点1的PCR产物为模板,使用引物Pps-GGL,Pgs-GG2进行第二轮PCR扩增。以稀释后的靶点2的PCR产物为模板,使用引物Pps-GG2,Pgs-GGR进行第二轮PCR扩增。PCR体系为:稀释后的靶点1或者靶点2的PCR产物各1μL,每条引物1.5μM,KOD 0.5μL,2*Buffer 7.5μL,dNTP 1μL,加水至15μL。PCR程序为:95℃,2min;95℃20s,60℃20S,68℃25S,20循环,68℃10min。
将上述获得的第二轮PCR产物纯化回收后,进行连接转化。连接体系为:10×Cutbuffer 1.5μL,10×T4 buffer 1μL,BsaI-HF(NEB公司)0.5μL,T4连接酶(NEB公司)0.25μL,Cas9表达盒60-80ng,靶点1的终产物10-15ng,靶点2的终产物10-15ng,加水补足至15μL。酶切连接的程序为:37℃,5min;10℃5min,20℃5min,10-15循环,37℃5min。
取全部产物,加入到100μL大肠杆菌DH5α感受态中,转化产物涂布于LB固体培养基(含有卡那霉素抗性,卡那霉素的浓度为50mg/L)。37℃培养过夜,挑5个单克隆进行提取质粒,送至上海生工生物有限公司进行测序比对。
实施例2 OsFLZ18转基因苗的获得和鉴定
1)OsFLZ18过量表达转基因苗的获得和鉴定同ZL202110055421.4实施例2。
2)OsFLZ18敲除转基因苗的获得和鉴定如下:
采用农杆菌EHA105介导的遗传转化方法,将敲除载体转入粳稻品种日本晴中,获得Crispr敲除转基因材料,对获得的敲除转基因材料进行PCR扩增(F:TCTCCATCCATGGCATGCAT,R:ACTCCACTCCATGCTCGATT),PCR产物送至上海生工生物有限公司进行测序,并和野生型(日本晴)基因组DNA进行比对,最后得到编辑突变的转基因苗。将转基因苗进行扩繁,最终得到纯合突变的转基因材料。Crispr敲除植株靶点测序结果见图1。
实施例3 OsFLZ18过表达和敲除植株花期表型分析
将纯合的过量表达和敲除植株种子打破休眠,催芽,播种,然后将3周大的幼苗转移至蓝色的盆里,连续观察并记录表型差异。水稻苗种植在广东省农业科学院水稻研究所,种植的时间为广州8月-11月,此时广州的天气属于天然的短日照。
表型结果见图2,结果表明,OsFLZ18过表达植株明显晚花。
抽穗时间统计结果见图3,47天苗龄的日本晴和敲除植株陆续抽穗,但OE植株没有抽穗,根据统计,54天左右苗龄的OE植株才开始抽穗,而此时的敲除植株和日本晴植株已经灌浆。
实施例4 OsFLZ18调控水稻抽穗期的分子机制
将实施例2过表达转基因苗收获的OsFLZ18转基因种子与野生型种子消毒,播种,然后放置在光照培养箱中(10h光照,28℃/14h黑暗,26℃)2周,收集2周的叶片进行RNA提取,并使用qRT-pCR检测调控水稻抽穗相关基因的表达量。
结果如图4所示,在连续24h的取样周期内,OE植株中,Hd1基因的表达量和野生型相比没有明显的差异。但相比于野生型,Ehd1,Hd3a,RFT1基因的表达在OE植株中明显被抑制(图4)。由此可知,OsFLZ18可能通过调控Ehd1,Hd3a,RFT1等基因的表达而影响水稻抽穗时间,同时OsFLZ18对水稻抽穗时间的调控不依赖于Hd1途径。
进一步地,通过酵母双杂实验筛选OsFLZ18的互作蛋白。结果如图5所示,OsFLZ18和调控水稻抽穗期的重要转录因子OsMADS51存在互作。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对上述实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
序列表
<110> 广东省农业科学院水稻研究所
<120> 水稻OsFLZ18基因在调控水稻抽穗期中的应用
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 435
<212> DNA
<213> Artificial
<400> 1
atgatggagt cgaggtacgt caaggtggat tcgcgcttct tcctcgtcga cgacaactcc 60
tcctcctcct cctcctcctg cgccgccgcc ggcggcggtg gcggcgacgg cgattaccac 120
tacctcgacg cctgcttcct ctgcaagcgg gacatcacct tcaaccgcca catcttcatg 180
tacaagggga acgcggcgtt ctgcagcgac gactgcaggc aggaccagat ggacatggac 240
tccgcgctcg ccgccgtcaa gcgccgccac cgcacgctgc aacgcagcag ggacatgtcg 300
tcctcctcct cgccggcgcc ggctgcggca cagtgcgccg ccaacgaggc gggcctcttc 360
gcggtgatcc cccgccgccc caccgtcgct gacctcacca cccacgctgc tcccgccgtg 420
tctggcactg tgtga 435
<210> 2
<211> 144
<212> PRT
<213> Artificial
<400> 2
Met Met Glu Ser Arg Tyr Val Lys Val Asp Ser Arg Phe Phe Leu Val
1 5 10 15
Asp Asp Asn Ser Ser Ser Ser Ser Ser Ser Cys Ala Ala Ala Gly Gly
20 25 30
Gly Gly Gly Asp Gly Asp Tyr His Tyr Leu Asp Ala Cys Phe Leu Cys
35 40 45
Lys Arg Asp Ile Thr Phe Asn Arg His Ile Phe Met Tyr Lys Gly Asn
50 55 60
Ala Ala Phe Cys Ser Asp Asp Cys Arg Gln Asp Gln Met Asp Met Asp
65 70 75 80
Ser Ala Leu Ala Ala Val Lys Arg Arg His Arg Thr Leu Gln Arg Ser
85 90 95
Arg Asp Met Ser Ser Ser Ser Ser Pro Ala Pro Ala Ala Ala Gln Cys
100 105 110
Ala Ala Asn Glu Ala Gly Leu Phe Ala Val Ile Pro Arg Arg Pro Thr
115 120 125
Val Ala Asp Leu Thr Thr His Ala Ala Pro Ala Val Ser Gly Thr Val
130 135 140

Claims (6)

1.水稻OsFLZ18基因在调控水稻抽穗期中的应用,其特征在于,
OsFLZ18基因核苷酸序列如SEQ ID NO.1所示,或与SEQ ID NO.1所示序列完全互补配对,或为编码如SEQ ID NO.2所示氨基酸序列的核苷酸序列。
2.根据权利要求1所述的应用,其特征在于,
通过过量表达OsFLZ18基因延迟水稻抽穗期。
3.水稻OsFLZ18蛋白在调控水稻抽穗期中的应用,其特征在于,
OsFLZ18蛋白氨基酸序列如SEQ ID NO.2所示。
4.水稻OsFLZ18基因在水稻育种中的应用,其特征在于,
通过对水稻OsFLZ18基因进行分子操作获得不同抽穗期水稻品种;
OsFLZ18基因核苷酸序列如SEQ ID NO.1所示,或与SEQ ID NO.1所示序列完全互补配对,或为编码如SEQ ID NO.2所示氨基酸序列的核苷酸序列。
5.水稻OsFLZ18基因或OsFLZ18蛋白在水稻育种中的应用,其特征在于,
通过对水稻OsFLZ18基因或水稻OsFLZ18蛋白进行检测,筛选不同抽穗期的水稻品种;
OsFLZ18基因核苷酸序列如SEQ ID NO.1所示,或与SEQ ID NO.1所示序列完全互补配对,或为编码如SEQ ID NO.2所示氨基酸序列的核苷酸序列;
OsFLZ18蛋白氨基酸序列如SEQ ID NO.2所示。
6.水稻OsFLZ18基因或OsFLZ18蛋白在制备水稻抽穗期检测试剂盒中的应用,其特征在于,
OsFLZ18基因核苷酸序列如SEQ ID NO.1所示,或与SEQ ID NO.1所示序列完全互补配对,或为编码如SEQ ID NO.2所示氨基酸序列的核苷酸序列;
OsFLZ18蛋白氨基酸序列如SEQ ID NO.2所示。
CN202210622551.6A 2022-06-01 2022-06-01 水稻OsFLZ18基因在调控水稻抽穗期中的应用 Active CN114958905B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210622551.6A CN114958905B (zh) 2022-06-01 2022-06-01 水稻OsFLZ18基因在调控水稻抽穗期中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210622551.6A CN114958905B (zh) 2022-06-01 2022-06-01 水稻OsFLZ18基因在调控水稻抽穗期中的应用

Publications (2)

Publication Number Publication Date
CN114958905A true CN114958905A (zh) 2022-08-30
CN114958905B CN114958905B (zh) 2023-04-04

Family

ID=82960209

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210622551.6A Active CN114958905B (zh) 2022-06-01 2022-06-01 水稻OsFLZ18基因在调控水稻抽穗期中的应用

Country Status (1)

Country Link
CN (1) CN114958905B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107400672A (zh) * 2017-09-15 2017-11-28 中国水稻研究所 OsCOL15基因在调控水稻抽穗期中的应用
US20210076578A1 (en) * 2018-05-02 2021-03-18 Epigenetics Ltd. Non-gm improved tomato crops and methods for obtaining crops with improved inheritable traits
CN112662682A (zh) * 2021-01-15 2021-04-16 广东省农业科学院水稻研究所 水稻OsFLZ18基因及其在调控植物抗淹水胁迫中的应用
CN113549632A (zh) * 2021-09-08 2021-10-26 广东省农业科学院水稻研究所 水稻OsFLZ2基因在调控禾本科植物抽穗期中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107400672A (zh) * 2017-09-15 2017-11-28 中国水稻研究所 OsCOL15基因在调控水稻抽穗期中的应用
US20210076578A1 (en) * 2018-05-02 2021-03-18 Epigenetics Ltd. Non-gm improved tomato crops and methods for obtaining crops with improved inheritable traits
CN112662682A (zh) * 2021-01-15 2021-04-16 广东省农业科学院水稻研究所 水稻OsFLZ18基因及其在调控植物抗淹水胁迫中的应用
CN113549632A (zh) * 2021-09-08 2021-10-26 广东省农业科学院水稻研究所 水稻OsFLZ2基因在调控禾本科植物抽穗期中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YAMEI MA ET AL.: "OsFLZ2 interacts with OsMADS51 to fine-tune rice flowering time", 《DEVELOPMENT》 *
马雅美等: "FCS-Like锌指蛋白 OsFLZ18在调控水稻抽穗期中的作用", 《中国农业科学》 *

Also Published As

Publication number Publication date
CN114958905B (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
CN111676234B (zh) 一种水稻穗粒数控制基因OsCKX11及其应用
CN113549632B (zh) 水稻OsFLZ2基因在调控禾本科植物抽穗期中的应用
CN110669785B (zh) 番茄SlLOB40蛋白及其编码基因在调控植物抗旱性中的应用
CN109053871B (zh) AtBIX基因在调控植物开花时间中的应用
CN105602911B (zh) 一种大豆PUB类E3泛素连接酶GmPUB8及其编码基因与应用
CN110804623A (zh) 小麦TaMADS6基因在调控植物穗和籽粒发育以及开花时间中的应用
CN111320679A (zh) 玉米开花期相关的ZmPHYCs突变型蛋白、其编码基因、重组载体和应用
CN113621625B (zh) 芝麻SiERF103基因在增强植物抗性中的应用
CN102268081B (zh) 水稻侧根控制基因OsIAA11及其应用
CN107475264B (zh) Dgm1蛋白在提高植物根毛生成能力中的应用
CN107573411B (zh) 小麦TaZIM1-7A蛋白在调控作物抽穗期中的应用
CN112824526A (zh) 一种水稻ACCase突变型蛋白及相应基因
CN110484555B (zh) 具有多籽粒簇生性状的转基因水稻的构建方法
CN114958905B (zh) 水稻OsFLZ18基因在调控水稻抽穗期中的应用
CN112899302B (zh) 油菜α-6微管蛋白基因在提高油菜产量中的应用
CN114921583A (zh) 一种控制小麦株高的QTL及其候选基因TaDHL-7B和应用
HU228383B1 (en) Overexpression of phosphoenolpyruvate carboxylase
CN107988233A (zh) 大豆GmCRY1b基因在调控植物高度和开花时间中的应用
CN110407922B (zh) 水稻耐冷基因qSCT11及其应用
CN111454964B (zh) 油菜抗寒基因BnTR1及其编码蛋白与应用
CN113563439A (zh) 一种果形发育相关蛋白及其编码基因与应用
CN112877341A (zh) 硫苷转运相关的甘蓝型油菜BnaA09.GTR2基因及其应用
CN106995490A (zh) 一种调控植物蛋白酶体活性的方法
CN109097390A (zh) AtFKBP15基因在调控拟南芥侧根生长中的应用
CN116622725B (zh) 杂交鹅掌楸LhMFT2基因及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20220830

Assignee: Guangdong Yueliang Seed Industry Co.,Ltd.

Assignor: RICE Research Institute GUANGDONG ACADEMY OF AGRICULTURAL SCIENCES

Contract record no.: X2023980047921

Denomination of invention: The Application of OsFLZ18 Gene in Regulating Rice Heading Stage

Granted publication date: 20230404

License type: Common License

Record date: 20231122

EE01 Entry into force of recordation of patent licensing contract