CN114956113B - 一种由静电纺丝纳米纤维素调控制备多级孔分子筛的方法 - Google Patents

一种由静电纺丝纳米纤维素调控制备多级孔分子筛的方法 Download PDF

Info

Publication number
CN114956113B
CN114956113B CN202111610344.0A CN202111610344A CN114956113B CN 114956113 B CN114956113 B CN 114956113B CN 202111610344 A CN202111610344 A CN 202111610344A CN 114956113 B CN114956113 B CN 114956113B
Authority
CN
China
Prior art keywords
spinning
molecular sieve
cellulose
electrostatic spinning
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111610344.0A
Other languages
English (en)
Other versions
CN114956113A (zh
Inventor
张兰
康盛乐
董祥
岑启宏
赵焱
张龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202111610344.0A priority Critical patent/CN114956113B/zh
Publication of CN114956113A publication Critical patent/CN114956113A/zh
Application granted granted Critical
Publication of CN114956113B publication Critical patent/CN114956113B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/14Type A
    • C01B39/145Type A using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • B01J20/3057Use of a templating or imprinting material ; filling pores of a substrate or matrix followed by the removal of the substrate or matrix
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

本发明公开了一种由静电纺丝纳米纤维素调控制备多级孔分子筛的方法;该方法主要由静电纺丝原液制备、静电纺丝制备、静电纺丝改性得到氨基硅烷改性纤维素纺丝纤维、以氨基硅烷改性纤维素纺丝纤维为原料最终制备得到多级孔分子筛;本法制备的多级孔分子筛一方面具有丰富的介孔或大孔结构,可以提高分子筛的有效扩散系数Deff;另一方面缩短了微孔孔道,减小吸附质在分子筛上的扩散长度L,因而可以显著降低Thiele模数,改善分子筛的传质性能,有效提高污染物的吸附速率,是解决微孔分子筛扩散限制最有效的方法。此外,由于结构中引入了更为丰富的孔道结构,分子筛的比表面积显著增加,有利于提高污染物的吸附容量。

Description

一种由静电纺丝纳米纤维素调控制备多级孔分子筛的方法
技术领域
本发明属于分子筛制备技术领域,具体涉及一种由静电纺丝纳米纤维素调控制备多级孔分子筛的方法。
背景技术
我国因为工农业发展产生了各类水体污染问题,而在寻求高效低成本的治理水体污染方法中,分子筛因其具有较大的比表面积、较高的水热稳定性,从而作为一种良好的吸附剂广泛应用在水体污染治理中。传统微孔分子筛由于其孔径小,扩散阻力大,吸附效率低,不利于吸收大分子物质。而介孔分子筛孔壁无定型,水热稳定性差。因此,为了降低分子筛的传质阻力,同时保证它的高稳定性,合成微介孔多级孔道的分子筛具有更加广泛的应用前景。
纤维素是地球上最丰富、最古老的天然高分子材料之一,也是自然界中产量最大、分布最广的一类高分子材料。天然纤维素大分子是一种由D-吡喃葡萄糖环以β(1-4)糖苷键连接而成的半刚、线性(分子内氢键的作用)天然高分子,其化学式为(C6H10O5)n(n=10000~15000),结构如图4所示,每个葡萄糖单元上均具有三个醇羟基,对纤维素的性质起着决定性的影响,可使纤维素发生一系列化学反应,如氧化、酯化、醚化等。
将纤维素加入到分子筛合成过程中,在其表面羟基可能与硅羟基和铝羟基发生缩合反应,从而使得分子筛生长在纤维素表面,当采用焙烧等方式去除纤维素后,分子筛内部形成了纤维素形貌的较大的孔道结构,有利于污染物在孔道内部的传质,从而提高吸附效率。目前大多采用微晶纤维素和植物纤维素做硬模板剂合成多级孔分子筛。然而,这两种纤维素尺寸较大,一般为微米级到毫米级,以之为模板剂直接制备多级孔分子筛主要存在三个问题:一是纤维素尺寸过大导致分子筛在其表面团簇生长,去除纤维素模板剂后容易导致团簇结构的破坏,不能有效在分子筛内部形成丰富多级孔孔道结构;二是纤维素为一维或二维结构,在分子筛内部形成的通道单一,无法形成四通八达的传质通道;三是分子筛在纤维素表面生长容易出现宏观分相情况。
天然纤维素通过机械或化学处理可以获得不同尺寸和形貌的材料,如棒状纳米纤维素(至少一维尺寸小于100nm);也可通过静电纺丝法制备纤维直径在3nm~5μm的网状纤维素超细纤维。对纤维素表面进行硅烷化改性处理可以增加纤维素表面硅羟基,增强其与分子筛的结合能力,减少宏观分相情况。
本发明以采用静电纺丝技术制备的具有三维立体网状结构的纳米纤维素为硬模板通过水热晶化法制备分子筛,在分子筛内部形成四通八达的介孔或大孔孔道,形成完善的多级孔结构,从而达到改善分子筛传质性能和提高其吸附效率的目的。
发明内容
为了解决上述技术问题,本发明提供了一种由静电纺丝三维立体网状纳米纤维素调控制备多级孔分子筛的方法,该方法主要由静电纺丝原液制备、静电纺丝制备、静电纺丝改性得到氨基硅烷改性纤维素纺丝纤维、以氨基硅烷改性纤维素纺丝纤维为原料最终制备得到多级孔分子筛;
为了达到上述技术目的,本发明是通过以下技术方案实现的:一种由静电纺丝纳米纤维素调控制备多级孔分子筛的方法,其特征在于,包括以下步骤:
S1:利用LiCl/DMMAc络合溶解液体系在无副反应的情况下来溶解纤维素,得到高质量百分数含量的纤维素溶液,纤维素溶液经室温陈化即得用于静电纺丝的纤维素纺丝原液;
S2:取S1中制得的纤维素纺丝原液,利用静电纺丝机,调整静电纺丝机的操作参数,对纤维素纺丝原液进行纺丝操作并收集静电纺丝,收集的静电纺丝经浸泡、洗涤、干燥后得到三维网状纳米纺丝纤维;
S3:对S2中收集的三维网状纳米纺丝纤维利用氨基硅烷进行改性,得到氨基硅烷改性纤维素纺丝纤维;
S4:以氨基硅烷改性纤维素纺丝纤维为硬模板剂,通过直接水热法制备得到多级孔型分子筛;
优选的,所述S1中纤维素纺丝原液的具体制备方法如下:
S11:取适量的二甲基乙酰胺(DMAC)于三口烧瓶中,称量适量微晶纤维素粉末(90-250微米级均可)与之混合,二甲基乙酰胺与微晶纤维素粉末的质量比为8:1~9:1,得到混合物A;
S12:将混合物A于130-150℃条件下加热活化处理0.6-1h,得到混合物B;
S13:在混合物B中加入适量的无水氯化锂,得到混合物C;
S14:将混合物C置于60~70℃条件下加热10~15min,后升温至80~90℃加热10~15min,之后降温至65~75℃,此过程持续5~10min,取出得到均匀的纤维素分散体系溶液D;
S15:将D溶液置于室温条件(25℃)下陈化24-48h,即可得到透明均匀的用于静电纺丝的纤维素纺丝原液E;
优选的,所述S2中静电纺丝制备收集具体方法如下:
S21:取注射器吸取适量S1中制备的纤维素纺丝原液E,将注射器安放在液压泵上;
S22:安装好静电纺丝装置,包括输液导管、电极、针头、纺丝收集器;
S23:打开静电纺丝机进行纺丝,液压泵速度调整至0.6-2.6ml/h,滚筒收集速度调至100r/min,正电压调至12-15kv,负电压调至-2--3kv,即可进行收丝操作;
S24:将S23中收集到的静电纺丝,在去离子水中浸泡1-3h,之后用无水乙醇离心洗涤,干燥收集后得到纳米纺丝纤维F;
优选的,所述S3中对纳米纺丝纤维F改性的具体方法如下:
S31:用无水乙醇配制7mmol/l的氨丙基三甲氧基硅烷(APS)溶液;
S32:将纳米纤维纺丝F浸泡在APS溶液中反应24h;
S33:反应完成后用无水乙醇洗涤除去杂质,最后置于温度为50℃的真空干燥箱中干燥24h,得到氨基硅烷改性纤维素纺丝纤维G;
优选的,所述S4中制备多级孔型分子筛的具体方法如下:
S41:将适量的NaOH和适量的Al2(SO4)3·H2O放入烧杯中,加入适量蒸馏水加热搅拌溶解得到溶液H;NaOH、Al2(SO4)3·H2O、蒸馏水三者的质量比为1:1:10;
S42:在溶液H中加入一定质量的氨基硅烷改性纤维素纺丝纤维G,再加入质量分数为25%的硅溶胶溶液,室温磁力搅拌40min,搅拌至胶状稀溶液I;
S43:将得到的凝胶混合体系I置于水热合成釜中在180℃下水热晶化2天;
S44:晶化过程结束后,将产物抽滤,洗涤至中性,105℃烘干,得到初级粉末J,将初级粉末J在马弗炉中550℃煅烧6h,去除模板剂,得到所制备的多级孔a型分子筛。
本发明的有益效果是:
1)本发明成本低,相对于传统有机胺类模板和碳模板可节省60%的费用,原料纤维素是广泛存在的天然材料,具有环境友好的特点,以纤维素为模板剂合成的多级孔分子筛有着人工合成模板剂不可比拟的优势,既可以实现天然资源的有效利用,又能治理水污染,符合可持续发展的要求;
2)本发明的多级孔分子筛制备方法相较于传统方法,对分子筛孔径及孔道分布具有较强的可控性和稳定性,通过静电纺丝方法制备的三维网状超细纤维,纤维直径为20-500nm,测定其纤维素超细纤维的微观形貌可知,纤维素超细纤维的孔隙率高、精细程度高、均一性高、比表面积大、长径比大,超细纤维的结构决定了多级孔分子筛晶化生长规律,从而保证了多级孔分子筛的微介孔结构和吸附性能;
3)本发明方法的纺丝液可纺性高,可纺黏度达到2000-8000mPa.s,制备的a型分子筛微介孔道丰富,介孔尺寸为5-20nm,比表面积大,高达283m2/g,吸附性能高,制备的多级孔分子筛对Pb2+、Cu2+、Cd2+、Ni2+和Mn2+的单一溶液,最大吸附容量分别为70.7、61.1、58.1、39.4和34.9mg/g;
4)本发明通过对纤维素表面进行硅烷化改性处理可以增加纤维素表面硅羟基,增强其与分子筛的结合能力,减少宏观分相情况;
5)本发明方法污染小,能耗低,对设备要求简单、操作简便,所有试剂均安全无毒,原料为天然原料,环保无危害,来源广泛。
附图说明
图1是本发明制备所得纤维素纺丝原液图;
图2是本发明制备所得纳米纺丝纤维电镜图;
图3是本发明制备所得多级孔a型分子筛电镜图;
图4是纤维素分子结构示意图。
具体实施方式
为了对本发明的方案和效果做出清楚完整的描述,通过以下实施例进行详细说明;
实施例1
S1:即利用LiCl/DMMAc络合溶解液体系在无副反应的情况下来溶解纤维素,得到高质量百分数含量的纤维素溶液,纤维素溶液经室温陈化即得用于静电纺丝的纤维素纺丝原液,该纤维素纺丝原液体系稳定,可纺黏度为2000-8000mPa.s,由其制得的纤维素纳米纤维的直径为200-500nm,具有精细程度高、均一性高、孔隙率高、比表面积大、长径比大等特点;
具体方法如下:
S11:取75ml的二甲基乙酰胺(DMAC)于三口烧瓶中,称量9.4g微晶纤维素粉末(90-250微米级均可)与之混合,得到混合物A;
S12:将混合物A于130-150℃条件下加热活化处理0.6-1h,得到混合物B;
S13:在混合物B中加入6.5g无水氯化锂,得到混合物C;
S14:将混合物C置于70℃条件下加热15分钟,后升温至90℃加热10分钟,之后降温至70℃,此过程持续7分钟,取出得到均匀的纤维素分散体系溶液D;
S15:将D溶液置于室温条件(25℃)下陈化24-48h,即可得到透明均匀的用于静电纺丝的纤维素纺丝原液E,如图1所示。
S2:取S1中制得的纤维素纺丝原液,利用静电纺丝机,调整静电纺丝机的操作参数,对纤维素纺丝原液进行纺丝操作并收集静电纺丝,收集的静电纺丝经浸泡、洗涤、干燥后得到纳米纺丝纤维;
具体方法如下:
S21:取注射器吸取10-20ml S1中制备的纤维素纺丝原液E,将注射器安放在液压泵上;
S22:安装好静电纺丝装置,包括输液导管、电极、针头、纺丝收集器;
S23:打开静电纺丝机进行纺丝,液压泵速度调整至0.6-2.6ml/h,滚筒收集速度调至100r/min,正电压调至12-15kv,负电压调至-2--3kv,即可进行收丝操作;
S24:将S23中收集到的静电纺丝,在去离子水中浸泡1-3h,之后用无水乙醇离心洗涤,干燥收集后得到纳米纺丝纤维F,如图2所示。
S3:对S2中收集的纳米纺丝纤维利用氨基硅烷进行改性,得到氨基硅烷改性纤维素纺丝纤维;
具体方法如下:
S31:用无水乙醇配制7mmol/l的氨丙基三甲氧基硅烷(APS)溶液;
S32:将纳米纤维纺丝F浸泡在APS溶液中反应24h;
S33:反应完成后用无水乙醇洗涤除去杂质,最后置于温度为50℃的真空干燥箱中干燥24h,得到氨基硅烷改性纤维素纺丝纤维G。
S4:以氨基硅烷改性纤维素纺丝纤维为硬模板剂,通过直接水热法制备得到多级孔型分子筛;
具体方法如下:
S41:将6.75g的NaOH和6.75g的Al2(SO4)3·H2O放入100ml烧杯中,加入67.5ml蒸馏水加热搅拌溶解得到溶液H;
S42:在溶液H中加入一定质量的氨基硅烷改性纤维素纺丝纤维G,再加入7.6ml质量分数为25%的硅溶胶溶液,室温磁力搅拌40min,搅拌至胶状稀溶液I;
S43:将得到的凝胶混合体系I置于水热合成釜中在180℃下水热晶化2天;
S44:晶化过程结束后,将产物抽滤,洗涤至中性,105℃烘干,得到初级粉末J,将初级粉末J在马弗炉中550℃煅烧6h,去除模板剂,得到所制备的多级孔a型分子筛,如图3所示。
通过本法制备的多级孔分子筛一方面具有丰富的介孔或大孔结构,可以提高分子筛的有效扩散系数Deff;另一方面缩短了微孔孔道,减小吸附质在分子筛上的扩散长度L,因而可以显著降低Thiele模数,改善分子筛的传质性能,有效提高污染物的吸附速率,是解决微孔分子筛扩散限制最有效的方法。此外,由于结构中引入了更为丰富的孔道结构,分子筛的比表面积显著增加,有利于提高污染物的吸附容量。

Claims (4)

1.一种由静电纺丝纳米纤维素调控制备多级孔分子筛的方法,其特征在于,包括以下步骤:
S1:利用LiCl/DMMAc络合溶解液体系在无副反应的情况下来溶解纤维素,得到高质量百分数含量的纤维素溶液,纤维素溶液经室温陈化即得用于静电纺丝的纤维素纺丝原液E;
S2:取S1中制得的纤维素纺丝原液E,利用静电纺丝机,调整静电纺丝机的操作参数,对纤维素纺丝原液E进行纺丝操作并收集静电纺丝,收集的静电纺丝经浸泡、洗涤、干燥后得到三维网状纳米纺丝纤维F;
S3:对S2中收集的三维网状纳米纺丝纤维F利用氨基硅烷进行改性,得到氨基硅烷改性纤维素纺丝纤维G;
S4:以氨基硅烷改性纤维素纺丝纤维G硬模板剂,通过直接水热法制备得到多级孔型分子筛;
S4中制备多级孔型分子筛的具体方法如下:
S41:将适量的NaOH和适量的Al2(SO4)3·H2O放入烧杯中,加入适量蒸馏水加热搅拌溶解得到溶液H;NaOH、Al2(SO4)3·H2O、蒸馏水三者的质量比为1:1:10;
S42:在溶液H中加入一定质量的氨基硅烷改性纤维素纺丝纤维G,再加入质量分数为25%的硅溶胶溶液,室温磁力搅拌40min,搅拌至胶状稀溶液I;
S43:将得到的凝胶混合体系I置于水热合成釜中在180℃下水热晶化2天;
S44:晶化过程结束后,将产物抽滤,洗涤至中性,105℃烘干,得到初级粉末J,将初级粉末J在马弗炉中550 ℃煅烧6 h,去除模板剂,得到所制备的多级孔a型分子筛。
2.根据权利要求1所述一种由静电纺丝纳米纤维素调控制备多级孔分子筛的方法,其特征在于,所述S1中纤维素纺丝原液的具体制备方法如下:
S11:取适量的二甲基乙酰胺DMAC于三口烧瓶中,称量适量微晶纤维素粉末与之混合,其中微晶纤维素粉末为90-250微米级,二甲基乙酰胺与微晶纤维素粉末的质量比为8:1~9:1,得到混合物A;
S12:将混合物A于130-150℃条件下加热活化处理0.6-1h,得到混合物B;
S13:在混合物B中加入适量的无水氯化锂,得到混合物C;
S14:将混合物C置于60~70℃条件下加热10~15min,后升温至80~90℃加热10~15min,之后降温至65~75℃,此过程持续5~10min,取出得到均匀的纤维素分散体系溶液D;
S15:将D溶液置于室温条件(25℃)下陈化24-48h,即可得到透明均匀的用于静电纺丝的纤维素纺丝原液E。
3.根据权利要求1所述一种由静电纺丝纳米纤维素调控制备多级孔分子筛的方法,其特征在于,所述S2中静电纺丝制备收集具体方法如下:
S21:取注射器吸取适量S1中制备的纤维素纺丝原液E,将注射器安放在液压泵上;
S22:安装好静电纺丝装置,包括输液导管、电极、针头、纺丝收集器;
S23:打开静电纺丝机进行纺丝,液压泵速度调整至0.6-2.6ml/h,滚筒收集速度调至100r/min,正电压调至12-15kv,负电压调至-2--3kv,即可进行收丝操作;
S24:将S23中收集到的静电纺丝,在去离子水中浸泡1-3h,之后用无水乙醇离心洗涤,干燥收集后得到纳米纺丝纤维F。
4.根据权利要求1所述一种由静电纺丝纳米纤维素调控制备多级孔分子筛的方法,其特征在于,所述S3中对纳米纺丝纤维F改性的具体方法如下:
S31:用无水乙醇配制7mmol/l的氨丙基三甲氧基硅烷(APS)溶液;
S32:将纳米纤维纺丝F浸泡在APS溶液中反应24h;
S33:反应完成后用无水乙醇洗涤除去杂质,最后置于温度为50℃的真空干燥箱中干燥24h,得到氨基硅烷改性纤维素纺丝纤维G。
CN202111610344.0A 2021-12-27 2021-12-27 一种由静电纺丝纳米纤维素调控制备多级孔分子筛的方法 Active CN114956113B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111610344.0A CN114956113B (zh) 2021-12-27 2021-12-27 一种由静电纺丝纳米纤维素调控制备多级孔分子筛的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111610344.0A CN114956113B (zh) 2021-12-27 2021-12-27 一种由静电纺丝纳米纤维素调控制备多级孔分子筛的方法

Publications (2)

Publication Number Publication Date
CN114956113A CN114956113A (zh) 2022-08-30
CN114956113B true CN114956113B (zh) 2023-10-27

Family

ID=82974937

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111610344.0A Active CN114956113B (zh) 2021-12-27 2021-12-27 一种由静电纺丝纳米纤维素调控制备多级孔分子筛的方法

Country Status (1)

Country Link
CN (1) CN114956113B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016450A1 (ko) * 2013-08-01 2015-02-05 (주)에프티이앤이 일렉트로블로운 또는 멜트블로운과, 전기방사를 이용한 다층 나노섬유 필터여재 및 이의 제조방법
CN106430238A (zh) * 2016-07-18 2017-02-22 辽宁石油化工大学 以植物纤维素为模板剂制备多级孔道sapo‑11分子筛的方法及应用
CN106929929A (zh) * 2017-03-21 2017-07-07 昆明理工大学 一种用于静电纺丝的纤维素纺丝原液的制备方法
CN109133090A (zh) * 2018-10-26 2019-01-04 天津大学 一种由微晶纤维素调控制备的多级孔mtt结构分子筛、制备方法及用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106278368A (zh) * 2016-08-15 2017-01-04 北京大学深圳研究生院 一种复合分子筛膜及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016450A1 (ko) * 2013-08-01 2015-02-05 (주)에프티이앤이 일렉트로블로운 또는 멜트블로운과, 전기방사를 이용한 다층 나노섬유 필터여재 및 이의 제조방법
CN106430238A (zh) * 2016-07-18 2017-02-22 辽宁石油化工大学 以植物纤维素为模板剂制备多级孔道sapo‑11分子筛的方法及应用
CN106929929A (zh) * 2017-03-21 2017-07-07 昆明理工大学 一种用于静电纺丝的纤维素纺丝原液的制备方法
CN109133090A (zh) * 2018-10-26 2019-01-04 天津大学 一种由微晶纤维素调控制备的多级孔mtt结构分子筛、制备方法及用途

Also Published As

Publication number Publication date
CN114956113A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
CN112265981B (zh) 一种木质素纳米胶束制备碳纳米管的方法
CN102911274B (zh) 一种利用毛竹化学制备纳米微晶纤维素的方法
CN103014921A (zh) 多孔碳纤维及其制备方法
CN112626641A (zh) 无模板法一步制备蓬松柔性三维二氧化硅纳米纤维的方法
CN114956113B (zh) 一种由静电纺丝纳米纤维素调控制备多级孔分子筛的方法
CN108905970B (zh) 基于斜发沸石改性的水体除镉吸附剂的制备方法及应用
CN113235227B (zh) 一种复合薄膜的制备方法及应用
CN110592700B (zh) 一种常温干法纺丝制备多孔二醋酸纤维素纤维的方法及其产品和应用
CN112791715B (zh) 憎水性碳量子点MOFs复合吸附剂及其制备方法
CN112023725B (zh) 一种聚乳酸微孔膜的制备方法
CN112342642B (zh) 一种木质素电纺纤维制备碳纳米管的方法
CN103031770B (zh) 一种利用废弃桑皮制备纳米纤维素晶须的方法
CN112760821A (zh) 一种功能性纳米纤维膜口罩的制备方法
CN107604479B (zh) 一种木质素基多级孔活性碳纤维的制备方法
CN109879267B (zh) 一种纳米多孔碳材料的制备方法
CN114016162B (zh) 一种用于电催化析氢的有磷化钴纳米颗粒嵌入的气泡状纳米纤维的制备方法
CN114016157A (zh) 一种纺锤型二氧化硅复合纤维的制备方法
CN111286866A (zh) 一种多孔纳米纤维膜的制备方法
CN111019186B (zh) 基于普通结晶聚合物的有序多孔结构材料及其制备方法
CN110656391B (zh) 一种复合导电面料及其制造方法
CN105821495A (zh) 一种静电纺丝制备聚合物基/坍塌结构粘土的复合纳米纤维的方法
CN113373552B (zh) 一种碳纤维及其制备方法和应用
CN110756129A (zh) 一种制备纳米纤维气凝胶复合材料的方法
CN115140744B (zh) 一种由纳米纤维素调控的多级孔a型分子筛制备方法
CN114855368B (zh) 一种具备吸附性能的纳米纤维膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant