CN114950546B - 一种双功能AA-NiMn-CLDHs@HNTs-Ag纳米马达及其制备方法和应用 - Google Patents

一种双功能AA-NiMn-CLDHs@HNTs-Ag纳米马达及其制备方法和应用 Download PDF

Info

Publication number
CN114950546B
CN114950546B CN202210608449.0A CN202210608449A CN114950546B CN 114950546 B CN114950546 B CN 114950546B CN 202210608449 A CN202210608449 A CN 202210608449A CN 114950546 B CN114950546 B CN 114950546B
Authority
CN
China
Prior art keywords
hnts
nimn
cldhs
nanomotor
ldhs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210608449.0A
Other languages
English (en)
Other versions
CN114950546A (zh
Inventor
李嘉
邢宁宁
赵蔚琳
张晓蕾
韩扬
胡开元
罗辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN202210608449.0A priority Critical patent/CN114950546B/zh
Publication of CN114950546A publication Critical patent/CN114950546A/zh
Application granted granted Critical
Publication of CN114950546B publication Critical patent/CN114950546B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8986Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种双功能AA‑NiMn‑CLDHs@HNTs‑Ag纳米马达及其制备方法和应用,通过酸刻蚀和高温煅烧得到扩腔活化的HNTs,将HNTs分散在CH3COOAg前驱体溶液,经过多次真空负压吸注过程将CH3COOAg前驱体溶液注入HNTs管腔中,在马弗炉中高温煅烧得到内腔固定Ag纳米颗粒的HNTs(HNTs‑Ag)。将HNTs‑Ag充分分散在NiMn‑LDHs的前驱体溶液中,在其表面原位生长NiMn‑LDHs纳米片,经高温煅烧得到NiMn‑CLDHs@HNTs‑Ag纳米马达,然后对其进行AA表面修饰,得到双功能催化型AA‑NiMn‑CLDHs@HNTs‑Ag纳米马达。本发明制备的双功能催化型AA‑NiMn‑CLDHs@HNTs‑Ag纳米马达具有检测和降解双功能,同时实现水体中痕量苯酚的比色检测和高效降解。

Description

一种双功能AA-NiMn-CLDHs@HNTs-Ag纳米马达及其制备方法 和应用
技术领域
本发明属于催化剂及环境监测和修复技术领域,具体涉及一种双功能催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达及其制备方法和应用。
背景技术
苯酚是一种易致癌的有毒污染物,因应用范围广而大量存在于环境中。因此,人们开发了多种检测技术,如色谱法、分光光度法、光催化法、吸附法和电化学法等。这些检测方法通常需要昂贵的仪器和专业的技术人员,其实际应用范围受到极大限制。此外,这些方法功能单一,并不能对检测到的苯酚及时进行降解处理,因此设计开发一种简单而灵敏兼具检测和降解双功能的方法具有良好的应用前景,特别是对极低浓度的苯酚进行检测和降解。
自驱动微纳马达是一种可以将外界能量转化为驱动力的快速运动的一种微型装置,在环境修复领域得到了极大的关注。微纳马达的主要驱动机理包括气泡反冲、自电泳、自扩散、自热泳及外部磁场驱动等。其中利用化学反应产生的气泡反冲推进机制因具有易实现、驱动力强、环境适应性好而受到广泛的关注。气泡驱动微纳马达最常用的燃料是H2O2,其分解过程中只产生H2O和O2,没有其他有毒残留物,而且气泡脱落过程可以为微纳马达提供反向推力,驱动微纳马达运动。此外,微纳马达可以作为多种功能单元的载体,将自主运动性能和催化性能良好地结合在一起,在无需额外搅拌的情况下促进溶液的扰动,加速传质,增加了催化剂与污染物之间的接触几率,从而极大地提高了检测及降解效率。
埃洛石纳米管(HNTs)是具有铝硅酸盐双层结构的环境友好型天然纳米材料。具有稳定性高、耐有机溶剂和易于处理或重复使用的物理和化学性质。HNTs内外表面具有不同的化学结构和相反的电荷,可以选择性地修饰不同的功能单元,如药物、酶、DNA、无机纳米颗粒以及二维纳米材料等。层状双氢氧化物(LDHs)是一种具有水滑石状结构的二维层状材料,比表面积大,活性位点暴露多,广泛应用于超级电容器、催化和生物医学等领域。而过渡金属基LDHs由于具有类过氧化物酶的活性而被广泛应用于催化和传感领域。然而,LDHs纳米片的团聚性掩盖了其活性位点,进而降低催化活性,解决这一问题的有效方法是将LDHs锚定在载体材料上,形成形状和性能可控的多维复合材料。
综上所述,研发一种可自主驱动,对酚类化合物实现快速检测和降解的方法具有重要意义。
发明内容
针对现有技术对苯酚污染物的程序复杂,不适合现场可视化快速分析及自主动态降解,且存在检测灵敏度低,降解效率低,需要额外搅拌等问题,本发明公开了一种双功能催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达及其制备方法和应用,Ag纳米颗粒和NiMn-CLHDs催化H2O2分解产生O2,为马达运动提供动力,同时具有类过氧化物酶活性,可实现对污染物的比色检测。NiMn-CLDHs的类芬顿催化活性可有效降解水体中的苯酚污染物。
本发明通过以下技术方案实现:
一种双功能催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达的制备方法,包括以下步骤:
(1)HNTs的预处理:对HNTs进行扩腔活化;
(2)NiMn-LDHs@HNTs-Ag的制备:将步骤(1)中扩腔活化后的HNTs分散于醋酸银溶液中,经负压吸注、高温煅烧得到HNTs-Ag,将HNTs-Ag分散于NiMn-LDHs前驱体溶液中,加碱陈化10~18h,反应结束后过滤、洗涤、干燥得NiMn-LDHs@HNTs-Ag;
(3)AA-NiMn-CLDHs@HNTs-Ag纳米马达的制备:步骤(2)中NiMn-LDHs@HNTs-Ag经高温煅烧,得到NiMn-CLDHs@HNTs-Ag纳米马达,将其分散于抗坏血酸溶液AA中,搅拌吸附,经过滤、洗涤、干燥,得到抗坏血酸修饰的双功能催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达。
进一步地,步骤(1)中HNTs扩腔活化步骤为:将HNTs分散于硫酸溶液中进行蚀刻,加热搅拌,收集固体洗涤至中性,然后进行高温煅烧活化。
进一步地,所述的硫酸溶液的浓度为2mol/L,蚀刻温度为60℃,蚀刻时间为2h;高温煅烧温度为800℃,时间为4h。
进一步地,步骤(2)中NiMn-LDHs前驱体溶液为摩尔比3:1:4的Ni(NO3)2•6H2O、Mn(NO3)2•4H2O和NH4F混合溶液,Ni(NO3)2•6H2O和HNTs-Ag的质量比为1.5:1。
进一步地,步骤(2)中的加碱陈化中碱性溶液中NaOH和Na2CO3的摩尔比为2:5。
进一步地,步骤(2)中HNTs和CH3COOAg的质量比为1:1.25,CH3COOAg溶液浓度为2.5mg/mL,高温煅烧温度为380℃,高温煅烧时间为1h。
进一步地,步骤(3)中马弗炉煅烧温度为500℃,煅烧时间为1h中,抗坏血酸溶液浓度为10mM,反应时间为8 h。
本发明中,上述制备方法制备得到的双功能催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达,可以应用在在苯酚检测和苯酚催化降解中。
本发明通过酸刻蚀和高温煅烧得到扩腔活化的HNTs,将HNTs分散在CH3COOAg前驱体溶液,经过多次真空负压吸注过程将CH3COOAg前驱体溶液注入HNTs管腔中,在马弗炉中高温煅烧得到内腔固定Ag纳米颗粒的HNTs(HNTs-Ag)。将HNTs-Ag充分分散在NiMn-LDHs的前驱体溶液中,在其表面原位生长NiMn-LDHs纳米片,经高温煅烧得到NiMn-CLDHs@HNTs-Ag纳米马达,然后对其进行AA表面修饰,得到双功能催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达。在该纳米马达中,Ag纳米颗粒和NiMn-CLDHs催化分解H2O2,产生大量的O2气泡,为纳米马达运动提供驱动力,同时NiMn-CLDHs具有良好的类过氧化物酶活性,可实现对有机污染物的比色检测。NiMn-CLDHs也是一种很好的类芬顿催化剂,在H2O2存在时,可产生大量活性物种降解水体中的有机污染物。该纳米马达独特的多层级结构具有较大的比表面积,高暴露的活性位点,优异的吸附性能,在自主运动过程中可以将苯酚分子吸附到其表面直接到达活性位点,在活性物种的催化作用下实现快速检测和高效降解。AA-NiMn-CLDHs@HNTs-Ag纳米马达同时具有检测和降解双功能,实现对水体中痕量苯酚的快速检测和高效降解。
有益效果
本发明设计构建一种以天然黏土矿物HNTs为载体,在其内外表面分别组装Ag纳米颗粒和NiMn-LDHs纳米片,经高温煅烧形成稳定且具有纳米酶活性的NiMn-CLDHs@HNTs-Ag纳米马达,并通过静电吸附作用在其表面修饰AA,增强其类芬顿催化活性,使其具有检测和降解双功能,同时实现水体中痕量苯酚的比色检测和高效降解。
附图说明
图1为双功能催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达的XRD图谱;
图2为双功能催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达的N2吸脱附等温线及孔径分布图,(a)为HNTs和AA-NiMn-CLDHs@HNTs-Ag纳米马达的N2吸脱附等温线,(b)为HNTs和AA-NiMn-CLDHs@HNTs-Ag纳米马达的孔径分布图;
图3为双功能催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达的TEM图和EDS能谱;(a)、(b)、(c)、(d)分别为原始HNTs,扩腔活化HNTs,HNTs-Ag和AA-NiMn-CLDHs@HNTs-Ag纳米马达的TEM照片,(f)为AA-NiMn-CLDHs@HNTs-Ag纳米马达的EDS能谱图;
图4为双功能催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达在5%H2O2中的运动延时图像、及在不同浓度H2O2中的运动轨迹图、MSD图和De图;(a)为纳米马达的气泡驱动原理图,(b)为纳米马达分解H2O2的照片,(c)为时间间隔为2s的延时运动图像,(d)为不同浓度H2O2中的运动轨迹图,(e)为不同浓度H2O2中的纳米马达的均方位移(MSD)图,(f)为不同浓度H2O2中的纳米马达的扩散系数图;
图5是本双功能催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达比色检测苯酚的紫外可见吸收光谱图;(a)是催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达显色体系在不同浓度苯酚存在下的紫外可见吸收光谱图,(b)和(c)是苯酚检测线性关系的校正曲线,(d)是苯酚比色检测机理图;
图6是pH对催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达催化降解苯酚的影响;(a-e)是不同pH条件下催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达催化降解苯酚的紫外可见吸收光谱图, (f)是初始pH对苯酚降解率的影响;
图7是不同降解体系对苯酚催化降解的影响;(a)是AA-NiMn-CLDHs@HNTs-Ag纳米马达降解苯酚的紫外可见吸收光谱图,(b)是NiMn-CLDHs@HNTs-Ag纳米马达降解苯酚的紫外可见吸收光谱图,(c)是无H2O2存在时AA-NiMn-CLDHs@HNTs-Ag降解苯酚的紫外可见吸收光谱图,(d)是AA-NiMn-CLDHs@HNTs-Ag纳米马达及其对照组对苯酚降解率的影响,图(e)是AA-NiMn-CLDHs@HNTs-Ag纳米马达催化降解苯酚的机理图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,所描述的实施例仅是本发明部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下,所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)HNTs的预处理:称取1g购买的HNTs均匀分散于100mL,2mol/L硫酸溶液中,在60℃下剧烈搅拌2h,然后用蒸馏水洗涤至中性,于100℃下干燥2h,然后置于管式炉中,在氮气气氛下于800℃加热4h,升温速率为10℃/min,冷却至室温,得到活化的埃洛石;
(2)NiMn-LDHs@HNTs-Ag的制备:
a): 称取0.125 g CH3COOAg于烧杯中,配制成浓度为2.5 mg/mL的CH3COOAg溶液,磁力搅拌30min,再加入0.1 g步骤(1)中预处理的HNTs,超声分散并转移至抽滤瓶中用真空泵抽真空30min(真空度约为-0.1MPa)后恢复至大气压,CH3COOAg溶液注入HNTs管腔中,真空负压吸注过程重复三次,离心收集固体产物,用蒸馏水洗涤3次,60℃烘干,于马弗炉中380℃煅烧1h,得到HNTs-Ag;
b) 称取0.56 mmolNi(NO3)2•6H2O,0.19 mmol Mn(NO3)2•4H2O,2.25 mmol NH4F溶解于50mL蒸馏水中构成NiMn-LDHs前驱体溶液,称取109.1 mg HNTs-Ag分散于200mL蒸馏水中,超声分散均匀,缓慢加入到上述前驱体溶液中,磁力搅拌1h,配制30mL碱性溶液(12mMNaOH和30mM Na2CO3)加入到上述混合溶液中,搅拌均匀,室温下陈化12h,过滤洗涤,自然晾干;
(3)AA-NiMn-CLDHs@HNTs-Ag的制备:
取100 mg NiMn-LDHs@HNTs-Ag置于刚玉坩埚内,于马弗炉内500℃煅烧1h,得到NiMn-CLDHs@HNTs-Ag纳米马达,均匀分散在50 mL 10 mM的AA溶液中,磁力搅拌6h,过滤、洗涤、干燥,得到AA修饰的双功能催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达。
图1是制备的双功能催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达的XRD图谱,由XRD图谱可以看出,在2θ=12.1°、19.9°、24.6°、35.86°、38.24°、54.93°和62.27°处的衍射峰对应于HNTs的(001)、(100)、(002)、(110)、(003)、(210)、(300)晶面(JCPDS PDF No. 29-1478)。经刻蚀和煅烧后,HNTs的特征峰消失,在2θ=20~35°处出现了一个包峰,这与HNTs的脱羟基作用有关。在10.9°、22.4°、34.2°、60.4°处出现一系列新的衍射峰,分别对应于NiMn-LDHs的(003)、(006)、(012)、(110)晶面(JCPDS PDF No. 38-0715),说明在HNTs-Ag表面成功包裹了一层NiMn-LDH。 AA-NiMn-CLDH@HNTs-Ag在2θ=37.3°、43.3°、62.9°、75.6°处有4个衍射峰,分别对应于NiO的(111)、(200)、(220)、(311)晶面(JCPDS PDF No. 47-1049)。这一结果表明,经过煅烧后,NiMn-LDHs成功转化为NiMn-CLDHs。此外,在37.12°处的衍射峰与MnO2的(100)晶面匹配良好(JCPDS PDF No. 44-0992)。
图2是制备的催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达的N2吸脱附等温线及孔径分布图,(a)为HNTs和AA-NiMn-CLDHs@HNTs-Ag纳米马达的N2吸脱附等温线,(b)为HNTs和AA-NiMn-CLDHs@HNTs-Ag纳米马达的孔径分布图。HNTs和AA-NiMn-CLDHs@HNTs-Ag纳米马达都是典型的IV等温线且具有明显的H3回滞环(P/P0>0.4),表明它们都具有介孔结构。由于NiMn-CLDHs纳米片的形成,纳米马达的比表面积为40.55 m2/g,远高于HNTs (22.15 m2/g)。AA-NiMn-CLDHs@HNTs-Ag纳米马达在2-15 nm范围内尺寸分布较窄,平均孔径约为9.620nm。
图3为制备的催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达的TEM图和EDS能谱。图a表明原始的HNTs呈纳米尺度管状结构,具有多层管壁和开放的管腔,内径为13 nm。 图b为酸蚀后HNTs的TEM照片,由于酸和氧化铝之间的相互作用去除了部分氧化铝,其管腔直径增加到22 nm,但外径变化不明显,因为外部Si-O-Si层在酸性条件下较稳定。图c可以看出HNTs腔内可见大量Ag纳米颗粒(粒径约6 nm)。图d则显示NiMn-CLDHs纳米片均匀地包裹在HNTs-Ag外表面。 图e-f 给出了AA-NiMn-CLDHs@HNTs-Ag纳米马达的EDS谱图,表明纳米马达中存在Al、Si、O、Ni、Mn和Ag元素。
实施例2
对实施例1中制备的催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达在5%H2O2中的运动情况进行研究,具体见图4,a,b表明AA-NiMn-CLDHs@HNTs-Ag纳米马达的自驱动运动主要依靠Ag NPs和NiMn-CLDHs催化H2O2分解产生的O2气泡提供的反向驱动力。c和d为AA-NiMn-CLDHs@HNTs-Ag纳米马达的延时图像和跟踪轨迹,在无H2O2的情况下,纳米马达做布朗运动,随着H2O2浓度的升高,纳米马达克服布朗运动,进行定向运动。为了进一步研究其运动行为,根据其运动轨迹计算不同时间间隔内的均方位移(MSD),如图e所示,在没有H2O2的情况下,纳米马达的MSD呈水平状态,无线性增加,而加入H2O2后,MSD随时间和H2O2浓度呈线性增加。图f表明,在纯水中,由于布朗运动,纳米马达的扩散系数De很小(0.07 μm2/s),而在5 wt%H2O2的情况下,由于O2气泡大量脱落,为纳米马达提供了足够的驱动力,纳米马达的扩散系数De增加到2.11 μm2/s。
实施例3
苯酚的比色检测
在H2O2存在下,具有类过氧化物酶活性的AA-NiMn-CLDHs@HNTs-Ag纳米马达可以催化H2O2生成活性氧自由基,从而引发苯酚与4-AAP氧化偶联生成红色醌亚胺染料。将900μL4-AAP(12mM),750μL不同浓度的苯酚,250μLH2O2(0.1 M)和100μL马达混悬液(30mg/mL)依次添加到1000μL NaAc-HAc缓冲溶液(0.2M,pH4.0),将混合物在室温下孵育20 min。离心去除AA-NiMn-CLDHs@HNTs-Ag纳米马达后,用于苯酚比色检测。
图5是催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达比色检测苯酚的紫外可见吸收光谱图。图(a)是催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达显色体系在不同浓度苯酚存在下的紫外可见吸收光谱图,随着苯酚浓度的增加,515 nm处的吸光度逐渐增加,溶液颜色逐渐由无色变为红色;图(b)和(c)是苯酚检测线性关系的校正曲线,苯酚浓度在1 ~ 10μm范围内呈良好的线性关系,线性回归方程为A=0.01708+0.00687[Cphenol] (R2=0.9906),检测限(LOD)为0.225 μM (S/N=3)。图(d)是苯酚比色检测机理图,Ni2+/Ni3+和Mn3+/Mn4+的氧化还原对可以为H2O2提供电子生成具有较强氧化能力的•OH。•OH可以从苯酚分子的羟基上捕获单电子,形成醌类自由基。最后,多余的•OH进一步引发醌类自由基与4-AAP之间的氧化偶联反应,生成了红色的醌亚胺染料。
实施例4
苯酚的催化降解
取五只干净的离心管(50 mL),依次加入pH 4.0,5.0,6.0,7.0,8.0缓冲液10 mL,苯酚溶液300μL(浓度为1g/L的苯酚原液),分别称取10mg AA-NiMn-CLDHs@ HNTs-Ag纳米马达加入到上述五支离心管中,加入1mL 30%H2O2,开始计时,分别于0min,15min,30min,60min,90min,120min,150min,180min取出1.5mL溶液放入2mL离心管中,离心,取750μL上清液加入到显色体系中,静置20min,离心,取上清液测吸光度。
取两只干净的离心管(50mL),依次加入pH 5.0缓冲液10 mL,苯酚溶液300μL(浓度为1g/L的苯酚原液),分别称取10mg AA-NiMn-CLDHs@ HNTs-Ag纳米马达和10mgNiMn-CLDHs@ HNTs-Ag纳米马达加入到上述两支离心管中,加入1mL 30%H2O2,开始计时,分别于0min,15min,30min,60min,90min,120min,150min, 180min取出1.5mL溶液放入2mL离心管中,离心,取750μL上清液加入到显色体系中,静置20min,离心,取上清液测吸光度。
取两只干净的离心管(50 mL),依次加入pH 5.0缓冲液10 mL,苯酚溶液300μL(浓度为1g/L的苯酚原液),分别称取10mg AA-NiMn-CLDHs@ HNTs-Ag纳米马达加入到上述两支离心管中,一只离心管中加入1mL 30%H2O2,另一只离心管中加入1mL蒸馏水并进行机械搅拌。开始计时,分别于0min,15min,30min,60min,90min,120min,150min, 180min取出1.5mL溶液放入2mL离心管中,离心,取750μL上清液加入到显色体系中,静置20min,离心,取上清液测吸光度。
图6是pH对催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达催化降解苯酚的影响。图(a-e)是不同pH条件下催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达催化降解苯酚的紫外可见吸收光谱图,随着时间的延长,吸光度逐渐降低,图(f)是初始pH对苯酚降解率的影响。初始pH对苯酚的降解有显著的影响,酸性条件下的降解效果优于碱性条件下的降解效果。pH为5.0时,苯酚的降解效率最高,90 min可达96.51%,但随着pH的升高,苯酚的降解效率降低,pH为8.0时仅为23.44%。这可能是由于随着pH的增加,活性金属离子的数量相对较低,同时自由基的猝灭作用更强。当pH进一步降低时,降解性能会大大降低。pH值为4.0时苯酚的最终降解效率仅为59.03%。因为当酸度过低时,H2O2容易质子化生成H3O2 +,抑制•OH的生成。
图7是不同降解体系对苯酚催化降解的影响。图(a)是AA-NiMn-CLDHs@HNTs-Ag纳米马达降解苯酚的紫外可见吸收光谱图,图(b)是NiMn-CLDHs@HNTs-Ag纳米马达降解苯酚的紫外可见吸收光谱图,图(c)是无H2O2时AA-NiMn-CLDHs@HNTs-Ag降解苯酚的紫外可见吸收光谱图,图(d)是AA-NiMn-CLDHs@HNTs-Ag纳米马达及其对照组对苯酚降解率的影响。从图中可以看出,90 min内NiMn-CLDHs@HNTs-Ag+H2O2对苯酚的降解率为68.17%,而AA-NiMn-CLDHs@HNTs-Ag+H2O2对苯酚的降解率高达95.63%。NiMn-CLDHs@HNTs-Ag在酸性条件下表现出较高的类过氧化物酶活性,意味着NiMn-CLDHs@HNTs-Ag+H2O2体系可以催化H2O2生成•OH。而AA作为弱酸性还原剂,通过提供酸性环境促进•OH的生成。此外,AA固有的还原性也可以有效促进Ni3+/Mn4+还原为Ni2+/Mn3+,加速H2O2的分解,生成更多的•OH,促进苯酚的降解。在没有H2O2的情况下,AA-NiMn-CLDHs@HNTs-Ag纳米马达对苯酚的降解率仅为37.16%,远低于有H2O2的情况下(96.53%)。因此,H2O2在苯酚降解过程中起重要作用。此外,在H2O2存在的情况下,自驱动纳米马达可以增加流体扰动,促进传质,大大增加了苯酚与催化剂的接触几率。苯酚的催化降解过程主要是通过类芬顿反应过程来实现的。AA-NiMn-CLDHs@HNTs-Ag纳米马达中主要的氧化还原对是Ni2+/Ni3+和Mn3+/Mn4+,在酸性介质中可以催化H2O2生成•OH,然后苯酚经•OH催化氧化形成了一系列中间体,如对羟基苯甲酸、对苯二酚和对苯二酚,这些中间体通过捕获亲电的•OH进一步转化为琥珀酸和粘康酸,最终矿化为CO2和H2O。

Claims (10)

1.一种双功能催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达的制备方法,其特征在于,包括以下步骤:
(1)HNTs的预处理:对HNTs进行扩腔活化;
(2)NiMn-LDHs@HNTs-Ag的制备:将步骤(1)中扩腔活化后的HNTs分散于醋酸银溶液中,经负压吸注、380℃煅烧1h得到HNTs-Ag,将HNTs-Ag分散于NiMn-LDHs前驱体溶液中,加碱陈化10~18h,反应结束后过滤、洗涤、干燥得NiMn-LDHs@HNTs-Ag;
(3)AA-NiMn-CLDHs@HNTs-Ag纳米马达的制备:步骤(2)中NiMn-LDHs@HNTs-Ag在500℃下煅烧1h,得到NiMn-CLDHs@HNTs-Ag纳米马达,将其分散于抗坏血酸溶液AA中,搅拌吸附,经过滤、洗涤、干燥,得到双功能催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中HNTs扩腔活化步骤为:将HNTs分散于硫酸溶液中进行蚀刻,加热搅拌,收集固体洗涤至中性,然后800℃下煅烧4h进行活化。
3.根据权利要求2所述的制备方法,其特征在于,所述的硫酸溶液的浓度为2mol/L,蚀刻温度为60℃,蚀刻时间为2h。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)中NiMn-LDHs前驱体溶液为摩尔比3:1:4的Ni(NO3)2•6H2O、Mn(NO3)2•4H2O和NH4F混合溶液,Ni(NO3)2•6H2O和HNTs-Ag的质量比为1.5:1。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)中的加碱陈化中碱性溶液中NaOH和Na2CO3的摩尔比为2:5。
6.根据权利要求1所述的制备方法,其特征在于,步骤(2)中HNTs和CH3COOAg的质量比为1:1.25,CH3COOAg溶液浓度为2.5 mg/mL。
7.根据权利要求1所述的制备方法,其特征在于,步骤(3)中抗坏血酸溶液浓度为10mM,反应时间为8 h。
8.一种权利要求1~7任一项所述的制备方法制备得到的双功能催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达。
9.一种权利要求8所述的双功能催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达在苯酚检测中的应用。
10.一种权利要求8所述的双功能催化型AA-NiMn-CLDHs@HNTs-Ag纳米马达在苯酚催化降解中的应用。
CN202210608449.0A 2022-05-31 2022-05-31 一种双功能AA-NiMn-CLDHs@HNTs-Ag纳米马达及其制备方法和应用 Active CN114950546B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210608449.0A CN114950546B (zh) 2022-05-31 2022-05-31 一种双功能AA-NiMn-CLDHs@HNTs-Ag纳米马达及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210608449.0A CN114950546B (zh) 2022-05-31 2022-05-31 一种双功能AA-NiMn-CLDHs@HNTs-Ag纳米马达及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114950546A CN114950546A (zh) 2022-08-30
CN114950546B true CN114950546B (zh) 2023-06-23

Family

ID=82957069

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210608449.0A Active CN114950546B (zh) 2022-05-31 2022-05-31 一种双功能AA-NiMn-CLDHs@HNTs-Ag纳米马达及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114950546B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116350591B (zh) * 2022-12-22 2024-04-09 济南大学 pH响应双驱动Pt/FePc@Mn-MOF Janus型纳米马达及制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1253485A (en) * 1969-06-18 1971-11-17 Kyorin Seiyaku Kk Process and apparatus for the coating of particles or powders
CN107362793A (zh) * 2017-07-19 2017-11-21 江苏大学 一种CeVO4‑La2O3@HNTs复合光催化剂的制备方法与用途
CN110090628A (zh) * 2019-04-29 2019-08-06 济南大学 一种基于木棉纤维的Eu-MOF/EDTA-NiAl-CLDH荧光微马达及其应用
CN114272926A (zh) * 2021-12-29 2022-04-05 济南大学 一种双功能催化型阴阳球微马达及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1253485A (en) * 1969-06-18 1971-11-17 Kyorin Seiyaku Kk Process and apparatus for the coating of particles or powders
CN107362793A (zh) * 2017-07-19 2017-11-21 江苏大学 一种CeVO4‑La2O3@HNTs复合光催化剂的制备方法与用途
CN110090628A (zh) * 2019-04-29 2019-08-06 济南大学 一种基于木棉纤维的Eu-MOF/EDTA-NiAl-CLDH荧光微马达及其应用
CN114272926A (zh) * 2021-12-29 2022-04-05 济南大学 一种双功能催化型阴阳球微马达及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Selective decorating ag and mnox nanoparticles on halloysite and used as micromotor for bacterial killing;wang jian et al.;《applied clay science》;第1-9页 *

Also Published As

Publication number Publication date
CN114950546A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
Liu et al. Recent advances of 3D graphene-based adsorbents for sample preparation of water pollutants: A review
Wang et al. Immobilizing LaFeO3 nanoparticles on carbon spheres for enhanced heterogeneous photo-Fenton like performance
CN105478155B (zh) 一种可再生非均相芬顿型催化剂及其制备方法和应用
CN109847786B (zh) 一种Z型光催化剂MgAlLDH/CN-H的制备方法及应用
US10717120B2 (en) Sand/water remediation method with a photocatalytic fuel cell
CN107321341B (zh) 一种硅藻土/(GR+TiO2)复合光催化剂的制备方法
Wang et al. A series of novel carbohydrate-based carbon adsorbents were synthesized by self-propagating combustion for tetracycline removal
Minale et al. Enhanced removal of oxytetracycline antibiotics from water using manganese dioxide impregnated hydrogel composite: Adsorption behavior and oxidative degradation pathways
CN108097261B (zh) 一种高效稳定的铁锰复合氧化物催化剂及其制备方法与应用
CN108341479A (zh) 基于纳米铁酸铜活化单过硫酸盐的应用
CN108686656B (zh) 一种α-Fe2O3/煤矸石复合光催化剂及其制备方法和应用
CN114950546B (zh) 一种双功能AA-NiMn-CLDHs@HNTs-Ag纳米马达及其制备方法和应用
El Messaoudi et al. A comparative review of the adsorption and photocatalytic degradation of tetracycline in aquatic environment by g-C3N4-based materials
CN112264096B (zh) 一种基于壳聚糖的磁性类芬顿催化剂及其制备方法和应用
CN103962094B (zh) 一种有序结构纳米γ-Al2O3化学修饰硅藻土吸附剂的制备方法
CN113398936B (zh) 一种氧化锌/ZnFe-LDH@生物炭可见光催化剂及其制备方法和应用
CN102836702A (zh) 一种过渡金属离子印迹负载型M-POPD-TiO2-漂珠复合光催化剂及其制备方法和应用
CN109621902B (zh) 碳纳米管与二氧化钛复合材料及其制备方法和在回收镓中的应用
CN107335422B (zh) 一种碳功能化氧化铈的制备方法
CN107081137B (zh) 木质素接枝膨润土负载纳米零价铁复合材料及其制备方法
CN114832784A (zh) 一种磷酸修饰的二氧化硅微球及其制备方法和应用
CN112897496A (zh) 用于重金属去除的类石墨烯生物炭及其制备方法
Zhu et al. Fabrication of CdS/ZnCr-LDH heterojunctions with enhanced of tetracycline hydrochloride photocatalytic degradation under visible light
CN111545211B (zh) 一种氧化石墨烯-氧化镧-氢氧化钴复合材料、合成方法及其应用
Song et al. Superior photo-Fenton degradation of acetamiprid by α-Fe2O3-pillared bentonite/L-cysteine complex: Synergy of L-cysteine and visible light

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant