CN105478155B - 一种可再生非均相芬顿型催化剂及其制备方法和应用 - Google Patents

一种可再生非均相芬顿型催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN105478155B
CN105478155B CN201510807597.5A CN201510807597A CN105478155B CN 105478155 B CN105478155 B CN 105478155B CN 201510807597 A CN201510807597 A CN 201510807597A CN 105478155 B CN105478155 B CN 105478155B
Authority
CN
China
Prior art keywords
catalyst
zeolite
preparation
carrier
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510807597.5A
Other languages
English (en)
Other versions
CN105478155A (zh
Inventor
程晓维
邓勇辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201510807597.5A priority Critical patent/CN105478155B/zh
Publication of CN105478155A publication Critical patent/CN105478155A/zh
Application granted granted Critical
Publication of CN105478155B publication Critical patent/CN105478155B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/24Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/66Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
    • B01J29/68Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/16After treatment, characterised by the effect to be obtained to increase the Si/Al ratio; Dealumination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent

Abstract

本发明属于工业催化剂技术领域,具体为一种可再生非均相芬顿型催化剂及其制备方法和应用。本发明催化剂以商用沸石为载体,以高分子对载体进行表面修饰,再以Fe或Co为活性组分进行负载,最后经焙烧在沸石表面形成铁或钴复合价态氧化物。该催化剂对工业中难处理的含酚类或染料等有机废水具有高效降解能作用,在室温(<30℃)和接近中性条件(pH=6~8)下对废水中有机物降解率可达90%以上,且催化剂再生性能良好。本发明利用非均相芬顿催化剂进行氧化去除废水中酚类和染料等有机物,成本低、不产生二次污染,是一项非常具有应用前景的有机废水处理工艺。

Description

一种可再生非均相芬顿型催化剂及其制备方法和应用
技术领域
本发明属于工业催化剂技术领域,具体涉及一种非均相芬顿(Fenton)催化剂及其制备方法,还涉及该催化剂在降解工业有机废水中的应用。
背景技术
随着社会发展和人口增长,由此造成的环境污染日益加剧,去除水中难降解污染物、减少水体污染已经引起了人们的广泛关注[BabuponnusamiA.,et. al., Journal of EnvironmentalChemical Engineering. 2014,2,557]。随着废水水质日趋复杂和国家对环境保护的重视,传统处理方式已经越来越难以满足难降解废水的处理需求。
高级氧化技术(AOPs)基于体系中产生的强氧化活性的羟基自由基(HO·),可以无选择的去除和降解常规方法无法分解的有机污染物,已经广泛应用于酚类、药物、农药和垃圾渗滤液等废水的处理中[Pouran S.R.,et. al.,Journal of Cleaner Production.2014,64,24]。与其他高级氧化技术相比,芬顿体系有较长的研究历史和较广阔的应用空间。
芬顿体系在使用过程中具有试剂无毒性,均相体系没有传输阻碍,操作简单,投资相对较小等优点,所以一直广泛用于有毒有害废水的处理中。但传统芬顿法仍存在缺点,如H2O2利用率低,反应所需pH较低,产生的Fe2+和Fe3+影响出水色度等。因此类芬顿体系逐渐受到人们的关注,如通过引入光照(可见光、紫外光)、电流等诱导HO·产生;研究应用于芬顿体系的新型催化剂,提高芬顿体系处理能力并尽量消除其负面影响。
芬顿催化剂早期研究主要集中在均相方面,具有催化反应迅速,无传质阻力,反应条件更温和等优点,常用催化剂为过渡金属,如Co、Fe、Mn、Cu、Ni等盐类,研究表明硫酸铜[宋天顺等,水处理技术,2007,33,22]、硫酸铁[Ramirez J.H.,et. al., Catalysis Today2005,107,68]催化染料废水的效果均非常显著。随着芬顿体系中催化剂研究的深入,均相催化剂存在适用pH范围较窄、催化剂难以回收利用、化学污泥产量大且难处理等问题,因此,非均相催化剂逐渐成为芬顿体系的研究重点。非均相催化剂与废水的分离较简便,处理流程大大简化,常用非均相催化剂主要分为三类:贵金属(如Pd、Pt、Au、Ag等)、过渡金属(主要为Fe和Co)及稀土金属等。大量研究表明,贵金属和稀土金属具有较高的催化活性和催化稳定性,过渡金属虽然活性相对一般,但价格较低,在非均相芬顿体系催化剂开发上具有显著的发展优势和潜在的发展前景。
沸石是一种无机硅酸盐类多孔材料,作为催化剂载体具有较高的稳定性、较大的比表面积以及较高的酸性位。我们所选用的沸石(Y型沸石、β沸石、丝光沸石、ZSM-5、镁碱沸石等)具有12员环或10员环孔道结构,均已实现工业生产,成本较低,来源广泛,因此本发明采用一系列商用沸石作为芬顿催化剂载体。
苯酚是最常见的有毒性、强腐蚀性的难降解有机物之一。苯酚主要用于合成材料、酚醛树脂、油漆、炸药、煤气、炼油、纺织等工业。含酚废水来源广、水量多、危害大。苯酚作为一种典型难降解物质,当使用的催化剂对其有显著降解效果时,则可认为催化剂效果良好。
本发明以一系列商用沸石作为载体,通过高分子对其表面进行修饰后负载Fe或Co的氧化物,从而制备高稳定性类芬顿催化剂。该催化剂在室温和接近中性pH条件下能高效降解酚类废水和染料废水,具有非常重要的工业应用价值。
发明内容
本发明的目的在于提出一种室温与中性pH条件下具有优异低温催化活性的高稳定性可再生非均相芬顿型催化剂及其制备方法,以及在降解酚类和染料等工业有机废水中的应用。
本发明提出的可再生非均相芬顿型催化剂,以沸石为载体、以过渡金属Fe、Co为活性组分、通过引入高分子来调节Fe、Co在载体表面分布而制备得到;活性组分在催化剂中的负载量为5~25wt.%。该催化剂在室温(<30℃)和接近中性条件(pH=6~8)下与H2O2共同作用,表现出具有强的氧化能力,有机物(以苯酚和罗丹明B为例)在2h内的降解率均可超过90%,适合处理各种浓度的酚类和染料废水,且催化剂稳定性和再生性能良好。
本发明提出的芬顿型催化剂的制备方法,具体步骤如下:
(1)将高分子聚合物溶于一定量甲醇溶液,再将作为载体的商用沸石分子筛浸渍于上述溶液中;室温下搅拌1-12h,用旋转蒸发仪去除溶剂,30-100℃干燥1-12h,然后高温(110—130℃,优选120℃)活化;
(2)将活性组分Fe或Co的前驱体配置成前驱体盐溶液;
(3)将活性组分的前驱体盐溶液采用常压浸渍到沸石载体上,浸渍温度为10-25℃,浸渍时间0.5h~12h;以金属元素计,控制催化剂中最终活性组分负载量为5~25wt.%;
(4)将浸渍后的固体在25~120℃下干燥1~5h,然后置于马弗炉中300~700℃下焙烧2~7h,即得到所需的沸石负载型催化剂。
本发明催化剂使用回收后经干燥处理,再置于马弗炉中焙烧,得到可再生的催化剂。
上述方法中,所述高分子聚合物为聚醚酰亚胺、聚乙烯亚胺伙聚甲亚胺等;所用载体为商用Y型沸石、β沸石、丝光沸石、镁碱沸石、ZSM-5沸石等,其硅铝比为2-∞,晶粒尺寸为0.1~2μm。
上述方法中,所用铁源(金属Fe活性组分的前驱体)为硝酸铁(Fe(NO3)3·9H2O)、硫酸亚铁铵((NH4)2Fe(SO4)2.6H2O)、氯化铁(FeCl3)、硫酸铁(Fe2(SO4)3)等,钴源(金属Co活性组分的前驱体)为硝酸钴(Co(NO3)2·6H2O)、氯化钴(CoCl2·6H2O)、硫酸钴(CoSO4·7H2O)等。配制的盐溶液浓度为0.18-0.9mol/L。
本发明催化剂经回收后,干燥处理的温度为25-120℃,时间为1-5 h,置于马弗炉中焙烧,温度为300~700℃,时间为2~7h,得到可再生的催化剂。
本发明制备的催化剂,可用于高效降解酚类废水和染料废水。
具体来说,在酚类和染料废水中投加少量双氧水和上述非均相催化剂构成类芬顿反应体系进行反应。
其中,所述的酚类为苯酚或萘酚中的一种或一种以上,浓度为1-2000ml/L;所述的染料废水为罗丹明B和酸性红1中的一种或一种以上,染料浓度为1-1000ml/L。
其中,反应体系的pH=6-8,反应温度为10-30℃。
本发明以商用沸石为载体的类芬顿催化剂的设计原理及催化作用机理如下:
在催化剂材料的体系设计上,采用商用沸石作为载体,用聚乙烯亚胺等高分子对载体进行修饰,不仅增强了活性组分在载体上的分散性,也调节了活性组分的化学价态,进而能有效提高芬顿反应的催化效率。
首先是过氧化氢和有机物分子通过扩散吸附到催化剂表面的活性中心上,过氧化氢分子在铁元素催化作用下生成羟基自由基,通过自由基反应氧化降解有机物,最后完全降解产物CO2从催化剂表面发生脱附反应逃逸。
附图说明
图1分别是Y型分子筛负载前和负载后的XRD图谱,均是典型的FAU沸石拓扑结构。负载焙烧后,衍射峰强度降低,但其晶体结构未被破坏,仍保持Y型沸石的结构类型,且没有氧化铁的衍射峰,说明氧化铁颗粒尺寸很小并且被均匀负载在催化剂表面。
图2分别是Y型分子筛负载前和负载后的低温氮吸附-脱附图,均呈现典型的I类微孔吸附曲线类型。负载后材料比表面积、孔体积、微孔比表面积和微孔体积均有一定程度下降,这说明微孔被部分堵塞。负载前比表面积为499.1 m2/g,孔容积为0.306 cm3/g,微孔比表面积355.2m2/g,微孔体积0.198 cm3/g。负载后比表面积为367.7 m2/g,孔容积为0.275cm3/g,微孔比表面积239.3 m2/g,微孔体积0.131 cm3/g。
图3是负载铁后催化剂的扫描电镜图片,图片显示负载后催化剂表面较粗糙,且形貌不均一,说明催化剂表面表面被氧化铁粒子所覆盖。
图4是苯酚降解率随时间变化曲线,催化剂在降解苯酚的实验中起到吸附和降解双重作用,反应前10min内,Y型分子筛吸附苯酚,之后随着催化活性位的产生,苯酚降解率逐渐增加,1h后由于苯酚浓度减少,反应缓慢进行。
图5是苯酚紫外吸收光谱随时间变化的降解曲线。
图6是罗丹明B降解率随时间变化曲线。
具体实施方式
下面结合实施例对本发明作进一步说明。
催化剂的制备:
(I)称取0.1g聚乙烯亚胺,溶于10g甲醇中,将1g Y型沸石加入上述溶液中,在室温下搅拌12h,用旋转蒸发仪除去甲醇,固体粉末在100℃下干燥过夜;再高温活化;
(II)称取一定量硝酸铁,溶于10g去离子水中,将I得到的粉末投入硝酸铁溶液中,在室温下搅拌12h,所得混合物在70℃下干燥5h,得到块状固体;调节Fe3+的浓度范围分别为0.18mol/L、0.36 mol/L、0.54 mol/L、0.72 mol/L和0.90mol/L,分别制备出催化剂A、B、C、D、E;
(Ⅲ)在600℃煅烧5h,得到比表面为367.6 m2/g的芬顿固体催化剂。
参照以上催化剂制备方法,以不同类型沸石、活性组分、高分子聚合物和负载量的催化剂制备如表1所示。
催化剂的芬顿反应性能测试条件:催化反应在装有所制催化剂的烧杯中进行,催化剂装填0.5g,以1g/L的苯酚溶液为试验水样,取10ml试验水样于催化剂装填烧杯中;试验水样加入30% 浓度的双氧水0.14ml,反应在室温下进行,反应时间为2h。催化剂的芬顿氧化反应性能测试结果见表2。
催化剂制备均在室温(10-30℃)下,具体实施例如下(表1):
表1
芬顿反应实施例:实验均在在室温(10-30℃)、中性pH下实施,以硝酸铁为无机盐,以聚乙烯亚胺为高分子聚合物制备催化剂。催化剂的芬顿氧化反应性能测试结果如下表(表2):
表2
本发明所提供的新型负载型催化剂的特征可用如下方法进行表征:
1. 粉末X-射线衍射(XRD)。在粉末X-射线衍射中,参照沸石标准图谱,确定负载后催化剂结构是否被破坏,且活性组分是否被均匀负载在催化剂上;
2. 低温氮吸附;
3.扫描电镜;
4.苯酚降解率随时间的变化曲线;
5.苯酚紫外吸收光谱随时间变化的降解曲线;
6.罗丹明B降解率随时间变化曲线。

Claims (7)

1.一种可再生非均相芬顿型催化剂的制备方法,该催化剂以沸石为载体、以过渡金属Fe或Co为活性组分、通过引入高分子来调节Fe、Co在载体表面分布而制备得到;活性组分在催化剂中的负载量为5~25wt.%;
其特征在于,具体步骤为:
(1)将高分子聚合物溶于一定量甲醇溶液,再将作为载体的商用沸石分子筛浸渍于上述溶液中;室温下搅拌1-12h,用旋转蒸发仪去除溶剂,30-100℃干燥1-12h,然后高温活化,活化温度为110—130℃;
(2)将活性组分Fe或Co的前驱体配置成前驱体盐溶液;
(3)将活性组分的前驱体盐溶液采用常压浸渍到沸石载体上,浸渍温度为10-25℃,浸渍时间0.5h~12h;以金属元素计,控制催化剂中最终活性组分负载量为5~25wt.%;
(4)将浸渍后的固体在25~120℃下干燥1~5h,然后置于马弗炉中300~700℃下焙烧2~7h,即得到所需的沸石负载型催化剂;
所述高分子聚合物为聚醚酰亚胺或聚乙烯亚胺或聚甲亚胺。
2.按照权利要求1所述的制备方法,其特征在于,所述载体为商用Y型沸石、β沸石、丝光沸石、镁碱沸石或ZSM-5沸石,其硅铝比为2-∞,晶粒尺寸为0.1~2μm。
3.按照权利要求1所述的制备方法,其特征在于,所述活性组分前驱体为九水合硝酸铁、硫酸亚铁铵、氯化铁或硫酸铁,或六水合硝酸钴、氯化钴或硫酸钴。
4.按照权利要求1所述的制备方法,其特征在于,所述前驱体盐溶液浓度为0.18-0.9mol/L。
5.采用权利要求1所述制备方法制备得到的可再生非均相芬顿型催化剂在处理酚类和染料废水的用途,其特征在于:在酚类和染料废水中投加少量双氧水和所述催化剂构成类芬顿反应体系进行反应。
6.根据权利要求5所述的用途,其特征在于:所述的酚类为苯酚或萘酚中的一种或一种以上,浓度为1-2000ml/L;所述的染料废水为罗丹明B和酸性红1中的一种或一种以上,染料浓度为1-1000ml/L。
7.根据权利要求5所述的用途,其特征在于:所述反应体系pH=6-8,反应温度为10-30℃。
CN201510807597.5A 2015-11-20 2015-11-20 一种可再生非均相芬顿型催化剂及其制备方法和应用 Active CN105478155B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510807597.5A CN105478155B (zh) 2015-11-20 2015-11-20 一种可再生非均相芬顿型催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510807597.5A CN105478155B (zh) 2015-11-20 2015-11-20 一种可再生非均相芬顿型催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN105478155A CN105478155A (zh) 2016-04-13
CN105478155B true CN105478155B (zh) 2018-04-03

Family

ID=55665636

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510807597.5A Active CN105478155B (zh) 2015-11-20 2015-11-20 一种可再生非均相芬顿型催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN105478155B (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106277153A (zh) * 2016-08-24 2017-01-04 何晓东 一种酚类废水的处理方法
CN106732747A (zh) * 2016-11-28 2017-05-31 天津工业大学 一种用于消除有机染料污染的分子筛类芬顿催化剂及高效合成方法
CN109704356B (zh) * 2017-10-26 2021-05-11 中国石油化工股份有限公司 Eu-1沸石分子筛的合成方法
CN108043458A (zh) * 2018-01-05 2018-05-18 中国石油大学(华东) 一种固定化非均相芬顿催化剂的制备方法及其应用
CN108970634A (zh) * 2018-08-17 2018-12-11 广州大学 负载掺杂型钴系多孔芬顿催化剂的合成方法、负载掺杂型钴系多孔芬顿催化剂及其应用
CN109012717A (zh) * 2018-09-10 2018-12-18 河海大学 一种Ti3C2-FeCo复合型过渡金属催化剂及其制备方法和应用
CN109534479B (zh) * 2018-12-10 2020-07-28 中南大学 一种非均相芬顿催化剂催化活性再激活的方法和应用
CN109485064B (zh) * 2018-12-10 2020-09-08 卓悦环保新材料(上海)有限公司 废mtp催化剂制备丝光沸石的方法及废mtp催化剂的应用
CN110040839B (zh) * 2019-05-08 2022-12-16 山东生态家园环保股份有限公司 处理果蔬垃圾的组合物及其制备方法
CN110437458B (zh) * 2019-07-25 2021-04-02 北京化工大学 一种能重复使用的类芬顿催化剂[NH2-MIL-101(Fe)]的制备及应用方法
CN110975872B (zh) * 2019-12-20 2022-11-29 辽宁大学 一种钴基非晶合金催化剂及其制备方法和应用
CN111346661A (zh) * 2020-03-26 2020-06-30 浙江理工大学 一种高效处理有机废水的铁基碳氮化合物催化材料及其制备方法
CN111375412B (zh) * 2020-03-27 2022-08-23 华东理工大学 一种用于处理水中有机污染物的一体化类芬顿催化剂的制备方法及其产品
CN112958144A (zh) * 2021-02-07 2021-06-15 内蒙古师范大学 X型沸石分子筛催化剂的制备方法及其应用
CN113264608A (zh) * 2021-05-18 2021-08-17 武汉工商学院 一种类芬顿法处理废水的方法
CN113289672A (zh) * 2021-06-02 2021-08-24 南通大学 分子筛催化剂改进工艺
CN114669321A (zh) * 2022-04-21 2022-06-28 杭州电子科技大学 一种含钴沸石催化剂及其制备方法和应用
CN117299206B (zh) * 2023-10-11 2024-01-23 山东理工大学 铁氧化物/聚醚酰亚胺纳米纤维催化膜、其制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101579637A (zh) * 2009-05-08 2009-11-18 清华大学 用于乙醇脱水制乙烯的分子筛型固体酸催化剂的制备方法
CN101837988A (zh) * 2010-03-12 2010-09-22 重庆理工大学 一种铁改性sba-15介孔分子筛的制备方法
CN102557327A (zh) * 2010-12-10 2012-07-11 新奥科技发展有限公司 一种处理废水的方法
CN103157474A (zh) * 2011-12-09 2013-06-19 华东理工大学 用于非均相Fenton体系的负载型固体催化剂

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI1002600B1 (pt) * 2010-06-14 2018-05-29 Universidade Federal De Minas Gerais "Catalisador de metal de transição ou de óxido de metal de transição suportado em concreto celular autoclavado, processo e uso"

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101579637A (zh) * 2009-05-08 2009-11-18 清华大学 用于乙醇脱水制乙烯的分子筛型固体酸催化剂的制备方法
CN101837988A (zh) * 2010-03-12 2010-09-22 重庆理工大学 一种铁改性sba-15介孔分子筛的制备方法
CN102557327A (zh) * 2010-12-10 2012-07-11 新奥科技发展有限公司 一种处理废水的方法
CN103157474A (zh) * 2011-12-09 2013-06-19 华东理工大学 用于非均相Fenton体系的负载型固体催化剂

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fabrication and application of magnetic nanoreactor with multiple ultrasmall cores and mesoporous shell in Fenton-like oxidation;Wenjing Cheng et al.;《Microporous and Mesoporous Materials》;20150730;第219卷;第10-18页 *
Fe-ZSM-5分子筛催化剂催化降解高浓度含酚废水;吕树祥 等;《过程工程学报》;20080831;第8卷(第4期);第751-755页 *

Also Published As

Publication number Publication date
CN105478155A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
CN105478155B (zh) 一种可再生非均相芬顿型催化剂及其制备方法和应用
Rubeena et al. Iron impregnated biochars as heterogeneous Fenton catalyst for the degradation of acid red 1 dye
Hasanpour et al. Photocatalytic performance of aerogels for organic dyes removal from wastewaters: Review study
Ganiyu et al. Heterogeneous electro-Fenton and photoelectro-Fenton processes: a critical review of fundamental principles and application for water/wastewater treatment
Tang et al. Metal organic framework with coordinatively unsaturated sites as efficient Fenton-like catalyst for enhanced degradation of sulfamethazine
Han et al. Catalytic degradation of tetracycline using peroxymonosulfate activated by cobalt and iron co-loaded pomelo peel biochar nanocomposite: Characterization, performance and reaction mechanism
Wang et al. Bifunctional MnFe2O4/chitosan modified biochar composite for enhanced methyl orange removal based on adsorption and photo-Fenton process
Liu et al. Size-tailored porous spheres of manganese oxides for catalytic oxidation via peroxymonosulfate activation
Tu et al. Co-catalytic effect of sewage sludge-derived char as the support of Fenton-like catalyst
Zhong et al. Efficient degradation of organic pollutants by activated peroxymonosulfate over TiO2@ C decorated Mg–Fe layered double oxides: Degradation pathways and mechanism
CN107570214B (zh) 具备多相吸附催化功能的纸基铁酸铋复合材料的制备方法
Li et al. Preparation and properties of Cu-Ni bimetallic oxide catalyst supported on activated carbon for microwave assisted catalytic wet hydrogen peroxide oxidation for biologically pretreated coal chemical industry wastewater treatment
Niu et al. MnCeOx/diatomite catalyst for persulfate activation to degrade organic pollutants
Fakhri et al. Two novel sets of UiO-66@ metal oxide/graphene oxide Z-scheme heterojunction: Insight into tetracycline and malathion photodegradation
CN108341479A (zh) 基于纳米铁酸铜活化单过硫酸盐的应用
Ye et al. Confinement of ultrafine Co3O4 nanoparticles in nitrogen-doped graphene-supported macroscopic microspheres for ultrafast catalytic oxidation: Role of oxygen vacancy and ultrasmall size effect
Saqib et al. Zeolite supported TiO2 with enhanced degradation efficiency for organic dye under household compact fluorescent light
CN105148964B (zh) 一种三维还原氧化石墨烯‑Mn3O4/MnCO3纳米复合材料及其制备方法
Wang et al. Efficient peroxymonosulfate activation and less metallic leaching through kaolin@ MnCo2O4 for bisphenol A degradation in environmental remediation
Chegeni et al. Photocatalytic bauxite and red mud/graphitic carbon nitride composites for Rhodamine B removal
Guo et al. Co, Fe co-doped g-C3N4 composites as peroxymonosulfate activators under visible light irradiation for levofloxacin degradation: Characterization, performance and synergy mechanism
Guleria et al. Photocatalytic and adsorptional removal of heavy metals from contaminated water using nanohybrids
Hu et al. Activation of Na2S2O8 by MIL-101 (Fe)/Co3O4 composite for degrading tetracycline with visible light assistance
CN115920895A (zh) 光芬顿过渡金属单原子催化剂及其制备方法和应用
CN111203179A (zh) 一种可再生含酚有机废水催化吸附材料的制备方法及应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant