CN114939124A - 治疗前蛋白转化酶枯草杆菌蛋白酶kexin(pcsk9)基因相关障碍的方法和组合物 - Google Patents

治疗前蛋白转化酶枯草杆菌蛋白酶kexin(pcsk9)基因相关障碍的方法和组合物 Download PDF

Info

Publication number
CN114939124A
CN114939124A CN202210440296.3A CN202210440296A CN114939124A CN 114939124 A CN114939124 A CN 114939124A CN 202210440296 A CN202210440296 A CN 202210440296A CN 114939124 A CN114939124 A CN 114939124A
Authority
CN
China
Prior art keywords
subject
nucleotides
pharmaceutical composition
rnai agent
antisense strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210440296.3A
Other languages
English (en)
Inventor
K·菲茨杰拉德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alnylam Pharmaceuticals Inc
Original Assignee
Alnylam Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alnylam Pharmaceuticals Inc filed Critical Alnylam Pharmaceuticals Inc
Publication of CN114939124A publication Critical patent/CN114939124A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7115Nucleic acids or oligonucleotides having modified bases, i.e. other than adenine, guanine, cytosine, uracil or thymine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Dermatology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Endocrinology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Plant Pathology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明涉及抑制受试者中PCSK9基因表达的方法,以及使用靶向PCSK9基因的RNAi试剂例如双链RNAi试剂来治疗患有脂质障碍例如高脂血症的受试者的治疗性和预防性方法。

Description

治疗前蛋白转化酶枯草杆菌蛋白酶KEXIN(PCSK9)基因相关障 碍的方法和组合物
本申请是申请日为2016年8月25日和发明名称为“用于治疗前蛋白转化酶枯草杆菌蛋白酶KEXIN(PCSK9)基因相关障碍的方法和组合物”的 201680062334.9号发明专利申请的分案申请。
相关申请
本申请要求2015年8月25日提交的美国临时专利申请号62/209,526的优先权权益,该申请的全部内容通过引用结合在此。
本申请涉及2012年12月5日提交的美国临时申请号61/733,518;2013 年3月15日提交的美国临时申请号61/793,530;2013年10月4日提交的美国临时申请号61/886,916;2013年10月17日提交的美国临时申请号 61/892,188;2013年12月5日提交的PCT申请号PCT/US 2013/073349;以及2015年6月5日提交的美国专利申请号14/650,128。前述专利申请的每个的全部内容特此通过引用结合在此。
序列表
本申请含有已经以电子方式以ASCII格式提交并且特此通过引用以其全文结合的序列表。所述ASCII复本创建于2016年8月24日,命名为 121301-04420_SL.txt及大小为188,218字节。
背景技术
前蛋白转化酶枯草杆菌蛋白酶kexin 9(PCSK9)是枯草杆菌蛋白酶丝氨酸蛋白酶家族的一个成员。其他八种哺乳动物枯草杆菌蛋白酶蛋白酶PCSK1-PCSK8(也称为PC1/3、PC2、弗林蛋白酶、PC4、PC5/6、PACE4、 PC7、和S1P/SKI-1)是加工分泌途径中的很多种蛋白质并且在多样的生物学过程中起作用的前蛋白转化酶(Bergeron,F.(2000)J.Mol.Endocrinol.[分子内分泌杂志]24,1-22,Gensberg,K.,(1998)Semin.CellDev.Biol.[细胞及发育生物学讨论会文集]9,11-17,Seidah,N.G.(1999)Brain Res.[大脑研究]848, 45-62,Taylor,N.A.,(2003)FASEB J.[美国实验生物学会联合会期刊]17,1215-1227,以及Zhou,A.,(1999)J.Biol.Chem.[生物化学杂志]274,20745- 20748)。
已经提出PCSK9在胆固醇代谢中起作用。类似于胆固醇生物合成酶和低密度脂蛋白受体(LDLR),PCSK9 mRNA表达通过在小鼠中通过饲喂膳食胆固醇被下调(Maxwell,K.N.,(2003)J.Lipid Res.[脂质研究杂志]44, 2109-2119),通过他汀药物在HepG2细胞中被上调(Dubuc,G.,(2004) Arterioscler.Thromb.Vasc.Biol.[动脉硬化、血栓形成和血管生物学]24, 1454-1459),并且在固醇调节元件结合蛋白转基因小鼠中被上调 (SREBP)(Horton,J.D.,(2003)Proc.Natl.Acad.Sci.USA[美国国家科学院院刊]100,12027-12032)。此外,已经发现PCSK9错义突变与常染色体显性高胆固醇血症形式(Hchola3)相关(Abifadel,M.等人(2003)Nat.Genet. [自然遗传学]34,154-156,Timms,K.M.,(2004)Hum.Genet.[人类遗传学]114, 349-353,Leren,T.P.(2004)Clin.Genet.[临床遗传学]65,419-422)。PCSK9 还可以在决定一般人群中的LDL胆固醇水平中起作用,因为单核苷酸多态性(SNP)与日本人群的胆固醇水平相关(Shioji,K.,(2004)J.Hum.Genet. [人类遗传学杂志]49,109-114)。
常染色体显性高胆固醇血症(ADH)是单基因疾病,其中患者表现出升高的总胆固醇水平和LDL胆固醇水平、肌腱黃色瘤、和早熟性动脉粥样硬化(Rader,D.J.,(2003)J.Clin.Invest.[临床研究杂志]111,1795-1803)。 ADH和隐性形式,常染色体隐性高胆固醇血症(ARH)的发病机制(Cohen, J.C.,(2003)Curr.Opin.Lipidol.[当代脂质视点]14,121-127)是由于经由肝脏的LDL摄取缺陷。ADH可以由阻止LDL摄取的LDLR突变引起,或者由在LDL上的蛋白质(结合LDLR的载脂蛋白B)的突变引起。ARH由 ARH蛋白的突变引起,ARH蛋白对于经由它与网格蛋白的相互作用而内吞 LDLR-LDL复合物是必需的。因此,如果PCSK9突变是HChola3家族病的病因,那么PCSK9很可能在受体介导的LDL摄取中起作用。
过表达研究指出PCSK9在控制LDLR水平并因此在控制经由肝脏的 LDL摄取中的作用(Maxwell,K.N.(2004)Proc.Natl.Acad.Sci.USA[美国国家科学院院刊]101,7100-7105,Benjannet,S.等人(2004)J.Biol.Chem.[生物化学杂志]279,48865-48875,Park,S.W.,(2004)J.Biol.Chem.[生物化学杂志] 279,50630-50638)。在小鼠中,腺病毒介导的小鼠或人PCSK9过表达3或 4天导致总胆固醇水平和LDL胆固醇水平的升高,而在LDLR敲除动物中未见到这种作用(Maxwell,K.N.(2004)Proc.Natl.Acad.Sci.USA[美国国家科学院院刊]101,7100-7105,Benjannet,S.等人(2004)J.Biol.Chem.[生物化学杂志]279,48865-48875,Park,S.W.,(2004)J.Biol.Chem.[生物化学杂志]279, 50630-50638)。另外,PCSK9过表达导致肝脏LDLR蛋白的严重降低,但不影响LDLR mRNA水平、SREBP蛋白水平或SREBP蛋白的细胞核与细胞质比例。
虽然高胆固醇血症本身是无症状的,但是长期的血清胆固醇升高可导致动脉粥样硬化。经过几十年,慢性升高的胆固醇促成动脉中动脉粥样硬化斑块形成,动脉粥样硬化可导致涉及动脉的进行性狭窄或甚至完全闭塞。另外,更小的斑块可能破裂并引起凝块形成和血流阻断,从而导致例如心肌梗死和/或中风。如果狭窄或闭塞的形成是逐渐的,那么到组织和器官的血液供应缓慢地减少,直到器官功能变得受损。
因此,本领域中存在对用于PCSK9相关疾病(如高脂血症,例如高胆固醇血症)的有效治疗的需要。
发明内容
本发明至少部分基于以下出人意料的发现:包含化学修饰的单次剂量的双链RNAi试剂显示出对抑制PCSK9的表达的异常效力和持久性。具体地说,靶向人PCSK9基因(例如人PCSK9基因的核苷酸3544-3623(SEQ ID NO:1的核苷酸3544-3623),例如SEQ ID NO:1的核苷酸3601-3623,包括GalNAc配体)的单次固定剂量(例如,约300mg至约500mg的固定剂量)的RNAi试剂在此显示出对于沉默PCSK9基因的活性是异常有效且持久的。
因此,本发明提供了用于抑制受试者中PCSK9基因表达的方法,和用于治疗患有可经由使用iRNA组合物(这些iRNA组合物影响PCSK9基因的 RNA转录物的RNA诱导的沉默复合体(RISC)所介导的裂解)来抑制或减少PCSK9基因表达而受益的障碍(例如由PCSK9表达所介导的障碍(例如高脂血症、例如高胆固醇血症))的受试者的方法。
在一方面,本发明的用于抑制受试者中PCSK9基因表达的方法和用于治疗患有可经由抑制或减少PCSK9基因表达而受益的障碍(例如由PCSK9 表达所介导的障碍(例如高脂血症,例如高胆固醇血症))的受试者的方法,这些方法包括向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸(RNAi)试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该正义链包含与SEQ ID NO:1的核苷酸序列相差不超过3 个核苷酸的至少15个连续核苷酸,并且该反义链包含与SEQ ID NO:2的核苷酸序列相差不超过3个核苷酸的至少15个连续核苷酸,其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,并且其中该正义链共轭至在3'-末端处附接的配体上。
在一方面,本发明提供了抑制受试者中PCSK9基因表达的方法。这些方法包括包含向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸(RNAi)试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO:1的核苷酸序列的核苷酸3544-3623相差不超过3个核苷酸的至少15个连续核苷酸,从而抑制该受试者中该PCSK9基因表达。
在另一方面,本发明提供了降低受试者中低密度脂蛋白(LDLc)水平的方法,这些方法包括向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸(RNAi)试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO: 1的核苷酸序列的核苷酸3544-3623相差不超过3个核苷酸的至少15个连续核苷酸,从而降低该受试者中LDLc的水平。
在另一方面,本发明提供了治疗患有可经由降低PCSK9表达而受益的障碍的受试者的方法。这些方法包括包含向受试者给予约25mg至约800 mg的固定剂量的双链核糖核酸(RNAi)试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO:1的核苷酸序列的核苷酸3544-3623相差不超过3个核苷酸的至少15个连续核苷酸,从而治疗患有可经由降低PCSK9表达而受益的障碍的该受试者。
在又另一方面,本发明提供了治疗患有高脂血症的受试者的方法。这些方法包括包含向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸(RNAi)试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO:1的核苷酸序列的核苷酸3544-3623相差不超过3个核苷酸的至少15个连续核苷酸,从而治疗患有高胆固醇血症的受试者。
该固定剂量可以以每周一次、每两周一次、每月一次、每季度一次或每半年的间隔给予至受试者。
在一个实施例中,向该受试者每周一次给予约25mg至约50mg的固定剂量。在另一个实施例中,向该受试者每周两次给予约50mg至约100mg 的固定剂量。在另一个实施例中,向该受试者每月一次给予约100mg至约 200mg的固定剂量。在又另一个实施例中,向该受试者每季度一次给予约 300mg至约800mg的固定剂量。在另一个实施例中,向该受试者每半年给予约300mg至约800mg的固定剂量。
本发明还提供了其中以一个给药方案给予RNAi试剂的方法,该给药方案包括负载阶段和维持阶段。
因此,在一方面,本发明提供了抑制受试者中PCSK9基因表达的方法。这些方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且其中该维持阶段包括约每月一次向该受试者给予约25mg至约100mg的固定剂量的该 RNAi试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO:1的核苷酸序列的核苷酸3544-3623相差不超过3个核苷酸的至少15个连续核苷酸,从而抑制该受试者中该PCSK9基因表达。
在另一方面,本发明提供了降低受试者中低密度脂蛋白(LDLc)水平的方法。这些方法包括以一个给药方案向受试者给予双链核糖核酸 (RNAi)试剂,该给药方案包括负载阶段以及维持阶段,其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且其中该维持阶段包括每月一次向该受试者给予约25mg至约100mg的固定剂量的该RNAi试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO:1 的核苷酸序列的核苷酸3544-3623相差不超过3个核苷酸的至少15个连续核苷酸,从而降低该受试者中LDLc的水平。
在另一方面,本发明提供了治疗患有可经由降低PCSK9表达而受益的障碍的受试者的方法。这些方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且其中该维持阶段包括每月一次向该受试者给予约25mg至约100 mg的固定剂量的该RNAi试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO:1的核苷酸序列的核苷酸3544-3623相差不超过3个核苷酸的至少15个连续核苷酸,从而治疗患有可经由降低PCSK9表达而受益的障碍的该受试者。
在又另一方面,本发明提供了治疗患有高脂血症的受试者的方法。这些方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,其中该负载阶段包括向该受试者给予约 200mg至约600mg的固定剂量的该RNAi试剂,并且其中该维持阶段包括每月一次向该受试者给予约25mg至约100mg的固定剂量的该RNAi试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO:1的核苷酸序列的核苷酸3544-3623相差不超过3个核苷酸的至少15个连续核苷酸,从而治疗患有高血脂症的该受试者。
双链RNAi试剂可以皮下给予至该受试者,例如通过皮下注射或肌内注射。
在一个实施例中,反义链包含选自下组的核苷酸序列,该组由表1中提供的任何一种未修饰的核苷酸序列组成。在一个实施例中,双链RNAi试剂靶向SEQ ID NO:1的核苷酸3601-3623。在一个实施例中,靶向SEQ ID NO: 1的核苷酸3601-3623的试剂是AD-60212。
在一个实施例中,反义链包含核苷酸序列5’- ACAAAAGCAAAACAGGUCUAGAA-3’(SEQID NO:685)。
在一个实施例中,正义链包含核苷酸序列5’- CUAGACCUGUTUUGCUUUUGU-3’(SEQID NO:686)。
在一个实施例中,双链核糖核酸RNAi试剂包含至少一种修饰的核苷酸。
在一个实施例中,正义链的基本上所有核苷酸都是修饰的核苷酸。在另一个实施例中,反义链的基本上所有核苷酸都是修饰的核苷酸。在又另一个实施例中,该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸。
在一个实施例中,该正义链的所有核苷酸都是修饰的核苷酸。在另一个实施例中,该反义链的所有核苷酸都是修饰的核苷酸。在又另一个实施例中,该正义链的所有核苷酸和该反义链的所有核苷酸均是修饰的核苷酸。
在一方面,本发明提供了抑制受试者中PCSK9基因表达的方法。这些方法包括向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸 (RNAi)试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA- 3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’-CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,从而抑制该受试者中PCSK9基因表达。
在另一方面,本发明提供了降低受试者中低密度脂蛋白(LDLc)水平的方法。这些方法包括向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸(RNAi)试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’-CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO: 686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,从而降低该受试者中LDLc的水平。
在另一方面,本发明提供了治疗患有可经由降低PCSK9表达而受益的障碍的受试者的方法,该方法包括向该受试者给予约25mg至约800mg的固定剂量的双链核糖核酸(RNAi)试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’- ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’-CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO: 686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,从而治疗患有可经由降低PCSK9表达而受益的障碍的该受试者。
在又另一方面,本发明提供了治疗患有高脂血症的受试者的方法。这些方法包括向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸 (RNAi)试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA- 3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’-CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,从而治疗患有高脂血症的该受试者。
在一方面,本发明提供了抑制受试者中PCSK9基因表达的方法。这些方法包括向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸 (RNAi)试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA- 3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’-CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,以及向该受试者给予治疗有效量的抗PCSK9抗体或其抗原结合片段,从而抑制该受试者中PCSK9基因表达。
在另一方面,本发明提供了降低受试者中低密度脂蛋白(LDLc)水平的方法。这些方法包括向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸(RNAi)试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’-CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO: 686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,以及向该受试者给予治疗有效量的抗PCSK9抗体或其抗原结合片段,从而降低该受试者中LDLc的水平。
在另一方面,本发明提供了治疗患有可经由降低PCSK9表达而受益的障碍的受试者的方法,该方法包括向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸(RNAi)试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’- ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’-CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO: 686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,以及向该受试者给予治疗有效量的抗PCSK9抗体或其抗原结合片段,从而治疗患有可经由降低PCSK9表达而受益的障碍的该受试者。
在又另一方面,本发明提供了治疗患有高脂血症的受试者的方法。这些方法包括向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸 (RNAi)试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA- 3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’-CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,以及向该受试者给予治疗有效量的抗PCSK9抗体或其抗原结合片段,从而治疗患有高脂血症的该受试者。
该固定剂量可以以每周一次、每两周一次、每月一次、每季度一次或每半年的间隔给予至受试者。
在一个实施例中,向该受试者每周一次给予约25mg至约50mg的固定剂量。在另一个实施例中,向该受试者每周两次给予约50mg至约100mg 的固定剂量。在另一个实施例中,向该受试者每月一次给予约100mg至约 200mg的固定剂量。在又另一个实施例中,向该受试者每季度一次给予约 300mg至约800mg的固定剂量。在另一个实施例中,向该受试者每半年给予约300mg至约800mg的固定剂量。
在一方面,本发明提供了抑制受试者中PCSK9基因表达的方法。这些方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,其中该负载阶段包括向该受试者给予约 200mg至约600mg的固定剂量的该RNAi试剂,并且其中该维持阶段包括每季度一次向该受试者给予约25mg至约100mg的固定剂量的该RNAi试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’- CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,从而抑制该受试者中PCSK9基因表达。
在另一方面,本发明提供了降低受试者中低密度脂蛋白(LDLc)水平的方法。这些方法包括以一个给药方案向受试者给予双链核糖核酸 (RNAi)试剂,该给药方案包括负载阶段以及维持阶段,其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且其中该维持阶段包括每季度一次向该受试者给予约25mg至约100mg的固定剂量的该RNAi试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’- ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’-CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO: 686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,从而降低该受试者中LDLc的水平。
在另一方面,本发明提供了治疗患有可经由降低PCSK9表达而受益的障碍的受试者的方法。这些方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且其中该维持阶段包括每季度一次向该受试者给予约25mg至约100 mg的固定剂量的该RNAi试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’- ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’-CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO: 686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,从而治疗患有可经由降低PCSK9表达而受益的障碍的该受试者。
在又另一方面,本发明提供了治疗患有高脂血症的受试者的方法。这些方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,其中该负载阶段包括向该受试者给予约 200mg至约600mg的固定剂量的该RNAi试剂,并且其中该维持阶段包括每季度一次向该受试者给予约25mg至约100mg的固定剂量的该RNAi试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’- CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,从而治疗患有高脂血症的该受试者。
在一方面,本发明提供了抑制受试者中PCSK9基因表达的方法。这些方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,其中该负载阶段包括向该受试者给予约 200mg至约600mg的固定剂量的该RNAi试剂,并且其中该维持阶段包括每季度一次向该受试者给予约25mg至约100mg的固定剂量的该RNAi试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’- CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,以及向该受试者给予治疗有效量的抗PCSK9抗体或其抗原结合片段,从而抑制该受试者中PCSK9基因表达。
在另一方面,本发明提供了降低受试者中低密度脂蛋白(LDLc)水平的方法。这些方法包括以一个给药方案向受试者给予双链核糖核酸 (RNAi)试剂,该给药方案包括负载阶段以及维持阶段,其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且其中该维持阶段包括每季度一次向该受试者给予约25mg至约100mg的固定剂量的该RNAi试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’- ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’-CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO: 686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,以及向该受试者给予治疗有效量的抗PCSK9抗体或其抗原结合片段,从而降低该受试者中LDLc的水平。
在另一方面,本发明提供了治疗患有可经由降低PCSK9表达而受益的障碍的受试者的方法。这些方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且其中该维持阶段包括每季度一次向该受试者给予约25mg至约100 mg的固定剂量的该RNAi试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’- ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’-CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO: 686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,以及向该受试者治疗有效量的抗PCSK9抗体或其抗原结合片段,从而治疗患有可经由降低PCSK9表达而受益的障碍的该受试者。
在又另一方面,本发明提供了治疗患有高脂血症的受试者的方法。这些方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且其中该维持阶段包括每季度一次向该受试者给予约25mg至约100mg的固定剂量的该RNAi试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’- CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,以及向该受试者给予治疗有效量的抗PCSK9抗体或其抗原结合片段,从而治疗患有高脂血症的该受试者。
在一个实施例中,该受试者是人类。
在一个实施例中,可经由降低PCSK9表达而受益的障碍是高脂血症,例如高胆固醇血症。
在一个实施例中,高脂血症是高胆固醇血症。
双链RNAi试剂可以皮下给予至该受试者,例如通过皮下注射或肌内注射。
在一个实施例中,该正义链包含5’-csusagacCfuGfudTuugcuuuugu-3’ (SEQ IDNO:687)的核苷酸序列,并且该反义链包含5’- asCfsaAfAfAfgCfaAfaAfcAfgGfuCfuagsasa-3’(SEQ ID NO:688)的核苷酸序列(AD-60212),其中a、g、c和u是2′-O-甲基(2′-OMe)A、G、C或 U;Af、Gf、Cf或Uf是2'-氟A、G、C或U;dT是2'-脱氧胸苷;以及s是硫代磷酸酯键。
在一个实施例中,双链核糖核酸RNAi试剂进一步包含配体。
在一个实施例中,该配体共轭至该双链核糖核酸RNAi试剂的正义链的 3'末端。
在一个实施例中,该配体是N-乙酰半乳糖胺(GalNAc)衍生物。
在一个实施例中,该配体是
Figure BDA0003613643930000151
在一个实施例中,如以下示意图所示,该双链核糖核酸RNAi试剂共轭至配体
Figure BDA0003613643930000161
并且,其中X是O或S。在一个实施例中,该X是O。
在一个实施例中,PCSK9表达被抑制至少约30%。
在一个实施例中,本发明的方法进一步包括确定受试者的LDLR基因型或表型。
在一个实施例中,给予双链RNAi试剂导致受试者中血清胆固醇降低和 /或PCSK9蛋白积累降低。
在一个实施例中,本发明的方法进一步包括确定受试者中血清胆固醇水平。
在一个实施例中,本发明的方法进一步包括包括向受试者给予另外的治疗剂,例如他汀和/或抗PCSK9抗体。在一个实施例中,抗PCSK9抗体选自下组,该组由以下组成:alirocumab(Praluent)、evolocumab(Repatha)和 bococizumab。
在一个实施例中,该RNAi试剂作为药物组合物给予。
该RNAi试剂可以在非缓冲溶液(例如盐水或水)中给予,或者与缓冲溶液一起给予。在一个实施例中,该缓冲溶液包含乙酸盐、柠檬酸盐、醇溶谷蛋白、碳酸盐或磷酸盐或其任何组合。在另一个实施例中,该缓冲溶液是磷酸盐缓冲的盐水(PBS)。
在一方面,本发明提供了抑制受试者中PCSK9基因表达的方法。这些方法包括向受试者给予约25mg至约800mg的单次固定剂量的双链核糖核酸(RNAi)试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该正义链包含5’-csusagacCfuGfudTuugcuuuugu-3’(SEQ ID NO: 687)的核苷酸序列,并且该反义链包含5’-asCfsaAfAfAfgCfaAfaAfcAfgGfuCfuagsasa-3’(SEQ ID NO:688)的核苷酸序列(AD-60212),其中a、g、c和u是2′-O-甲基(2′-OMe)A、G、C或 U;Af、Gf、Cf或Uf是2'-氟A、G、C或U;dT是2'-脱氧胸苷;以及s是硫代磷酸酯键,以及向该受试者给予治疗有效量的抗PCSK9抗体或其抗原结合片段,从而抑制该受试者中PCSK9基因表达。
在另一方面,本发明提供了降低受试者中低密度脂蛋白(LDLc)水平的方法。这些方法包括向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸(RNAi)试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该正义链包含5’-csusagacCfuGfudTuugcuuuugu-3’(SEQ ID NO:687)的核苷酸序列,并且该反义链包含5’-asCfsaAfAfAfgCfaAfaAfcAfgGfuCfuagsasa-3’(SEQ ID NO:688)的核苷酸序列(AD-60212),其中a、g、c和u是2′-O-甲基(2′-OMe)A、G、C或 U;Af、Gf、Cf或Uf是2'-氟A、G、C或U;dT是2'-脱氧胸苷;以及s是硫代磷酸酯键,以及向该受试者给予治疗有效量的抗PCSK9抗体或其抗原结合片段,从而降低该受试者中LDLc的水平。
在另一方面,本发明提供了治疗患有可经由降低PCSK9表达而受益的障碍的受试者的方法。这些方法包括向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸(RNAi)试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该正义链包含5’- csusagacCfuGfudTuugcuuuugu-3’(SEQ ID NO:687)的核苷酸序列,并且该反义链包含5’-asCfsaAfAfAfgCfaAfaAfcAfgGfuCfuagsasa-3’(SEQ ID NO: 688)的核苷酸序列(AD-60212),其中a、g、c和u是2′-O-甲基(2′- OMe)A、G、C或U;Af、Gf、Cf或Uf是2'-氟A、G、C或U;dT是2'- 脱氧胸苷;以及s是硫代磷酸酯键,以及向该受试者给予治疗有效量的抗PCSK9抗体或其抗原结合片段,从而治疗患有可经由降低PCSK9表达而受益的障碍的该受试者。
在又另一方面,本发明提供了治疗患有高脂血症的受试者的方法。这些方法包括向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸 (RNAi)试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该正义链包含5’-csusagacCfuGfudTuugcuuuugu-3’(SEQ ID NO: 687)的核苷酸序列,并且该反义链包含5’-asCfsaAfAfAfgCfaAfaAfcAfgGfuCfuagsasa-3’(SEQ ID NO:688)的核苷酸序列(AD-60212),其中a、g、c和u是2′-O-甲基(2′-OMe)A、G、C或 U;Af、Gf、Cf或Uf是2'-氟A、G、C或U;dT是2'-脱氧胸苷;以及s是硫代磷酸酯键,以及向该受试者给予治疗有效量的抗PCSK9抗体或其抗原结合片段,从而治疗患有高脂血症的该受试者。
在一个实施例中,向该受试者每季度一次给予约200mg至约800mg的固定剂量。在另一个实施例中,向该受试者每半年给予约200mg至约800 mg的固定剂量。
在一方面,本发明提供了抑制受试者中PCSK9基因表达的方法。这些方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,其中该负载阶段包括向该受试者给予约 200mg至约600mg的固定剂量的该RNAi试剂,并且其中该维持阶段包括每季度一次向该受试者给予约25mg至约800mg的固定剂量的该RNAi试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该正义链包含5’-csusagacCfuGfudTuugcuuuugu-3’(SEQ ID NO:687)的核苷酸序列,并且该反义链包含5’-asCfsaAfAfAfgCfaAfaAfcAfgGfuCfuagsasa-3’ (SEQ ID NO:688)的核苷酸序列(AD-60212),其中a、g、c和u是2′- O-甲基(2′-OMe)A、G、C或U;Af、Gf、Cf或Uf是2'-氟A、G、C或 U;dT是2'-脱氧胸苷;以及s是硫代磷酸酯键,以及向该受试者给予治疗有效量的抗PCSK9抗体或其抗原结合片段,从而抑制该受试者中PCSK9基因表达。
在另一方面,本发明提供了降低受试者中低密度脂蛋白(LDLc)水平的方法。这些方法包括以一个给药方案向受试者给予双链核糖核酸 (RNAi)试剂,该给药方案包括负载阶段以及维持阶段,其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且其中该维持阶段包括每季度一次向该受试者给予约25mg至约100mg的固定剂量的该RNAi试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该正义链包含5’-csusagacCfuGfudTuugcuuuugu-3’(SEQ ID NO:687)的核苷酸序列,并且该反义链包含5’- asCfsaAfAfAfgCfaAfaAfcAfgGfuCfuagsasa-3’(SEQ ID NO:688)的核苷酸序列(AD-60212),其中a、g、c和u是2′-O-甲基(2′-OMe)A、G、C或 U;Af、Gf、Cf或Uf是2'-氟A、G、C或U;dT是2'-脱氧胸苷;以及s是硫代磷酸酯键,以及向该受试者给予治疗有效量的抗PCSK9抗体或其抗原结合片段,从而降低该受试者中LDLc的水平。
在又另一方面,本发明提供了治疗患有可经由降低PCSK9表达而受益的障碍的受试者的方法。这些方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且其中该维持阶段包括每季度一次向该受试者给予约25mg至约100 mg的固定剂量的该RNAi试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该正义链包含5’-csusagacCfuGfudTuugcuuuugu-3’ (SEQ ID NO:687)的核苷酸序列,并且该反义链包含5’- asCfsaAfAfAfgCfaAfaAfcAfgGfuCfuagsasa-3’(SEQID NO:688)的核苷酸序列(AD-60212),其中a、g、c和u是2′-O-甲基(2′-OMe)A、G、C或 U;Af、Gf、Cf或Uf是2'-氟A、G、C或U;dT是2'-脱氧胸苷;以及s是硫代磷酸酯键,以及向该受试者给予治疗有效量的抗PCSK9抗体或其抗原结合片段,从而治疗患有可经由降低PCSK9表达而受益的障碍的该受试者。
在另一方面,本发明提供了治疗患有高脂血症的受试者的方法。这些方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,其中该负载阶段包括向该受试者给予约 200mg至约600mg的固定剂量的该RNAi试剂,并且其中该维持阶段包括每季度一次向该受试者给予约25mg至约100mg的固定剂量的该RNAi试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该正义链包含5’-csusagacCfuGfudTuugcuuuugu-3’(SEQ ID NO:687)的核苷酸序列,并且该反义链包含5’-asCfsaAfAfAfgCfaAfaAfcAfgGfuCfuagsasa-3’ (SEQ ID NO:688)的核苷酸序列(AD-60212),其中a、g、c和u是2′- O-甲基(2′-OMe)A、G、C或U;Af、Gf、Cf或Uf是2'-氟A、G、C或 U;dT是2'-脱氧胸苷;以及s是硫代磷酸酯键,以及向该受试者给予治疗有效量的抗PCSK9抗体或其抗原结合片段,从而治疗患有高脂血症的该受试者。
在一个实施例中,向该受试者每季度一次给予约200mg至约800mg的固定剂量的维持剂量。在另一个实施例中,向该受试者每半年给予约200 mg至约800mg的固定剂量的维持剂量。
在一个实施例中,双链核糖核酸RNAi试剂进一步包含配体。
在一个实施例中,该配体共轭至该双链核糖核酸RNAi试剂的正义链的 3'末端。
在一个实施例中,该配体是N-乙酰半乳糖胺(GalNAc)衍生物。
在一个实施例中,该配体是
Figure BDA0003613643930000211
在一个实施例中,如以下示意图所示,该双链核糖核酸RNAi试剂共轭至配体
Figure BDA0003613643930000212
并且,其中X是O或S。在一个实施例中,该X是O。
在一个实施例中,抗PCSK9抗体或其抗原结合片段选自下组,该组由以下组成:alirocumab(Praluent)、evolocumab(Repatha)和 bococizumab。
在一个实施例中,这些方法进一步包括向受试者给予另外的治疗剂,例如他汀。
在一方面,本发明提供了用于执行本发明的方法的试剂盒。该试剂盒包括RNAi试剂和使用说明书,以及任选地将RNAi试剂给予至受试者的装置。
特别地,本发明涉及以下各项:
1.一种抑制受试者中PCSK9基因表达的方法,该方法包括向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸(RNAi)试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO:1的核苷酸序列的核苷酸3544-3623相差不超过3个核苷酸的至少15个连续核苷酸,从而抑制该受试者中该PCSK9基因表达。
2.一种降低受试者中低密度脂蛋白(LDLc)水平的方法,该方法包括向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸(RNAi) 试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO:1的核苷酸序列的核苷酸3544-3623相差不超过3个核苷酸的至少15个连续核苷酸,从而降低该受试者中LDLc的水平。
3.一种治疗患有可经由降低PCSK9表达而受益的障碍的受试者的方法,该方法包括向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸(RNAi)试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO:1的核苷酸序列的核苷酸3544-3623相差不超过3个核苷酸的至少15个连续核苷酸,从而治疗患有可经由降低PCSK9表达而受益的障碍的该受试者。
4.一种治疗患有高脂血症的受试者的方法,该方法包括向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸(RNAi)试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO:1的核苷酸序列的核苷酸3544-3623相差不超过3个核苷酸的至少15个连续核苷酸,从而治疗患有高血脂症的该受试者。
5.如第1-4项任一项所述的方法,其中该固定剂量以每周一次的间隔给予至该受试者。
6.如第1-4项任一项所述的方法,其中该固定剂量以每两周一次的间隔给予至该受试者。
7.如第1-4项任一项所述的方法,其中该固定剂量以每月一次的间隔给予至该受试者。
8.如第1-4项任一项所述的方法,其中该固定剂量以每季度一次的间隔给予至该受试者。
9.如第1-4项任一项所述的方法,其中该固定剂量以每半年的间隔给予至该受试者。
10.如第5项所述的方法,其中向该受试者每周一次给予约25mg至约50mg的固定剂量。
11.如第6项所述的方法,其中向该受试者每两周一次给予约50mg 至约100mg的固定剂量。
12.如第7项所述的方法,其中向该受试者每月一次给予约100mg至约200mg的固定剂量。
13.如第8项所述的方法,其中向该受试者每季度一次给予约200mg 至约800mg的固定剂量。
14.如第9项所述的方法,其中向该受试者每半年给予约200mg至约 800mg的固定剂量。
15.一种抑制受试者中PCSK9基因表达的方法,该方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,
其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且
其中该维持阶段包括约每季度一次向该受试者给予约25mg至约100 mg的固定剂量的该RNAi试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO:1的核苷酸序列的核苷酸3544-3623相差不超过3个核苷酸的至少15个连续核苷酸,从而抑制该受试者中该PCSK9基因表达。
16.一种降低受试者中低密度脂蛋白(LDLc)水平的方法,该方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,
其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且
其中该维持阶段包括每季度一次向该受试者给予约25mg至约100mg 的固定剂量的该RNAi试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO:1的核苷酸序列的核苷酸3544-3623相差不超过3个核苷酸的至少15个连续核苷酸,从而降低该受试者中LDLc的水平。
17.一种治疗患有可经由降低PCSK9表达而受益的障碍的受试者的方法,该方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,
其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且
其中该维持阶段包括每季度一次向该受试者给予约25mg至约100mg 的固定剂量的该RNAi试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO:1的核苷酸序列的核苷酸3544-3623相差不超过3个核苷酸的至少15个连续核苷酸,从而治疗患有可经由降低PCSK9表达而受益的障碍的该受试者。
18.一种治疗患有高脂血症的受试者的方法,该方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,
其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且
其中该维持阶段包括每季度一次向该受试者给予约25mg至约100mg 的固定剂量的该RNAi试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO:1的核苷酸序列的核苷酸3544-3623相差不超过3个核苷酸的至少15个连续核苷酸,从而治疗患有高血脂症的该受试者。
19.如第1-4和15-18项中任一项所述的方法,其中将该双链RNAi试剂皮下给予至该受试者。
20.如第19项所述的方法,其中该皮下给予是皮下注射。
21.如第1-4和15-18项中任一项所述的方法,其中将该双链RNAi试剂肌内给予至该受试者。
22.如第1-4和15-18项中任一项所述的方法,其中该反义链包含核苷酸序列,该核苷酸序列对应于表1中提供的任一核苷酸序列的未修饰序列。
23.如第1-4和15-18项中任一项所述的方法,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685)。
24.如第1-4和15-18项中任一项所述的方法,其中该正义链包含核苷酸序列5’-CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686)。
25.如第1-4和15-18项中任一项所述的方法,其中该双链核糖核酸 RNAi试剂包含至少一种修饰的核苷酸。
26.如第1-4和15-18项中任一项所述的方法,其中该正义链的基本上所有核苷酸都是修饰的核苷酸。
27.如第1-4和15-18项中任一项所述的方法,其中该反义链的基本上所有核苷酸都是修饰的核苷酸。
28.如第1-4和15-18项中任一项所述的方法,其中该正义链的所有核苷酸都是修饰的核苷酸。
29.如第1-4和15-18项中任一项所述的方法,其中该反义链的所有核苷酸都是修饰的核苷酸。
30.一种抑制受试者中PCSK9基因表达的方法,该方法包括向受试者给予约25mg至约800mg的单次固定剂量的双链核糖核酸(RNAi)试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’- CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,从而抑制该受试者中PCSK9基因表达。
31.一种降低受试者中低密度脂蛋白(LDLc)水平的方法,该方法包括向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸(RNAi) 试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’- CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,从而降低该受试者中LDLc的水平。
32.一种治疗患有可经由降低PCSK9表达而受益的障碍的受试者的方法,该方法包括向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸(RNAi)试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’- CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,从而治疗患有可经由降低PCSK9表达而受益的障碍的该受试者。
33.一种治疗患有高脂血症的受试者的方法,该方法包括向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸(RNAi)试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’- CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,从而治疗患有高脂血症的该受试者。
34.一种抑制受试者中PCSK9基因表达的方法,该方法包括向受试者给予约25mg至约800mg的单次固定剂量的双链核糖核酸(RNAi)试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’- CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,以及
向该受试者给予治疗有效量的抗PCSK9抗体或其抗原结合片段,
从而抑制该受试者中PCSK9基因表达。
35.一种降低受试者中低密度脂蛋白(LDLc)水平的方法,该方法包括向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸(RNAi) 试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’- CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,以及
向该受试者给予治疗有效量的抗PCSK9抗体或其抗原结合片段,
从而降低该受试者中LDLc的水平。
36.一种治疗患有可经由降低PCSK9表达而受益的障碍的受试者的方法,该方法包括向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸(RNAi)试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’- CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,以及
向该受试者给予治疗有效量的抗PCSK9抗体或其抗原结合片段,
从而治疗患有可经由降低PCSK9表达而受益的障碍的该受试者。
37.一种治疗患有高脂血症的受试者的方法,该方法包括向受试者给予约25mg至约800mg的固定剂量的双链核糖核酸(RNAi)试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’- CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,以及
向该受试者给予治疗有效量的抗PCSK9抗体或其抗原结合片段,
从而治疗患有高脂血症的该受试者。
38.如第30-37项中任一项所述的方法,其中该固定剂量以每周一次的间隔给予至该受试者。
39.如第30-37项中任一项所述的方法,其中该固定剂量以每两周一次的间隔给予至该受试者。
40.如第30-37项中任一项所述的方法,其中该固定剂量以每月一次的间隔给予至该受试者。
41.如第30-37项中任一项所述的方法,其中该固定剂量以每季度一次的间隔给予至该受试者。
42.如第30-37项中任一项所述的方法,其中该固定剂量以每半年的间隔给予至该受试者。
43.如第38项所述的方法,其中向该受试者每周一次给予约25mg至约50mg的固定剂量。
44.如第39项所述的方法,其中向该受试者每两周一次给予约50mg 至约100mg的固定剂量。
45.如第40项所述的方法,其中向该受试者每月一次给予约100mg 至约200mg的固定剂量。
46.如第41项所述的方法,其中向该受试者每季度一次给予约200mg 至约800mg的固定剂量。
47.如第42项所述的方法,其中向该受试者每半年给予约200mg至约800mg的固定剂量。
48.一种抑制受试者中PCSK9基因表达的方法,该方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,
其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且
其中该维持阶段包括每季度一次向该受试者给予约25mg至约100mg 的固定剂量的该RNAi试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’- CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,从而抑制该受试者中PCSK9基因表达。
49.一种降低受试者中低密度脂蛋白(LDLc)水平的方法,该方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,
其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且
其中该维持阶段包括每季度一次向该受试者给予约25mg至约100mg 的固定剂量的该RNAi试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’- CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,从而降低该受试者中LDLc的水平。
50.一种治疗患有可经由降低PCSK9表达而受益的障碍的受试者的方法,该方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,
其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且
其中该维持阶段包括每季度一次向该受试者给予约25mg至约100mg 的固定剂量的该RNAi试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’- CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,从而治疗患有可经由降低PCSK9表达而受益的障碍的该受试者。
51.一种治疗患有高脂血症的受试者的方法,该方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,
其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且
其中该维持阶段包括每季度一次向该受试者给予约25mg至约100mg 的固定剂量的该RNAi试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’- CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,从而治疗患有高脂血症的该受试者。
52.一种抑制受试者中PCSK9基因表达的方法,该方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,
其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且
其中该维持阶段包括每季度一次向该受试者给予约25mg至约800mg 的固定剂量的该RNAi试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’- CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,以及
向该受试者给予治疗有效量的抗PCSK9抗体或其抗原结合片段,
从而抑制该受试者中PCSK9基因表达。
53.一种降低受试者中低密度脂蛋白(LDLc)水平的方法,该方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,
其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且
其中该维持阶段包括每季度一次向该受试者给予约25mg至约100mg 的固定剂量的该RNAi试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’- CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,以及
向该受试者给予治疗有效量的抗PCSK9抗体或其抗原结合片段,
从而降低该受试者中LDLc的水平。
54.一种治疗患有可经由降低PCSK9表达而受益的障碍的受试者的方法,该方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,
其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且
其中该维持阶段包括每季度一次向该受试者给予约25mg至约100mg 的固定剂量的该RNAi试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’- CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,以及
向该受试者给予治疗有效量的抗PCSK9抗体或其抗原结合片段,
从而治疗患有可经由降低PCSK9表达而受益的障碍的该受试者。
55.一种治疗患有高脂血症的受试者的方法,该方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,
其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且
其中该维持阶段包括每季度一次向该受试者给予约25mg至约100mg 的固定剂量的该RNAi试剂,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’-CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸,以及
向该受试者给予治疗有效量的抗PCSK9抗体或其抗原结合片段,
从而治疗患有高脂血症的该受试者。
56.如第1-4、15-18、30-37和48-55项中任一项所述的方法,其中该受试者是人类。
57.如第3、17、32、36、50和54项中任一项所述的方法,其中该可经由降低PCSK9表达而受益的障碍是高胆固醇血症。
58.如第4、18、33、37、51和55项中任一项所述的方法,其中该高脂血症是高胆固醇血症。
59.如第30-37和48-55项中任一项所述的方法,其中将该双链RNAi 试剂皮下给予至该受试者。
60.第59项所述的方法,其中所述皮下给予是皮下注射。
61.如第30-37和44-55项中任一项所述的方法,其中将该双链RNAi 试剂肌内给予。
62.如第23、24、30-37和48-55项中任一项所述的方法,其中该正义链包含5’-csusagacCfuGfudTuugcuuuugu-3’(SEQ ID NO:687)的核苷酸序列,并且该反义链包含5’-asCfsaAfAfAfgCfaAfaAfcAfgGfuCfuagsasa-3’ (SEQ ID NO:688)的核苷酸序列(AD-60212),
其中a、g、c和u是2′-O-甲基(2′-OMe)A、G、C或U;Af、Gf、Cf 或Uf是2'-氟A、G、C或U;dT是2'-脱氧胸苷;以及s为硫代磷酸酯键。
63.如第1-4、15-18、30-37和48-55项中任一项所述的方法,其中该双链核糖核酸RNAi试剂进一步包含配体。
64.如第63项所述的方法,其中该配体共轭至该双链核糖核酸RNAi 试剂的正义链的3'末端。
65.如第63项所述的方法,其中该配体是N-乙酰半乳糖胺 (GalNAc)衍生物。
66.如第65项所述的方法,其中该配体是
Figure BDA0003613643930000351
67.如第65项所述的方法,其中该双链核糖核酸RNAi试剂共轭至该配体,如以下示意图中所示
Figure BDA0003613643930000352
并且,其中X是O或S。
68.如第67项所述的方法,其中该X是O。
69.如第1-4、15-18、30-37和48-55项中任一项所述的方法,其中 PCSK9表达被抑制至少约30%。
70.如第1-4、15-18、30-37和48-55项中任一项所述的方法,该方法进一步包括确定该受试者的LDLR基因型或表型。
71.如第1-4、15-18、30-37和48-55项中任一项所述的方法,其中给予导致该受试者中血清胆固醇降低和/或PCSK9蛋白积累降低。
72.如第1-4、15-18、30-37和48-55项中任一项所述的方法,该方法进一步包括确定该受试者中血清胆固醇水平。
73.如第1-4、15-18、30-37和48-55项中任一项所述的方法,该方法进一步包括向该受试者给予另外的治疗剂。
74.如第73项所述的方法,其中该另外的治疗剂是他汀。
75.如第73项所述的方法,其中该另外的治疗剂是抗PCSK9抗体。
76.如第75项所述的方法,其中该抗PCSK9抗体选自下组,该组由以下组成:alirocumab(Praluent)、evolocumab(Repatha)和bococizumab。
77.如第1-4、15-18、30-37和48-55项中任一项所述的方法,其中将该RNAi试剂作为药物组合物给予。
78.如第77项所述的方法,其中该RNAi试剂在非缓冲溶液中给予。
79.如第78项所述的方法,其中该非缓冲溶液是盐水或水。
80.如第69项所述的方法,其中该siRNA与缓冲溶液一起给予。
81.如第80项所述的方法,其中该缓冲溶液包含乙酸盐、柠檬酸盐、醇溶谷蛋白、碳酸盐或磷酸盐或其任何组合。
82.如第80项所述的方法,其中该缓冲溶液是磷酸盐缓冲盐水 (PBS)。
83.一种用于执行如第1-4、15-18、30-37和48-55项中任一项所述的方法的试剂盒,该试剂盒包含
a)该RNAi试剂,和
b)使用说明书,以及
c)任选地用于将该RNAi试剂给予至该受试者的装置。
本发明由以下详细说明和附图进一步展示。
附图说明
图1是显示接受单次固定剂量的AD-60212的受试者中PCSK9蛋白水平的敲低(示为相对于基线的平均PCSK9敲低百分比)的图。
图2是显示接受单次固定剂量AD-60212的受试者中LDL-c水平降低 (示为相对于基线的平均LCL-C降低百分比)的图。
图3是显示接受多个固定剂量的AD-60212的受试者中PCSK9蛋白水平的敲低(示为相对于基线的平均PCSK9敲低百分比)的图。
图4是显示接受多个固定剂量的AD-60212的受试者中LDL-c水平降低 (示为相对于基线的平均LCL-C降低百分比)的图。
具体实施方式
本发明至少部分基于以下出人意料的发现:包含化学修饰的单次剂量的双链RNAi试剂显示出对抑制PCSK9的表达的异常效力和持久性。具体地说,靶向人PCSK9基因(例如人PCSK9基因的核苷酸3544-3623(SEQ ID NO:1的核苷酸3544-3623),例如SEQ ID NO:1的核苷酸3601-3623,包括GalNAc配体)的单次固定剂量(例如,约300mg至约500mg的固定剂量)的RNAi试剂在此显示出对于沉默PCSK9基因的活性是异常有效且持久的。
因此,本发明提供了用于抑制PCSK9基因表达的方法,和用于治疗患有可经由使用iRNA组合物(这些iRNA组合物影响PCSK9基因的RNA转录物的RNA诱导的沉默复合体(RISC)所介导的裂解)来抑制或减少 PCSK9基因表达而受益的障碍(例如由PCSK9表达所介导的障碍(例如高脂血症、例如高胆固醇血症))的受试者的方法。
下列的详细说明披露如何制作及使用含有iRNA的组合物来抑制 PCSK9基因表达,以及用于治疗具有从抑制和/或降低此基因表达而受益的疾病或障碍的受试者的组合物、用途或方法。
I.定义
为了使本发明可更容易理解,首先定义某些术语。此外,应指出的是每当列举参数的数值或数值范围时,意指所列举数值的数值及范围的中间值亦为本发明的一部分。
在此使用的冠词“一个”和“一种”(“a”和“an”)是指一个/种或多于一个/ 种(即,至少一个/种)该冠词的语法宾语。通过举例,“一个元素”是指一个元素或超过一个元素,例如多个元素。
在此所使用的“包括”意指可与短语“包括但不限于”相互替代使用。
在此使用术语“或(or)”意指术语“和/或”,并且与该术语可互换使用,除非上下文清楚地另外指明。例如,“正义链或反义链”被理解为“正义链或反义链、或正义链和反义链”。
在此使用术语的术语“约”意指在本领域的典型的公差范围内。例如,“约”可以理解为与平均值约2个标准偏差。在某些实施例中,约意指 +10%。在某些实施例中,约意指+5%。当约在一系列数字或范围之前出现时,应该理解“约”可以修饰该系列或范围中的每个数字。
数字或一系列数字之前的术语“至少”被理解为包括与术语“至少”相邻的数字,以及所有随后的逻辑上可包括的数字或整数,如从上下文清楚可见。例如,核酸分子中的核苷酸数量必须是整数。例如,“21个核苷酸核酸分子的至少18个核苷酸”意指18、19、20或21个核苷酸具有指定特性。当至少出现在一系列数字或范围之前时,应该理解至少可以修饰该系列或范围中的每个数字。
如在此使用的,“不超过”或“小于”被理解为与短语和逻辑较低值或整数相邻的值(如从上下文逻辑)到零。例如,具有“不超过2个核苷酸”的突出端的双链体具有2、1或0个核苷酸突出端。当“不超过”出现在一系列数字或范围之前时,应该理解“不超过”可以修饰该系列或范围中的每个数字。
如在此使用的,“PCSK9”是指前蛋白转化酶枯草杆菌蛋白酶Kexin9基因或蛋白。PCSK9也称为FH3、HCHOLA3、NARC-1、或NARCl。术语 PCSK9包括人PCSK9,其氨基酸和核苷酸序列可以在例如GenBank登录号 GI:299523249(SEQ ID NO:1)中找到;小鼠PCSK9,其氨基酸和核苷酸序列可以在例如GenBank登录号GI:163644257中找到;大鼠PCSK9,其氨基酸和核苷酸序列可以在例如GenBank登录号GI:77020249中找到;
使用公共可用的数据库,如,GenBank、UniProt及OMIM,方便取得 PCSK9 mRNA序列的另外实例。
在一个实施例中,该受试者是人类,例如正在接受治疗或评定为可经由降低PCSK9表达而受益的疾病、障碍或病状的人类;可经由降低PCSK9表达而受益的、处于疾病、障碍或病状风险的人类;患有可经由降低PCSK9 表达而受益的疾病、障碍或病状的人类;和/或针对可经由降低PCSK9表达而受益的疾病、障碍或病状正在接受治疗的人类,如在此所描述。
如在此使用的,术语“治疗(treating或treatment)”是指有益的或希望的结果,包括但不限于减轻或改善与可经由降低PCSK9表达而受益的障碍相关的一种或多种症状,或减缓或逆转这种障碍的进展,无论是可检测的还是不可检测的。例如,在高脂血症的情形下,治疗可以包括血清脂质水平降低,例如低密度脂蛋白胆固醇(LDLc)降低。“治疗”还可以意指与不存在治疗情况下的预期存活相比,延长存活。
如在此使用的,当用于提及可经由降低PCSK9基因表达而受益的疾病、障碍或病症时,“预防(prevention或preventing)”是指降低受试者将发展出与由PCSK9表达介导的疾病、病症或障碍相关的症状(例如症状,例如心血管疾病例如冠状动脉疾病(CAD)(也称为冠心病(CHD))或短暂性脑缺血发作(TIA)或中风)的可能性。例如,当具有由PCSK9表达所介导的疾病、障碍或病症(例如,高胆固醇血症)的一种或多种风险因素 (例如,糖尿病,以前有CHD或非冠状动脉粥样硬化个人病史(例如,腹主动脉瘤、外周动脉疾病和颈动脉狭窄),心血管疾病家族史(例如在年龄小于50岁的男性亲属或年龄小于60岁的女性亲属中)、烟草使用、高血压和/或肥胖(BMI≥30))的个体,没有发展例如冠状动脉疾病,或相对于具有相同风险因素且未接受如在此描述的治疗的群体,发展为例如严重性较低的冠状动脉疾病时,发展此种症状的可能性降低。没有发展一种疾病、障碍或病症,或者减少发展与该疾病、障碍或病症相关的症状(例如在临床上接受的比例上,针对该疾病或病症减少至少约10%),或表现出症状延迟 (如延迟数天、周、月或年)被认为是有效的预防。预防可能需要给予超过一个剂量。
如在此使用的,可互换使用的术语“PCSK9相关疾病”和“可经由降低 PCSK9表达而受益的障碍”旨在包括与PCSK9基因或蛋白质相关的任何疾病、障碍或病症。这种疾病可以例如由PCSK9蛋白的过量产生、由PCSK9 基因突变、由PCSK9蛋白的异常裂解、由PCSK9与其他蛋白质或其他内源或外源物质之间的异常相互作用引起。示例性PCSK9相关疾病包括脂血症,例如高脂血症和其他形式的脂质失衡,例如高胆固醇血症、高甘油三酯血症和与这些障碍相关的病理情况,例如CHD和动脉粥样硬化。
如在此使用的,术语“高胆固醇血症”是指其中受试者血清中存在高水平胆固醇(例如至少约240mg/dL的总胆固醇)的高脂血症(血液中脂质水平升高)的形式。
如在此使用的,术语“心血管疾病”是指影响心脏或血管的疾病,包括例如动脉硬化、冠状动脉疾病(或动脉变窄)、心脏瓣膜疾病、心律不齐、心力衰竭、高血压、体位性低血压、休克、心内膜炎、主动脉及其分支疾病、外周血管系统障碍、心脏病发作、心肌病和先天性心脏病。
如在此使用的,“治疗有效量”旨在包括当给予患者用于治疗一种 PCSK9相关疾病时足以实现该疾病的治疗(例如通过削弱、改善或维持该现有疾病或一种或多种疾病症状)的RNAi试剂的量。该“治疗有效量”可以取决于该RNAi试剂、该试剂如何给予、该疾病及其严重程度、和病史、年龄、体重、家族史、遗传组成、由PCSK9表达介导的病理过程的阶段、先前或伴随治疗(如果有的话)的类型、以及待治疗的患者的其他个体特征而变化。
如在此使用的,“预防有效量”旨在包括当给予尚末经历过或显示出一种 PCSK9相关疾病的症状但可能易患该疾病的受试者时足以预防或改善该疾病或该疾病的一种或多种症状的RNAi试剂的量。改善疾病包括减缓疾病的进程或减少后发疾病的严重性。该“预防有效量”可以取决于该RNAi试剂、该试剂如何给予、该疾病的风险程度、和病史、年龄、体重、家族史、遗传组成、先前或伴随治疗(如果有的话)的类型、以及待治疗的患者的其他个体特征而变化。
“治疗有效量”或“预防有效量”还包括在适用于任何治疗的合理利益/风险比下产生某种所希望的局部或全身效应的RNAi试剂的量。本发明的方法中所用的RNAi试剂可以按足以产生适用于这样的治疗的合理利益/风险比的量给予。
如在此使用的,“靶标序列”是指在PCSK9基因的转录期间形成的 mRNA分子的核苷酸序列的连续部分,包括为初级转录产物的RNA加工产物的mRNA。在一个实施例中,序列的靶部分将是至少足够长的,以用作在一种PCSK9基因转录过程中形成的一种mRNA分子的核苷酸序列的该部分处或附近用于iRNA引导的裂解的底物。
靶标序列的长度可以是从约9-36个核苷酸,例如长度约15-30个核苷酸。例如靶标序列的长度可以是从约15-30个核苷酸,15-29、15-28、15- 27、15-26、15-25、15-24、15-23、15-22、15-21、15-20、15-19、15-18、 15-17、18-30、18-29、18-28、18-27、18-26、18-25、18-24、18-23、18- 22、18-21、18-20、19-30、19-29、19-28、19-27、19-26、19-25、19-24、 19-23、19-22、19-21、19-20、20-30、20-29、20-28、20-27、20-26、20- 25、20-24、20-23、20-22、20-21、21-30、21-29、21-28、21-27、21-26、 21-25、21-24、21-23、或21-22个核苷酸。在一些实施例中,该靶序列的长度为约19至约30个核苷酸。在其他实施例中,该靶序列的长度为约19至约25个核苷酸。在仍其他实施例中,该靶序列的长度为约19至约23个核苷酸。在一些实施例中,该靶序列的长度为约21至约23个核苷酸。以上列举的范围和长度的范围与长度中间值也被想到成为本发明的部分。
如在此使用的,术语“包含序列的链”是指包含一个核苷酸链的寡核苷酸,该核苷酸链通过使用标准核苷酸命名法提到的顺序来描述。
“G”、“C”、“A”、“T”以及“U”每一者通常分别代表含有鸟嘌呤、胞嘧啶、腺嘌呤、胸腺嘧啶以及尿嘧啶作为碱基的核苷酸。然而,应理解术语“核糖核苷酸”或“核苷酸”还可以指一种经修饰的核苷酸(如以下进一步详述)或一种替代性的置换部分(参见,例如,表B)。技术人员应很好地意识到,鸟嘌呤、胞嘧啶、腺嘌呤以及尿嘧啶可以被其他部分置换而基本上不改变一种寡核苷酸(包含一种具有这种置换部分的核苷酸)的碱基配对特性。例如非限制性地,包含肌苷作为其碱基的核苷酸可以与含有腺嘌呤、胞嘧啶或尿嘧啶的核苷酸进行碱基配对。因此,含有尿嘧啶、鸟嘌呤或腺嘌呤的核苷酸可以在本发明中体现的dsRNA的核苷酸序列中由含有例如肌苷的核苷酸置换。在另一个实例中,寡核苷酸中任何地方的腺嘌呤和胞嘧啶可以对应地置换为鸟嘌呤和尿嘧啶,以便形成与靶mRNA碱基配对的G-U摇摆。含有这类置换部分的序列适用于在本发明中表征的组合物和方法。
如在此可互换使用的术语“iRNA”、“RNAi试剂”、“iRNA试剂”、“RNA 干扰试剂”是指含有作为在此定义的所述术语的RNA的试剂,并且该试剂通过一种RNA诱导沉默复合体(RISC)途径介导RNA转录物的靶向裂解。 iRNA通过被称为RNA干扰(RNAi)的过程引导mRNA的序列特异性降解。iRNA调节,例如抑制,PCSK9在细胞如受试者(如哺乳动物受试者) 体内的细胞中的表达。
在一个实施例中,本发明的RNAi试剂包括与靶RNA序列,例如 PCSK9靶mRNA序列相互作用以指导靶RNA裂解的单链RNA。在不希望受理论限制的情况下,认为引入细胞的长双链RNA由已知为Dicer的III型核酸内切酶断裂为siRNA(Sharp等人(2001)Genes Dev.[基因与发育] 15:485)。Dicer,一种类核酸内切酶III的酶,处理dsRNA成为19至23个碱基对的有特征性双碱基3'突出端的短干扰RNA(Bernstein等人,(2001) Nature[自然]409:363)。然后将siRNA结合到一种RNA诱导沉默复合体 (RISC)中,其中一种或多种螺旋酶使siRNA双链体展开,从而能够实现互补反义链导引靶标识别(Nykanen等人(2011)Cell[细胞]107:309)。与合适的靶mRNA结合后,RISC中的一种或多种核酸内切酶切割靶标而诱导沉默(Elbashir等人,(2001)Genes Dev.[基因与发育]15:188)。因此,在一方面,本发明涉及促进实现靶基因(如PCSK9基因)沉默的RISC复合物形成的、产生于细胞内的单链RNA(siRNA)。所以,术语“siRNA”还可以在此用作指代以上所述的RNAi。
在另一个实施例中,该RNAi试剂可以是引入到细胞或生物体中以便抑制靶mRNA的单链siRNA。单链RNAi试剂结合到RISC核酸内切酶 Argonaute 2上,该核酸内切酶然后切割该标靶mRNA。这些单链siRNA通常是15-30个核苷酸并且是化学修饰的。单链siRNA的设计和检测描述于美国专利号8,101,348中,以及Lima等人,(2012)Cell[细胞]150:883-894 中,特此将它们各自的全部内容通过引用结合在此。在此描述的任何反义核苷酸序列可以被用作如在此所描述或如通过描述于Lima等人,(2012)Cell [细胞]150:883-894中的方法化学修饰的单链siRNA。
在另一个实施例中,用于本发明的组合物、用途以及方法中的“iRNA”是双链RNA,并且在此称为“双链RNAi试剂”、“双链RNA(dsRNA)分子”、“dsRNA试剂”或“dsRNA”。术语“dsRNA”是指核糖核酸分子的一种复合体,该复合体具有包含两条反平行和基本上互补的核酸链的双链体结构,称为相对于一种靶RNA(即一种PCSK9基因)具有“正义”和“反义”取向。在本发明的一些实施例中,双链RNA(dsRNA)通过在此称为RNA干扰或 RNAi的转录后基因沉默机理来引发靶RNA例如mRNA的降解。
通常,dsRNA分子的每条链的大部分的核苷酸是核糖核苷酸,但是如在此详述的,两条链的每一者或两者还可以包括一个或多个非核糖核苷酸,例如,脱氧核糖核苷酸和/或修饰的核苷酸。另外,如在此说明中所使用,“RNAi试剂”可以包括具有化学修饰的核糖核苷酸;RNAi试剂可以包括在多个核苷酸处的实质性修饰。此类修饰可以包括在此披露的或在本领域中已知的所有类型的修饰。如在siRNA型分子中使用的,任何这样的修饰出于本说明书和权利要求书的目的都由“RNAi试剂”涵盖。
双链体区域可以具有容许通过一种RISC途径特异性降解一种所希望的靶RNA的任何长度,并且长度可以在从约9个至36个碱基对的范围内,例如长度是约15-30个碱基对,例如长度是约9、10、11、12、13、14、15、 16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、 32、33、34、35或36个碱基对,如长度是约15-30、15-29、15-28、15- 27、15-26、15-25、15-24、15-23、15-22、15-21、15-20、15-19、15-18、 15-17、18-30、18-29、18-28、18-27、18-26、18-25、18-24、18-23、18- 22、18-21、18-20、19-30、19-29、19-28、19-27、19-26、19-25、19-24、 19-23、19-22、19-21、19-20、20-30、20-29、20-28、20-27、20-26、20- 25、20-24、20-23、20-22、20-21、21-30、21-29、21-28、21-27、21-26、 21-25、21-24、21-23或21-22个碱基对。以上列举的范围和长度的范围与长度中间值也被想到成为本发明的部分。
形成双链体结构的双链可以是较大RNA分子的不同部分,或可以是分开的RNA分子。当这两条链是一个更大的分子的部分时,并且因此通过一条链的3’-末端与形成双链体结构的对应的另一条链的5’-末端之间的不间断核苷酸链来连接,连接的RNA链称为“发夹环”。发夹环可以包含至少一个未配对的核苷酸。在一些实施例中,该发夹环可以包含至少2个、至少3 个、至少4个、至少5个、至少6个、至少7个、至少8个、至少9个、至少10个、至少20个、至少23个或更多个未配对的核苷酸。在一些实施例中,发夹环可以是10个或更少的核苷酸。在一些实施例中,发夹环可以是8 个或更少的未配对的核苷酸。在一些实施例中,发夹环可以是4-10个未配对的核苷酸。在一些实施例中,发夹环可以是4-8个核苷酸。
当dsRNA的两个基本上互补的链包含单独的RNA分子时,这些分子不是必须的,但是可以共价连接。在这两条链是通过除了一条链的3’-末端与形成该双链体结构的对应另一条链的5’-末端之间的非间断核苷酸链以外的方式而共价连接的情况下,该连接结构称作“接头(linker)”。这些RNA链可以具有相同或不同数目的核苷酸。碱基对的最大数目是该dsRNA的最短链中的核苷酸数目减去存在于该双链体中的任何突出端。除了双链体结构以外,RNAi可以包含一个或多个核苷酸突出端。在RNAi试剂的一个实施例中,至少一条链包含具有至少1个核苷酸的3'突出端。在另一个实施例中,至少一条链包含至少2个核苷酸的3'突出端,如,2、3、4、5、6、7、9、 10、11、12、13、14或15个核苷酸。在其他实施例中,RNAi试剂的至少一条链包含至少1个核苷酸的5'突出端。在某些实施例中,至少一条链包含至少2个核苷酸的5'突出端,例如,2、3、4、5、6、7、9、10、11、12、 13、14或15个核苷酸。在又其他的实施例中,RNAi试剂的一条链的3'及5' 末端皆包含至少1个核苷酸的突出端。
在一个实施例中,本发明的RNAi试剂是dsRNA剂,其每条链包含与靶RNA序列(即,PCSK9靶mRNA序列)相互作用的19-23个核苷酸。在不希望受理论限制的情况下,通过称为Dicer的III型核酸内切酶来将引入到细胞中的长双链RNA分解成siRNA(Sharp等人(2001),Genes Dev.[基因与发育]15:485)。Dicer(核糖核酸酶-III样酶)使dsRNA加工成具有特征性的两个碱基3'突出端的19-23个碱基对短干扰RNA(Bernstein等人, (2001),Nature[自然]409:363)。然后将siRNA结合到一种RNA诱导沉默复合体(RISC)中,其中一种或多种螺旋酶使siRNA双链体展开,从而能够实现互补反义链导引靶标识别(Nykanen等人(2001),Cell[细胞] 107:309)。与合适的靶mRNA一结合后,RISC中的一种或多种核酸内切酶切割靶标而诱导沉默(Elbashir,等人,(2001)Genes Dev.[基因与发育] 15:188)。
在另一个实施例中,本发明的RNAi试剂是与靶RNA序列例如PCSK9 靶mRNA序列相互作用的具有24-30个核苷酸的dsRNA,以便引导靶RNA 的裂解。在不希望受理论限制的情况下,通过称为Dicer的III型核酸内切酶来将引入到细胞中的长双链RNA分解成siRNA(Sharp等人(2001)Genes Dev.[基因与发育]15:485)。Dicer,一种类核酸内切酶III的酶,处理 dsRNA成为19至23个碱基对的有特征性双碱基3'突出端的短干扰RNA (Bernstein等人,(2001)Nature[自然]409:363)。然后将siRNA结合到一种RNA诱导沉默复合体(RISC)中,其中一种或多种螺旋酶使siRNA双链体展开,从而能够实现互补反义链导引靶标识别(Nykanen等人,(2001) Cell[细胞]107:309)。与合适的靶mRNA结合后,RISC中的一种或多种核酸内切酶切割靶标而诱导沉默(Elbashir等人,(2001)Genes Dev.[基因与发育]15:188)。
如在此使用的,术语“核苷酸突出端”是指至少一个未配对的核苷酸,其从iRNA的双链体结构(例如,dsRNA)突出。例如当dsRNA的一条链的 3'-末端延伸超过另一条链的5'-末端时或反之亦然,存在核苷酸突出端。 dsRNA可以包含具有至少一个核苷酸的突出端;替代地该突出端可以包含至少两个核苷酸、至少三个核苷酸、至少四个核苷酸、至少五个核苷酸或更多。核苷酸突出端可以包含核苷酸/核苷类似物(包括脱氧核苷酸/核苷)或由其组成。一个或多个突出端可以处于正义链、反义链或其任何组合上。另外,突出端的一个或多个核苷酸可以存在于dsRNA的反义或正义链的5'-末端、3'-末端或两个末端上。
在dsRNA的一个实施例中,至少一条链包含具有至少1个核苷酸的3' 突出端。在另一个实施例中,至少一条链包含至少2个核苷酸的3'突出端,如,2、3、4、5、6、7、9、10、11、12、13、14或15个核苷酸。在其他实施例中,RNAi试剂的至少一条链包含至少1个核苷酸的5'突出端。在某些实施例中,至少一条链包含至少2个核苷酸的5'突出端,如,2、3、4、5、6、7、9、10、11、12、13、14或15个核苷酸。在又其他的实施例中, RNAi试剂的一条链的3'及5'末端皆包含至少1个核苷酸的突出端。
在某些实施例中,dsRNA的反义链在3'-末端和/或5'-末端具有1-10个核苷酸,例如0-3、1-3、2-4、2-5、4-10、5-10(例如,1、2、3、4、5、 6、7、8、9或10)个核苷酸的突出端。在一个实施例中,dsRNA的正义链在3'-末端和/或5'-末端具有一个1-10个核苷酸,如1、2、3、4、5、6、7、 8、9、或10个核苷酸的突出端。在另一个实施例中,突出端中的一个或多个核苷酸经核苷硫代磷酸酯置换。
在某些实施例中,在正义链或反义链或两者的突出端可包括比10个核苷酸为较长的延长长度,如,1-30个核苷酸、2-30个核苷酸、10-30个核苷酸或10-15个核苷酸长度。某些实施例中,延长的突出端位于双链体的正义链。在某些实施例中,延长的突出端存在于双链体正义链的3'末端上。在某些实施例中,延长的突出端存在于双链体正义链的5'末端上。在某些实施例中,延长的突出端位于双链体的反义链。在某些实施例中,延长的突出端存在于双链体反义链的3'末端上。在某些实施例中,延长的突出端存在于双链体反义链的5'末端上。在某些实施例中,突出端中的一个或多个核苷酸经核苷硫代磷酸酯置换。在某些实施例中,突出端包括自我互补部分,使得突出端能够形成在生理条件下稳定的发夹结构。
“平端”或“平末端”意指在该双链RNAi试剂的该端处不存在不成对的核苷酸,即无核苷酸突出端。“平端”RNAi试剂是在其整个长度上为双链的 dsRNA,即,在分子的任一端处没有核苷酸突出端。本发明的RNAi试剂包括在一端处具有核苷酸突出端(即,具有一个突出端和一个平端的试剂)或在两端处都具有核苷酸突出端的RNAi试剂。
术语“反义链”或“引导链”是指iRNA(如dsRNA)的包括与靶序列(例如一种PCSK9mRNA)基本上互补的区域的链。如在此使用的,术语“互补性区域”是指反义链上与序列(例如,如在此定义的靶序列,例如PCSK9核苷酸序列)基本上互补的区域。在互补区域非完全与靶标序列互补的情况,可在分子的内部或末端区域有错配。通常,最耐受的错配存在于末端区域内,例如在iRNA的5'-和/或3'-末端的5、4、3、2或1个核苷酸内。在一个实施例中,本发明的双链RNAi试剂在反义链中包括核苷酸错配。在另一个实施例中,本发明的双链RNAi试剂在正义链中包括核苷酸错配。在一个实施例中,核苷酸错配在例如从iRNA的3'-末端的5、4、3、2或1个核苷酸内。在另一个实施例中,核苷酸错配在例如iRNA的3'-末端核苷酸中。
如在此使用的术语“正义链”或“过客链”是指包括与如在此定义的该术语的反义链的区域基本上互补的区域的iRNA的链。
如在此使用的,术语“裂解区域”是指位于紧邻裂解位点处的区域。裂解位点是在其上发生裂解的靶标上的位点。在一些实施例中,该裂解区域包含三个在该裂解位点的任一端上并且与其紧紧相邻的碱基。在一些实施例中,该裂解区域包含两个在该裂解位点的任一端上并且与其紧紧相邻的碱基。在一些实施例中,该裂解位点具体来说存在于由该反义链的核苷酸10和11结合的位点处,并且该裂解区域包含核苷酸11、12以及13。
如在此使用的,并且除非另外指明,当用来描述与第二核苷酸序列相关的第一核苷酸序列时,术语“互补”是指包含该第一核苷酸序列的寡核苷酸或多核苷酸在某些条件下与包含该第二核苷酸序列的寡核苷酸或多核苷酸杂交并且形成双链体结构的能力,如技术人员将理解。这类条件可以例如是严格条件,其中严格条件可以包括:400mM NaCl,40mMPIPES,pH 6.4,1 mM EDTA,50℃或70℃持续12-16小时,随后洗涤(参见例如“MolecularCloning:A Laboratory Manual[分子克隆:实验室手册],Sambrook等人 (1989)冷泉港实验室出版社)。可以应用其他条件,例如可能在有机体中遇到的生理学相关条件。技术人员将能够根据杂交核苷酸的最终应用,确定最适宜于测试两个序列的互补性的条件集合。
iRNA内(例如,如在此描述的dsRNA内)的互补序列包括包含第一核苷酸序列的寡核苷酸或多核苷酸与包含第二核苷酸序列的寡核苷酸或多核苷酸在一个或两个核苷酸序列的整个长度上的碱基配对。此类序列在此可以称作相对于彼此“完全互补”。然而,当第一序列在此称为相对于第二序列“基本上互补”时,这两个序列可以是完全互补的,或在对于高达30个碱基对的双链体杂交时,它们可以形成一个或多个但通常不多于5、4、3或2个错配的碱基对,同时保持在与其最终应用(例如经由一种RISC途径抑制基因表达)最相关的条件下杂交的能力。然而,当两个寡核苷酸被设计成在杂交时形成一个或多个单链突出端时,此类突出端不应该被认为是关于互补性确定的错配。例如出于在此描述的目的,以下这样一种dsRNA也可以称作“完全互补”:该dsRNA包含长度为21个核苷酸的一个寡核苷酸以及长度为23个核苷酸的另一个寡核苷酸,其中该更长的寡核苷酸包含一个与该更短的寡核苷酸完全互补的21个核苷酸的序列。
如在此使用的,就满足以上相对于它们杂交的能力而言的要求来说,“互补”序列还可以包括或完全形成自非沃森-克里克碱基对和/或从非天然的以及经修饰的核苷酸形成的碱基对。此类非沃森-克里克碱基对包括但不限于G:U摇摆碱基配对或Hoogstein碱基配对。
在此的术语“互补”、“完全互补”和“基本上互补”可以相对于dsRNA的正义链与反义链之间,或iRNA试剂的反义链与靶序列之间的碱基配对使用,如将从其使用的上下文中理解的。
如在此使用的,与信使RNA(mRNA)的“至少部分基本上互补”的多核苷酸是指与感兴趣的mRNA(例如,编码PCSK9的mRNA)的连续部分基本互补的多核苷酸。例如,如果序列与编码PCSK9的mRNA的非中断部分基本上互补,则多核苷酸与PCSK9 mRNA的至少部分互补。
总体上,每一链的大部分的核苷酸是核糖核苷酸,但是如在此详述的,两条链的每一者或两者还可以包括一个或多个非核糖核苷酸,例如脱氧核糖核苷酸和/或经修饰的核苷酸。此外,“iRNA”可以包括具有化学修饰的核糖核苷酸。此类修饰可以包括在此披露的或在本领域中已知的所有类型的修饰。出于本说明书和权利要求书的目的,“iRNA”涵盖如在iRNA分子中使用的任何此类修饰。
在本发明的一方面,用于本发明的这些方法和组合物中的试剂是通过反义抑制机理抑制靶mRNA的单链反义RNA分子。该单链反义RNA分子与靶mRNA内的序列互补。单链反义寡核苷酸可以通过与mRNA碱基配对并且物理性地阻碍翻译机器以化学计量的方式抑制翻译,参见,Dias N.等人, (2002)Mol Cancer Ther[分子癌症治疗]1:347-355。该单链反义RNA分子的长度可以是约15至约30个核苷酸并且具有与靶序列互补的序列。例如,该单链反义RNA分子可以包含来自在此描述的任一个反义序列的至少约15、 16、17、18、19、20或更多个连续核苷酸的序列。
II.本发明的方法
本发明提供了抑制前蛋白转化酶枯草杆菌蛋白酶Kexin9(PCSK9)基因在受试者中表达的方法。本发明还提供了用于治疗或预防可通过下调 PCSK9基因表达进行调节的疾病和病症的治疗或预防方法。例如,在此描述的组合物可用来治疗脂血症,例如高脂血症、以及其他形式的脂质失衡,如高胆固醇血症、高甘油三酯血症以及与这些失调相关的病理情况,如心脏和循环系统疾病。可通过下调PCSK9基因表达进行调节的其他疾病和病症包括溶酶体贮积病,包括但不限于,尼曼-皮克病、泰-萨克斯病、溶酶体酸性脂肪酶缺乏症、和高雪病。这些方法包括向受试者给予治疗有效量或预防有效量的本发明的RNAi试剂。在一些实施例中,该方法包括向具有杂合 LDLR基因型的患者给予治疗量的PCSK9 iRNA剂。
由于PCSK9调节LDL受体的水平,其进而从血浆中去除富含胆固醇的 LDL颗粒,所以降低PCSK9基因表达的效果优选导致在哺乳动物的血液中 (并且更具体是血清中)LDLc(低密度脂蛋白胆固醇)水平的降低。在一些实施例中,与治疗前水平相比,LDLc水平降低至少10%、15%、20%、25%、30%、40%、50%、60%、70%、80%、90%或更多。因此,本发明还提供了用于降低受试者血清中低密度胆固醇(LDLc)水平的方法。
在本发明的某些实施例中,双链RNAi试剂以固定剂量给予至受试者。“固定剂量”(例如,以mg计的剂量)意指无论任何具体的受试者相关因素 (例如体重),所有受试者均使用的iRNA剂的一个剂量。在其他实施例中,本发明的iRNA试剂以基于体重的剂量给予至受试者。“基于体重的剂量”(例如,以mg/kg计的剂量)是将根据受试者的体重而改变的iRNA试剂的剂量。
在某些实施例中,RNAi试剂按以下固定剂量给予至受试者:约100mg 至约700mg、约150mg至约700mg、约200mg至约700mg、约250mg 至约700mg、约300mg至约700mg、约350mg至约700mg、约400mg 至约700mg、约450mg至约700mg、约500mg至约700mg、约550mg 至约700mg、约600至约700mg、约650至约700mg、约100mg至约650 mg、约150mg至约650mg、约200mg至约650mg、约250mg至约650 mg、约300mg至约650mg、约350mg至约650mg、约400mg至约650 mg、约450mg至约650mg、约500mg至约650mg、约550mg至约650 mg、约600至约650mg、约100mg至约600mg、约150mg至约600mg、约200mg至约600mg、约250mg至约600mg、约300mg至约600mg、约350mg至约600mg、约400mg至约600mg、约450mg至约600mg、约500mg至约600mg、约550mg至约600mg、约100mg至约550mg、约150mg至约550mg、约200mg至约550mg、约250mg至约550mg、约300mg至约550mg、约350mg至约550mg、约400mg至约550mg、约450mg至约550mg、约500mg至约550mg、约100mg至约500mg、约150mg至约500mg、约200mg至约500mg、约250mg至约500mg、约300mg至约500mg、约350mg至约500mg、约400mg至约500mg、或约450mg至约500mg(例如约100mg、约125mg、约150mg、约175 mg、200mg、约225mg、约250mg、约275mg、约300mg、约325mg、约350mg、约375mg、约400mg、约425mg、约450mg、约475mg、约 500mg、约525mg、约550mg、约575mg、约600mg、约625mg、约650 mg、约675mg、或约700mg的固定剂量)。前述列举值的中间值与范围也意在成为本发明的一部分。
例如,可以在一个常规基础上重复给予。例如,该固定剂量可以以每周一次、每两周一次、每月一次、每季度一次、或每半年的间隔持续六个月或一年或更久(即长期给予)给予至受试者。
在一个实施例中,向该受试者每周一次给予约25mg至约50mg的固定剂量。在另一个实施例中,向该受试者每周两次给予约50mg至约100mg 的固定剂量。在另一个实施例中,向该受试者每月一次给予约100mg至约 200mg的固定剂量。在又另一个实施例中,向该受试者每季度一次给予约 300mg至约600mg的固定剂量。在另一个实施例中,向该受试者每半年(即,一年两次)给予约300mg至约600mg的固定剂量。
因此,在一方面,本发明提供了抑制受试者中PCSK9基因表达的方法。这些方法包括向受试者给予本发明的双链核糖核酸(RNAi)试剂(例如dsRNA)(例如,包含本发明的dsRNA的药物组合物),其中总共约 200mg至约600mg的双链RNAi试剂每季度或每半年给予至受试者,并且其中该双链RNAi试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO:1的核苷酸序列的核苷酸 3544-3623相差不超过3个核苷酸的至少15个连续核苷酸。
在另一方面,本发明提供了降低受试者中低密度脂蛋白(LDLc)水平的方法。这些方法包括向受试者给予双链核糖核酸(RNAi)试剂,其中总共约200mg至约600mg的双链RNAi试剂每季度或每半年给予至受试者,并且其中该双链RNAi试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO:1的核苷酸序列的核苷酸3544-3623相差不超过3个核苷酸的至少15个连续核苷酸,从而降低受试者中LDLc水平。
在另一方面,本发明提供了治疗患有可经由降低PCSK9表达而受益的障碍(例如高脂血症,例如高胆固醇血症)的受试者的方法。这些方法包括向受试者给予本发明的双链核糖核酸(RNAi)试剂(例如dsRNA)(例如,包含本发明的dsRNA的药物组合物),其中总共约200mg至约600 mg的双链RNAi试剂每季度或每半年给予至受试者,并且其中该双链RNAi 试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO:1的核苷酸序列的核苷酸3544-3623相差不超过 3个核苷酸的至少15个连续核苷酸。
在又另一方面,本发明提供了治疗患有高脂血症(例如高胆固醇血症) 的受试者的方法。这些方法包括向受试者给予本发明的双链核糖核酸 (RNAi)试剂(例如dsRNA)(例如,包含本发明的dsRNA的药物组合物),其中总共约200mg至约600mg的双链RNAi试剂每季度或每半年给予至受试者,并且其中该双链RNAi试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO:1的核苷酸序列的核苷酸3544-3623相差不超过3个核苷酸的至少15个连续核苷酸。
如上所述,可以在一个常规基础上(例如以每周一次、每两周一次、每月一次、每季度一次、或每半年的间隔)重复向受试者给予RNAi试剂。
因此,在一些实施例中,该RNAi试剂是以一个给药方案给予的,该给药方案包括紧密间隔给予的“负载阶段”,随后是“维持阶段”,在该维持阶段中该RNAi试剂以更长的间隔给予。例如,在每周或双周给予持续一个月后,给予可以按每月一次重复,持续六个月或一年或更久,即长期给予。
在一个实施例中,负载阶段包括在第一周期间单次给予该RNAi试剂。在另一个实施例中,负载阶段包括在头两周期间单次给予该RNAi试剂。在又另一个实施例中,负载阶段包括在第一月期间单次给予该RNAi试剂。
在某些实施例中,RNAi试剂在负载阶段期间按以下固定剂量给予至受试者:约100mg至约700mg、约150mg至约700mg、约200mg至约700 mg、约250mg至约700mg、约300mg至约700mg、约350mg至约700 mg、约400mg至约700mg、约450mg至约700mg、约500mg至约700mg、约550mg至约700mg、约600至约700mg、约650至约700mg、约 100mg至约650mg、约150mg至约650mg、约200mg至约650mg、约 250mg至约650mg、约300mg至约650mg、约350mg至约650mg、约 400mg至约650mg、约450mg至约650mg、约500mg至约650mg、约 550mg至约650mg、约600至约650mg、约100mg至约600mg、约150 mg至约600mg、约200mg至约600mg、约250mg至约600mg、约300 mg至约600mg、约350mg至约600mg、约400mg至约600mg、约450 mg至约600mg、约500mg至约600mg、约550mg至约600mg、约100 mg至约550mg、约150mg至约550mg、约200mg至约550mg、约250 mg至约550mg、约300mg至约550mg、约350mg至约550mg、约400 mg至约550mg、约450mg至约550mg、约500mg至约550mg、约100 mg至约500mg、约150mg至约500mg、约200mg至约500mg、约250 mg至约500mg、约300mg至约500mg、约350mg至约500mg、约400 mg至约500mg、或约450mg至约500mg(例如约100mg、约125mg、约 150mg、约175mg、200mg、约225mg、约250mg、约275mg、约300 mg、约325mg、约350mg、约375mg、约400mg、约425mg、约450 mg、约475mg、约500mg、约525mg、约550mg、约575mg、约600 mg、约625mg、约650mg、约675mg、或约700mg的固定剂量)。前述列举值的中间值与范围也意在成为本发明的一部分。
在一个实施例中,维持阶段包括每月一次、每两个月一次、每三个月一次、每四个月一次、每五个月一次或每六个月一次向受试者给予一定剂量 RNAi试剂。在一个具体的实施例中,将该维持剂量每月一次给予至受试者。
该或这些维持剂量与该初始剂量相比可以是相同或更低的,例如是该初始剂量的二分之一。例如,每月向受试者给予约25mg至约100mg的维持剂量,例如约25mg至约75mg、约25mg至约50mg、或约50mg至约75 mg,例如约25mg、约30mg、约35mg、约40mg、约45mg、约50mg、约55mg、约60mg、约65mg、约70mg、约75mg、约80mg、约85 mg、约90mg、约95mg或约100mg。前述列举值的中间值与范围也意在成为本发明的一部分。
这些方案中的任一者可以任选地被重复持续一个或多个迭代。迭代数可以取决于所希望的作用(例如PCSK9基因的阻抑)的实现、和/或治疗或预防作用(例降低血清胆固醇水平或减轻高胆固醇血症的症状)的实现。在治疗之后,可以监测该患者的病状变化。该RNAi试剂的剂量可以或者在该患者不显著响应于当前剂量水平的情况下增加,或者该剂量可以在观测到疾病状态的症状减缓时、在已经消除了疾病状态时或在观测到不希望的副作用时减少。
因此,在一方面,本发明提供了:抑制受试者中PCSK9基因表达的方法。这些方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且其中该维持阶段包括约每月一次向该受试者给予约25mg至约100mg的固定剂量的该 RNAi试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO:1的核苷酸序列的核苷酸3544-3623相差不超过3个核苷酸的至少15个连续核苷酸,从而抑制该受试者中该PCSK9基因表达。
在另一方面,本发明提供了降低受试者中低密度脂蛋白(LDLc)水平的方法。这些方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且其中该维持阶段包括每月一次向该受试者给予约25mg至约100mg的固定剂量的该RNAi试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO:1 的核苷酸序列的核苷酸3544-3623相差不超过3个核苷酸的至少15个连续核苷酸,从而降低该受试者中LDLc的水平。
在另一方面,本发明提供了治疗患有可经由降低PCSK9表达而受益的障碍的受试者的方法。这些方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,其中该负载阶段包括向该受试者给予约200mg至约600mg的固定剂量的该RNAi试剂,并且其中该维持阶段包括每月一次向该受试者给予约25mg至约100 mg的固定剂量的该RNAi试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO:1的核苷酸序列的核苷酸3544-3623相差不超过3个核苷酸的至少15个连续核苷酸,从而治疗患有可经由降低PCSK9表达而受益的障碍的该受试者。
在又另一方面,本发明提供了治疗患有高脂血症的受试者的方法。这些方法包括以一个给药方案向受试者给予双链核糖核酸(RNAi)试剂,该给药方案包括负载阶段以及维持阶段,其中该负载阶段包括向该受试者给予约 200mg至约600mg的固定剂量的该RNAi试剂,并且其中该维持阶段包括每月一次向该受试者给予约25mg至约100mg的固定剂量的该RNAi试剂,其中该双链RNAi试剂包含形成双链区域的正义链和反义链,该反义链包含互补性区域,该互补性区域包含与SEQ ID NO:1的核苷酸序列的核苷酸3544-3623相差不超过3个核苷酸的至少15个连续核苷酸,从而治疗患有高血脂症的该受试者。
在一个实施例中,用于本发明的方法的双链核糖核酸(RNAi)试剂包含形成双链区域的正义链和反义链,其中该反义链包含核苷酸序列5’- ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685),并且该正义链包含核苷酸序列5’-CUAGACCUGUTUUGCUUUUGU-3’(SEQ IDNO: 686),其中该正义链的基本上所有核苷酸和该反义链的基本上所有核苷酸都是修饰的核苷酸。
如在此使用的,“受试者”包括或者人或者非人类动物,优选脊椎动物,并且更优选哺乳动物。受试者可以包括转基因生物体。最优选地,该受试者是人类,例如罹患或倾向于患上PCSK9相关疾病的人。
本发明的方法和用途包括给予在此描述的组合物,使得降低靶PCSK9 基因表达持续一段延长的时间段,例如约80天、81、82、83、84、85、 86、87、88、89、90、91、92、93、94、95、96、97、98、99、100、101、 102、103、104、105、106、107、108、109、110、111、112、113、114、115、116、117、118、119、120、121、122、123、124、125、126、127、 128、129、130、131、132、133、134、135、136、137、138、139、140、 141、142、143、144、145、146、147、148、149、150、151、152、153、 154、155、156、157、158、159、160、161、162、163、164、165、166、 167、168、169、170、171、172、173、174、175、176、177、178、179、或约180天、或更久。
可经由所属领域已知的任何方法评估基因表达的降低。例如,PCSK9 的表达的减少可以通过如下进行确定:使用对本领域普通技术人员而言常规方的法(例如RNA印迹法、qRT-PCR)来确定PCSK9的mRNA表达水平,使用对本领域普通技术人员而言常规的方法(例如蛋白质印迹法、免疫技术)来确定PCSK9的蛋白水平,和/或确定PCSK9的生物学活性,例如对一种或多种血清脂质参数(例如像总胆固醇水平、高密度脂蛋白胆固醇 (HDL)水平、非HDL水平、极低密度脂蛋白胆固醇(VLDL)水平、甘油三酯水平、Lp(a)水平和脂蛋白颗粒大小)的影响。
根据本发明的方法和用途给予dsRNA可以导致患有可经由降低PCSK9 表达而受益的障碍的患者中的这种疾病或障碍的严重性、体征、症状和/或标志物的降低。在上下文中“降低”意为此水平的统计学上的显著降低。该减少可以是例如至少约5%、10%、15%、20%、25%、30%、35%、40%、 45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或约 100%。
可以例如通过测量疾病进展、疾病缓和、症状严重性、血清脂质水平 (例如,LDLc水平)、生活品质、维持治疗作用所要求的药剂的剂量、疾病标志物或适用于被治疗或目标用于预防的给定疾病的任何其他可测量参数的水平来评价疾病治疗或预防的功效。通过测量任何一个此类参数或任何参数组合来监测治疗或预防的功效,这在本领域技术人员的能力范围之内。例如,可以通过例如定期监测LDLc水平来评估高脂血症的治疗的功效。稍后数据与初始数据的比较为医师提供了该治疗是否有效的指示。通过测量任何一个此类参数或任何参数组合来监测治疗或预防的功效,这在本领域技术人员的能力范围之内。
当在疾病状态的一个或多个参数方面存在统计学上显著的改进的时候,或者通过使得以另外方式可以被预期的症状不再恶化或发展,治疗或预防效果是明显的。作为一个实例,在疾病的可测量参数方面的至少10%,并且优选是至少20%、30%、40%、50%或更多的有利改变,可以指示有效治疗。也可以使用如本领域已知的给定疾病的实验动物模型,判定给定iRNA药物或这种药物的配制品的功效。当使用实验动物模型时,当观察到标志物或症状的统计学上显著的减少时,治疗的功效是明显的。
可替代地,可以基于临床上接受的疾病严重性分级量表,通过诊断领域技术人员所确定的疾病严重性减小来测量该功效。产生例如使用合适的量表而测量的疾病严重性的减轻的任何积极的改变代表使用如在此描述的iRNA 或iRNA配制品的足够的治疗。
通常,iRNA试剂不激活免疫系统,例如,其不增加细胞因子水平,如 TNF-α或IFN-α水平。例如,当通过一种测定法如体外PBMC测定进行测量时,如在此所述的,TNF-α或IFN-α水平的增加小于用对照dsRNA(如,不靶向PCSK9的dsRNA)处理的对照细胞的30%、20%、或10%。
在另一个实施例中,当低密度脂蛋白胆固醇(LDLc)水平达到或超过预定最低水平时,如大于70mg/dL、130mg/dL、150mg/dL、200mg/dL、 300mg/dL、或400mg/dL时,可以提供给予。
PCSK9基因降低的结果优选地导致哺乳动物血液中(更具体在血清中)的LDLc(低密度脂蛋白胆固醇)水平的降低。在一些实施例中,与治疗前水平相比,LDLc水平降低至少10%、15%、20%、25%、30%、40%、 50%、60%、70%、80%、90%或更多。
在本发明的方法的一些实施例中,PCSK9表达下降持续延长的持续时间,例如,至少一周、两周、三周、或四周或更久。例如,在某些情况下,通过给予在此描述的iRNA剂,PCSK9基因表达被阻抑至少5%、10%、 15%、20%、25%、30%、35%、40%、45%或50%。在一些实施例中,通过给予iRNA剂,PCSK9基因被阻抑至少约60%、70%或80%。在一些实施例中,通过给予双链寡核苷酸,PCSK9基因被阻抑至少约85%、90%、或 95%。
本发明的RNAi试剂可以使用本领域中已知的任何给予模式给予给一名受试者,包括(但不限于)皮下、静脉内、肌肉内、眼内、支气管内、胸膜内、腹膜内、动脉内、经淋巴、经脑脊髓及其任何组合。在优选实施例中,这些试剂是皮下给予的。
在一些实施例中,该给予是经由积存注射。积存注射可以在长时间内以连贯方式释放该RNAi试剂。因此,积存注射可以减少为了获得所希望的效果而需要给药的频率,例如所希望的PCSK9的抑制、或治疗或预防效果。积存注射还可以提供更连贯的血清浓度。积存注射包括皮下注射或肌内注射。在优选的实施例中,该积存注射是皮下注射。
在一些实施例中,该给予是经由一个泵。该泵可以是外部泵或手术植入的泵。在某些实施例中,该泵是皮下植入的渗透泵。在其他实施例中,该泵是一个输注泵。输注泵可以用于静脉内、皮下、动脉或硬膜外输注。在优选的实施例中,输注泵为皮下输注泵。在其他实施例中,该泵是将该RNAi试剂递送到肝脏的手术植入的泵。
其他给予模式包括硬膜外、脑内、脑室内、鼻给予、动脉内、心内、骨内输注、鞘内和玻璃体内以及经肺。给予模式取决于是希望局部治疗还是全身性治疗并且基于有待治疗的区域来进行选择。给予的途径与位点可以被选择为增强靶向。
可以通过静脉输注经一个时期来给予该iRNA,例如经5、6、7、8、 9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、或约25分钟的时期。该给予可以例如在一个常规基础上(例如每周地、双周 (即,每两周))重复持续一个月、两个月、三个月、四个月或更久。在初始治疗方案后,可以基于更低频率给予治疗。例如在每周或双周给予持续三个月后,给予可以按每个月重复一次,持续六个月或一年或更久。
给予该iRNA可以使例如患者的细胞、组织、血液、尿液或其他区室中的PCSK9水平降低至少约5%、6%、7%、8%、9%、10%、11%、12%、 13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、 24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、 35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、 46%、47%、48%、49%、50%、51%、52%、53%、54%、55%、56%、 57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、 68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或至少约99%或更多。
在给予全部剂量的iRNA之前,可以给予患者更少的剂量,如5%输注,并且监测不良作用,如过敏反应。在另一个实例中,针对不想要的免疫刺激作用(比如增加的细胞因子(例如,TNF-α或INF-α)水平)对该患者进行监测。
归因于对PCSK9表达的抑制作用,根据本发明的组合物或从其中制备的药物组合物可以提高生活品质。
可以将本发明的iRNA以“裸”形式或作为“游离iRNA”进行给予。裸 iRNA是在药物组合物不存在下进行给予。该裸iRNA可以处在合适的缓冲溶液中。该缓冲溶液可以包含乙酸盐、柠檬酸盐、醇溶谷蛋白、碳酸盐或磷酸盐或其任何组合。在一个实施例中,该缓冲溶液是磷酸盐缓冲盐水 (PBS)。可以将含有该iRNA的缓冲溶液的pH和摩尔渗透压浓度进行调节,使得它适合用于向受试者给予。
可替代地,本发明iRNA可作为药物组合物而给予,例如dsRNA脂质体配制品。
本发明进一步提供使用iRNA或其药物组合物的方法和用途,例如,用于治疗可从PCSK9表达的降低和/或抑制而受益的受试者,如,患有高脂血症(高胆固醇血症)的受试者,将此方法与其他药物和/或其他治疗方法,例如,与已知药物和/或已知治疗方法,例如像,目前采用于治疗这些障碍的药物和/或治疗方法组合。siRNA以及另外的治疗剂可以在相同的组合物中组合地给予,例如,肠胃外给予,或该另外的治疗剂可以作为单独的组合物的部分或通过在此描述的另一种方法给予。
另外的治疗剂的实例包括已知用来治疗脂质失调如高胆固醇血症、动脉粥样硬化或血脂异常的药剂。例如,在本发明中表征的siRNA可以与以下一起给予:例如,HMG-CoA还原酶抑制剂(例如,他汀)、贝特类、胆酸螯合剂、烟酸、抗血小板剂、血管紧张素转化酶抑制剂、血管紧张素II受体拮抗剂(例如,氯沙坦钾,如默克公司的
Figure BDA0003613643930000628
)、酰基辅酶A胆固醇酰基转移酶(ACAT)抑制剂、胆固醇吸收抑制剂、胆固醇酯转移蛋白 (CETP)抑制剂、微粒体甘油三酯转移蛋白(MTTP)抑制剂、胆固醇调节剂、胆酸调节剂、过氧化物酶体增殖激活受体(PPAR)激动剂、基于基因的治疗剂、复合血管保护剂(例如,AGI-1067,来自Atherogenics公司)、糖蛋白Ilb/IIIa抑制剂、阿司匹林或阿司匹林样化合物、IBAT抑制剂(例如 S-8921,来自盐野义制药株式会社(Shionogi))、鲨烯合酶抑制剂、或单核细胞趋化蛋白(MCP)-I抑制剂。示例性HMG-CoA还原酶抑制剂包括阿托伐他汀(辉瑞(Pfizer)的
Figure BDA0003613643930000621
/Tahor/Sortis/Torvast/Cardyl)、普伐斯汀(百时美施贵宝(Bristol-Myers Squibb)的Pravachol、三共(Sankyo)的 Mevalotin/Sanaprav)、辛伐他汀(默克(Merck)的
Figure BDA0003613643930000622
/Sinvacor、勃林格殷格翰(Boehringer Ingelheim)的Denan、邦榆(Banyu)的Lipovas)、洛伐他汀(默克的Mevacor/Mevinacor、Bexal的Lovastatina、Cepa;许瓦兹制药(SchwarzPharma)的Liposcler)、氟伐他汀(诺华公司(Novartis) 的
Figure BDA0003613643930000623
/Locol/Lochol、藤泽公司(Fujisawa)的Cranoc、索尔维公司 (Solvay)的Digaril)、西立伐他汀(拜耳(Bayer)的Lipobay/葛兰素史克 (GlaxoSmithKline)的Baycol)、瑞舒伐他汀(阿斯利康(AstraZeneca)的
Figure BDA0003613643930000624
)、以及匹伐他汀(伊伐他汀/瑞西伐他汀(risivastatin)(日产化学(Nissan Chemical)、兴和工业株式会社(Kowa Kogyo)、三共、以及诺华公司)。示例性贝特类包括例如苯扎贝特(例如罗氏公司的
Figure BDA0003613643930000625
日本桔生制药公司(Kissei)的Bezatol)、氯贝丁酯(例如惠氏公司(Wyeth)的
Figure BDA0003613643930000626
)、非诺贝特(例如利博福尼制药有限公司(Fournier)的Lipidil/Lipantil、雅培公司(Abbott)的
Figure BDA0003613643930000627
武田药品有限公司(Takeda)的Lipantil、generics)、吉非贝齐 (例如,辉瑞公司的Lopid/Lipur)和环丙贝特(赛诺菲-安万特集团(Sanofi-Synthelabo)的
Figure BDA0003613643930000631
)。示例性胆酸螯合剂包括例如,考来烯胺(百时美施贵宝公司的
Figure BDA0003613643930000632
和QuestranLightTM)、考来替泊(例如法玛西亚公司(Pharmacia)的Colestid)、以及考来维仑(基因酶公司/株式会社三共制作所(Genzyme/Sankyo)的WelCholTM)。示例性烟酸治疗剂包括例如立即释放配制品,如赛诺菲安万特公司的Nicobid、厄普舍-史密斯制药(Upsher-Smith)的Niacor、赛诺菲安万特公司的的Nicolar、以及三和化学研究所(Sanwakagaku)的Perycit。烟酸持续释放配制品包括例如,科斯制药公司(Kos Pharmaceuticals)的Niaspan和厄普舍-史密斯制药(Upsher- Smith)的SIo-Niacin。示例性抗血小板剂包括例如,阿司匹林(例如拜耳公司的阿司匹林)、氯吡格雷(赛诺菲圣德拉堡集团(Sanofi-Synthelabo)/百时美施贵宝公司的Plavix)、以及噻氯匹定(例如,赛诺菲圣德拉堡集团的 Ticlid和第一株式会社(Daiichi)的Panaldine)。在与靶向PCSK9的 dsRNA的组合中有用的其他阿司匹林样化合物包括例如,Asacard(法玛西亚公司的缓释阿司匹林)和帕米格雷(Pamicogrel)(佳丽宝公司(Kanebo)/济各安吉利克化学联合股份有限公司(Angelini Ricerche) /CEPA)。示例性血管紧张素转化酶抑制剂包括例如,雷米普利(例如赛诺菲安万特公司的Altace)和依那普利(例如默克公司的Vasotec)。示例性的酰基辅酶A胆固醇酰基转移酶(ACAT)抑制剂包括例如,阿伐麦布(辉瑞公司)、依鲁麦布(百奥梅里皮尔佛贝公司(BioMsrieux Pierre Fabre)/礼来公司(Eli Lilly)、CS-505(株式会社三共制作所(Sankyo)和京都 (Kyoto))、以及SMP-797(住友公司(Sumito))。示例性胆固醇吸收抑制剂包括例如,依折麦布(默克公司/先灵葆雅制药有限公司(Schering- Plough Pharmaceutical)的
Figure BDA0003613643930000633
)和帕马苷(辉瑞公司)。示例性CETP 抑制剂包括例如,托法替尼(也称为CP-529414,辉瑞公司)、JTT-705 (日本烟草公司)、和CETi-I(阿万特免疫治疗公司(Avant Immunotherapeutics))。示例性微粒体甘油三酯转移蛋白(MTTP)抑制剂包括例如,英普他派(拜耳公司)、R-103757(杨森公司(Janssen))、和 CP-346086(辉瑞公司)。其他示例性胆固醇调节剂包括例如,NO-1886 (大冢制药株式会社(Otsuka)/TAP制药公司)、CI-1027(辉瑞公司)、以及WAY-135433(惠氏公司(Wyeth-Ayerst))。
示例性胆酸调节剂包括例如HBS-107(久光制药株式会社 (Hisamitsu)/伴宇公司)、Btg-511(英国科技集团(British Technology Group))、BARI-1453(赛诺菲安万特公司)、S-8921(盐野义制药株式会社)、SD-5613(辉瑞公司)、和AZD-7806(阿斯利康制药公司)。示例性过氧化物酶体增殖激活受体(PPAR)激动剂包括例如,替格列扎(AZ- 242)(阿斯利康制药公司)、萘格列酮(MCC-555)(三菱公司 (Mitsubishi)/强生公司(Johnson&Johnson))、GW-409544((配体制药公司(Ligand Pharmaceuticals/葛兰素史克股份有限公司)、GW-501516 (配体制药公司/葛兰素史克股份有限公司)、LY-929(配体制药公司和礼来公司)、LY-465608(配体制药公司和礼来公司)、LY-518674(配体制药公司和礼来公司)、以及MK-767(默克公司和杏林制药(Kyorin))。示例性的基于基因的治疗剂包括例如,AdGWEGF121.10(金维克公司 (GenVec))、ApoAl(优时比制药公司(UCB Pharma)/弗尔涅集团(Groupe Fournier)、EG-004(Trinam公司)(阿克治疗公司(Ark Therapeutics))、以及ATP结合盒转运子-Al(ABCA1)(CV治疗公司/英塞特公司(Incyte)、赛诺菲安万特公司、氙能科技有限公司(Xenon))。示例性的糖蛋白Ilb/IIIa抑制剂包括例如,罗昔非班(也称为DMP754,百时美施贵宝公司)、更托非班(默克KGaA公司/山之内集团公司 (Yamanouchi))、以及色满非班(千年制药公司(Millennium Pharmaceuticals))。示例性的鲨烯合酶抑制剂包括例如,BMS-1884941 (百时美施贵宝公司)、CP-210172(辉瑞公司)、CP-295697(辉瑞公司)、CP-294838(辉瑞公司)、以及TAK-475(武田药品有限公司)。示例性的MCP-I抑制剂为例如RS-504393(罗氏生物科学公司)。抗动脉粥样硬化剂BO-653(中外制药株式会社(ChugaiPharmaceuticals))、以及烟酸衍生物乃克宁(Nyclin)(山之内集团公司)也适合用于与本发明中表征的 dsRNA组合给予。适合于与靶向PCSK9的dsRNA一起给予的示例性联合治疗剂包括,advicor(来自科斯制药公司的尼克酸/洛伐他汀)、氨氯地平/阿托伐他汀(辉瑞公司)、以及依折麦布/辛伐他汀(例如,默克公司/先灵葆雅制药有限公司的
Figure BDA0003613643930000651
10/10、10/20、10/40、和10/80片)。用于治疗高胆固醇血症并且适合于与靶向PCSK9的dsRNA联合给予的试剂包括例如,洛伐他汀、烟酸
Figure BDA0003613643930000652
缓释片(Andrx Labs)、洛伐他汀
Figure BDA0003613643930000653
片 (辉瑞公司)、苯磺酸氨氯地平、阿托伐他汀钙
Figure BDA0003613643930000654
片(阿斯利康制药公司)、瑞舒伐他汀钙
Figure BDA0003613643930000655
胶囊(诺华公司)、氟伐他汀钠
Figure BDA0003613643930000656
(里来恩特公司(Reliant),诺华公司)、氟伐他汀钠
Figure BDA0003613643930000657
片(帕克-戴维斯公司(Parke-Davis))、阿托伐他汀钙
Figure BDA0003613643930000658
胶囊(Gate公司)、诺之平(Niaspan)缓释片(科斯制药公司)、烟酸普拉固(Pravachol)片 (百时美施贵宝公司)、普伐他汀钠
Figure BDA0003613643930000659
片(雅培公司)、非诺贝特
Figure BDA00036136439300006510
10/10片(默克公司/先灵葆雅制药有限公司)、依折麦布、辛伐他汀WelCholTM片(株式会社三共制作所)、盐酸考来维仑
Figure BDA00036136439300006511
片(先灵葆雅制药有限公司)、依折麦布
Figure BDA00036136439300006512
片(默克公司/先灵葆雅制药有限公司)、以及依折麦布
Figure BDA00036136439300006513
片(默克公司)。
在一个实施例中,iRNA剂与依折麦布/辛伐他汀组合以联合方式给药 (例如,
Figure BDA00036136439300006514
(默克公司/先灵葆雅制药有限公司))。
在另一个实施例中,iRNA试剂与抗PCSK9抗体组合给予。用于本发明组合疗法的示例性抗PCSK9抗体包括例如:alirocumab(Praluent)、 evolocumab(Repatha)、bococizumab(PF-04950615、RN316、RN-316、 L1L3;辉瑞公司(Pfizer)、Rinat)、罗德希珠单抗(lodelcizumab) (LFU720、pJG04;诺华公司(Novartis))、ralpancizumab(RN317、PF-05335810;辉瑞公司(Pfizer)、Rinat)、RG7652(MPSK3169A、 YW508.20.33b;基因泰克公司(Genentech))、LY3015014(礼来公司 (Lilly))、LPD1462(h1F11;先灵葆雅公司(Schering-Plough))、AX1 (AX189、1B20、1D05;默克公司(Merck&Co))、ALD306(Alder公司(Alder));mAb1(宝灵曼公司(Boehringer))、和Ig1-PA4(南京师范大学(Nanjing Normal U.))。
在一个实施例中,将iRNA剂给予患者,并且随后将另外的治疗剂给予该患者(或反之亦然)。在另一个实施例中,将iRNA剂和另外的治疗剂同时给予。
在另一方面,本发明的特征为一种指导终端使用者例如看护者或受试者关于如何给予在此描述的iRNA试剂的方法。该方法包括,任选地,向终端使用者提供一个或多个剂量的iRNA试剂,并且指导该终端使用者将该 iRNA试剂按照在此描述的方案进行给予,由此指导该终端使用者。
在一方面,本发明提供了通过基于患者需要LDL降低、LDL降低而不降低HDL、ApoB降低、或总胆固醇降低来选择患者而治疗患者的方法。该方法包括向该患者以足以降低患者的LDL水平或ApoB水平(例如,没有实质上降低HDL水平)的量给予siRNA。
遗传易感性在与靶基因相关疾病例如高脂血症的发展中起作用。因此,通过采集家族史,或者例如筛选一个或多个遗传标志物或变体,可以鉴定出需要siRNA的患者。涉及高脂血症的基因的实例包括但不限于,例如LDL 受体(LDLR)、载脂蛋白(ApoAl、ApoB、ApoE等)、胆固醇酯转移蛋白(CETP)、脂蛋白脂肪酶(LPL)、肝脂肪酶(LIPC)、内皮脂肪酶 (EL)、卵磷脂胆固醇酰基转移酶(LCAT)。
医疗保健提供者,如医生、护士或家族成员,可以在开处方或给予本发明的iRNA剂之前取得家族史。另外,可以进行试验来确定基因型或表型。例如,可以对来自患者的样品(例如,血样)进行DNA试验,以便在向患者给PCSK9 dsRNA之前鉴定出PCSK9基因型和/或表型。在另一个实施例中,进行试验来鉴定出有关的基因型和/或表型,例如LDLR基因型。关于LDLR基因的遗传变体的实例可在本领域中找到,例如在下列通过引用进行结合的出版物中:Costanza等人(2005)Am J Epidemiol.[美国流行病学杂志] 15;161(8):714-24;Yamada等人(2008)J Med Genet.[医学遗传学杂志] Jan;45(l):22-8,电子版2007年8月31日;以及Boes等人(2009)Exp. Gerontol[实验老年学]44:136-160,电子版2008年11月17日。
本发明进一步提供了抑制前蛋白转化酶枯草杆菌蛋白酶Kexin9 (PCSK9)在细胞(例如受试者(例如人类受试者)内的细胞)中表达的方法。
因此,本发明提供了抑制细胞中PCSK9基因表达的方法。这些方法包括使一种细胞与一种RNAi试剂(例如一种双链RNAi试剂)以有效抑制该细胞中的PCSK9基因表达的一个量接触,从而抑制该细胞中的PCSK9表达。
使一种细胞与一种双链RNAi试剂接触可以在体外或体内进行。在体内使一种细胞与该RNAi试剂接触包括使受试者(例如,人类受试者)内的一种细胞或细胞群组与该RNAi试剂接触。体外和体内接触方法的组合也是可能的。如上所讨论,接触可以是直接或间接的。此外,使细胞接触可以通过靶向配体(包括在此描述或本领域中已知的任何配体)来实现。在优选实施例中,该靶向配体是碳水化合物部分(例如,GalNAc3配体)或将该RNAi 试剂导向到受试者的感兴趣的部位(例如,肝脏)的任何其他配体。
如在此使用的,术语“抑制”与“减少”、“沉默”、“下调”、以及其他类似术语可互换使用,并且包括任何水平的抑制。
短语“抑制PCSK9的表达”旨在指抑制任何PCSK9基因(例如像小鼠 TTR基因、大鼠PCSK9基因、猴PCSK9基因或人类PCSK9基因)以及 PCSK9基因的变体或突变体的表达。因此,该PCSK9基因可以是野生型PCSK9基因、突变PCSK9基因、或在遗传操作的细胞、细胞群组或生物体的情形下的转基因PCSK9基因。
“抑制PCSK9基因表达”包括PCSK9基因的任何水平的抑制,例如 PCSK9基因表达的至少部分阻抑。基于与PCSK9基因表达相关的任何变量的水平或水平变化,例如PCSK9 mRNA水平、PCSK9蛋白水平、或脂质水平,可以评估PCSK9基因表达。此水平可以在个体细胞中或在一组细胞中 (包括例如来源于受试者的样品)进行评估。
可以通过与对照水平相比的一个或多个与PCSK9表达相关的变量的绝对或相对水平的降低来评估抑制。对照水平可以是本领域中利用的任何类型的对照水平,例如给药前基线水平或从类似的未经处理或经对照(例如,仅缓冲液对照或惰性剂对照)处理的受试者、细胞、或样品确定的水平。
在本发明的方法的一些实施例中,PCSK9基因表达被抑制至少约5%、至少约10%、至少约15%、至少约20%、至少约25%、至少约30%、至少约35%、至少约40%、至少约45%、至少约50%、至少约55%、至少约 60%、至少约65%、至少约70%、至少约75%、至少约80%、至少约 85%、至少约90%、至少约91%、至少约92%、至少约93%、至少约 94%、至少约95%、至少约96%、至少约97%、至少约98%或至少约 99%。
PCSK9基因表达的抑制可以通过由第一细胞或细胞群组(这样的细胞可以存在于例如来源于受试者的样品中)表达的mRNA的量的降低来显现,其中PCSK9基因被转录并且该细胞或这些细胞已经被处理(例如通过使该细胞或这些细胞与本发明的RNAi试剂接触,或通过向现在存在或以前存在这些细胞的受试者给予本发明的RNAi试剂),使得与跟该第一细胞或细胞群组基本上相同但尚未被如此处理的第二细胞或细胞群组(一种或多种对照细胞)相比,PCSK9基因表达被抑制。在优选实施例中,通过使用下式将被处理的细胞中的mRNA的水平表示为对照细胞中的mRNA的水平的百分比来评估该抑制:
Figure BDA0003613643930000691
可替代地,可以就与PCSK9基因表达在功能上有关的参数(如脂质水平、胆固醇水平,例如LDLc水平)的降低而言来评估PCSK9基因表达例如PCSK9蛋白表达的抑制。可以组成性地或者通过基因组工程化而表达 PCSK9的任何细胞中并且通过本领域中已知的任何测定来确定PCSK9基因沉默。肝脏是PCSK9表达的主要部位。其他重要表达部位包括胰腺、肾脏以及肠。
PCSK9蛋白的表达的抑制可以通过由细胞或细胞群组表达的PCSK9蛋白水平(例如来源于受试者的样品中表达的蛋白质水平)的降低来显现。如以上关于mRNA阻抑的评估所解释,被处理的细胞或细胞群组中的蛋白质表达水平的抑制可以类似地表示为对照细胞或细胞群组中的蛋白质的水平的百分比。
可以用来评估PCSK9基因表达的抑制的对照细胞或细胞群组包括尚未与本发明的RNAi试剂接触的细胞或细胞群组。例如,该对照细胞或细胞群组可以来源于在用RNAi试剂处理受试者之前的个体受试者(例如人类或动物受试者)。
可以使用本领域中已知用于评估mRNA表达的任何方法来确定由细胞或细胞群组表达的PCSK9 mRNA的水平。在一个实施例中,通过检测转录的多核苷酸或其部分(例如该PCSK9基因的mRNA)来确定样品中的 PCSK9的表达水平。可以使用RNA提取技术从细胞提取RNA,包括例如使用酸苯酚/胍异硫氰酸酯提取(RNAzol B;生物起源公司(Biogenesis))、RNeasy RNA制备试剂盒(凯杰公司(Qiagen))或PAXgene(PreAnalytix 公司,瑞士(Switzerland))。利用核糖核酸杂交的典型分析形式包括核连缀测定(nuclear run-onassay)、RT-PCR、RNA酶保护测定(Melton等人, Nuc.Acids Res.[核酸研究]12:7035)、RNA印迹法、原位杂交以及微阵列分析。
在一个实施例中,使用一种核酸探针确定PCSK9的表达水平。如在此使用的,术语“探针”是指能够选择性结合到一种特定PCSK9的任何分子。探针可以由本领域的技术人员合成或来源于适当生物制剂。探针可以具体地经设计成被标记的。可以用作探针的分子的实例包括但不限于RNA、 DNA、蛋白质、抗体以及有机分子。
可以在包括但不限于以下各项的杂交或扩增分析中使用分离的 mRNA:DNA印迹或RNA印迹分析、聚合酶链反应(PCR)分析以及探针阵列。一种用于确定mRNA水平的方法涉及使该分离的mRNA与可以与 PCSK9 mRNA杂交的一核酸分子(探针)接触。在一个实施例中,mRNA 被固定在固体表面,并与探针接触,例如,通过使分离的mRNA在琼脂凝胶上运行,使mRNA从凝胶转移至膜(如硝基纤维素)上。在一个替代性实施例中,将该探针或这些探针固定在固体表面上,并且使该mRNA例如在Affymetrix基因芯片阵列中与该探针或这些探针接触。本领域技术人员可以容易地使已知mRNA检测方法适用于确定PCSK9 mRNA的水平。
用于确定样品中的PCSK9的表达水平的替代性方法涉及该样品中的例如mRNA的核酸扩增和/或逆转录酶(以制备cDNA)的过程,例如通过 RT-PCR(Mullis,1987,美国专利号4,683,202中阐述的实验实施例)、连接酶链式反应(Barany(1991)Proc.Natl.Acad.Sci.USA[美国国家科学院院刊] 88:189-193)、自主序列复制(Guatelli等人(1990)Proc.Natl.Acad.Sci.USA [美国国家科学院院刊]87:1874-1878)、转录扩增系统(Kwoh等人(1989) Proc.Natl.Acad.Sci.USA[美国国家科学院院刊]86:1173-1177)、Q-β复制酶(Lizardi等人(1988)Bio/Technology[生物/技术]6:1197)、滚环复制 (Lizardi等人,美国专利号5,854,033)或任何其他核酸扩增方法,接着使用本领域技术人员所熟知的技术检测扩增的分子。如果这样的核酸分子以极低数目存在,那么这些检测方案尤其可用于检测这些分子。在本发明的具体方面,通过定量荧光RT-PCR(即TaqManTM系统)确定PCSK9的表达水平。
可以使用膜印迹(如杂交分析中所用,如RNA印迹、DNA印迹、斑点等)或微孔、样品管、凝胶、珠粒或纤维(或包含结合核酸的任何固体载体)监测PCSK9 mRNA的表达水平。参见美国专利号5,770,722、 5,874,219、5,744,305、5,677,195和5,445,934,这些美国专利通过引用结合在此。PCSK9表达水平的确定还可以包括使用溶液中的核酸探针。
在优选实施例中,使用支链DNA(bDNA)测定或实时PCR(qPCR) 评估mRNA表达水平。这些方法的使用描述并且例证于在此呈现的实例中。
可以使用本领域中已知用于测量蛋白质水平的任何方法确定PCSK9蛋白表达水平。这样的方法包括例如电泳、毛细管电泳、高效液相色谱 (HPLC)、薄层色谱(TLC)、超扩散色谱、流体或凝胶沉淀素反应、吸收光谱法、比色测定、分光光度测定、流式细胞术、免疫扩散(单向或双向)、免疫电泳、蛋白质印迹、放射免疫测定(RIA)、酶联免疫吸附测定(ELISA)、免疫荧光测定、电化学发光测定等。
如在此使用的,术语“样品”是指从受试者中分离的一批类似的流体、细胞或组织以及存在于受试者内的流体、细胞或组织。生物流体的实例包括血液、血清以及浆膜液、血浆、淋巴液、尿液、脑脊液、唾液、眼内液等。组织样品可包括来自组织、器官或局部区域的样品。例如样品可以来源于特定器官、器官部分、或这些器官内的流体或细胞。在某些实施例中,样品可来源于肝脏(例如整个肝脏或肝脏的某些段,或肝脏中的某些类型的细胞,例如肝细胞)。在优选实施例中,“来源于受试者的样品”是指从该受试者中取出的血液或血浆。在其他实施例中,“来源于受试者的样品”是指来源于该受试者的肝脏组织。
在本发明的方法的一些实施例中,向受试者给予该RNAi试剂,使得该 RNAi试剂被递送到该受试者内的具体部位上。可以使用来源于来自该受试者内的具体部位的流体或组织的样品中的PCSK9 mRNA或PCSK9蛋白的水平或水平变化的测量来评估PCSK9表达的抑制。在优选实施例中,该部位是肝脏。该部位还可以是来自前述部位的任一个的细胞的亚组或亚群。该部位还可以包括表达特定类型的受体的细胞。
III.用于本发明方法中的iRNA
在此描述了使用双链RNAi试剂的方法,该方法抑制PCSK9基因在细胞(例如受试者(例如哺乳动物,例如患有PCSK9相关障碍(例如高脂血症,例如高胆固醇血症)的人类)的细胞)中的表达。
因此,本发明提供能够在体内抑制靶基因(即,PCSK9基因)的表达的双链RNAi试剂,用于所要求保护的方法中。
在一个实施例中,本发明的iRNA的RNA(例如dsRNA)是未经修饰的,并且不包含例如本领域中已知的和在此所述的化学修饰和/或共轭。在另一个实施例中,本发明的iRNA例如dsRNA的RNA被化学修饰以增强稳定性或其他有益特征。在本发明的某些方面,本发明的iRNA的基本上所有的核苷酸均是修饰的。例如,正义链的基本上所有核苷酸都是修饰的核苷酸,和/或反义链的基本上所有核苷酸都是修饰的核苷酸,和/或正义链和反义链两者的基本上所有核苷酸都是修饰的核苷酸。在本发明其他实施例中,本发明iRNA的所有核苷酸都为修饰的核苷酸。例如,正义链的所有核苷酸都是修饰的核苷酸,和/或反义链的所有核苷酸都是修饰的核苷酸,和/或正义链和反义链两者的全部核苷酸都是修饰的核苷酸。其中“基本上所有核苷酸是修饰的”本发明的iRNA是大部分但不是全部修饰的,并且可以包括不多于5、4、3、2或1个未修饰的核苷酸。
该dsRNA包括反义链,该反义链具有与在PCSK9基因表达中形成的mRNA的至少一个部分互补的互补性区域。互补性区域是约30个核苷酸或更小的长度(例如约30个、29个、28个、27个、26个、25个、24个、23 个、22个、21个、20个、19个或18个核苷酸或更小的长度)。当与表达 PCSK9基因的细胞接触时,iRNA使PCSK9基因(例如,人PCSK9基因) 的表达抑制至少约10%,如通过例如PCR或基于支链DNA(bDNA)的方法,或通过基于蛋白质的方法,如通过免疫荧光分析,使用例如蛋白质印迹法或流式细胞术技术所测定。
在要使用dsRNA的条件下,dsRNA包括杂交以形成双链体结构的两条 RNA链。dsRNA的一条链(反义链)包括与靶序列基本上互补,及通常完全互补的互补性区域。该靶序列可以来源于在PCSK9基因表达过程中形成的mRNA的序列。另一条链(正义链)包括与反义链互补的区域,使得在适合的条件下组合时,这两条链杂交并形成双链体结构。如在此的其他地方所描述并且如本领域中所知,与处于单独的寡核苷酸上相反,dsRNA的互补序列还可以作为单一核酸分子的自我互补区域被含有。
通常,双链体结构的长度是15到30个碱基对之间,例如长度在15- 29、15-28、15-27、15-26、15-25、15-24、15-23、15-22、15-21、15-20、 15-19、15-18、15-17、18-30、18-29、18-28、18-27、18-26、18-25、18- 24、18-23、18-22、18-21、18-20、19-30、19-29、19-28、19-27、19-26、 19-25、19-24、19-23、19-22、19-21、19-20、20-30、20-29、20-28、20- 27、20-26、20-25、20-24、20-23、20-22、20-21、21-30、21-29、21-28、 21-27、21-26、21-25、21-24、21-23、或21-22个碱基对之间。以上列举的范围和长度的范围与长度中间值也被想到成为本发明的部分。
类似地,靶标序列的互补区域的长度是在15到30个核苷酸之间,例如长度在15-29、15-28、15-27、15-26、15-25、15-24、15-23、15-22、15- 21、15-20、15-19、15-18、15-17、18-30、18-29、18-28、18-27、18-26、 18-25、18-24、18-23、18-22、18-21、18-20、19-30、19-29、19-28、19- 27、19-26、19-25、19-24、19-23、19-22、19-21、19-20、20-30、20-29、 20-28、20-27、20-26、20-25、20-24、20-23、20-22、20-21、21-30、21- 29、21-28、21-27、21-26、21-25、21-24、21-23、或21-22个核苷酸之间。以上列举的范围和长度的范围与长度中间值也被想到成为本发明的部分。
在一些实施例中,dsRNA的长度是在约15至约20个核苷酸之间,或者长度在约25与约30个核苷酸之间。总之,dsRNA作为Dicer酶的底物是足够长的。例如本领域中所熟知的,长度长于约21-23个核苷酸的dsRNA 可以用作Dicer的底物。如技术人员也将认识,被靶向用于裂解的RNA的区域将最经常是较大RNA分子(经常是mRNA分子)的一部分。在相关的情况下,mRNA靶的一“部分”是mRNA靶的连续序列,其长度足够以便允许其作为RNAi指导的裂解的底物(即,经RISC途径的裂解)。
在某些实施例中,本发明的dsRNA试剂可以包括RNA链(反义链),该RNA链可以包括较长的长度,例如长度高达66个核苷酸(例如36-66、 26-36、25-36、31-60、22-43、27-53个核苷酸),有至少19个连续核苷酸的区域,该区域基本上与PCSK9基因的mRNA转录物的至少一部分互补。具有较长长度反义链的这些dsRNA试剂优选包括长度为20-60个核苷酸的第二RNA链(正义链),其中正义链和反义链形成18-30个连续核苷酸的双链体。
本领域技术人员还将认识到,双链体区域是dsRNA的主要功能部分,例如具有约9至36个碱基对,例如约10-36、11-36、12-36、13-36、14- 36、15-36、9-35、10-35、11-35、12-35、13-35、14-35、15-35、9-34、10- 34、11-34、12-34、13-34、14-34、15-34、9-33、10-33、11-33、12-33、13- 33、14-33、15-33、9-32、10-32、11-32、12-32、13-32、14-32、15-32、9- 31、10-31、11-31、12-31、13-32、14-31、15-31、15-30、15-29、15-28、 15-27、15-26、15-25、15-24、15-23、15-22、15-21、15-20、15-19、15- 18、15-17、18-30、18-29、18-28、18-27、18-26、18-25、18-24、18-23、18-22、18-21、18-20、19-30、19-29、19-28、19-27、19-26、19-25、19-24、19-23、19-22、19-21、19-20、20-30、20-29、20-28、20-27、20-26、 20-25、20-24、20-23、20-22、20-21、21-30、21-29、21-28、21-27、21- 26、21-25、21-24、21-23或21-22个碱基对的双链体区域。
因此,在一个实施例中,达到加工成靶向所希望的RNA以用于裂解的具有例如15-30个碱基对的功能双链体的程度,具有大于30个碱基对的双链体区域的RNA分子或RNA分子的复合体是dsRNA。因此,技术人员将认识到在一个实施例中miRNA是dsRNA。在另一个实施例中,dsRNA不是天然存在的miRNA。在另一个实施例中,适用于靶向PCSK9表达的iRNA 试剂不是经由裂解较大的dsRNA而在靶细胞中产生。
如在此所描述的dsRNA可以进一步包括一个或多个单链核苷酸突出端,例如1、2、3或4个核苷酸。具有至少一个核苷酸突出端的dsRNA相对于其平端的对应物可以具有出乎意料地优越的抑制特性。核苷酸突出端可以包含核苷酸/核苷类似物(包括脱氧核苷酸/核苷)或由其组成。一个或多个突出端可以处于正义链、反义链或其任何组合上。另外,突出端的一个或多个核苷酸可以存在于dsRNA的反义或正义链的5'-末端、3'-末端或两个末端上。在某些实施例中,较长的延伸的突出端是可能的。
dsRNA可以通过如在下文进一步讨论的、本领域内已知的标准方法来进行合成,例如通过使用自动化的DNA合成仪,例如从例如生物研究公司 (Biosearch)、应用生物系统公司(Applied Biosystems,Inc)可商购的合成仪。
本发明的iRNA化合物可以使用二步程序来制备。首先,分别制备该双链RNA分子的各链。然后,将这些组分链退火。siRNA化合物的各链可以使用溶液相或固相有机合成或这两者来制备。有机合成提供了以下优点,可以容易地制备包含非天然或经修饰的核苷酸的寡核苷酸链。本发明的单链寡核苷酸可以通过使用溶液相或固相有机合成或二者来制备。
在一方面,本发明的dsRNA包括至少两个核苷酸序列,正义序列和反义序列。正义链是选自表1中所提供的序列的组,并且该正义链的相应反义链是选自表1的序列的组。在这方面,两序列的一者与两序列的另一者互补,序列中的一者与PCSK9基因表达所产生的mRNA序列实质上互补。因此,在这方面,dsRNA将包括两个寡核苷酸,其中一个寡核苷酸被描述为表 1中的正义链,并且第二个寡核苷酸被描述为表1中的正义链的相应反义链。在一个实施例中,该dsRNA的基本上互补的序列被包含在单独的寡核苷酸上。在另一个实施例中,该dsRNA的基本上互补的序列被包含在单一寡核苷酸上。
将理解的是,虽然表1中的一些序列被描述为修饰的和/或共轭的序列,但本发明的iRNA例如本发明的dsRNA的RNA可以包含未修饰的、未共轭的和/或与其中所描述不同修饰和/或共轭的在表1中列举的任一个序列。
熟练的技术人员将很好的意识到,具有约20与23个碱基对之间(例如 21个碱基对)的双链体结构的dsRNA被奉为是尤其有效地诱导RNA干扰 (Elbashir等人,EMBO[欧洲分子生物学学会]2001,20:6877-6888)。然而,其他人已经发现较短或较长的RNA双链体结构物也可以是有效的 (Chu和Rana(2007)RNA 14:1714-1719;Kim等人(2005)Nat Biotech[自然生物技术]23:222-226)。在上述实施例中,凭借表1中提供的寡核苷酸序列的性质,在此描述的dsRNA至少可以包括长度最低限度为21个核苷酸的一条链。可以合理地预期,与上述dsRNA相比,具有表1中任一个的序列之一的在一端或两端减去仅几个核苷酸的较短双链体可以是类似有效的。因此,如下dsRNA被认为是在本发明的范围内,这些dsRNA具有来源于表3、4、5、6、18、19、15、20、21和23中的任一个的序列之一的至少15 个、16个、17个、18个、19个、20个或更多个连续核苷酸的序列并且它们抑PCSK9基因表达的能力与包含全序列的dsRNA相差不超过约5%、10%、15%、20%、25%、或30%的抑制性。
此外,表1中提供的RNA识别了PCSK9转录物中对RISC介导的裂解敏感的一个或多个位点。因此,本发明的进一步特征在于在这些位点中的一个内靶向的iRNA。如在此使用的,如果iRNA在具体位点内的任何地方促进转录物的裂解,则称该iRNA在RNA转录物的具体位点内靶向。此种 iRNA通常将包括来自表1中提供的序列之一的至少约15个连续核苷酸,该连续核苷酸与来自PCSK9基因中选择的序列的邻接的区域的另外的核苷酸序列偶联。
虽然靶序列的长度通常是约15-30个核苷酸,但在用于引导任何给定靶 RNA的裂解的这个范围内的具体序列适用性上存在广泛的变化。此处所列出的各种软件包和准则提供了用于鉴别对于任何给定的基因靶的最佳靶标序列的准则,但还可以采取经验方法,其中一个给定尺寸(如一个非限制性实例,21个核苷酸)的“窗口”或“掩模”被照字面地或象征性(包括,例如计算机模拟)地放置在靶RNA序列上,以鉴别可以充当靶标序列的在该尺寸范围内的序列。通过将该序列“窗口”向初始靶序列位置的上游或下游渐进地移动一个核苷酸,可以鉴别出下一个潜在的靶序列,直到针对所选择的任何给定靶尺寸鉴别出全套可能的序列。这个过程(加上为了鉴定最佳执行的那些序列的所鉴定的序列的系统合成和测试(使用在此描述的或如本领域中已知的测定))可以鉴定当用一种iRNA试剂靶向时介导靶基因表达的最好抑制的那些RNA序列。因此,当例如在表1中鉴定的序列表示有效靶标序列时,在此考虑了可以通过以下方式实现抑制效力的进一步优化:沿着给定序列的上游或下游的一个核苷酸逐步地“窗口步移”来鉴别具有相同或更好抑制特性的序列。
此外,预期对例如表1中识别的任何序列,可由系统地添加或移出核苷酸而产生较长或较短序列并测试经由将较长或较短尺寸之窗口从该点沿靶 RNA向上或向下拖曳而产生的那些序列,而达成进一步优化。此外,偶联产生新的候选靶标的这种方法和在本领域已知的和/或本文所描述的抑制性测定中基于那些靶序列测试iRNA的有效性,可以导致抑制有效性的进一步改进。此外,可以例如通过引入如在此所描述或如本领域中所知的修饰核苷酸、添加或改变突出端或如本领域中所知和/或在此讨论的其他修饰,调节此类优化的序列以便进一步优化分子(例如,增加血清稳定性或循环半衰期、增加热稳定性、增强跨膜递送、靶向特定位置或细胞类型、增加与沉默途径酶的相互作用、增加核内体释放)作为表达抑制剂。
如在此所描述的iRNA可以含有与靶序列的一个或多个错配。在一个实施例中,如在此所述的iRNA含有不多于3个错配。如果iRNA的反义链含有相对于靶标序列的错配,则优选错配区域不应当位于互补区域的中心内。如果iRNA的反义链含有与靶序列的错配,则优选错配被局限在离互补区域的5’-末端或3’-末端最后5个核苷酸内。例如,对于23个核苷酸的iRNA试剂,与PCSK9基因的区域互补的链通常在中心13个核苷酸内不含任何错配。在此描述的方法或本领域已知的方法可以用来确定含有相对于靶标序列的错配的iRNA是否有效抑制PCSK9基因表达。考虑带错配的iRNA在抑制 PCSK9基因表达的功效方面是重要的,尤其在已知PCSK9基因中的特定互补性区域在群体内具有多态性序列变异时。
本发明所表征的核酸可以通过本领域内良好建立的方法来进行合成和/ 或修饰,例如描述于“Current protocols in nucleic acid chemistry[当前核酸化学方案]”,Beaucage,S.L.(编),约翰威利父子公司(John Wiley&Sons, Inc.),纽约,纽约州,美国中的那些,特此通过引用将其结合在此。修饰包括,例如,末端修饰,例如,5’-末端修饰(磷酸化、共轭、倒置键)或 3’-末端修饰(共轭、DNA核苷酸、倒置键等);碱基修饰,例如,置换为稳定性碱基、去稳定性碱基或与扩充的配伍物库发生碱基配对的碱基、移除碱基(脱碱基核苷酸)、或共轭的碱基;糖修饰(例如,在2’-位置或4’-位置)或糖的置换;和/或骨架修饰,包括磷酸二酯键的修饰或置换。可用于在此所描述的这些实施例的iRNA化合物的具体实例包括,但不限于含有修饰的骨架或无天然核苷间键的RNA。具有修饰的骨架的RNA包括在骨架中不具有磷原子的那些,连同其他。出于本说明书的目的和如有时本领域中谈及,也可以将在其核苷间骨架中不具有磷原子的修饰RNA视为寡核苷。在一些实施例中,修饰的iRNA将在其核苷间骨架中具有磷原子。
修饰的RNA骨架包括例如硫代磷酸酯、手性硫代磷酸酯、二硫代磷酸酯、磷酸三酯、氨基烷基磷酸三酯、甲基和其他烷基磷酸酯,包括3'-亚烷基磷酸酯和手性磷酸酯、次磷酸酯、磷酰胺酯,包括3'-氨基磷酰胺酯和氨基烷基磷酰胺酯、硫代羰基磷酰胺酯、硫代羰基烷基磷酸酯、硫代羰基烷基磷酸三酯和具有正常3'-5'键的硼烷磷酸酯、这些酯的2'-5'连接的类似物,和具有反转极性的那些酯,其中相邻对的核苷单位为3'-5'至5'-3'或2'-5'至5'-2' 连接。还包括不同盐、混合盐以及游离酸形式。
教导制备以上含磷键的代表性美国专利包括但不限于,美国专利号 3,687,808;4,469,863;4,476,301;5,023,243;5,177,195;5,188,897; 5,264,423;5,276,019;5,278,302;5,286,717;5,321,131;5,399,676; 5,405,939;5,453,496;5,455,233;5,466,677;5,476,925;5,519,126; 5,536,821;5,541,316;5,550,111;5,563,253;5,571,799;5,587,361; 5,625,050;6,028,188;6,124,445;6,160,109;6,169,170;6,172,209; 6,239,265;6,277,603;6,326,199;6,346,614;6,444,423;6,531,590; 6,534,639;6,608,035;6,683,167;6,858,715;6,867,294;6,878,805; 7,015,315;7,041,816;7,273,933;7,321,029;以及美国专利RE39464,特此将它们各自的全部内容通过引用结合在此。
其中不包括磷原子的修饰的RNA骨架具有由短链烷基或环烷基核苷间键、混合杂原子和烷基或环烷基核苷间键或者一个或多个短链杂原子核苷间键或杂环核苷间键形成的骨架。这些包括具有以下结构的那些:吗啉代键 (从核苷的糖部分中部分地形成);硅氧烷骨架;硫化物、亚砜和砜骨架;甲酰乙酰基和硫代甲酰乙酰基骨架;亚甲基甲酰乙酰基和硫代甲酰乙酰基骨架;含烯的骨架;氨基磺酸盐骨架;亚甲亚氨基和亚甲肼基骨架;磺酸酯和磺酰胺骨架;酰胺骨架;以及具有混合N、O、S和CH2组分部分的其他骨架。
教导制备以上寡核苷的代表性美国专利包括,但不限于,美国专利号 5,034,506;5,166,315;5,185,444;5,214,134;5,216,141;5,235,033; 5,64,562;5,264,564;5,405,938;5,434,257;5,466,677;5,470,967;5,489,677;5,541,307;5,561,225;5,596,086;5,602,240;5,608,046; 5,610,289;5,618,704;5,623,070;5,663,312;5,633,360;5,677,437;以及 5,677,439,特此将它们各自的全部内容通过引用结合在此。
在其他实施例中,构思了用于iRNA的适合的RNA模拟物,其中核苷酸单位的糖和核苷间键即骨架被置换为新颖的基团。维持碱基单元用于与适当的核酸靶化合物杂交。一种这样的低聚化合物(已经显示具有优异杂交特性的RNA模拟物)被称为肽核酸(PNA)。在PNA化合物中,RNA的糖骨架被含有酰胺的骨架置换,具体是氨基乙基甘氨酸骨架。这些核碱基得以保持并且直接或间接地结合至该骨架的酰胺部分的氮杂氮原子上。教导制备 PNA化合物的代表性美国专利包括,但不限于,美国专利号5,539,082; 5,714,331;以及5,719,262,特此将它们各自的全部内容通过引用结合在此。适合用于本发明的iRNA中的另外PNA化合物被描述于例如Nielsen等人,Science[科学],1991,254,1497-1500中。
本发明中表征的一些实施例包括具有硫代磷酸酯骨架的RNA和具有杂原子骨架的寡核苷,并且尤其上文所参考的美国专利号5,489,677的--CH2-- NH--CH2-、--CH2--N(CH3)--O--CH2--[称作亚甲基(甲基亚氨基)或MMI骨架]、--CH2--O--N(CH3)--CH2--、--CH2--N(CH3)--N(CH3)--CH2--和--N(CH3)-- CH2--CH2--[其中天然磷酸二酯骨架表述为--O--P--O--CH2--],和上文所参考美国专利号5,602,240的酰胺骨架。在一些实施例中,在此表征的RNA具有以上提及的美国专利号5,034,506的吗啉代骨架结构。
修饰的RNA还可以含有一个或多个取代的糖部分。在此表征的iRNA (例如dsRNA)可以在2'位置包括以下之一:OH;F;O-、S-或N-烷基; O-、S-或N-烯基;O-、S-或N-炔基;或O-烷基-O-烷基,其中该烷基、烯基以及炔基可以是被取代的或未被取代的C1至C10烷基或C2至C10烯基和炔基。示例性适合的修饰包括O[(CH2)nO]mCH3、O(CH2).nOCH3、 O(CH2)nNH2、O(CH2)nCH3、O(CH2)nONH2和O(CH2)nON[(CH2)nCH3)]2,其中 n和m是从1至约10。在其他实施例中,dsRNA在2’位置处包括下列基团中的一个:C1至C10低级烷基、取代的低级烷基、烷芳基、芳烷基、O-烷芳基或O-芳烷基、SH、SCH3、OCN、Cl、Br、CN、CF3、OCF3、SOCH3、 SO2CH3、ONO2、NO2、N3、NH2、杂环烷基、杂环烷芳基、氨基烷基氨基、多烷基氨基、取代的甲硅烷基、RNA切割基团、报告基因基团、嵌入剂、用于改进iRNA的药物代谢动力学特性的基团或用于改进iRNA的药效特性的基团以及具有类似特性的其他取代基。在一些实施例中,该修饰包括 2'-甲氧基乙氧基(2'-O--CH2CH2OCH3,也称作2'-O-(2-甲氧基乙基)或2'- MOE)(Martin等人,Helv.Chim.Acta[瑞士化学学报]1995,78:486- 504),即,烷氧基-烷氧基基团。另一个示例性修饰是2’-二甲基氨基氧基乙氧基,即O(CH2)2ON(CH3)2基团,也称为2’-DMAOE,如下在此实例中所描述;和2’-二甲基氨基乙氧基乙氧基(在本领域中又称为2’-O-二甲基氨基乙氧基乙基或2’-DMAEOE),即2’-O--CH2--O--CH2-N(CH2)2
其他修饰包括2’-甲氧基(2’-OCH3)、2’-氨基丙氧基(2’- OCH2CH2CH2NH2)以及2’-氟代(2’-F)。也可以在iRNA的RNA上的其他位置处作出相似的修饰,尤其在3'末端核苷酸上或在2'-5'连接的dsRNA中糖的3'位置和5'末端核苷酸的5'位置。iRNA也可以具有糖模拟物,如替代戊呋喃糖基糖的环丁基部分。教授制备这类修饰的糖结构的代表性美国专利包括但不限于:美国专利号4,981,957;5,118,800;5,319,080;5,359,044;5,393,878;5,446,137;5,466,786;5,514,785;5,519,134;5,567,811; 5,576,427;5,591,722;5,597,909;5,610,300;5,627,053;5,639,873; 5,646,265;5,658,873;5,670,633;以及5,700,920,这些专利中的某些与本申请属于同一申请人。特此通过引用将前述的每个的全部内容结合在此。
iRNA的RNA还可以包括核碱基(在本领域中经常简称为“碱基”)修饰或取代。如在此使用的,“未修饰”或“天然”核碱基包括嘌呤碱基腺嘌呤 (A)及鸟嘌呤(G),及嘧啶碱基胸腺嘧啶(T)、胞嘧啶(C)及尿嘧啶 (U)。修饰的核碱基包括其他合成核碱基和天然核碱基,如脱氧-胸腺嘧啶 (dT);5-甲基胞嘧啶(5-me-C);5-羟甲基胞嘧啶;黄嘌呤;次黄嘌呤;2-氨基腺嘌呤;腺嘌呤和鸟嘌呤的6-甲基衍生物和其他烷基衍生物;腺嘌呤和鸟嘌呤的2-丙基衍生物和其他烷基衍生物;2-硫代尿嘧啶;2-硫代胸腺嘧啶和2-硫代胞嘧啶;5-卤代尿嘧啶和胞嘧啶;5-炔基尿嘧啶和胞嘧啶;6-偶氮基尿嘧啶、6-偶氮基胞嘧啶和6-偶氮基胸腺嘧啶;5-尿嘧啶(假尿嘧啶);4-硫代尿嘧啶;8-卤代、8-氨基、8-巯基、8-硫代烷基、8-羟基和其他8-取代的腺嘌呤和鸟嘌呤;5-卤代(具体地5-溴代)、5-三氟甲基和其他5- 取代的尿嘧啶和胞嘧啶;7-甲基鸟嘌呤和7-甲基腺嘌呤;8-氮杂鸟嘌呤和8- 氮杂腺嘌呤;7-脱氮鸟嘌呤和7-脱氮腺嘌呤以及3-脱氮鸟嘌呤和3-脱氮腺嘌呤。进一步的核碱基包括披露于美国专利号3,687,808中的那些,披露于: Biochemistry,Biotechnology and Medicine[生物化学、生物技术和医药], Herdewijn,P.编辑,威利出版社(Wiley-VCH),2008中的ModifiedNucleosides[修饰核苷]中的那些;披露于The Concise Encyclopedia Of PolymerScience And Engineering[聚合物科学与工程的简明百科全书],第 858-859页,Kroschwitz,J.L编辑,约翰威利父子公司(John Wiley& Sons),1990中的那些;由Englisch等人,Angewandte Chemie[应用化学],国际版,1991,30,613披露的那些;以及由Sanghvi,YS.,第15 章,dsRNA Research and Applications[dsRNA研究与应用],第289-302页,Crooke,S.T.和Lebleu,B.,编辑,CRC出版社,1993披露的那些。这些核碱基中的某些对于提高在本发明中出现的低聚化合物的结合亲和力特别有用。这些碱基包括5-取代的嘧啶、6-氮杂嘧啶以及N-2、N-6和0-6取代的嘌呤,包括2-氨基丙基腺嘌呤、5-丙炔基尿嘧啶和5-丙炔基胞嘧啶。已经显示5-甲基胞嘧啶取代使核酸双链体稳定性增加0.6℃-1.2℃(Sanghvi,Y.S.、 Crooke,S.T.和Lebleu,B.编著,dsRNA Research and Applications[dsRNA研究与应用],CRC出版社(CRC Press),Boca Raton,1993,第276-278 页)并且是示例性碱基取代,甚至更具体地当与2’-O-甲氧基乙基糖修饰组合时。
教授制备以上修饰的核碱基以及其他修饰的核碱基中的某些的代表性美国专利包括但不限于上述的美国专利号3,687,808;4,845,205;5,130,30; 5,134,066;5,175,273;5,367,066;5,432,272;5,457,187;5,459,255; 5,484,908;5,502,177;5,525,711;5,552,540;5,587,469;5,594,121; 5,596,091;5,614,617;5,681,941;5,750,692;6,015,886;6,147,200; 6,166,197;6,222,025;6,235,887;6,380,368;6,528,640;6,639,062;6,617,438;7,045,610;7,427,672;以及7,495,088,特此将它们各自的全部内容通过引用结合在此。
iRNA的RNA还可以被修饰成包括一个或多个双环糖部分。“双环糖”是通过两个原子桥联而修饰的呋喃糖基环。“双环核苷”(“BNA”)是具有糖部分的核苷,该糖部分包含连接糖环的两个碳原子的桥,从而形成双环环系统。在某些实施例中,该桥连接糖环的4′-碳与2′-碳。因此,在一些实施例中,本发明的试剂可以包括iRNA(该iRNA也可以被修饰以包括一个或多个锁核酸(LNA))的RNA。锁核酸为具有修饰的核糖部分的核苷酸,其中该核糖部分包含连接2'及4'碳之额外的桥。换言之,LNA是包含含有4'-CH2- O-2'桥的双环糖部分的核苷酸。这个结构有效地将该核糖“锁”在3'-内切结构构象中。向siRNA添加锁核酸已经显示增加血清中的siRNA稳定性并且减少脱靶效应(Elmen,J等人,(2005)Nucleic AcidsResearch[核酸研究] 33(1):439-447;Mook,OR.等人,(2007)Mol Canc Ther[分子癌症疗法] 6(3):833-843;Grunweller,A等人,(2003)Nucleic Acids Research[核酸研究] 31(12):3185-3193)。
用于在本发明的多核苷酸中使用的双环核苷的实例包括不限于在4'与2' 核糖基环原子之间包含桥的核苷。在某些实施例中,本发明的反义多核苷酸试剂包括一个或多个双环核苷,该一个或多个双环核苷包含4'至2'桥。这种 4'至2'桥接双环核苷的实例,包括但不限于4'-(CH2)-O-2'(LNA);4'- (CH2)-S-2';4'-(CH2)2-O-2'(ENA);4'-CH(CH3)-O-2'(亦称为“拘束性乙基”或“cEt”)及4'-CH(CH2OCH3)-O-2'(及其类似物;参见,例如,美国专利号7,399,845);4′-C(CH3)(CH3)-O-2′(及其类似物;参见,例如,美国专利号8,278,283);4'-CH2-N(OCH3)-2'(及其类似物;参见,例如,美国专利号8,278,425);4'-CH2-O-N(CH3)-2'(参见,例如,美国专利公开号 2004/0171570);4'-CH2-N(R)-O-2',其中R为H,C1-C12烷基或保护基团 (参见,例如,美国专利号7,427,672);4'-CH2-C(H)(CH3)-2'(参见,例如,Chattopadhyaya等人,J.Org.Chem.[有机化学杂志],2009,74,118- 134);及4'-CH2-C(═CH2)-2'(及其类似物;参见,例如,美国专利号 8,278,426)。特此通过引用将前述的每个的全部内容结合在此。
传授制备锁核酸核苷酸的另外代表性美国专利和美国专利公开包括但不限于以下:美国专利号6,268,490;6,525,191;6,670,461;6,770,748; 6,794,499;6,998,484;7,053,207;7,034,133;7,084,125;7,399,845; 7,427,672;7,569,686;7,741,457;8,022,193;8,030,467;8,278,425; 8,278,426;8,278,283;US 2008/0039618;以及US 2009/0012281,特此将它们各自的全部内容通过引用结合在此。
任何上述双环核苷可以被制备为具有一种或多种立体化学糖构型,包括例如α-L-呋喃核糖及β-D-呋喃核糖(参见WO 99/14226)。
iRNA的RNA还可以被修饰成包括一个或多个限制性乙基核苷酸。如在此使用的,“限制性乙基核苷酸”或“cEt”是包含双环糖部分的锁核酸,该双环糖部分包含4’-CH(CH3)-O-2’桥。在一个实施例中,限制性乙基核苷酸是呈S构象,在此称为“S-cEt”。
本发明的iRNA还可以包括一个或多个“构象限制的核苷酸” (“CRN”)。CRN是具有连接核糖的C2’和C4’碳或核糖的C3和-C5′碳的接头的核苷酸类似物。CRN将核糖环锁定成一种稳定构象且增加对mRNA的杂交亲和力。该接头具有足够长度以将氧置于一个最佳位置中以获得稳定性和亲和力,从而产生更少核糖环缩拢。
传授制备某种以上标记的CRN的代表性公开包括但不限于:美国专利公开号2013/0190383;以及PCT公开WO 2013/036868,特此将它们各自的全部内容通过引用结合在此。
本发明的iRNA的一个或多个核苷酸还可以包括羟基甲基取代的核苷酸。“羟基甲基取代的核苷酸”是无环2’-3’-开环-核苷酸,还称为“解锁核酸” (“UNA”)修饰。
教授制备以上UNA的代表性美国公开包括但不限于:美国专利号 8,314,227;和美国专利公开号2013/0096289;2013/0011922;以及 2011/0313020,特此将它们各自的全部内容通过引用结合在此。
本发明的iRNA的核苷酸的其他修饰包括5'磷酸酯或5'磷酸酯模拟物,例如,在RNAi试剂的反义链上的5'-末端磷酸酯或磷酸酯模拟物。适合的磷酸酯模拟物披露于,例如美国专利公开号2012/0157511中,特此通过引用将其全部内容结合在此。
RNA分子端的可能稳定性修饰包括:N-(乙酰基氨基己酰基)-4-羟脯氨醇(Hyp-C6-NHAc)、N-(己酰基)-4-羟脯氨醇(Hyp-C6)、N-(乙酰基)-4-羟脯氨醇(Hyp-NHAc)、胸苷-2′-O-脱氧胸苷(醚)、N-(氨基己酰基)-4-羟脯氨醇(Hyp-C6-氨基)、2-二十二碳烷酰基-尿苷-3"-磷酸酯、反向碱基dT (idT)等。这种修饰的披露可以在PCT公开号WO 2011/005861中找到。
A.包含基序的修饰的iRNA
在本发明的某些方面,本发明的双链RNAi试剂包括具有化学修饰的试剂,如在例如美国申请公开号2014/0315835和PCT公开号WO 2013/075035 中所披露,其各自的全部内容通过引用结合在此。如在此和在美国专利公开号2014/0315835或PCT公开号WO 2013/075035中所示,可以通过将在三个连续核苷酸上具有三个相同修饰的一个或多个基序引入到RNAi试剂的正义链和/或反义链中(具体地在裂解位点处或附近)来获得优越的结果。在一些实施例中,该RNAi试剂的该正义链和反义链可以另外的方式被完全修饰。这些基序的引入中断了该正义链和/或反义链的修饰模式(如果存在的话)。该RNAi试剂可以任选地与例如在该正义链上的GalNAc衍生物配体共轭。所得到的RNAi试剂呈现优越的基因沉默活性。
更具体地说,出人意料地发现,当该双链RNAi试剂的正义链和反义链被完全修饰而在RNAi试剂的至少一条链的裂解位点处或附近具有在三个连续核苷酸上具有三个相同修饰的一个或多个基序时,该RNAi试剂的基因沉默活性被卓越地增强。
因此,本发明提供能够在体内抑制靶基因(即,PCSK9基因)的表达的双链RNAi试剂。该RNAi试剂包含正义链和反义链。该RNAi试剂的每个链的长度可以在12-30个核苷酸范围内。例如,每条链的长度可以在14- 30个核苷酸之间、17-30个核苷酸之间、25-30个核苷酸之间、27-30个核苷酸之间、17-23个核苷酸之间、17-21个核苷酸之间、17-19个核苷酸之间、 19-25个核苷酸之间、19-23个核苷酸之间、19-21个核苷酸之间、21-25个核苷酸之间或21-23个核苷酸之间。
该正义链和该反义链典型地形成双链体双链RNA(“dsRNA”),在此又称为“RNAi试剂”。RNAi试剂的双链体区域的长度可以是12-30个核苷酸对。例如,该双链体区域的长度可以在14-30个核苷酸对之间、在17-30个核苷酸对之间、在27-30个核苷酸对之间、在17-23个核苷酸对之间、在17- 21个核苷酸对之间、在17-19个核苷酸对之间、在19-25个核苷酸对之间、在19-23个核苷酸对之间、在19-21个核苷酸对之间、在21-25个核苷酸对之间或在21-23个核苷酸对之间。在另一个实例中,该双链体区域的长度是选自15、16、17、18、19、20、21、22、23、24、25、26以及27个核苷酸。
在一个实施例中,该RNAi试剂可以在一个或两个链的3’-末端、5’-末端或两端处含有一个或多个突出端区域和/或封端基团。突出端的长度可以是1-6个核苷酸,例如2-6个核苷酸长度、1-5个核苷酸长度、2-5个核苷酸长度、1-4个核苷酸长度、2-4个核苷酸长度、1-3个核苷酸长度、2-3个核苷酸长度或1-2个核苷酸长度。这些突出端可以是一个链比另一个链更长的结果,或具有相同长度的两个链交错的结果。该突出端可以与靶mRNA形成错配,或它可以与被靶向的基因序列互补或可以是另一个序列。第一链和第二链还可以例如通过另外的碱基连接以形成一个发夹或通过其他非碱基接头连接。
在一个实施例中,该RNAi试剂的突出端区域中的核苷酸可以各自独立地是修饰的或未修饰的核苷酸,包括但不限于被2'-糖修饰的,如2-F、2'-O- 甲基、胸苷(T)、2`-O-甲氧基乙基-5-甲基尿苷(Teo)、2`-O-甲氧基乙基腺苷(Aeo)、2`-O-甲氧基乙基-5-甲基胞苷(m5Ceo)、及其任何组合。例如,TT可以是任一链上的任一端的一个突出端序列。该突出端可以与靶 mRNA形成错配,或它可以与被靶向的基因序列互补或可以是另一个序列。
在该RNAi试剂的正义链、反义链或这两条链处的5’-突出端或3’-突出端可以被磷酸化。在一些实施例中,一个或多个突出端区域含有两个在这两个核苷酸之间具有硫代磷酸酯的核苷酸,其中这两个核苷酸可以是相同或不同的。在一个实施例中,该突出端存在于正义链、反义链或这两个链的3’- 末端处。在一个实施例中,这个3’-突出端存在于反义链中。在一个实施例中,这个3’-突出端存在于正义链中。
该RNAi试剂可以仅含有单个突出端,该突出端可以加强该RNAi的干扰活性而不影响其总稳定性。例如,单链突出端可以位于正义链的3’-末端处,或替代地位于反义链的3’-末端处。该RNAi还可以具有位于该反义链的5’-末端(或该正义链的3’-末端)处的平端,或反之亦然。一般来说,该 RNAi的反义链在3'-末端处具有核苷酸突出端,并且5'-末端是平的。虽然不希望受理论约束,但该反义链的5’-末端处的不对称平端和该反义链的3’-末端突出端有利于引导链加载到RISC过程中。
在一个实施例中,该RNAi试剂是具有19个核苷酸长度的双端平物,其中该正义链在从5'末端起的位置7、位置8、位置9处含有在三个连续核苷酸上具有三个2’-F修饰的至少一个基序。该反义链在从5’末端起的位置 11、位置12、位置13处含有在三个连续核苷酸上具有三个2’-O-甲基修饰的至少一个基序。
在另一个实施例中,该RNAi试剂是具有20个核苷酸长度的双端平物,其中该正义链在从5'末端起的位置8、位置9、位置10处含有在三个连续核苷酸上具有三个2’-F修饰的至少一个基序。该反义链在从5’末端起的位置11、位置12、位置13处含有在三个连续核苷酸上具有三个2’-O-甲基修饰的至少一个基序。
在又另一个实施例中,该RNAi试剂是具有21个核苷酸长度的双端平物,其中该正义链在从5'末端起的位置9、位置10、位置11处含有在三个连续核苷酸上具有三个2’-F修饰的至少一个基序。该反义链在从5’末端起的位置11、位置12、位置13处含有在三个连续核苷酸上具有三个2’-O-甲基修饰的至少一个基序。
在一个实施例中,该RNAi试剂包含21个核苷酸的正义链和23个核苷酸的反义链,其中该正义链在从5'末端起的位置9、位置10、位置11处含有在三个连续核苷酸上具有三个2’-F修饰的至少一个基序;该反义链在从5' 末端起的位置11、位置12、位置13处含有在三个连续核苷酸上具有三个 2’-O-甲基修饰的至少一个基序;其中该RNAi试剂的一端是平的,而另一端包含2个核苷酸的突出端。优选地,该2个核苷酸的突出端在该反义链的 3’-末端处。当该2个核苷酸的突出端在该反义链的3’-末端处时,在末端的三个核苷酸之间可以存在两个硫代磷酸酯核苷酸间键,其中这三个核苷酸中的两个是突出端核苷酸,并且第三个核苷酸是紧挨着该突出端核苷酸的配对的核苷酸。在一个实施例中,该RNAi试剂在该正义链的5’-末端和在该反义链的5’-末端处均另外地具有在末端三个核苷酸之间的两个硫代磷酸酯核苷酸间键。在一个实施例中,该RNAi试剂的正义链和反义链中的每个核苷酸(包括作为基序的一部分的核苷酸)是修饰的核苷酸。在一个实施例中,每个残基独立地被例如交替基序中的2’-O-甲基或3’-氟代修饰。任选地,该 RNAi试剂进一步包含配体(优选地GalNAc3)。
在一个实施例中,该RNAi试剂包含正义链和反义链,其中该正义链的长度是25-30个核苷酸残基,其中从5’末端核苷酸(位置1)开始,第一链的位置1至23包含至少8个核糖核苷酸;该反义链的长度是36-66个核苷酸残基,并且从3’末端核苷酸开始,在与正义链的位置1-23配对的位置上包含至少8个核糖核苷酸以形成一种双链体;其中反义链的至少3’末端核苷酸与正义链未配对,并且高达6个连续的3’末端核苷酸与正义链未配对,从而形成具有1-6个核苷酸的3’单链突出端;其中反义链的5’末端包含从10-30 个连续的与正义链未配对的核苷酸,从而形成10-30个核苷酸的单链5’突出端;其中当出于最大互补性对准正义链和反义链时,至少该正义链5’末端核苷酸和3’末端核苷酸与反义链的核苷酸碱基配对,从而在正义链与反义链之间形成基本上双链体的区域;并且沿着反义链长度的至少19个核糖核苷酸,反义链与靶RNA充分互补,以便当双链核酸被引入到哺乳动物细胞中时减少靶基因表达;并且其中该正义链含有在三个连续核苷酸上具有三个 2’-F修饰的至少一个基序,其中这些基序中的至少一个出现在裂解位点处或附近。该反义链在裂解位点处或附近含有在三个连续核苷酸上具有三个2'- O-甲基修饰的至少一个基序。
在一个实施例中,该RNAi试剂包包含义链和反义链,其中该RNAi试剂包含第一链和第二链,该第一链具有至少25个和至多29个核苷酸的长度,该第二链具有至多30个核苷酸与从5’末端起在位置11、位置12、位置 13处在三个连续核苷酸上具有三个2’-O-甲基修饰的至少一个基序;其中该第一链的3’末端和该第二链的5’末端形成一个平端并且该第二链在其3’末端处比该第一链长1-4个核苷酸,其中双链体区域的长度是至少25个核苷酸,并且沿着该第二链长度的至少19个核苷酸,该第二链与靶mRNA充分互补,以便当该RNAi试剂被引入到哺乳动物细胞中时减少靶基因表达,并且其中RNAi试剂的dicer裂解优选产生包含该第二链的3’末端的siRNA,从而在该哺乳动物中减少靶基因表达。任选地,该RNAi试剂进一步包含配体。
在一个实施例中,该RNAi试剂的正义链含有在三个连续核苷酸上具有三个相同修饰的至少一个基序,其中这些基序中的一个出现在该正义链中的裂解位点处。
在一个实施例中,该RNAi试剂的反义链也可以含有在三个连续核苷酸上具有三个相同修饰的至少一个基序,其中这些基序中的一个出现在该反义链中的裂解位点处或附近。
对于具有长度是17-23个核苷酸的双链体区域的RNAi试剂,反义链的裂解位点典型地在从5’-末端起的10、11和12位置周围。因此,具有三个相同修饰的这些基序可以出现在反义链的9、10、11位置;10、11、12位置;11、12、13位置;12、13、14位置;或13、14、15位置,计数从反义链的5’-末端起从第一个核苷酸开始,或计数从反义链的5’-末端起从双链体区域内的第一个配对的核苷酸开始。该反义链中的裂解位点还可以根据该 RNAi的从5’-末端起的双链体区域的长度而变化。
该RNAi试剂的正义链可以含有在该链的裂解位点处的在三个连续核苷酸上具有三个相同修饰的至少一个基序;并且该反义链可以具有在该链的裂解位点处或附近的在三个连续核苷酸上具有三个相同修饰的至少一个基序。当该正义链和该反义链形成dsRNA双链体时,该正义链和该反义链可以被如此对准,使得在该正义链上具有三个核苷酸的一个基序和在该反义链上具有三个核苷酸的一个基序具有至少一个核苷酸重叠,即该正义链中的该基序的三个核苷酸中的至少一者与该反义链中的该基序的三个核苷酸中的至少一者形成碱基对。可替代地,至少两个核苷酸可以重叠,或所有三个核苷酸均可以重叠。
在一个实施例中,该RNAi试剂的正义链可以含有在三个连续核苷酸上具有三个相同修饰的多于一个基序。第一基序可以出现在该链的裂解位点处或附近并且其他基序可以是翼修饰。术语“翼修饰”在此是指出现在链的与同一链裂解位点处或附近的基序分开的另一个部分处的基序。该翼修饰或者与该第一基序相邻,或者被至少一个或多个核苷酸分隔。当这些基序与彼此紧紧相邻时,则这些基序的化学性质不同于彼此,并且当这些基序被一个或多个核苷酸分隔时,则化学性质可以是相同或不同的。可以存在两个或更多个翼修饰。例如,当存在两个翼修饰时,每个翼修饰可以存在于相对于在裂解位点处或附近的该第一基序的一端处或该前导基序的任一侧上。
如同正义链,该RNAi试剂的反义链可以含有多于一个在三个连续核苷酸上具有三个相同修饰的基序,这些基序中的至少一者出现在该链的裂解位点处或附近。这个反义链也可以在比对中含有一个或多个与可以在正义链上存在的翼修饰类似的翼修饰。
在一个实施例中,该RNAi试剂的正义链或反义链上的翼修饰典型地在该链的3’-末端、5’-末端或两端处不包括前一个或两个末端核苷酸。
在另一个实施例中,该RNAi试剂的正义链或反义链上的翼修饰典型地在该链的3’-末端、5’-末端或两端处的双链体区域内不包括前一个或两个配对的核苷酸。
当该RNAi试剂的正义链和反义链各自含有至少一个翼修饰时,该翼修饰可以落在该双链体区域的同一端上,并且具有一个、两个或三个核苷酸的重叠。
当该RNAi试剂的正义链和反义链各自含有至少两个翼侧修饰时,该正义链和该反义链可以被比对为使得各自来自一条链的两个修饰落在该双链体区域的一端上,具有一个、两个或三个核苷酸的一个重叠;各自来自一条链的两个修饰落在该双链体区域的另一端上,具有一个、两个或三个核苷酸的重叠;各自来自一条链的两个修饰落在该前导基序的任一侧上,在该双链体区域具有一个、两个或三个核苷酸的重叠。
在一个实施例中,该RNAi试剂的正义链和反义链中的每个核苷酸(包括作为基序的一部分的核苷酸)可以被修饰。每个核苷酸可以用相同或不同的修饰来修饰,这些修饰可以包括:一个或两个非连接磷酸氧的一个或多个改变和/或一个或多个连接磷酸氧的改变;核糖糖的一种组分的改变,例如,核糖糖上的2′羟基的改变;用“脱磷酸”接头完全置换磷酸酯部分;天然存在的碱基的修饰或置换;以及核糖-磷酸酯骨架的置换或修饰。
由于核酸是亚单位的聚合物,因此许多修饰出现在核酸内重复的位置处,例如碱基或磷酸酯部分或磷酸酯部分的非连接O的修饰。在一些情况下,该修饰将出现在该核酸中的所有标的位置处,但在许多情形下它不会这样。例如,修饰可以仅出现在3’或5’末端位置处,可以仅出现在末端区域中,例如在一条链的末端核苷酸上或在最后2个、3个、4个、5个或10个核苷酸中的位置处。修饰可以出现在双链区域、单链区域或两者中。修饰可以仅出现在RNA的双链区域中或可以仅出现在RNA的单链区域中。例如,非连接O位置处的硫代磷酸酯修饰可以仅存在于一个或两个末端处,可以仅存在于末端区域中,例如在一条链的末端核苷酸上或最后2个、3个、4 个、5个或10个核苷酸中的位置处,或可以存在于双链和单链区域中,特别是在末端处。这个或这些5’末端可以被磷酸化。
为了增强稳定性,可能的是例如在突出端中包括特定碱基或在单链突出端中(例如,在5’或3’突出端或两者中)包括被修饰的核苷酸或核苷酸替代物。例如,可以希望在突出端中包括嘌呤核苷酸。在一些实施例中,3’或5’突出端中的全部或一些碱基可以用例如在此描述的修饰进行修饰。修饰可以包括例如使用核糖的2’位置处的修饰与本领域中已知的修饰,例如使用2’- 脱氧-2’-氟代(2’-F)或2’-O-甲基修饰的脱氧核糖核苷酸代替核碱基的核糖,以及磷酸酯基中的修饰,例如硫代磷酸酯修饰。突出端不必与靶序列同源。
在一个实施例中,正义链和反义链的每个残基独立地用LNA、HNA、 CeNA、2’-甲氧基乙基、2’-O-甲基、2’-O-烯丙基、2’-C-烯丙基、2’-脱氧、 2’-羟基或2’-氟代修饰。这些链可以含有多于一个修饰。在一个实施例中,正义链和反义链的每个残基独立地被2’-O-甲基或2’-氟代修饰。
至少两个不同修饰典型地存在于正义链和反义链上。那两个修饰可以是 2’-O-甲基或2’-氟代修饰或其他修饰。
在一个实施例中,Na和/或Nb包含交替模式的修饰。如在此使用的,术语“交替基序”是指具有一个或多个修饰,每个修饰出现在一条链的交替核苷酸上的基序。交替核苷酸可以指每隔一个核苷酸一个或每隔两个核苷酸一个、或类似模式。例如,如果A、B以及C各自表示针对核苷酸的一种修饰类型,那么交替基序可以是“ABABABABABAB……”、“AABBAABBAABB……”、“AABAABAABAAB……”、“AAABAAABAAAB……”、“AAABBBAAABBB……”或“ABCABCABCABC……”等。
交替基序中所包含的修饰的类型可以是相同或不同的。例如,如果A、 B、C、D各自表示针对核苷酸的一种修饰类型,那么交替模式(即每隔一个核苷酸上的修饰)可以是相同的,但正义链或反义链中的每一者可以选自交替基序内的修饰的若干种可能,例如“ABABAB……”“ACACAC……”、“BDBDBD……”或“CDCDCD……”等。
在一个实施例中,本发明的RNAi试剂包含:用于正义链上的交替基序的修饰模式相对于用于反义链上的交替基序的修饰模式移位。该移位可以是如此,使得正义链的修饰的核苷酸组对应于反义链的被不同地修饰的核苷酸组,并且反之亦然。例如,当正义链与dsRNA双链体中的反义链配对时,正义链中的交替基序可以从该链的5’-3’起由“ABABAB”开始,并且反义链中的交替基序可以在双链体区域内从该链的5’-3’起由“BABABA”开始。作为另一个实例,正义链中的交替基序可以从该链的5’-3'起由“AABBAABB”开始,并且反义链中的交替基序可以在双链体区域内从该链的5'-3'起由“BBAABBAA”开始,使得在该正义链与该反义链之间存在修饰模式的完全或部分移位。
在一个实施例中,该RNAi试剂包含起初在正义链上具有2’-O-甲基修饰和2’-F修饰的交替基序模式,该模式相对于起初在反义链上具有2’-O-甲基修饰和2’-F修饰的交替基序模式具有移位,即正义链上的2’-O-甲基修饰的核苷酸与反义链上的2’-F修饰的核苷酸碱基配对,并且反之亦然。该正义链的1位置可以由2’-F修饰开始,并且该反义链的1位置可以由2’-O-甲基修饰开始。
将在三个连续核苷酸上具有三个相同修饰的一个或多个基序引入到正义链和/或反义链中断了存在于该正义链和/或反义链中的初始修饰模式。通过将在三个连续核苷酸上具有三个相同修饰的一个或多个基序引入到正义链和 /或反义链而使该正义链和/或反义链的修饰模式的这一中断出人意料地增强了对靶基因的基因沉默活性。
在一个实施例中,当将在三个连续核苷酸上具有三个相同修饰的基序引入到这些链中的任一个时,紧挨着该基序的核苷酸的修饰是与该基序的修饰不同的修饰。例如,含有该基序的序列的一部分是“……NaYYYNb……”,其中“Y”表示在三个连续核苷酸上具有三个相同修饰的该基序的修饰,并且“Na”和“Nb”表示对紧挨着该基序“YYY”的该核苷酸的不同于Y的修饰的一个修饰,并且其中Na和Nb可以是相同或不同修饰。可替代地,当存在翼侧修饰时,Na和/或Nb可以存在或不存在。
该RNAi试剂可以进一步包含至少一个硫代磷酸酯或甲基磷酸酯核苷酸间键。该硫代磷酸酯或甲基磷酸酯核苷酸间键修饰可以存在于正义链或反义链或这两条链的该链的任何位置中的任何核苷酸上。例如,该核苷酸间键修饰可以存在于该正义链和/或该反义链上的每个核苷酸上;每个核苷酸间键修饰可以以交替模式存在于该正义链和/或该反义链上;或者该正义链或反义链可以含有交替模式的两个核苷酸间键修饰。该正义链上的核苷酸间键修饰的交替模式可以与该反义链相同或不同,并且该正义链上的核苷酸间键修饰的交替模式可以相对于该反义链上的核苷酸间键修饰的交替模式具有移位。在一个实施例中,双链RNAi试剂包含6-8个硫代磷酸酯核苷酸间键。在一个实施例中,该反义链包含5’-末端处的两个硫代磷酸酯核苷酸间键和 3’-末端处的两个硫代磷酸酯核苷酸间键,并且该正义链在或者5’-末端或者 3’-末端处包含至少两个硫代磷酸酯核苷酸间键。
在一个实施例中,该RNAi在突出端区域中包含硫代磷酸酯或甲基磷酸酯核苷酸间键修饰。例如,该突出端区域可以含有两个在这两个核苷酸之间具有硫代磷酸酯或甲基磷酸酯核苷酸间键的核苷酸。还可以进行核苷酸间键修饰以使突出端核苷酸与双链体区域内的末端配对的核苷酸连接。例如,至少2个、3个、4个或所有的突出端核苷酸可以通过硫代磷酸酯或甲基磷酸酯核苷酸间键来连接,并且任选地,可以存在将突出端核苷酸与紧挨着该突出端核苷酸的一个配对的核苷酸连接的另外的硫代磷酸酯或甲基磷酸酯核苷酸间键。例如,在末端三个核苷酸之间可以存在至少两个硫代磷酸酯核苷酸间键,其中这三个核苷酸中的两个是突出端核苷酸,并且第三个是紧挨着该突出端核苷酸的配对的核苷酸。这些末端三个核苷酸可以在该反义链的3’- 末端处、该正义链的3’-末端处、该反义链的5’-末端处和/或该反义链的5’末端处。
在一个实施例中,该2个核苷酸的突出端是在该反义链的3’-末端处,并且在末端的三个核苷酸之间存在两个硫代磷酸酯核苷酸间键,其中这三个核苷酸中的两个是突出端核苷酸,并且第三个核苷酸是紧挨着该突出端核苷酸的配对的核苷酸。任选地,该RNAi试剂在该正义链的5’-末端和在该反义链的5’-末端处都可以另外具有在末端三个核苷酸之间的两个硫代磷酸酯核苷酸间键合。
在一个实施例中,该RNAi试剂在双链体内包含与靶标的一个或多个错配、或其组合。该错配可以出现在突出端区域或双链体区域中。碱基对可以基于其促进解离或熔融的倾向来分等级(例如,对于具体配对的缔合或解离自由能,最简单的方法是基于个别对检查这些对,但也可以使用紧接着的相邻物或类似分析)。就促进解离而言:A:U优选于G:C;G:U优选于G:C;并且I:C优选于G:C(I=肌苷)。错配例如非规范的配对或除了规范以外的配对(如在此其他地方所描述)优选于规范的(A:T、A:U、G:C)配对;并且包括通用碱基的配对优选于规范的配对。
在一个实施例中,该RNAi试剂包含从反义链的5’-末端起在双链体区域内的前1、2、3、4或5个碱基对中的至少一个,这些碱基对独立地选自下组,该组具有A:U、G:U、I:C和错配的对,例如非规范的配对或除了规范以外的配对,或包括通用碱基的配对,以便促进在双链体的5’-末端处解离反义链。
在一个实施例中,该双链体区域内从该反义链中的5’-末端起的1位置处的核苷酸选自下组,该组由以下各项组成:A、dA、dU、U以及dT。可替代地,从该反义链的5’末端起在该双链体区域内的前1、2或3个碱基对中的至少一个是AU碱基对。例如,从该反义链的5’-末端起在该双链体区域内的第一个碱基对是AU碱基对。
在另一个实施例中,在该正义链的3’-末端处的核苷酸是脱氧-胸腺嘧啶 (dT)。在另一个实施例中,在该反义链的3’-末端处的核苷酸是脱氧-胸腺嘧啶(dT)。在一个实施例中,在正义链和/或反义链的3’-末端上存在脱氧- 胸腺嘧啶核苷酸的短序列,例如两个dT核苷酸。
在一个实施例中,正义链序列可以由式(I)表示:
5'np-Na-(X X X)i-Nb-Y Y Y-Nb-(Z Z Z)j-Na-nq 3' (I)
其中:
i和j各自独立地是0或1;
p和q各自独立地是0-6;
各Na独立地表示包含0-25个修饰的核苷酸的寡核苷酸序列,每个序列包含至少两个不同修饰的核苷酸;
各Nb独立地表示包含0-10个修饰的核苷酸的寡核苷酸序列;
各np和nq独立地表示突出端核苷酸;
其中Nb和Y不具有相同修饰;并且
XXX、YYY和ZZZ各自独立地表示在三个连续核苷酸上具有三个相同修饰的一个基序。优选地YYY全是2’-F修饰的核苷酸。
在一个实施例中,Na和/或Nb包含具有交替模式的修饰。
在一个实施例中,该YYY基序出现在该正义链的裂解位点处或附近。例如,当该RNAi试剂具有长度是17-23个核苷酸的一个双链体区域时,该 YYY基序可以出现在正义链的裂解位点处或附近(例如:可以出现在位置 6、7、8、7、8、9、8、9、10、9、10、11、10、11、12或11、12、13 处),计数从5’-末端起从第一个核苷酸开始;或任选地,计数从5’-末端起在该双链体区域内的第一个配对的核苷酸处开始。
在一个实施例中,i是1且j是0,或i是0且j是1,或i和j两者都是 1。该正义链因此可以由以下式表示:
5'np-Na-YYY-Nb-ZZZ-Na-nq 3' (Ib);
5'np-Na-XXX-Nb-YYY-Na-nq 3' (Ic);或
5'np-Na-XXX-Nb-YYY-Nb-ZZZ-Na-nq 3' (Id)。
当该正义链由式(Ib)表示时,Nb表示包含0-10个、0-7个、0-5个、0-4 个、0-2个或0个修饰的核苷酸的寡核苷酸序列。各Na可以独立地表示包含 2-20个、2-15个或2-10个修饰的核苷酸的寡核苷酸序列。
当该正义链表示为式(Ic)时,Nb表示包含0-10个、0-7个、0-10个、0- 7个、0-5个、0-4个、0-2个或0个修饰的核苷酸的寡核苷酸序列。各Na可以独立地表示包含2-20个、2-15个或2-10个修饰的核苷酸的寡核苷酸序列。
当该正义链表示为式(Id)时,各Nb独立地表示包含0-10个、0-7个、 0-5个、0-4个、0-2个或0个修饰的核苷酸的寡核苷酸序列。优选地,Nb是 0、1、2、3、4、5或6,各Na可独立地表示包含2-20个、2-15个、或2-10 个修饰的核苷酸的寡核苷酸序列。
X、Y和Z各自可以是彼此相同或不同的。
在其他实施例中,i是0并且j是0,并且该正义链可以由以下式表示:
5'np-Na-YYY-Na-nq 3' (Ia)。
当该正义链由式(Ia)表示时,每个Na独立地可以表示寡核苷酸序列,该寡核苷酸序列包含2-20个、2-15个、或2-10个修饰的核苷酸。
在一个实施例中,该RNAi的反义链序列可以由式(II)表示:
5'nq’-Na′-(Z’Z′Z′)k-Nb′-Y′Y′Y′-Nb′-(X′X′X′)l-N′a-np′3' (II)
其中:
k和l各自独立地是0或1;
p’和q’各自独立地是0-6;
各Na′独立地表示包含0-25个修饰的核苷酸的寡核苷酸序列,每个序列包含至少两个不同修饰的核苷酸;
各Nb′独立地表示包含0-10个修饰的核苷酸的寡核苷酸序列;
各np’和nq’独立地表示突出端核苷酸;
其中Nb’和Y’不具有相同的修饰;
并且X′X′X′、Y′Y′Y′以及Z′Z′Z′各自独立地表示在三个连续核苷酸上具有三个相同修饰的一个基序。
在一个实施例中,Na’和/或Nb’包含具有交替模式的修饰。
Y'Y'Y'基序出现在该反义链的裂解位点处或其附近。例如,当该RNAi 试剂具有长度是17-23个核苷酸的双链体区域时,该Y′Y′Y′基序可以出现在正义链的位置9、位置10、位置11;位置10、位置11、位置12;位置 11、位置12、位置13;位置12、位置13、位置14;或位置13、位置14、位置15处,计数从5’-末端起从第一个核苷酸开始;或任选地,计数从5’- 末端起在该双链体区域内的第一个配对的核苷酸处开始。优选地,该Y'Y'Y' 基序出现在位置11、12、13处。
在一个实施例中,Y’Y’Y’基序全是2’-OMe修饰的核苷酸。
在一个实施例中,k是1且l是0,或k是0且l是1,或k和l两者都是1。
该反义链因此可以由以下式表示:
5'nq’-Na′-Z′Z′Z′-Nb′-Y′Y′Y′-Na′-np’3' (IIb);
5'nq’-Na′-Y′Y′Y′-Nb′-X′X′X′-np’3' (IIc);或
5'nq’-Na′-Z′Z′Z′-Nb′-Y′Y′Y′-Nb′-X′X′X′-Na′-np’3' (IId)。
当该反义链由式(IIb)表示时,Nb’表示包含0-10个、0-7个、0-10个、 0-7个、0-5个、0-4个、0-2个或0个修饰的核苷酸的寡核苷酸序列。各Na’独立地表示包含2-20个、2-15个或2-10个修饰的核苷酸的寡核苷酸序列。
当该反义链表示为式(IIc)时,Nb’表示包含0-10个、0-7个、0-10个、 0-7个、0-5个、0-4个、0-2个或0个修饰的核苷酸的寡核苷酸序列。各Na’独立地表示包含2-20个、2-15个或2-10个修饰的核苷酸的寡核苷酸序列。
当该反义链表示为式(IId)时,各Nb’独立地表示包含0-10个、0-7个、0-10个、0-7个、0-5个、0-4个、0-2个或0个修饰的核苷酸的寡核苷酸序列。各Na’独立地表示包含2-20个、2-15个或2-10个修饰的核苷酸的寡核苷酸序列。优选地,Nb是0、1、2、3、4、5或6。
在其他实施例中,k是0且l是0,并且该反义链可以由下式表示:
5'np’-Na’-Y’Y’Y’-Na’-nq’3' (Ia)。
当该反义链表示为式(IIa)时,各Na’独立地表示包含2-20个、2-15个或2-10个修饰的核苷酸的寡核苷酸序列。
X'、Y'和Z'各自可以是彼此相同的或不同的。
该正义链和反义链的每个核苷酸可以独立地由以下各项修饰:LNA、 HNA、CeNA、2’-甲氧基乙基、2’-O-甲基、2’-O-烯丙基、2’-C-烯丙基、2’- 羟基、或2’-氟代。例如,该正义链和反义链的每个核苷酸独立地由2’-O-甲基或2’-氟代修饰。具体地说,各X、Y、Z、X’、Y’以及Z’可以表示2’-O- 甲基修饰或2’-氟代修饰。
在一个实施例中,该RNAi试剂的正义链可以含有YYY基序,当双链体区域是21个核苷酸时,该YYY基序出现在该链的9、10和11位置处,计数从5’-末端起从第一个核苷酸开始,或任选地,计数从5’-末端起在该双链体区域内的第一个配对的核苷酸处开始;并且Y表示2’-F修饰。该正义链可以另外含有在双链体区域的相反端作为翼修饰的XXX基序或ZZZ基序;并且XXX和ZZZ各自独立地表示2’-OMe修饰或2’-F修饰。
在一个实施例中,该反义链可以含有出现在该链的位置11、12和13处的Y′Y′Y′基序,计数从5’-末端起从第一个核苷酸开始,或任选地,计数从 5’-末端起在该双链体区域内的第一个配对的核苷酸处开始;并且Y’表示2’- O-甲基修饰。该正义链可以另外含有在双链体区域的相反端作为翼修饰的 X′X′X′基序或Z′Z′Z′基序;并且X′X′X′和Z′Z′Z′各自独立地表示2’-OMe修饰或2’-F修饰。
由以上式(Ia)、(Ib)、(Ic)、和(Id)中任一项表示的正义链分别与由式(IIa)、(IIb)、(IIc)、和(IId)中任一项表示的反义链形成了一个双链体。
因此,用于在本发明的方法中使用的RNAi试剂可以包含正义链和反义链,每条链具有14至30个核苷酸,该RNAi双链体由式(III)表示:
正义:5'np-Na-(X X X)i-Nb-Y Y Y-Nb-(Z Z Z)j-Na-nq 3'
反义:3'np’-Na’-(X’X′X′)k-Nb’-Y′Y′Y′-Nb’-(Z′Z′Z′)l-Na’-nq’5'
(III)
其中:
i、j、k、以及l各自独立地是0或1;
p、p'、q以及q'各自独立地是0-6;
各Na和Na’独立地表示包含0-25个修饰的核苷酸的寡核苷酸序列,每个序列包含至少两个不同修饰的核苷酸;
各Nb和Nb’独立地表示包含0-10个修饰的核苷酸的寡核苷酸序列;
其中
各np、np'、nq、以及nq'独立地表示一个突出端核苷酸,该np、np'、nq、以及nq'中的每一个可以或可以不存在;并且
XXX、YYY、ZZZ、X'X'X'、Y'Y'Y'、以及Z'Z'Z'各自独立地表示三个连续核苷酸上具有三个相同修饰的一个基序。
在一个实施例中,i是0并且j是0;或i是1并且j是0;或i是0并且 j是1;或i和j两者均是0;或i和j两者均是1。在另一个实施例中,k是0 并且l是0;或k是1并且l是0;k是0并且l是1;或k和l两者均是0;或k和l两者均是1。
形成RNAi双链体的该正义链和反义链的示例性组合包括下式:
5'np-Na-Y Y Y-Na-nq 3'
3'np’-Na’-Y′Y′Y′-Na’nq’5'
(IIIa)
5'np-Na-Y Y Y-Nb-Z Z Z-Na-nq 3'
3'np’-Na’-Y′Y′Y′-Nb’-Z′Z′Z′-Na’nq’5'
(IIIb)
5'np-Na-X X X-Nb-Y Y Y-Na-nq 3'
3'np’-Na’-X′X′X′-Nb’-Y′Y′Y′-Na’-nq’5'
(IIIc)
5'np-Na-X X X-Nb-Y Y Y-Nb-Z Z Z-Na-nq 3'
3'np’-Na’-X′X′X′-Nb’-Y′Y′Y′-Nb’-Z′Z′Z′-Na-nq’5'
(IIId)
当该RNAi试剂由式(IIIa)表示时,各Na独立地表示包含2-20个、2-15 个或2-10个修饰的核苷酸的寡核苷酸序列。
当该RNAi试剂由式(IIIb)表示时,各Nb独立地表示包含1-10个、1-7 个、1-5个或1-4个修饰的核苷酸的寡核苷酸序列。各Na独立地表示包含2- 20个、2-15个或2-10个修饰的核苷酸的寡核苷酸序列。
当该RNAi试剂表示为式(IIIc)时,各Nb、Nb’独立地表示包含0-10 个、0-7个、0-10个、0-7个、0-5个、0-4个、0-2个或0个修饰的核苷酸的寡核苷酸序列。各Na独立地表示包含2-20个、2-15个或2-10个修饰的核苷酸的寡核苷酸序列。
当该RNAi试剂表示为式(IIId)时,各Nb、Nb’独立地表示包含0-10 个、0-7个、0-10个、0-7个、0-5个、0-4个、0-2个或0个修饰的核苷酸的寡核苷酸序列。各Na、Na’独立地表示包含2-20个、2-15个或2-10个修饰的核苷酸的寡核苷酸序列。Na、Na’、Nb和Nb’各自独立地包含交替模式的修饰。
式(III)、(IIIa)、(IIIb)、(IIIc)和(IIId)中的X、Y和Z各自可以是彼此相同或不同的。
当该RNAi试剂由式(III)、(IIIa)、(IIIb)、(IIIc)以及(IIId)表示时,这些 Y核苷酸中的至少一个可以与这些Y’核苷酸中的一个形成碱基对。可替代地,这些Y核苷酸中的至少两个与相应的Y’核苷酸形成碱基对;或这些Y 核苷酸中的全部三个都与相应的Y’核苷酸形成碱基对。
当该RNAi试剂由式(IIIb)或(IIId)表示时,这些Z核苷酸中的至少一个可以与这些Z’核苷酸中的一个形成碱基对。可替代地,这些Z核苷酸中的至少两个与相应的Z’核苷酸形成碱基对;或这些Z核苷酸中的全部三个都与相应的Z’核苷酸形成碱基对。
当该RNAi试剂表示为式(IIIc)或(IIId)时,这些X核苷酸中的至少一个可以与这些X’核苷酸中的一个形成碱基对。可替代地,这些X核苷酸中的至少两个与相应的X’核苷酸形成碱基对;或这些X核苷酸中的全部三个都与相应的X’核苷酸形成碱基对。
在一个实施例中,Y核苷酸上的修饰不同于Y’核苷酸上的修饰,Z核苷酸上的修饰不同于Z’核苷酸上的修饰,和/或X核苷酸上的修饰不同于X’核苷酸上的修饰。
在一个实施例中,当该RNAi试剂由式(IIId)表示时,Na修饰是2′-O-甲基或2′-氟代修饰。在另一个实施例中,当该RNAi试剂由式(IIId)表示时, Na修饰是2′-O-甲基或2′-氟代修饰且np′>0并且至少一个np′经由硫代磷酸酯键连接到相邻核苷酸上。在又另一个实施例中,当该RNAi试剂由式(IIId) 表示时,Na修饰是2′-O-甲基或2′-氟代修饰,np’>0并且至少一个np’经由硫代磷酸酯键连接到相邻核苷酸上,并且正义链共轭至通过二价或三价支链接头(如下描述)附接的一种或多种GalNAc衍生物上。在另一个实施例中,当该RNAi试剂由式(IIId)表示时,Na修饰是2′-O-甲基或2′-氟代修饰, np′>0并且至少一个np′经由硫代磷酸酯键连接到相邻核苷酸上,正义链包含至少一个硫代磷酸酯键并且该正义链共轭至通过二价或三价分支接头附接的一种或多种GalNAc衍生物。
在另一个实施例中,当该RNAi试剂由式(IIIa)表示时,Na修饰是2′-O- 甲基或2′-氟代修饰,np′>0并且至少一个np′经由硫代磷酸酯键连接到相邻核苷酸上,正义链包含至少一个硫代磷酸酯键并且该正义链共轭至通过二价或三价分支接头附接的一种或多种GalNAc衍生物。
在一个实施例中,该RNAi试剂是多聚体,该多聚体含有至少两个由式 (III)、(IIIa)、(IIIb)、(IIIc)和(IIId)表示的双链体,其中这些双链体通过接头来连接。该接头可以是可切割的或不可切割的。任选地,该多聚体进一步包含配体。这些双链体中的每个可以靶向相同基因或两个不同基因;或这些双链体中的每个可以靶向两个不同靶位点处的相同基因。
在一个实施例中,该RNAi试剂是多聚体,该多聚体含有由式(III)、 (IIIa)、(IIIb)、(IIIc)和(IIId)表示的三个、四个、五个、六个或更多个双链体。该接头可以是可切割的或不可切割的。任选地,该多聚体进一步包含配体。这些双链体中的每个可以靶向相同基因或两个不同基因;或这些双链体中的每个可以靶向两个不同靶位点处的相同基因。
在一个实施例中,由式(III)、(IIIa)、(IIIb)、(IIIc)和(IIId)表示的两种 RNAi试剂在5’末端和这些3’末端中的一个或两个处彼此连接,并且任选地共轭至配体上。这些试剂中的每个可以靶向相同基因或两个不同基因;或这些试剂中的每个可以靶向两个不同靶位点处的相同基因。
不同公开物描述了可以在本发明的这些方法中使用的多聚体RNAi试剂。此类公开物包括WO 2007/091269、美国专利号7858769、WO 2010/141511、WO 2007/117686、WO 2009/014887以及WO 2011/031520,所述公开物的每一个的全部内容特此通过引用结合在此。
如下更详细地描述,含有一个或多个碳水化合物部分与RNAi试剂的共轭的RNAi试剂可以优化该RNAi试剂的一种或多种特性。在许多情况下,该碳水化合物部分将被附接到该RNAi试剂的修饰的亚单元上。例如, dsRNA试剂的一个或多个核糖核苷酸亚单元的核糖可以被另一个部分(例如,碳水化合物配体所附接的非碳水化合物(优选环状)载体)置换。其中亚单位的核糖已经如此被置换的核糖核苷酸亚单位在此被称为核糖置换修饰亚单位(RRMS)。环状载体可以是碳环系统,即所有环原子均是碳原子,或杂环系统,即一个或多个环原子可以是杂原子,例如氮、氧、硫。该环状载体可以是单环系统,或可以含有两个或更多个环,例如稠合环。该环状载体可以是完全饱和的环系统,或它可以含有一个或多个双键。
该配体可以通过载体附接到多核苷酸上。这些载体包括(i)至少一个“骨架附接点”、优选两个“骨架附接点”,和(ii)至少一个“系拴附接点”。如在此使用的“骨架附接点”是指官能团(例如羟基基团),或通常,可供用于并且适用于将该载体结合到核糖核酸的骨架(例如含硫骨架)中的键(例如磷酸酯或修饰的磷酸酯)。在一些实施例中,“系栓附接点”(TAP)是指该环状载体的、连接选择的部分的组成环原子,例如碳原子或杂原子(相异于提供骨架附接点的原子)。该部分可以是例如碳水化合物,例如单糖、二糖、三糖、四糖、寡糖以及多糖。任选地,该选择的部分通过介入系拴物连接到该环状载体上。因此,该环状载体将经常包括官能团(例如氨基基团),或通常提供适用于将另一个化学实体(例如配体)结合或系拴到组成型环上的键。
这些RNAi试剂可以经由载体共轭至配体上,其中该载体可以是环状基团或非环状基团;优选地,环状基团选自吡咯烷基、吡唑啉基、吡唑烷基、咪唑啉基、咪唑烷基、哌啶基、哌嗪基、[1,3]二氧戊环、噁唑烷基、异噁唑烷基、吗啉基、噻唑烷基、异噻唑烷基、喹喔啉基、哒嗪酮基、四氢呋喃基以及十氢萘;优选地,非环状基团选自丝氨醇骨架或二乙醇胺骨架。
在某些具体的实施例中,用于本发明的这些方法中的RNAi试剂是选自下组的试剂,该组具有在表3、表4、表5、表6、表18、表19、表20、表 21和表23中的任一个中列出的试剂。这些试剂可以进一步包含配体。
IV.共轭至配体的iRNA
适用于本发明方法的iRNA的RNA的另一种修饰涉及使RNA化学连接到一种或多种增强iRNA的活性、细胞分布或细胞摄取的配体、部分或共轭物上。这类部分包括但不限于脂质部分,如胆固醇部分(Letsinger等人, Proc.Natl Acid.Sci.USA[美国国家科学院院刊],1989,86:6553-6556)、胆酸(Manoharan等人,Biorg.Med.Chem.Let.[生物有机化学与医药化学通讯],1994,4:1053-1060)、硫醚,例如己基-S-三苯甲基硫醇(Manoharan 等人,Ann.N Y.Acad.Sci.[纽约科学院年报],1992,660:306-309; Manoharan等人,Biorg.Med.Chem.Let.[生物有机化学与医药化学通讯], 1993,3:2765-2770)、硫代胆固醇(Oberhauser等人,Nucl Acids Res.[核酸研究],1992,20:533-538)、脂肪族链,例如十二烷二醇或十一烷基残基 (Saison-Behmoaras等人,EMBO J[欧洲分子生物学学会杂志],1991, 10:1111-1118;Kabanov等人,FEBS Lett.[欧洲生化学会联合会快报],1990, 259:327-330;Svinarchuk等人,Biochimie[生物化学],1993,75:49-54)、磷脂,例如二-十六烷基-外消旋-甘油或三乙基铵1,2-二-O-十六烷基-外消旋-甘油-3-磷酸酯(Manoharan等人,Tetrahedron Lett.[四面体快报],1995, 36:3651-3654;Shea等人,Nucl.Acids Res.[核酸研究],1990,18:3777- 3783)、聚胺或聚乙二醇链(Manoharan等人,Nucleosides&Nucleotides[核苷与核苷酸],1995,14:969-973)、或金刚烷乙酸(Manoharan等人,Tetrahedron Lett.[四面体快报],1995,36:3651-3654)、棕榈基部分(Mishra 等人,Biochim.Biophys.Acta[生物化学与生物物理学报],1995,1264:229- 237)、或十八胺或己基氨基-羰基氧基胆固醇部分(Crooke等人,J. Pharmacol.Exp.Ther.[美国药理学与实验治疗学杂志],1996,277:923- 937)。
在一个实施例中,配体改变向其中并入该配体的iRNA试剂的分布、靶向或寿命。在优选实施例中,与例如不存在这样一个配体的物种相比,这种配体为选择的靶标(例如分子、细胞或细胞类型、区室(例如细胞或器官区室、组织、器官或身体的区域))提供增强的亲和力。优选的配体将不参与双链体核酸中的双链体配对。
配体可包括天然存在的物质,例如蛋白质(例如,人类血清白蛋白 (HSA)、低密度脂蛋白(LDL)或球蛋白);碳水化合物(例如,葡聚糖、支链淀粉、几丁质、壳聚糖、菊糖、环糊精、N-乙酰半乳糖胺、或玻尿酸);或脂质。配体还可以是重组或合成的分子,如合成聚合物,例如合成的聚氨基酸。聚氨基酸的实例包括以下聚氨基酸:聚赖氨酸(PLL)、聚L- 天冬氨酸、聚L-谷氨酸、苯乙烯酸-马来酸酐共聚物、聚(L-丙交酯-共-乙交酯)共聚物、二乙烯基醚-马来酐共聚物、N-(2-羟丙基)甲基丙烯酰胺共聚物 (HMPA)、聚乙二醇(PEG)、聚乙烯醇(PVA)、聚氨酯、聚(2-乙基丙烯酸)、N-异丙基丙烯酰胺聚合物或聚磷嗪。聚胺的实例包括:聚乙烯亚胺、聚赖氨酸(PLL)、精胺、亚精胺、聚胺、假肽-聚胺、肽模拟聚胺、树枝状聚合物聚胺、精氨酸、脒、鱼精蛋白、阳离子脂质、阳离子卟啉、聚胺的季盐、或α螺旋肽。
配体还可以包括靶向基团,例如与指定的细胞类型如肾细胞结合的细胞或组织靶向剂,例如凝集素、糖蛋白、脂质或蛋白质,例如抗体。靶向基团可以是促甲状腺激素、促黑素、凝集素、糖蛋白、表面活性蛋白A、粘蛋白碳水化合物、多价乳糖、单价或多价半乳糖、N-乙酰基-半乳糖胺、N-乙酰基-葡糖胺多价甘露糖、多价岩藻糖、糖基化聚氨基酸、转铁蛋白、双磷酸盐、聚谷氨酸、聚天冬氨酸、脂质、胆固醇、类固醇、胆酸、叶酸、维生素 B12、维生素A、生物素、或RGD肽或RGD肽模拟物。在某些实施例中,配体包括单价或多价半乳糖。在某些实施例中,配体包括胆固醇。
配体的其他实例包括染料、嵌入剂(例如吖啶)、交联剂(例如补骨脂素、丝裂霉素C)、卟啉(TPPC4、德克萨斯卟啉(texaphyrin)、噻啉 (Sapphyrin))、多环芳烃(例如吩嗪、二氢吩嗪)、人工核酸内切酶(例如EDTA)、亲脂性分子,例如胆固醇、胆酸、金刚烷乙酸、1-芘丁酸、二氢睾酮、1,3-双-O(十六烷基)甘油、香叶基氧己基、鲸蜡基甘油、冰片、薄荷醇、1,3-丙二醇、十七烷基、棕榈酸、肉豆蔻酸、O3-(油酰)石胆酸、O3- (油酰)胆烯酸、二甲氧基三苯甲基、或吩噁嗪肽共轭物(例如触角足肽、Tat 肽)、烷基化剂、磷酸酯、氨基、巯基、PEG(例如PEG-40K)、MPEG、[MPEG]2、聚氨基、烷基、取代的烷基、放射标记的标志物、酶、半抗原 (例如生物素)、转运/吸收促进剂(例如阿司匹林、维生素E、叶酸)、合成性核糖核酸酶(例如咪唑、双咪唑、组胺、咪唑聚类、吖啶-咪唑共轭物、四氮杂大环类的Eu3+络合物)、二硝基苯基、HRP或AP。
配体可以是蛋白质,例如糖蛋白,或肽,例如对辅助配体具有特异亲和力的分子,或抗体,例如与指定细胞类型如肝细胞结合的抗体。配体还可以包括激素和激素受体。它们也可以包括非肽种类,如脂质、凝集素、糖类、维生素、辅因子、多价乳糖、多价半乳糖、N-乙酰基-半乳糖胺、N-乙酰基- 葡糖胺多价甘露糖或多价岩藻糖。该配体可以是例如脂多糖,p38 MAP激酶的激活剂或NF-κB的激活剂。
该配体可以是可以例如通过破坏细胞的细胞骨架(例如通过破坏细胞微管、微丝和/或中间丝)增加iRNA试剂摄入到细胞中的物质,例如药物。药物可以例如是泰素(taxon)、长春新碱、长春碱、松胞菌素、诺考达唑、促微丝聚合剂(japlakinolide)、红海海绵素A、鬼笔环肽、海洋苔藓素 (swinholide)A、茚满诺星(indanocine)或myoservin。
在一些实施例中,附接到如在此所描述的iRNA上的配体用作药物代谢动力学调节剂(PK调节剂)。PK调节剂包括亲油物质、胆酸、类固醇、磷脂类似物、肽、蛋白质结合剂、PEG、维生素等。示例性PK调节剂包括但不限于胆固醇、脂肪酸、胆酸、石胆酸、二烷基甘油酯、二酰甘油酯、磷脂、鞘脂、萘普生、布洛芬(ibuprofen)、维生素E、生物素等。包含许多硫代磷酸酯键的寡核苷酸也已知与血清蛋白结合,因此骨架中包含多个硫代磷酸酯键的短寡核苷酸,例如具有约5个碱基、10个碱基、15个碱基或20 个碱基的寡核苷酸,也服从于本发明作为配体(例如作为PK调节配体)。此外,结合血清组分(例如血清蛋白)的适配体也适合用作在此所述的这些实施例中的PK调节配体。
本发明的配体共轭的寡核苷酸可经由使用具有悬垂反应功能性的寡核苷酸,例如来源于连接分子附接在该寡核苷酸(叙述于下),而合成。该反应性寡核苷酸可以直接与可商购的配体,合成的、具有多种保护基团中的任一种的配体,或具有连接部分附接于其上的配体发生反应。
在本发明的共轭物中使用的寡核苷酸可以方便且常规地通过固相合成的熟知技术来制备。用于这类合成的设备由多个供应商(包括例如应用生物系统公司(AppliedBiosystems)(福斯特市,加利福尼亚州))销售。可另外地或替代地使用本领域中已知的用于这类合成的任何其他装置。使用相似的技术来制备其他寡核苷酸(如硫代磷酸酯和烷基化衍生物)也是已知的。
在本发明的配体共轭的寡核苷酸以及具有序列特异性连接的核苷的配体 -分子中,该寡核苷酸以及寡核苷可以利用标准核苷酸或核苷前体,或已经具有连接部分的核苷酸或核苷共轭物前体,已经具有配体分子的配体-核苷酸或核苷共轭物前体,或带有结构基元的非核苷配体,在适合的DNA合成仪上进行组装。
当使用已经具有连接部分的核苷酸-共轭物前体时,典型地完成该序列特异性连接的核苷的合成,并且然后该配体分子与该连接部分反应以形成配体共轭的寡核苷酸。在一些实施例中,本发明的寡核苷酸或连接的核苷通过自动合成仪合成,除了可商购以及寡核苷酸合成中常规使用的标准亚磷酰胺以及非标准亚磷酰胺之外,该合成还使用来源于配体-核苷共轭物的亚磷酰胺。
A.脂质共轭物
在一个实施例中,该配体或共轭物是脂质或基于脂质的分子。这种脂质或基于脂质的分子优选地结合血清蛋白,例如人血清白蛋白(HSA)。结合 HSA的配体允许共轭物分布至靶组织,例如身体的非肾靶组织。例如,该靶组织可以是肝脏,包括肝脏的实质细胞。可以结合HSA的其他分子也可以用作配体。例如可以使用萘普生或阿司匹林。脂质或基于脂质的配体可以(a) 增加共轭物对降解的抗性,(b)增加靶向或运输到靶细胞或细胞膜中,和/或(c)可以用来调节与血清蛋白(例如,HSA)的结合。
基于脂质的配体可以用来抑制(例如控制)共轭物与靶组织的结合。例如,与HSA更强烈结合的脂质或基于脂质的配体将更不可能靶向肾并且因此较不可能从身体清除。与HSA较不强烈结合的脂质或基于脂质的配体可以用来使共轭物靶向肾。
在一个优选实施例中,基于脂质的配体结合HSA。优选地,它以足够的亲和力结合HSA,使得该共轭物将优选地分布至非肾组织。然而,优选的是这种亲和力并不是这样强,使得HSA-配体结合不能逆转。
另一个优选的实施例中,脂质系配体微弱或根本不结合HSA,使得共轭物将优选分布至肾。作为基于脂质的配体的替代或除它之外,还可以使用靶向肾细胞的其他部分。
在另一方面,该配体是由靶细胞(例如正在增殖的细胞)摄取的部分,例如维生素。这些特别有用于治疗特征在于不想要的细胞增殖(例如具有恶性或非恶性类型,例如癌细胞)的障碍。示例性维生素包括维生素A、E和 K。其他示例性维生素包括是B维生素,例如叶酸、B12、核黄素、生物素、吡哆醛或其他维生素或由靶细胞如肝细胞摄取的养分。还包括HSA和低密度脂蛋白(LDL)。
B.细胞渗透剂
在另一方面,该配体是细胞渗透剂,优选地是螺旋细胞渗透剂。优选地,该试剂是两亲的。示例性试剂是肽如tat或触角足蛋白。如果该试剂是肽,则它可以被修饰,包括肽酰基模拟物、反转异构体、非肽键或假肽键和 D-氨基酸的使用。该螺旋剂优选地是一种α-螺旋剂,该α-螺旋剂优选具有亲脂性相和疏脂性相。
该配体可以是肽或肽模拟物。模拟肽(在此亦称为寡肽模拟物)为能够折叠成与天然肽相似的限定三维结构的分子。肽和肽模拟物与iRNA剂的附接可以影响iRNA的药物代谢动力学分布,如通过增强细胞鉴别与吸收。肽或肽模拟物部分可以是约5-50氨基酸长的,例如约5、10、15、20、25、 30、35、40、45或50个氨基酸长。
肽或肽模拟物可以例如是细胞渗透肽、阳离子肽、两亲肽或疏水肽(例如主要由Tyr、Trp或Phe组成)。肽部分可以是树状肽、约束肽或交联肽。在另一个替代中,该肽部分可以包括疏水性膜转位序列(MTS)。含有疏水性MTS的示例性肽是具有氨基酸序列AAVALLPAVLLALLAP(SEQ ID NO:3)的RFGF。含有疏水性MTS的RFGF类似物(例如,氨基酸序列AALLPVLLAAP(SEQ ID NO:4))也可以是靶向部分。该肽部分可以是“递送”肽,该递送肽可以携带大的极性分子,包括肽、寡核苷酸和跨细胞膜的蛋白质。例如,已经发现来自HIV Tat蛋白的序列(GRKKRRQRRRPPQ (SEQ ID NO:5))和果蝇触角足蛋白的序列(RQIKIWFQNRRMKWKK(SEQ ID NO:6))能够作为递送肽发挥作用。肽或肽模拟物可以通过 DNA的随机序列来编码,如从噬菌体展示文库或一珠一化合物(OBOC)组合文库中鉴定的肽(Lam等人,Nature[自然],354:82-84,1991)。通过为了细胞靶向的目的结合的单体单元栓系至dsRNA试剂的肽或肽模拟物的实例是精氨酸-甘氨酸-天冬氨酸(RGD)-肽或RGD模拟物。肽部分的长度可以在从约5个氨基酸至约40个氨基酸的范围内。肽部分可具有结构修饰,例如使得增加稳定性或引导构形特性。可以利用以下描述的任何结构修饰。
用于本发明的这些组合物和方法中的RGD肽可以是线性或环状的,并且可以被修饰,例如糖基化或甲基化以促进靶向一个或多个特定组织。含 RGD的肽和肽模拟物可以包括D-氨基酸以及合成的RGD模拟物。除了 RGD之外,可使用靶向整合素配体的其他部分。该配体的优选共轭物靶向 PECAM-1或VEGF。
“细胞渗透肽”能够渗透细胞例如微生物细胞(如细菌或真菌细胞)或哺乳动物细胞(如人细胞)。微生物细胞渗透肽可以是例如α-螺旋线性肽(例如LL-37或Ceropin P1)、含二硫键的肽(例如α-防卫素、β-防卫素或牛抗菌肽)、或只含有一个或两个主导性氨基酸(例如PR-39或吲哚力西丁)的肽。细胞渗透肽还可以包括核定位信号(NLS)。例如,细胞渗透肽可以是二重两性肽,例如MPG,其来源于HIV-1gp41的融合肽结构域及SV40大 T抗原的NLS(Simeoni等人,Nucl.Acids Res.[核酸研究]31:2717-2724, 2003)。
C.碳水化合物共轭物
在本发明的组合物与方法的一些实施例中,iRNA寡核苷酸进一步包含碳水化合物。碳水化合物共轭的iRNA对于核酸的体内递送以及适合于体内治疗用途的组合物而言是有利的,如在此所描述。如在此使用的,“碳水化合物”指以下这样一种化合物,它是本身由具有至少6个碳原子的一个或多个单糖单位构成的碳水化合物(其可以是线性的、支链的或环状的),其中氧、氮或硫原子结合至每一碳原子;或者它是具有以下这样的一个碳水化合物部分作为其一部分的化合物,该碳水化合物由具有至少六个碳原子的一个或多个单糖单位构成(其可以是线性的、支链的或环状的),其中氧、氮或硫原子结合至每一碳原子。代表性的碳水化合物包括糖(单糖、二糖、三糖以及含有从约4、5、6、7、8或9个单糖单位的低聚糖),以及多糖比如淀粉、糖原、纤维素以及多糖胶。具体的单糖包括C5以及以上的(例如,C5、C6、C7或C8)糖;二糖以及三糖包括具有两个或三个单糖单位的糖 (例如,C5、C6、C7或C8)。
在一实施例中,本发明组合物及方法中使用的碳水化合物共轭物为单糖。在另一个实施例中,用于在本发明的这些组合物和方法中的碳水化合物共轭物是选自下组,该组由以下各项组成:
Figure BDA0003613643930001131
Figure BDA0003613643930001141
Figure BDA0003613643930001151
Figure BDA0003613643930001161
Figure BDA0003613643930001171
在一个实施例中,该单糖是N-乙酰半乳糖胺,例如
Figure BDA0003613643930001172
用于在于此描述的实施例中使用的另一个代表性碳水化合物共轭物包括但不限于
Figure BDA0003613643930001173
Figure BDA0003613643930001174
当X或Y其中一者是寡核苷酸时,另一者是氢。
在本发明的某些实施例中,GalNAc或GalNAc衍生物经由单价接头附接至本发明iRNA试剂。在一些实施例中,GalNAc或GalNAc衍生物经由二价接头附接至本发明iRNA试剂。在本发明又其他实施例中,GalNAc或 GalNAc衍生物经由三价接头附接至本发明iRNA试剂。
在实施例中,本发明的双链RNAi试剂包含附接至iRNA试剂的 GalNAc或GalNAc衍生物。另一个实施例中,本发明的双链RNAi试剂包含复数个(例如,2、3、4、5或6个)GalNAc或GalNAc衍生物,各经由复数个单价接头独立附接至双链RNAi试剂的复数个核苷酸。
在一些实施例中,例如,当本发明iRNA试剂的两条链为较大分子的部分且经由一条链的3'-末端及各自其他链的5'-末端间的核苷酸不间断链连接而形成包含复数个未配对核苷酸的发夹环时,发夹环内的各未配对核苷酸可独立包含经由单价接头附接的GalNAc或GalNAc衍生物。发夹环也可以由双链体的一条链中的延伸突出端形成。
在一些实施例中,碳水化合物共轭物进一步包含一个或多个如上所述的额外配体,例如但不限于,PK调变剂和/或细胞渗透肽。
适合用于在本发明中使用的另外的碳水化合物共轭物包括在PCT公开号WO 2014/179620和WO 2014/179627中描述的那些,这些公开各自的全部内容通过引用结合在此。
D.接头
在一些实施例中,在此描述的共轭物或配体可以借助不同接头附接到 iRNA寡核苷酸上,这些接头可以是可裂解的或不可裂解的。
术语“接头”或“连接基团”意指一种有机部分,该有机部分连接一种化合物的两个部分,例如共价地附接一个种化合物的两个部分。接头典型地包含直接的键或原子例如氧或硫,单位例如NR8、C(O)、C(O)NH、SO、SO2、 SO2NH或原子链,例如但不限于,经取代或未经取代烷基、经取代或未经取代烯基、经取代或未经取代炔基、芳基烷基、芳基烯基、芳基炔基、杂芳基烷基、杂芳基烯基、杂芳基炔基、杂环基烷基、杂环基烯基、杂环基炔基、芳基、杂芳基、杂环基、环烷基、环烯基、烷基芳基烷基、烷基芳基烯基、烷基芳基炔基、烯基芳基烷基、烯基芳基烯基、烯基芳基炔基、炔基芳基烷基、炔基芳基烯基、炔基芳基炔基、烷基杂芳基烷基、烷基杂芳基烯基、烷基杂芳基炔基、烯基杂芳基烷基、烯基杂芳基烯基、烯基杂芳基炔基、炔基杂芳基烷基、炔基杂芳基烯基、炔基杂芳基炔基、烷基杂环基烷基、烷基杂环基烯基、烷基杂环基炔基、烯基杂环基烷基、烯基杂环基烯基、烯基杂环基炔基、炔基杂环基烷基、炔基杂环基烯基、炔基杂环基炔基、烷基芳基、烯基芳基、炔基芳基、烷基杂芳基、烯基杂芳基、炔基杂芳基,其中一个或多个亚甲基可被下列者中断或封端:O、S、S(O)、SO2、 N(R8)、C(O)、经取代或未经取代芳基、经取代或未经取代杂芳基、经取代或未经取代杂环基;其中R8为氢、酰基、脂族或经取代脂族。在一个实施例中,该接头是在约1-24个原子、2-24、3-24、4-24、5-24、6-24、6-18、7- 18、8-18个原子,7-17、8-17、6-16、7-16或8-16个原子之间。
可切割的连接基团在细胞外是足够稳定的,但它在进入靶标细胞时被切割以释放该接头将其结合在一起的两个部分。在一个优选的实施例中,该可切割的连接基团在靶标细胞中或在第一参考条件(其可以例如被选择为模拟或代表细胞内条件)下的切割比在受试者的血液中或在第二参考条件下(其可以例如被选择为模拟或代表在该血液或血清中发现的条件)快至少约10 倍、20倍、30倍、40倍、50倍、60倍、70倍、80倍、90倍或更多,或至少约100倍。
可裂解的连接基团易于受到裂解因子(例如pH、氧化还原电位或降解分子的存在)的影响。一般地,裂解因子在细胞内比在血清或血液中更普遍或具有更高水平或活性。此类切割剂的实例包括:氧化还原剂,它们被选择用于具体底物或者无底物特异性,包括例如氧化或还原酶或者在细胞中出现的还原剂比如硫醇(它可以通过还原作用降解可氧化还原切割的连接基团);酯酶;内涵体或可以创造酸性环境的因子,比如可以导致pH为5或更低的那些;可以通过作为广义酸起作用而水解或降解酸可切割的连接基团的酶,肽酶(它可以是底物特异性的),以及磷酸酶。
可切割连接基团,例如二硫键,可对pH敏感。人血清的pH是7.4,而平均的细胞内pH稍低,在约7.1-7.3范围内。核内体具有在5.5-6.0范围内的更酸性的pH,并且溶酶体具有在5.0左右的甚至更酸性的pH。一些接头可具有在优选pH被切割的可切割连接基团,由此将阳离子脂质从配体释放至细胞内,或进入希望的细胞区室中。
接头可以包括可被具体的酶切割的可切割的连接基团。结合到接头中的可切割的连接基团的类型可以取决于有待靶向的细胞。例如靶向肝脏的配体可以通过包括酯基团的接头而被连接到阳离子脂质上。肝脏细胞富含酯酶,并且因此该接头将在肝脏细胞中比在不富含酯酶的细胞类型中更有效地切割。富含酯酶的其他细胞类型包括肺、肾皮质以及睾丸的细胞。
当靶向富含肽酶的细胞类型(如肝细胞和滑膜细胞)时,可以使用含有肽键的接头。
通常,可由测试降解剂(或条件)对切割候选连接基团的能力来评估候选可切割连接基团的适合性。还希望的是也测试该候选的可裂解的连接基团在血液中或当与其他非靶组织接触时抵抗裂解的能力。因此,可以确定在第一条件与第二条件之间进行裂解的相对敏感性,其中该第一条件被选择成指示在靶细胞中的裂解并且该第二条件被选择成指示在其他组织或生物流体 (例如血液或血清)中的裂解。这些评估可以在无细胞系统中、在细胞中、在细胞培养物中、在器官或组织培养物中或在整个动物中进行。有用的是在无细胞或培养条件下进行初始评估并且通过在整个动物中的进一步评估来进行确证。在优选实施例中,有用的候选化合物在细胞中(或在选择成模拟细胞内条件的体外条件下)的切割比在血液或血清(或在被选择成模拟细胞外条件的体外条件下)中的切割快至少约2、4、10、20、30、40、50、60、 70、80、90或约100倍。
i.氧化还原可切割连接基团
在一个实施例中,可切割的连接基团是氧化还原可切割的连接基团,其在还原或氧化时被切割。可还原切割的连接基团的实例是二硫化物连接基团(-S-S-)。为了确定候选的可切割连接基团是否是适合的“可还原切割的连接基团”,或例如是否适合于与特定iRNA部分和特定靶向剂一起使用,可以参考在此描述的方法。例如可以通过用二硫苏糖醇(DTT)或本领域中已知的其他使用还原剂的试剂进行孵育来对候选物进行评估,这模拟了会在细胞(例如靶细胞)中观察到的裂解速率。还可以在被选择成模拟血液或血清条件的条件下对这些候选物进行评估。在具体例中,候选化合物在血液中被切割最多约10%。在其他实施例中,有用的候选化合物在细胞中(或在被选择成模拟细胞内条件的体外条件下)的降解比在血液(或在选择成模拟细胞外条件的体外条件下)中的降解快至少约2、4、10、20、30、40、50、60、70、80、90或约100倍。可使用标准酶动力学检测在选择为模拟细胞内介质的条件下并与选择为模拟细胞外介质的条件下比较而确定候选化合物的裂解速率。
ii.基于磷酸酯的可裂解连接基团
在另一个实施例中,可裂解接头包含基于磷酸酯的可裂解的连接基团。基于磷酸酯的可裂解的连接基团通过降解或水解磷酸酯基团的试剂来裂解。在细胞中裂解磷酸酯基团的试剂的实例是酶,例如细胞中的磷酸酶。基于磷酸酯的连接基团的实例是-O-P(O)(ORk)-O-、-O-P(S)(ORk)-O-、-O- P(S)(SRk)-O-、-S-P(O)(ORk)-O-、-O-P(O)(ORk)-S-、-S-P(O)(ORk)-S-、-O- P(S)(ORk)-S-、-S-P(S)(ORk)-O-、-O-P(O)(Rk)-O-、-O-P(S)(Rk)-O-、-S- P(O)(Rk)-O-、-S-P(S)(Rk)-O-、-S-P(O)(Rk)-S-、-O-P(S)(Rk)-S-。优选的实施例是-O-P(O)(OH)-O-、-O-P(S)(OH)-O-、-O-P(S)(SH)-O-、-S-P(O)(OH)-O-、- O-P(O)(OH)-S-、-S-P(O)(OH)-S-、-O-P(S)(OH)-S-、-S-P(S)(OH)-O-、-O- P(O)(H)-O-、-O-P(S)(H)-O-、-S-P(O)(H)-O、-S-P(S)(H)-O-、-S-P(O)(H)-S-、- O-P(S)(H)-S-。优选实施例是-O-P(O)(OH)-O-。可以使用类似于以上描述的那些的方法来评估这些候选物。
iii.酸可切割连接基团
在另一个实施例中,可切割接头包含酸可切割的连接基团。酸可切割的连接基团是在酸性条件下被切割的连接基团。在优选的实施例中,酸可切割的连接基团在具有约6.5或更低(例如约6.0、5.75、5.5、5.25、5.0或更低)的pH的酸性环境中被切割,或者被多种试剂(例如可以作为广义酸起作用的酶)切割。在细胞中,具体的低pH细胞器(例如核内体或溶酶体) 可以提供针对酸可切割的连接基团的切割环境。酸可切割的连接基团的实例包括但不限于腙、酯以及氨基酸的酯。酸可切割的基团可以具有通式- C=NN-、C(O)O或-OC(O)。优选实施例是当附接到酯(烷氧基基团)的氧的碳是芳基基团、取代的烷基基团或叔烷基基团(如二甲基戊基或叔丁基) 时。可以使用类似于以上描述的那些的方法来评估这些候选物。
iv.基于酯的连接基团
在另一个实施例中,可裂解的接头包含基于酯的可裂解的连接基团。基于酯的可裂解的连接基团通过酶如细胞中的酯酶与酰胺酶来裂解。基于酯的可裂解的连接基团的实例包括但不限于亚烷基、亚烯基以及亚炔基基团的酯。酯可裂解的连接基团具有通式-C(O)O-、或-OC(O)-。可以使用类似于以上描述的那些的方法来评估这些候选物。
v.基于肽的切割基团
在又另一个实施例中,可切割接头包含基于肽的可切割连接基团。基于肽的可切割连接基团通过酶(例如细胞中的肽酶与蛋白酶)而被切割。基于肽的可切割连接基团是在氨基酸之间形成肽键以产生寡肽(例如二肽、三肽等)以及多肽。基于肽的可切割的基团不包括酰胺基团(-C(O)NH-)。该酰胺基团可以在任何亚烷基、亚烯基或亚炔基之间形成。肽键为在胺基酸之间形成而产生肽及蛋白的特殊类型酰胺键。基于肽的裂解基团通常限于在氨基酸之间形成从而得到肽和蛋白质的肽键(即,酰胺键),并且不包括整个酰胺官能团。基于肽的可切割的连接基团具有通式- NHCHRAC(O)NHCHRBC(O)-,其中RA与RB是这两个邻接氨基酸的R基团。可以使用类似于以上描述的那些的方法来评估这些候选物。
在一个实施例中,本发明的iRNA通过接头共轭至碳水化合物上。本发明的这些组合物和方法的具有接头的iRNA碳水化合物共轭物的非限制性实例包括但不限于,
Figure BDA0003613643930001231
Figure BDA0003613643930001241
Figure BDA0003613643930001242
以及
Figure BDA0003613643930001243
当X或Y中的是寡核苷酸时,另一个是氢。
本发明组合物及方法的某些实施例中,配体为经由二价或三价分支接头而附接的一个或多个GalNAc(N-乙酰半乳胺糖)衍生物。
在一个实施例中,本发明的dsRNA共轭至选自下组的二价或三价分支接头上,该组具有以任何式(XXXII)-(XXXV)示出的结构:
Figure BDA0003613643930001251
其中:
q2A、q2B、q3A、q3B、q4A、q4B、q5A、q5B以及q5C对于每次出现独立地表示0-20并且其中该重复单元可以是相同或不同的;
P2A、P2B、P3A、P3B、P4A、P4B、P5A、P5B、P5C、T2A、T2B、T3A、T3B、 T4A、T4B、T4A、T5B、T5C对于每次出现各自独立地是:不存在、CO、NH、 O、S、OC(O)、NHC(O)、CH2、CH2NH或CH2O;
Q2A、Q2B、Q3A、Q3B、Q4A、Q4B、Q5A、Q5B、Q5C对于每次出现独立地是:不存在、亚烷基、取代的亚烷基,其中一个或多个亚甲基可以被以下各项中的一个或多个中断或封端:O、S、S(O)、SO2、N(RN)、C(R’)=C(R”)、 C≡C或C(O);
R2A、R2B、R3A、R3B、R4A、R4B、R5A、R5B、R5C对于每次出现各自独立地是:不存在、NH、O、S、CH2、C(O)O、C(O)NH、NHCH(Ra)C(O)、- C(O)-CH(Ra)-NH-、CO、CH=N-O、
Figure BDA0003613643930001252
Figure BDA0003613643930001261
或杂环基;
L2A、L2B、L3A、L3B、L4A、L4B、L5A、L5B以及L5C表示配体;即对于每次出现各自独立地表示单糖(如GalNAc)、二糖、三糖、四糖、寡糖或多糖;并且Ra为H或氨基酸侧链。三价共轭的GalNAc衍生物特别适用于与 RNAi试剂一起使用以用于抑制靶基因表达,如具有式(XXXV)的那些:
式XXXII
Figure BDA0003613643930001262
其中L5A、L5B和L5C表示单糖,如GalNAc衍生物。
适合的二价或三价分支接头基团共轭GalNAc衍生物的实例包括但不限于,以上引用的结构如式II、VII、XI、X及XIII。
传授制备RNA共轭物的代表性美国专利包括但不限于:美国专利号 4,828,979;4,948,882;5,218,105;5,525,465;5,541,313;5,545,730; 5,552,538;5,578,717;5,580,731;5,591,584;5,109,124;5,118,802; 5,138,045;5,414,077;5,486,603;5,512,439;5,578,718;5,608,046; 4,587,044;4,605,735;4,667,025;4,762,779;4,789,737;4,824,941; 4,835,263;4,876,335;4,904,582;4,958,013;5,082,830;5,112,963; 5,214,136;5,082,830;5,112,963;5,214,136;5,245,022;5,254,469; 5,258,506;5,262,536;5,272,250;5,292,873;5,317,098;5,371,241; 5,391,723;5,416,203;5,451,463;5,510,475;5,512,667;5,514,785; 5,565,552;5,567,810;5,574,142;5,585,481;5,587,371;5,595,726; 5,597,696;5,599,923;5,599,928和5,688,941;6,294,664;6,320,017;6,576,752;6,783,931;6,900,297;7,037,646;8,106,022,特此将它们各自的全部内容通过引用结合在此。
给定化合物中的全部位置不必要经统一修饰,并且实际上可以在单个化合物中或甚至在iRNA内的单个核苷处掺入多于一个前述修饰。本发明也包括作为嵌合化合物的iRNA化合物。
在本发明的上下文中,“嵌合”iRNA化合物或“嵌合体”是以下这样的 iRNA化合物,优选是dsRNA,它们含有两个或更多个化学上不同的区域,每者由至少一个单体单元构成,即,在dsRNA化合物的情况下的一种核苷酸。这些iRNA典型地含有至少一个区域,其中该RNA被修饰以便赋予 iRNA增加的核酸酶降解抗性、增加的细胞摄取和/或增加的靶核酸结合亲和力。iRNA的额外区域可充当能切割RNA:DNA或RNA:RNA杂合体的酶的基质。举例而言,RNA酶H是切割RNA:DNA双链体的RNA链的细胞内切核酸酶。因此,RNA酶H的激活导致RNA靶标的裂解,从而大大增强 iRNA抑制基因表达的效率。因此,与杂交至相同靶区域的硫代磷酸酯脱氧 dsRNA相比,可以在使用嵌合dsRNA时,经常用较短的iRNA获得可比较的结果。可以常规地通过凝胶电泳并且如果必要的话联合本领域中已知的核酸杂交技术来检测该RNA靶标的切割。
在某些实例中,iRNA的RNA可以通过非配体基团来进行修饰。为了加强iRNA活性、细胞分布或细胞摄取,已使许多非配体分子与iRNA共轭,而进行这种共轭的程序可在科学文献中找到。这类非配体部分包括脂质部分,例如胆固醇(Kubo,T.等人,Biochem.Biophys.Res.Comm.[生物化学与生物物理学研究通讯]2007,365(1):54-61;Letsinger等人,Proc.Natl.Acad. Sci.USA[美国国家科学院院刊],1989,86:6553)、胆酸(Manoharan等人, Bioorg.Med.Chem.Lett.[生物有机化学与医药化学通讯],1994,4:1053)、硫醚例如己基-S-三苯甲基硫醇(Manoharan等人,Ann.N.Y.Acad.Sci[纽约科学院年报],1992,660:306;Manoharan等人,Bioorg.Med.Chem.Let.[生物有机化学与医药化学通讯],1993,3:2765)、巯基胆固醇(Oberhauser等人,Nucl.Acids Res.[核酸研究],1992,20:533)、脂肪链例如十二烷二醇或十一烷基残余物(Saison-Behmoaras等人,EMBO J[欧洲分子生物学学会杂志],1991,10:111;Kabanov等人,FEBS Lett.[欧洲生物化学学会联盟通讯],1990,259:327;Svinarchuk等人,Biochimie[生物化学],1993, 75:49)、磷脂例如二十六烷基-外消旋-甘油或三乙基铵1,2-二-O-十六烷基- 外消旋-甘油-3-H-磷酸酯(Manoharan等人,Tetrahedron Lett.[四面体通讯],1995,36:3651;Shea等人,Nucl.AcidsRes.[核酸研究],1990, 18:3777)、多胺或聚乙二醇链(Manoharan等人,Nucleosides&Nucleotides [核苷与核苷酸],1995,14:969)、或金刚烷乙酸(Manoharan等人,四面体通讯[Tetrahedron Lett.],1995,36:3651)、棕榈基部分(Mishra等人, Biochim.Biophys.Acta[生物化学与生物物理学学报],1995,1264:229)、或十八胺或己基氨基-羰基-羟胆固醇部分(Crooke等人,J.Pharmacol.Exp. Ther.[药理学与实验治疗学杂志],1996,277:923)。教导此类RNA共轭物的制备的代表性美国专利已经在上文列出。典型的共轭方案涉及在序列的一个或多个位置处合成具有氨基接头的RNA。然后使用适当的偶联剂或激活剂使该氨基基团与被共轭的分子进行反应。可以用仍与固相载体结合或在裂解RNA之后处于溶液相中的RNA来进行共轭反应。通过HPLC纯化RNA 共轭物典型地提供纯的共轭物。
IV.本发明的iRNA的递送
可有多种不同方法实现本发明iRNA至细胞的递送,细胞是如,受试者,例如人类受试者(如,对其有需要的受试者,例如患有可经由降低 PCSK9表达而受益的障碍的受试者)体内的细胞。例如,可以通过在体外或体内使细胞与本发明的iRNA接触来进行递送。还可以通过向受试者给予包含iRNA(例如,dsRNA)的组合物来直接进行体内递送。可替代地,可以通过给予编码并且引导iRNA表达的一种或多种载体来间接进行体内递送。以下进一步讨论这些替代方案。
通常,任何递送核酸分子(体外或体内)的方法适用于本发明iRNA的使用(参见例如,Akhtar S.和Julian RL.,(1992)Trends Cell.Biol.[细胞生物学趋势]2(5):139-144和WO 94/02595,其借由引用全部结合在此)。对于体内递送,为了递送iRNA分子所考虑的因素包括例如,所递送的分子的生物稳定性、非特异性效应的预防以及所递送的分子在靶组织中的累积。可以通过局部给予,例如通过直接注射或植入到组织中或局部给予制剂来使iRNA 的非特异性效应最小化。向治疗部位局部给予使试剂的局部浓度最大化,限制该试剂向全身组织的暴露,该全身组织否则可以受该试剂损害或可以降解该试剂,并且容许给予较低总剂量的iRNA分子。若干研究已经显示在局部给予iRNA时成功敲低基因产物。例如,通过在食蟹猴中玻璃体内注射 (Tolentino MJ.等人,(2004)Retina[视网膜]24:132-138)和在小鼠中视网膜下注射(Reich SJ.等人,(2003)Mol.Vis.[分子视觉]9:210-216)进行的VEGF dsRNA眼内递送均显示出在年龄相关的黄斑变性的实验模型中预防新血管形成。此外,在小鼠中直接肿瘤内注射dsRNA缩减肿瘤体积(Pille,J. 等人,(2005)Mol.Ther.[分子治疗]11:267-274)并且可以延长荷瘤小鼠的存活期(Kim,WJ.等人,(2006)Mol.Ther.[分子治疗]14:343-350;Li,S.等人, (2007)Mol.Ther.[分子治疗]15:515-523)。也已经示出通过直接注射将 RNA干扰成功局部递送递至CNS(Dorn,G.等人,(2004)Nucleic Acids[核酸]32:e49;Tan,PH.等人,(2005)Gene Ther.[基因治疗]12:59-66;Makimura,H. 等人,(2002)BMC Neurosci.[BMC神经科学]3:18;Shishkina,GT.等人, (2004)Neuroscience[神经科学]129:521-528;Thakker,ER.等人,(2004)Proc. Natl.Acad.Sci.U.S.A.[美国国家科学院院刊]101:17270-17275;Akaneya,Y. 等人,(2005)J.Neurophysiol.[神经生理学期刊]93:594-602)并且通过鼻内给予成功递送至肺(Howard,KA.等人,(2006)Mol.Ther.[分子治疗]14:476- 484;Zhang,X.等人,(2004)J.Biol.Chem.[生物化学杂志]279:10677- 10684;Bitko,V.等人,(2005)Nat.Med.[自然医学]11:50-55)。对于全身性给予iRNA用于治疗疾病,可以将RNA修饰或可替代地使用药物递送系统进行递送;两种方法均起到防止dsRNA被体内核酸内切酶和核酸外切酶快速降解的作用。对RNA或药物载体的修饰还可以容许iRNA组合物靶向靶组织,并且避免不希望的脱靶效应。iRNA分子可以通过化学共轭至亲脂性基团如胆固醇进行修饰以增强细胞摄取和防止降解。例如将与亲脂性胆固醇部分共轭的针对ApoB的iRNA全身注射到小鼠中并且导致肝脏和空肠两者中apoB mRNA的敲减(Soutschek,J.等人(2004)Nature[自然]432:173- 178)。已经显示iRNA与适配体的共轭在前列腺癌的小鼠模型中抑制肿瘤生长并且介导肿瘤消退(McNamara JO.等人,(2006)Nat.Biotechnol.[自然生物技术]24:1005-1015)。另一个替代实施例中,可使用药物递送系统例如奈米颗粒、树状物、聚合物、脂质体或阳离子递送系统来递送iRNA。带正电荷的阳离子递送系统促进(带负电荷的)iRNA分子的结合并且也在带负电荷的细胞膜增强相互作用以容许iRNA由细胞高效摄取。阳离子脂质、树状物或聚合物可以与iRNA结合或被诱导以形成包装siRNA的囊泡或胶束(参见例如,Kim SH.等人(2008)Journal of Controlled Release[控制释放期刊] 129(2):107-116)。囊泡或胶束的形成进一步防止全身给予时iRNA的降解。用于制备和给予阳离子-iRNA复合物的方法很好地在本领域普通技术人员的能力范围内(参见例如,Sorensen,DR.等人,(2003)J.Mol.Biol[分子生物学杂志]327:761-766;Verma,UN.等人,(2003)Clin.Cancer Res.[临床癌症研究]9:1291-1300;Arnold,AS等人,(2007)J.Hypertens.[高血压杂志]25:197- 205,这些文献的全部内容通过引用结合在此)。可用于全身性递送iRNA 的药物递送系统的一些非限制性实例包括DOTAP(Sorensen,DR.等人,(2003),上文;Verma,UN.等人,(2003),上文)、Oligofectamine、“固体核酸脂质粒子”(Zimmermann,TS.等人,(2006)Nature[自然]441:111-114)、心磷脂(Chien,PY.等人,(2005)Cancer Gene Ther.[癌症基因治疗]12:321- 328;Pal,A.等人,(2005)IntJ.Oncol.[国际肿瘤学杂志]26:1087-1091)、聚乙亚胺(Bonnet ME.等人,(2008)Pharm.Res.[药学研究]8月16日电子出版先于印刷版;Aigner,A.(2006)J.Biomed.Biotechnol.[生物医学与生物技术杂志]71659)、Arg-Gly-Asp(RGD)肽(Liu,S.(2006)Mol.Pharm.[分子制药学]3:472-487)以及聚酰胺型胺类(Tomalia,DA.等人,(2007)Biochem.Soc. Trans.[生物化学会汇刊]35:61-67;Yoo,H.等人,(1999)Pharm.Res.[药学研究]16:1799-1804)。一些实施例中,iRNA与环糊精形成复合体而用于全身性给予。用于给予iRNA和环糊精的药物组合物的方法可以在美国专利号 7,427,605中找到,所述专利通过引用以其全文结合在此。
A.编码本发明的iRNA的载体
靶向PCSK9基因的iRNA可以从插入DNA或RNA载体中的转录单位表达(参见,例如,Couture,A等人,TIG.(1996),12:5-10;Skillern,A.等人,国际PCT公开号WO 00/22113,Conrad,国际PCT公开号WO 00/22114,和Conrad,美国专利号6,054,299)。表达可以是短暂的(数小时至数星期内)或持续的(数星期至数个月或更久),取决于所使用的特定建构及靶组织或细胞类型。这些转基因可作为线性建构、环状质体或可以是整合或非整合载体的病毒载体而引入。转基因也可以如此构建以允许它作为染色体外质粒遗传(Gassmann等人,Proc.Natl.Acad.Sci.USA[美国国家科学院院刊](1995)92:1292)。
iRNA的单个链或多个链可以从表达载体上的启动子转录。当两个单独的链有待被表达以产生例如dsRNA时,可以将两个单独的表达载体共引入 (例如通过转染或感染)到靶细胞中。可替代地,dsRNA的每个单独链可以通过均位于相同表达质粒上的启动子来转录。在实施例中,dsRNA经表达为经由接头多核苷酸序列连结的反向重复多核苷酸,使得该dsRNA具有茎及环结构。
iRNA表达载体通常是DNA质粒或病毒载体。与真核细胞相容的表达载体、优选地与脊椎动物细胞相容的那些,可以用来产生用于表达如在此所描述的iRNA的重组构建体。真核细胞表达载体是本领域中熟知的并且从许多商业来源可获得。典型地,提供含有用于插入希望的核酸区段的合宜限制性位点的这类载体。iRNA表达载体的递送可以是全身性,例如经静脉或肌肉内给予、经由给予至从患者移植出的靶细胞随后再引入患者中,或经由允许引入所需靶细胞的任何其他方法。
iRNA表达质粒可以被转染到靶细胞中作为具有阳离子脂质载体(例如,Oligofectamine)或基于非阳离子脂质的载体(例如,Transit-TKOTM) 的复合物。本发明还想到了在一周或更长时间范围内用于iRNA介导的靶向靶RNA的不同区域的敲低的多次脂质转染。成功地将载体引入到宿主细胞中可以使用多种已知的方法来监测。例如瞬时转染可以使用报告基因来进行信号化,例如荧光标志物,例如绿色荧光蛋白(GFP)。稳定的对离体细胞的转染可以使用以下这样的标志物来进行确保:这些标志物为被转染的细胞提供了对特定环境因子(例如抗生素或药物)的抗性,例如潮霉素B抗性。
可以随在此所述的方法和组合物一起使用的病毒载体系统包括但不局限于:(a)腺病毒载体;(b)逆转录病毒载体,包括但不局限于慢病毒载体、莫洛尼鼠白血病病毒等;(c)腺伴随病毒载体;(d)单纯疱疹病毒载体;(e)SV 40载体;(f)多瘤病毒载体;(g)乳头瘤病毒载体;(h)微小核糖核酸病毒载体;(i)痘病毒载体,如正痘病毒,例如痘苗病毒载体,或禽痘病毒,例如金丝雀痘病毒或鸡痘病毒;以及(j)辅助病毒依赖性腺病毒或无肠腺病毒。复制缺陷型病毒也可以有利的。不同的载体将并入或将不并入细胞的基因组中。如果需要,构建体可以包括病毒序列以用于转染。可替代地,构建体可以并入能够发生附加体型复制的载体(例如EPV和EBV载体)中。用于重组表达iRNA的构建体通常将需要调节元件,例如启动子、增强子等,以确保iRNA在靶细胞中的表达。以下进一步描述针对载体和构建体考虑的其他方面。
有用于递送iRNA的载体将包括足以在希望的靶细胞或组织中表达 iRNA的调节元件(启动子、增强子等)。可以选择调节元件以提供组成型或调节/诱导型表达。
可以精确地调节iRNA的表达,例如通过使用对某些生理调节物(例如循环型葡萄糖水平或激素)敏感的诱导型调节序列(Docherty等人,1994, FASEB J.[美国实验生物学会联合会期刊]]8:20-24)。适合于在细胞中或哺乳动物中控制dsRNA表达的此类诱导型表达系统包括例如由以下各项进行的调节:蜕皮激素、雌激素、黄体酮、四环素、二聚作用的化学诱导物以及异丙基-β-D1-硫代吡喃半乳糖苷(IPTG)。本领域技术人员将能够基于 iRNA转基因的预期用途选择适宜的调节/启动子序列。
可以使用含有编码iRNA的核酸序列的病毒载体。例如,可以使用逆转录病毒载体(参见Miller等人,Meth.Enzymol.[酶学方法]217:581-599 (1993))。这些逆转录病毒载体含有对于病毒基因组正确包装并整合入宿主细胞DNA必需的组分。将编码iRNA的核酸序列克隆至促进该核酸递送入患者的一种或多种载体中。关于逆转录病毒载体的更多细节可以在例如 Boesen等人,Biotherapy[生物疗法]6:291-302(1994)找到,所述文献描述使用逆转录病毒载体递送mdr1基因至造血干细胞,以便使得干细胞对化疗更耐受。说明基因疗法中逆转录病毒载体用途的其他参考文献是:Clowes等人,J.Clin.Invest.[临床研究杂志]93:644-651(1994);Kiem等人,Blood[血液]83:1467-1473(1994);Salmons和Gunzberg,Human Gene Therapy[人类基因疗法]4:129-141(1993);以及Grossman和Wilson,Curr.Opin.in Genetics and Devel.[遗传学与发育学新观点]3:110-114(1993)。意欲使用的慢病毒载体包括例如描述于美国专利号6,143,520;5,665,557和5,981,276中的基于HIV的载体,这些美国专利通过引用结合在此。
还想到腺病毒用于本发明的iRNA的递送中。腺病毒是特别有吸引力的媒介物,例如用于递送基因至呼吸道上皮。腺病毒天然地感染呼吸道上皮,在那里它们引起轻微疾病。基于腺病毒的递送系统的其他靶是肝脏、中枢神经系统、内皮细胞和肌肉。腺病毒具有能够感不分裂细胞的优点。Kozarsky 和Wilson,Current Opinion in Genetics andDevelopment[遗传学与发育学新观点]3:499-503(1993)提出基于腺病毒的基因疗法的综述。Bout等人, Human Gene Therapy[人类基因疗法]5:3-10(1994)展示了腺病毒载体将基因转移至恒河猴呼吸道上皮的用途。基因疗法中使用腺病毒的其他实例可以在 Rosenfeld等人,Science[科学]252:431-434(1991);Rosenfeld等人,Cell[细胞]68:143-155(1992);Mastrangeli等人,J.Clin.Invest.[临床研究杂志] 91:225-234(1993);PCT公开WO 94/12649;以及Wang等人,Gene Therapy [基因疗法]2:775-783(1995)中找到。用于表达本发明中表征的iRNA的合适 AV载体、用于构建重组AV载体的方法和用于递送该载体至靶细胞中的方法在Xia H等人,(2002),Nat.Biotech.[自然生物技术]20:1006-1010中描述。
也可以使用腺伴随病毒(AAV)载体来递送本发明的iRNA(Walsh等人,Proc.Soc.Exp.Biol.Med.[实验生物学与实验医学会会报]204:289-300 (1993);美国专利号5,436,146)。在一个实施例中,iRNA可以从具有例如 U6或H1 RNA启动子或细胞巨化病毒(CMV)启动子的重组AAV载体作为两个单独的互补性单链RNA分子表达。用于表达本发明中表征的dsRNA 的合适AAV载体、用于构建重组AV载体的方法以及用于递送该载体至靶细胞中的方法在Samulski R等人(1987),J.Virol.[病毒学杂志]61:3096- 3101;Fisher K J等人,(1996),J.Virol[病毒学杂志],70:520-532;Samulski R等人(1989),J.Virol.[病毒学杂志]63:3822-3826;美国专利号5,252,479;美国专利号5,139,941;国际专利申请号WO94/13788;以及国际专利申请号 WO 93/24641中描述,这些文献的完整披露内容通过引用结合在此。
另一种适合于递送本发明的iRNA的病毒载体是痘病毒如痘苗病毒,例如减毒痘苗病毒如修饰的安卡拉病毒(MVA)或NYVAC、禽痘病毒如鸡痘病毒或金丝雀痘病毒。
病毒载体的向性可以通过用包膜蛋白或来自其他病毒的其他表面抗原来对这些载体假型化而进行修饰,或者适当时通过取代不同的病毒衣壳蛋白而进行修饰。例如慢病毒载体可以是用来自水泡性口炎病毒(VSV)、狂犬病病毒、埃博拉病毒、Mokola等的表面蛋白进行假病毒化。可以通过将载体工程化以表达不同衣壳蛋白血清型,使得AAV载体靶向不同的细胞;参见例如,Rabinowitz J E等人,(2002),J Virol[病毒学杂志]76:791-801,这些文献的完整披露内容通过引用结合在此。
载体的药物制剂可以包括在可接受的稀释剂中的该载体,或可以包括缓释基质,在该缓释基质中该基因递送媒介物被嵌入。可替代地,当该完全的基因递送载体可以从重组细胞(例如逆转录病毒载体)完整地产出的情况下,该药物制剂可以包括产出该基因递送系统的一个或多个细胞。
V.本发明的药物组合物
本发明还包括药物组合物和配制品,它们包括本发明的iRNA。在一个实施例中,在此提供了含有如在此所描述的iRNA和药学上可接受的载体的药物组合物。
此处使用的短语“药学上可接受的”是指那些化合物、材料、组合物和/ 或剂型,其在正确医学判断范围内,适合于接触人类受试者和动物受试者的组织而没有过度的毒性、刺激性、过敏反应或其他问题或并发症,与合理的效益/风险比相称。
如在此使用的短语“药学上可接受的载体”是指药学上可接受的材料、组合物或媒介物,如液体或固体填充剂、稀释剂、赋形剂、制造助剂(例如润滑剂、滑石镁、硬脂酸钙或硬脂酸锌、或硬脂酸)、或溶剂封装材料(涉及将主题化合物从身体的一个器官或部分携带或运输到身体的另一个器官或部分)。在与该配制品的其他成分相容并且对所治疗的受试者无害的意义上来讲,每种载体必须是“可接受的”。可以充当药学上可接受的载体的材料的一些实例包括:(1)糖,例如乳糖、葡萄糖和蔗糖;(2)淀粉,例如玉米淀粉和马铃薯淀粉;(3)纤维素和它的衍生物,例如羧甲基纤维素钠、乙基纤维素和乙酸纤维素;(4)粉状黄蓍;(5)麦芽;(6)明胶;(7)润滑剂,例如硬脂酸镁、月桂基硫酸钠和滑石;(8)赋形剂,例如可可脂和栓剂蜡;(9)油,例如花生油、棉籽油、红花油、芝麻油、橄榄油、玉米油、以及大豆油;(10)二醇,例如丙二醇;(11)多元醇,例如甘油、山梨醇、甘露醇、以及聚乙二醇;(12)酯,例如油酸乙酯和月桂酸乙酯;(13)琼脂;(14)缓冲剂,例如氢氧化镁和氢氧化铝;(15)褐藻酸;(16)无热原水;(17)等渗盐水;(18)林格氏溶液;(19)乙醇;(20)pH缓冲溶液;(21)聚酯类、聚碳酸酯类和/或聚酐类;(22)增量剂,例如多肽和氨基酸;(23)血清组分,如血清白蛋白、HDL 和LDL;以及(22)在药物配制品中采用的其他无毒相容的物质。
含有iRNA的药物组合物可用于治疗与PCSK9的表达或活性相关的疾病或障碍,例如可经由降低PCSK9表达而受益的疾病或障碍。基于递送模式而配制这种药物组合物。一个实例是被配制用于经由胃肠外递送,例如通过皮下(SC)、肌内(IM)、或静脉内(IV)递送来全身给予的组合物。另一个实例是被配制用于例如通过输注到脑,如通过连续泵输注来直接递送到脑实质中的组合物。本发明的药物组合物可以按足以抑制PCSK9基因表达的剂量给予。
优选地,在本发明的方法中,将iRNA试剂以固定剂量给予至受试者。在一个特定的实施例中,本发明的固定剂量的iRNA试剂基于预定的体重或年龄。
在一些实施例中,该RNAi试剂按以下固定剂量给予:在约200mg至约850mg之间、在约200mg至约500mg之间、在约200mg至约400mg 之间、在约200mg至约300mg之间、在约100mg至约800mg之间、在约 100mg至约750mg之间、在约100mg至约700mg之间、在约100mg至约650mg之间、在约100mg至约600mg之间、在约100mg至约550mg之间、在约100mg至约500mg之间、在约200mg至约850mg之间、在约 200mg至约800mg之间、在约200mg至约750mg之间、在约200mg至约 700mg之间、在约200mg至约650mg之间、在约200mg至约600mg之间、在约200mg至约550mg之间、在约200mg至约500mg之间、在约 300mg至约850mg之间、在约300mg至约800mg之间、在约300mg至约 750mg之间、在约300mg至约700mg之间、在约300mg至约650mg之间、在约300mg至约600mg之间、在约300mg至约550mg之间、在约 300mg至约500mg之间、在约400mg至约850mg之间、在约400mg至约 800mg之间、在约400mg至约750mg之间、在约400mg至约700mg之间、在约400mg至约650mg之间、在约400mg至约600mg、在约400mg 至约550mg之间、或在约400mg至约500mg之间。
在一些实施例中,该RNAi试剂按以下固定剂量给予:约100mg、约 125mg、约150mg、约175mg、200mg、约225mg、约250mg、约275 mg、约300mg、约325mg、约350mg、约375mg、约400mg、约425 mg、约450mg、约475mg、约500mg、约525mg、约550mg、约575 mg、约600mg、约625mg、约650mg、约675mg、约700mg、约725 mg、约750mg、约775mg、约800mg、约825mg、或约850mg。
在一些实施例中,向受试者例如皮下或肌内给予多剂量的治疗量的 iRNA。
iRNA可以以合适的浓度配制在药物组合物中,使得向受试者给予合适体积的组合物,例如约1.0ml、1.1ml、1.2ml、1.3ml、1.4ml、1.5ml、1.6 ml、1.7ml、1.8ml、1.9ml或约2.0ml的药物组合物。例如,在一个实施例中,将本发明的iRNA试剂以约200mg/ml配制在合适的药物配制品中,使得向受试者给予约1.5ml的配制品提供了300mg固定剂量的试剂。
如在此所描述,单次剂量的iRNA试剂或包含此类试剂的药物组合物可以长久持续,使得随后的剂量以不超过1周、2周、1个月、2个月、3个月、4个月、5个月或6个月的间隔来给予。
在一些实施例中,向受试者例如皮下或肌内给予重复剂量的治疗量的 iRNA。重复剂量方案可以包括在一个常规基础上(例如每月一次、每两个月一次、每季度一次、每四个月一次、每五个月一次、或每半年)给予治疗量的iRNA。在本发明的一些实施例中,每季度(qQ)给予一次单次剂量的本发明的药物组合物。在本发明的其他实施例中,每半年(即每六个月)给予一次本发明的药物组合物的单次剂量。可以重复给予,例如每季度一次,持续6个月、一年、两年或更久,例如长期给予。
在一些实施例中,RNAi试剂以给药方案给予,该给药方案包括负载阶段和随后维持阶段。
该负载阶段可以包括按以下固定剂量在第一周期间单次给予RNAi试剂、在前两周期间单次给予RNAi试剂、或在第一个月期间单次给予RNAi 试剂:例如,约100mg至约700mg、约150mg至约700mg、约200mg至约700mg、约250mg至约700mg、约300mg至约700mg、约350mg至约700mg、约400mg至约700mg、约450mg至约700mg、约500mg至约700mg、约550mg至约700mg、约600至约700mg、约650至约700 mg、约100mg至约650mg、约150mg至约650mg、约200mg至约650 mg、约250mg至约650mg、约300mg至约650mg、约350mg至约650 mg、约400mg至约650mg、约450mg至约650mg、约500mg至约650 mg、约550mg至约650mg、约600至约650mg、约100mg至约600mg、约150mg至约600mg、约200mg至约600mg、约250mg至约600mg、约300mg至约600mg、约350mg至约600mg、约400mg至约600mg、约450mg至约600mg、约500mg至约600mg、约550mg至约600mg、约100mg至约550mg、约150mg至约550mg、约200mg至约550mg、约250mg至约550mg、约300mg至约550mg、约350mg至约550mg、约400mg至约550mg、约450mg至约550mg、约500mg至约550mg、约100mg至约500mg、约150mg至约500mg、约200mg至约500mg、约250mg至约500mg、约300mg至约500mg、约350mg至约500mg、约400mg至约500mg、或约450mg至约500mg(例如约100mg、约125 mg、约150mg、约175mg、200mg、约225mg、约250mg、约275mg、约300mg、约325mg、约350mg、约375mg、约400mg、约425mg、约 450mg、约475mg、约500mg、约525mg、约550mg、约575mg、约600 mg、约625mg、约650mg、约675mg、或约700mg的固定剂量)。前述列举值的中间值与范围也意在成为本发明的一部分。
该维持阶段可包括每月一次、每两个月一次、每三个月一次、每四个月一次、每五个月一次或每六个月一次向受试者给予一定剂量RNAi试剂。在一个具体的实施例中,将该维持剂量每月一次给予至受试者。
该或这些维持剂量与该初始剂量相比可以是相同或更低的,例如是该初始剂量的二分之一。例如,每月向受试者给予约25mg至约100mg的维持剂量,例如约25mg至约75mg、约25mg至约50mg、或约50mg至约75 mg,例如约25mg、约30mg、约35mg、约40mg、约45mg、约50mg、约55mg、约60mg、约65mg、约70mg、约75mg、约80mg、约85 mg、约90mg、约95mg或约100mg。前述列举值的中间值与范围也意在成为本发明的一部分。
药物组合物可以通过静脉内输注经过一段时间来给予,如经过5、6、 7、8、9、10、11、12、13、14、15、16、17、18、19、20和21、22、23、 24或约25分钟的周期。该给予可以例如在一个常规基础上(例如每周地、双周(即,每两周))重复持续一个月、两个月、三个月、四个月或更久。在初始治疗方案后,可以基于更低频率给予治疗。例如在每周或双周给予持续三个月后,给予可以按每个月重复一次,持续六个月或一年或更久。
熟练技术人员应了解某些因素可影响有效治疗受试者所需的剂量及时间,包括但不限于疾病或障碍的严重性、先前的治疗、受试者的一般健康情形和/或年龄及其他存在的疾病。此外,用治疗有效剂量的组合物治疗受试者可以包括单次治疗或一系列治疗。如在此的其他地方所描述,使用常规方法或基于使用适当动物模型的体内测试,可以评估本发明涵盖的各个iRNA 的有效剂量和体内半衰期。
取决于希望局部或全身性治疗并且取决于有待治疗的区域,可以将本发明的药物组合物按许多方式给予。给予可以是局部的(例如,经皮贴片),肺的,例如,经由粉末或喷雾剂的吸入或吹入,包括经由雾化器;气管内、鼻腔、表皮的及经皮的、口服或肠外。肠外给予包括静脉内、动脉内、皮下、腹膜内或肌肉内注射或输注;表皮下,例如,经由移植装置;或颅内,例如,经由脑实质内、鞘内或心室内的给予。
iRNA可以按这样的方式递送以靶向特定组织,例如肝脏(例如肝脏的肝细胞)。
用于局部给予的药物组合物和配制品可以包括透皮贴剂、软膏、洗剂、乳膏、凝胶剂、滴剂、栓剂、喷雾剂、液体以及粉剂。常规的药物载体、水、粉末或油基、增稠剂等可以是必要的或希望的。包衣的安全套、手套等也可以是有用的。适合的局部配制品包括其中在本发明中体现的iRNA与局部用递送剂例如脂质、脂质体、脂肪酸、脂肪酸酯、类固醇、螯合剂和表面活性剂混合的那些。合适的脂质与脂质体包括中性的(例如,二油酰基磷脂酰基DOPE乙醇胺、二肉豆蔻酰磷脂酰胆碱DMPC、二硬脂酰磷酯酰胆碱)、阴离子的(例如,二肉豆蔻酰磷脂酰甘油DMPG)以及阳离子的(例如,二油酰基四甲基氨基丙基DOTAP以及二油酰基磷脂酰乙醇胺 DOTMA)。在本发明中体现的iRNA可以被包囊在脂质体内或可以与其形成复合物,具体地与阳离子脂质体形成复合物。可替代地,iRNA可以与脂质、具体地与阳离子脂质复合。合适的脂肪酸与酯包括但不限于花生四烯酸、油酸、花生酸、月桂酸、羊脂酸、羊蜡酸、肉豆蔻酸、棕榈酸、硬脂酸、亚油酸、亚麻酸、二癸酸酯、三癸酸酯、甘油单油酸酯、甘油二月桂酸酯、1-单癸酸甘油酯、1-十二烷基氮杂环庚-2-酮、酰基肉毒碱、酰基胆碱、或C1-20烷基酯(例如,异丙基肉豆蔻酸酯IPM)、甘油一酯、甘油二酯或其药学上可接受的盐。局部配制品被详细地描述于美国专利号6,747,014 中,该美国专利通过引用方式结合在此。
用于口服给予的组合物和配制品包括粉剂或颗粒剂、微粒剂、纳米颗粒剂、在水或非水性介质中的混悬液或溶液、胶囊、凝胶胶囊、囊剂、片剂或迷你片剂。增稠剂、调味剂、稀释剂、乳化剂、分散助剂或结合剂可以是希望的。在一些实施例中,口服配制品是以下那些:其中在本发明中体现的 dsRNA与一种或多种渗透增强剂表面活性剂以及螯合剂结合地给予。适合的表面活性剂包括脂肪酸和/或其酯或盐、胆汁酸和/或其盐。合适的胆酸/盐包括鹅脱氧胆酸(CDCA)以及乌索脱氧胆酸(UDCA)、胆酸、脱氢胆酸、脱氧胆酸、葡糖胆酸、甘油胆酸、甘油脱氧胆酸、牛磺胆酸、牛磺脱氧胆酸、牛磺-24,25-二氢-梭链孢酸钠以及甘油二氢梭链孢酸钠。合适的脂肪酸包括花生四烯酸、十一烷酸、油酸、月桂酸、羊脂酸、羊蜡酸、肉豆蔻酸、棕榈酸、硬脂酸、亚油酸、亚麻酸、二癸酸酯、三癸酸酯、甘油单油酸酯、甘油二月桂酸酯、1-单癸酸甘油酯、1-十二烷基氮杂环庚-2-酮、酰基肉毒碱、酰基胆碱、或甘油一酯、甘油二酯或其药学上可接受的盐(例如钠盐)。在一些实施例中,渗透增强剂的组合(例如脂肪酸/盐)是与胆汁酸/ 盐组合使用。一个示例性的组合是月桂酸、羊蜡酸以及UDCA的钠盐。其他渗透促强剂包括聚氧乙烯-9-月桂基醚、聚氧乙烯-20-鲸蜡醚。本发明表征的dsRNA可以口服递送,以包括喷雾干燥颗粒的颗粒剂的形式递送,或者复合成微颗粒或纳米颗粒。dsRNA复合剂包括聚胺基酸;聚亚胺;聚丙烯酸酯;聚丙烯酸烷酯、聚环氧丙烷、聚氰基丙烯酸烷酯;阳离子化明胶、白蛋白、淀粉、丙烯酸酯、聚乙二醇类(PEG)及淀粉;聚氰基丙烯酸烷酯; DEAE-衍生的聚亚胺、短梗霉多糖、纤维素及淀粉。合适的复合剂包括壳聚糖、N-三甲基壳聚糖、聚-L-赖氨酸、聚组氨酸、聚鸟氨酸、聚精胺、鱼精蛋白、聚乙烯吡啶、聚硫代二乙基氨基甲基乙烯P(TDAE)、聚氨基苯乙烯(例如p-氨基)、聚(甲基氰基丙烯酸酯)、聚(乙基氰基丙烯酸酯)、聚(丁基氰基丙烯酸酯)、聚(异丁基氰基丙烯酸酯)、聚(异己基氰基丙烯酸酯)、DEAE-异丁烯酸酯、DEAE-己基丙烯酸酯、DEAE-丙烯酰胺、DEAE-白蛋白与DEAE-葡聚糖、聚甲基丙烯酸酯、聚己基丙烯酸酯、聚(D,L-乳酸)、聚 (DL-乳酸-共-乙醇酸(PLGA)、藻朊酸盐、以及聚乙二醇(PEG)。dsRNA 的口服配制品及其制备在美国专利6,887,906、美国公开号20030027780以及美国专利号6,747,014中详述,这些文献的每一个通过引用结合在此。
用于肠胃外、实质内(进入脑)、鞘内、心室内或肝内给予的组合物和配制品可以包括无菌水溶液,其也可以含有缓冲液、稀释剂及其他适当的添加剂,例如但不限于:渗透增强剂、载体化合物及其他药学上可接受的载体或赋形剂。
本发明药物组合物包括但不限于,溶液、乳状剂及含脂质体的配制品。这些组合物可以产生自多种组分,这些组分包括但不限于预成形的液体、自乳化固体以及自乳化半固体。治疗肝脏疾病例如肝癌时,特别佳的是靶向肝脏的配制品。
本发明的药物配制品(可以方便地以单位剂型存在)可以根据医药工业内熟知的常规技术来制备。此类技术包括以下这样的步骤:将这些活性成分与该或这些药物载体或赋形剂进行联合。总体而言,这些配制品是通过以下步骤来制备:使这些活性成分与液体载体或精细分散的固体载体或它们两者均匀地且精细地联合,并且如果需要,进而将产品成形。
本发明的这些组合物可以被配制成任何许多可能的剂型,例如但不限于片剂、胶囊、凝胶胶囊、液体糖浆剂、软凝胶、栓剂以及灌肠剂。本发明的这些组合物还可以被配制为在水性、非水性或混合性介质中的混悬液。水性混悬液可以进一步含有增加该混悬液的粘度的物质,这样的物质包括例如羧甲基纤维素钠、山梨醇和/或葡聚糖。该混悬液还可以含有稳定剂。
A.另外的配制品
i.乳剂
可以将本发明的组合物制备和配制为乳剂。乳剂典型地是一种液体以直径通常超过0.1μm的液滴形式分散于另一种中的多相体系(参见,例如 Pharmaceutical DosageForms and Drug Delivery Systems[Ansel的药物剂型与药物传递系统],AAllen,LV.,Popovich NG.以及Ansel HC.,2004, Lippincott Williams&Wilkins[利平科特威廉姆斯&威尔金斯](第8版),纽约,纽约州;Idson,在Pharmaceutical Dosage Forms[药物剂型],Lieberman, Rieger和Banker(编著),1988,马塞尔德克公司(Marcel Dekker,Inc.),纽约,纽约州,第1卷,第199页;Rosoff,在Pharmaceutical Dosage Forms [药物剂型],Lieberman,Rieger和Banker(编著),1988,马塞尔德克公司 (Marcel Dekker,Inc.),纽约,纽约州,第1卷,第245页;Block,在 Pharmaceutical Dosage Forms[药物剂型],Lieberman,Rieger和Banker(编著),1988,马塞尔德克公司(Marcel Dekker,Inc.),纽约,纽约州,第2 卷,第335页;Higuchi,在Remington's Pharmaceutical Sciences[雷明顿氏药物科学],麦克出版公司(Mack Publishing Co.),伊斯顿(Easton),宾夕法尼亚州,1985,第301页)。乳剂经常是包含密切混合且彼此分散的两个不混溶的液相的双相体系。通常,乳状剂可以是油包水(w/o)或水包油 (o/w)种类。当水相作为微小液滴细碎并分散到本体油相中时,所产生的组合物被称为油包水(w/o)乳剂。可替代地,当油相作为微小液滴细碎并分散到本体水相中时,所产生的组合物被称为水包油(o/w)乳剂。除了分散相和活性药物外,乳剂还可以含其他组分,活性药物可以作为在水相、油相中的溶液,或者其自身作为独立相。如果需要,也可以存在药物赋形剂如乳化剂、稳定剂、染料和抗氧化剂。药物乳剂还可以为包含多于两种相的多重乳剂,例如像油包水包油(o/w/o)和水包油包水(w/o/w)乳剂的情况。此类复合配制品通常提供某些简单的二元乳剂所不具有的优势。当多重乳剂中的o/w乳剂的各油滴还包有小水滴时,该多重乳剂形成w/o/w乳剂。同样地,在油连续相中稳定化的水滴中封装油滴的系统,构成o/w/o乳剂。
乳剂具有较小或没有热力学稳定性的特征。通常,乳剂的分散相或不连续相很好地分散在外相或连续相中并通过乳化剂或配制品的粘性保持这种形式。在乳状软膏基料及乳膏的情况,乳状剂的相可以是半固体或固体。其他稳定性乳剂的方式需要使用乳化剂,这些乳化剂可以合并到乳剂的任一相中。乳化剂可以被广泛地分成四类:合成表面活性剂、天然存在的乳化剂、吸收基质以及精细分散的固体(参见例如,Ansel's PharmaceuticalDosage Forms and Drug Delivery Systems[Ansel的药物剂型和药物递送系统],Allen,LV.、Popovich NG.以及Ansel HC,2004,Lippincott Williams&Wilkins[利平科特威廉姆斯&威尔金斯](第8版),纽约,纽约州;Idson,在 Pharmaceutical Dosage Forms[药物剂型],Lieberman,Rieger和Banker(编著),1988,马塞尔德克公司(Marcel Dekker,Inc.),纽约,纽约州,第1 卷,第199页)。
合成表面活性剂,也称作表面活性试剂,已经发现在乳剂的配制中广泛应用并且已经在文献中综述(参见,例如Ansel's Pharmaceutical Dosage Forms and DrugDelivery Systems[Ansel的药物剂型与药物传递系统],Allen, LV.,Popovich NG.以及Ansel HC.,2004,利平科特威廉姆斯&威尔金斯 (Lippincott Williams&Wilkins)(第8版),纽约,纽约州;Rieger,在 Pharmaceutical Dosage Forms[药物剂型],Lieberman,Rieger和Banker(编著),1988,马塞尔德克公司,纽约,纽约州(Marcel Dekker,Inc.),第1卷,第285页;Idson,在Pharmaceutical Dosage Forms[药物剂型], Lieberman,Rieger和Banker(编著),马塞尔德克公司,纽约,纽约州 (Marcel Dekker,Inc.),1988,第1卷,第199页;表面活性剂典型地是两亲的,并且包含亲水部分和疏水部分。表面活性剂的亲水和疏水性的比率被称为亲水/亲油平衡值(HLB),并且它是配制品制备中分类和选择表面活性剂的有价值的工具。表面活性剂可以基于亲水基团的性质:非离子、阴离子、阳离子和两亲分成不同类别(参见例如,Ansel's Pharmaceutical Dosage Forms and Drug DeliverySystems[Ansel的药物剂型和药物递送系统],Allen, LV.、Popovich NG.以及Ansel HC,2004,利平科特威廉姆斯&威尔金斯 (Lippincott Williams&Wilkins)(第8版),纽约,纽约州;Rieger,在 Pharmaceutical Dosage Forms[药物剂型],Lieberman,Rieger和Banker(编著),1988,马塞尔德克公司(Marcel Dekker,Inc.),纽约,纽约州,第1 卷,第285页)。
乳剂配制品中使用的天然存在的乳化剂包括羊毛脂、蜂蜡、磷脂、卵磷脂和阿拉伯胶。吸收基质具有亲水特性,使得它们能够吸收水以形成w/o乳剂并仍然保持它们的半固体稠度,例如无水羊毛脂和亲水凡士林。精细分散的固体也已经被用做优良的乳化剂,尤其是与表面活性剂组合和在粘性制剂中使用。这些包括极性无机固体,例如重金属氢氧化物、非溶胀粘土如膨润土、凹凸棒土、锂蒙脱石,高岭土、蒙脱土、胶状硅酸铝和胶状镁硅酸铝、颜料和非极性固体如碳或甘油基三硬脂酸酯。
乳状剂配制品亦包括多种非乳化材料并且有助于乳状剂的特性。这些包括脂肪、油、蜡、脂肪酸、脂肪醇、脂肪酯、湿润剂、亲水胶体、防腐剂和抗氧化剂(Block,在Pharmaceutical Dosage Forms[药物剂型],Lieberman, Rieger和Banker(编著),1988,马塞尔德克公司(Marcel Dekker,Inc.),纽约,纽约州,第1卷,第335页;Idson,在Pharmaceutical Dosage Forms [药物剂型],Lieberman,Rieger和Banker(编著),1988,马塞尔德克公司 (Marcel Dekker,Inc.),纽约,纽约州,第1卷,第199页)。
亲水胶体或水状胶体包括天然存在的树胶和合成的聚合物例如多糖(例如阿拉伯树胶、琼脂、藻酸、角叉菜聚糖、瓜耳胶、刺梧桐树胶和皇蓍胶),纤维素衍生物(例如羧甲基纤维素和羧丙基纤维素)和合成的聚合物 (例如卡波姆胶、纤维素醚和羰基乙烯基聚合物)。这些物质在水中分散或溶胀形成胶状溶液,这些胶状溶液通过在分散相液滴的周围形成强的界面膜并通过增强外相的粘度来稳定乳剂。
由于乳剂通常含有一些可以容易地支持微生物生长的成份如碳水化合物、蛋白、固醇和磷脂,所以这些配制品通常含有防腐剂。乳剂配制品中通常使用的防腐剂包括甲基对羟基苯甲酸酯、丙基对羟基苯甲酸酯、季铵盐、苯扎氯铵、对羟基苯甲酸酯和硼酸。通常也将抗氧剂加入到乳剂配制品中,以预防配制品的变质。所用的抗氧化剂可以是自由基清除剂,如生育酚,没食子酸烷基酯、丁化羟基茴香醚、丁化羟基甲苯,或还原剂如抗坏血酸和焦亚硫酸钠,和抗氧化剂增效剂如柠檬酸、酒石酸和卵磷脂。
经由皮肤途径、口途径和肠胃外途径使用乳剂配制品和制造它们的方法已经在文献中综述(参见,例如,Ansel's Pharmaceutical Dosage Forms and Drug DeliverySystems[安赛尔的药物剂型与药物传递系统],Allen,LV., Popovich NG.以及Ansel HC.,2004,利平科特威廉姆斯&威尔金斯 (Lippincott Williams&Wilkins)(第8版),纽约,纽约州;Idson,在 Pharmaceutical Dosage Forms[药物剂型],Lieberman,Rieger和Banker(编著),1988,马塞尔德克公司(Marcel Dekker,Inc.),纽约,纽约州,第1 卷,第199页)。由于易于配制以及从吸收和生物利用度观点来看的有效性,用于口服递送的乳剂配制品已得到非常广泛地使用(参见,例如, Ansel's Pharmaceutical Dosage Forms and DrugDelivery Systems[安赛尔的药物剂型与药物传递系统],Allen,LV.,Popovich NG.以及Ansel HC.,2004,利平科特威廉姆斯&威尔金斯(Lippincott Williams&Wilkins)(第8版),纽约,纽约州;Rosoff,在Pharmaceutical Dosage Forms[药物剂型], Lieberman,Rieger和Banker(编著),1988,马塞尔德克公司(Marcel Dekker,Inc.),纽约,纽约州,第1卷,第245页;Idson,在 Pharmaceutical Dosage Forms[药物剂型],Lieberman,Rieger和Banker(编著),1988,马塞尔德克公司(Marcel Dekker,Inc.),纽约,纽约州,第1 卷,第199页)。基于矿物油的缓泻药、油溶性维生素和高脂肪营养制剂属于经常作为o/w乳剂口服给予的物质。
ii.微乳剂
在本发明的一个实施例中,将iRNA和核酸的组合物配制为微乳剂。可以将微乳剂定义为水、油和两亲分子的体系,所述体系是光学各向同性和热动力学稳定的单一液态溶液(参见例如,Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems[安赛尔的药物剂型与药物传递系统],Allen, LV.,Popovich NG.以及Ansel HC.,2004,利平科特威廉姆斯&威尔金斯 (Lippincott Williams&Wilkins)(第8版),纽约,纽约州;Rosoff,在 Pharmaceutical Dosage Forms[药物剂型],Lieberman,Rieger和Banker(编著),1988,马塞尔德克公司(Marcel Dekker,Inc.),纽约,纽约州,第1 卷,第245页)。一般微滴乳状剂为经由下列方法而制备的体系:首先将由分散至水性表面活性剂溶液,然后添加足量的第四组分,通常为中等链长的醇,而形成透明体系。因此,微乳剂也被描述成由表面活性分子的界面膜稳定化的两种不能混合的液体的热力学稳定的各向同性的澄清分散系(Leung 与Shah,在:Controlled Release of Drugs:Polymers and Aggregate Systems[药物的受控释放:聚合物和聚集体系统],Rosoff M.编著,1989,VCH出版公司(VCHPublishers),纽约,第185-215页)。通常微乳剂通过包括油、水、表面活性剂、助表面活性剂和电解质的三至五种组分的组合来制备。微乳剂是为油包水(w/o)还是水包油(o/w)类型取决于所使用的油和表面活性剂的特性以及表面活性剂分子的极性头部和羟基尾的结构和几何包装(Schott,在Remington's Pharmaceutical Sciences[雷明顿氏药物科学],麦克出版公司(Mack Publishing Co.),伊斯顿,宾夕法尼亚州,1985,第 271页)。
已经广泛研究了利用相图的现象学方法并且该方法已经产生了为本领域普通技术人员所知的如何配制微乳剂的广泛知识(参见例如,Ansel's Pharmaceutical DosageForms and Drug Delivery Systems[安赛尔的药物剂型与药物传递系统],Allen,LV.,Popovich NG.以及Ansel HC.,2004,利平科特威廉姆斯&威尔金斯(Lippincott Williams&Wilkins)(第8版),纽约,纽约州;Rosoff,在Pharmaceutical Dosage Forms[药物剂型],Lieberman, Rieger和Banker(编著),1988,马塞尔德克公司(Marcel Dekker,Inc.),纽约,纽约州,第1卷,第245页;Block,在Pharmaceutical Dosage Forms [药物剂型],Lieberman,Rieger和Banker(编著),1988,马塞尔德克公司 (Marcel Dekker,Inc.),纽约,纽约州,第1卷,第335页)。与常规乳剂相比,微乳剂提供的优点是能将非水溶性药物溶解到自发形成的热力学稳定的液滴的配制品中。
在微乳剂的制备中使用的表面活性剂包括但不限于单独的或与助表面活性剂组合使用的离子表面活性剂、非离子表面活性剂、Brij96、聚氧乙烯油基醚、聚脂肪酸甘油酯、单月桂酸四甘油酯(ML310)、单油酸四甘油酯 (MO310)、单油酸六甘油酯(PO310)、五油酸六甘油酯(PO500)、单癸酸十甘油酯(MCA750)、单油酸十甘油酯(MO750)、一又二分之一油酸十甘油酯(SO750)(decaglycerol sequioleate)、十油酸十甘油酯 (DAO750)。该辅助表面活性剂通常是短链醇如乙醇、1-丙醇和1-丁醇,作用是通过渗透到表面活性剂膜中并由此在表面活性剂分子间产生空余空间来产生无序膜从而提高界面流动性。然而,可不使用辅物表面活性剂而制备微滴乳状剂且所属领域已知无醇自乳化微滴乳状剂体系。水相可以典型地是,但不限于水、药物的水溶液、甘油、PEG300、PEG400、聚甘油、丙二醇和乙二醇的衍生物。油相可以包括但不限于如多种材料,例如Captex 300、Captex 355、Capmul MCM、脂肪酸酯、中等链(C8-C12)的单、二和三甘油三酯、聚氧乙基化的甘油脂肪酸酯、脂肪醇、聚乙二醇化的甘油酯 (polyglycolized glyceride)、饱和的聚乙二醇化的C8-C10甘油酯、植物油和硅油。
从药物溶解和增强的药物吸收方面看,微乳剂是特别令人感兴趣的。已提议基于脂质的微乳剂(o/w和w/o两者)增强药物(包括肽)的口服生物利用度(参见例如美国专利号6,191,105;7,063,860;7,070,802; 7,157,099;Constantinides等人,PharmaceuticalResearch[药学研究],1994, 11,1385-1390;Ritschel,Meth.Find.Exp.Clin.Pharmacol.[实验与临床药理学方法与成果],1993,13,205)。微乳剂提供以下优点:改进药物溶解、保护药物免遭酶水解、可能因表面活性剂引起的膜流动性和通透性改变而增强药物吸收、易于制备、比固体剂型易于口服给予、临床效力改进和毒性减少 (参见例如美国专利号6,191,105;7,063,860;7,070,802;7,157,099; Constantinides等人,PharmaceuticalResearch[药学研究],1994,11,1385;Ho 等人,J.Pharm.Sci.[药学科学杂志],1996,85,138-143)。通常在环境温度下当微滴乳状剂的组分混在一起时就可自然形成微滴乳状剂。当配制热不稳定的药物、肽或iRNA时,这可以是特别有利的。在化妆品和药物应用领域,微乳剂在活性组分的经皮递送中也是有效的。预期本发明的微乳剂组合物和配制品将促进iRNA和核酸从胃肠道的全身性吸收增加以及改进iRNA 和核酸的局部细胞摄取。
本发明的微乳剂还可以含有另外的组分和添加剂,如脱水山梨糖醇单硬脂酸酯(Grill3)、Labrasol、以及改进配制品特性并增强本发明的iRNA和核酸吸收的渗透增强剂。本发明的微乳剂中使用的渗透增强剂可以分成归于五大类中的一种:表面活性剂、脂肪酸、胆汁盐、螯合剂和非螯合的非表面活性剂(Lee等人,Critical Reviews in TherapeuticDrug Carrier Systems[治疗性药物载体系统锐评],1991,第92页)。这些类别中的每一个已经在以上进行了讨论。
iii.微颗粒
本发明的RNAi试剂可并入到一个颗粒,例如微颗粒。微颗粒可以通过喷雾干燥来产生,但也可以通过其他方法包括冷冻干燥、蒸发、流化床干燥、真空干燥或这些技术的组合来产生。
iv.渗透增强剂
在一个实施例中,本发明采用了不同渗透增强剂来实现向动物皮肤高效递送核酸,具体地iRNA。大多数药物以离子化形式和非离子化形式两者存在于溶液中。然而,通常只有脂溶的或亲脂的药物易于穿过细胞膜。已经发现,如果用渗透增强剂处理有待穿过的膜,甚至连非亲脂药物也可以穿过细胞膜。除了帮助非亲脂药物扩散穿过细胞膜以外,渗透增强剂还增强亲脂药物的渗透性。
可以将渗透增强剂划分为属于5大类之一,即,表面活性剂、脂肪酸、胆汁盐、螯合剂和非螯合性非表面活性剂(见例如Malmsten,M., Surfactants and polymers in drugdelivery[药物递送中的表面活性剂和聚合物], Informa Health Care[英富曼卫生保健],纽约,纽约州,2002;Lee等人, Critical Reviews in Therapeutic Drug CarrierSystems[治疗性药物载体系统锐评],1991,第92页)。以下更详细地描述了以上提及的渗透增强剂的类别中的每一个。
表面活性剂(或“表面活性试剂”)为化学实体,当其溶解在水溶液中时,它能减少该溶液的表面张力或者水溶液和另一种液体之间的界面张力,结果是iRNA通过粘膜的吸收得到增强。除了胆汁盐和脂肪酸之外,这些渗透增强剂还包括例如月桂基硫酸钠、聚氧乙烯-9-月桂基醚和聚氧乙烯-20-鲸蜡基醚(参见例如,Malmsten,M.,Surfactants andpolymers in drug delivery, Informa Health Care[药物递送中的表面活性剂和聚合物],纽约,纽约州, 2002;Lee等人,Critical Reviews in Therapeutic Drug CarrierSystems[治疗性药物载体系统锐评],1991,第92页);以及全氟化学乳剂如FC-43(Takahashi等人,J.Pharm.Pharmacol.[药物药理学杂志],1988,40, 252)。
充当渗透增强剂的各种脂肪酸及其衍生物包括例如油酸、月桂酸、癸酸(正癸酸)、肉豆蔻酸、棕榈酸、硬脂酸、亚油酸、亚麻酸、二癸酸酯、三癸酸酯、单油精(1-单油酰-外消旋-甘油)、二月桂精、辛酸、花生四烯酸、甘油1-单癸酸酯、1-十二烷基氮杂环庚-2-酮、酰基肉碱、酰基胆碱、其 C1-20烷基酯(例如,甲基酯、异丙基酯和叔丁基酯)及其单和二甘油酯(即,油酸酯、月桂酸酯、癸酸酯、肉豆蔻酸酯、棕榈酸酯、硬脂酸酯、亚油酸酯等)。(参见例如Touitou,E.等人,Enhancement in Drug Delivery[药物递送的增强],CRC Press[CRC出版社],Danvers,MA,2006;Lee等人, Critical Reviews in Therapeutic Drug CarrierSystems[治疗性药物载体系统锐评],1991,第92页;Muranishi,Critical Reviews inTherapeutic Drug Carrier Systems[治疗性药物载体系统锐评],1990,7,1-33;ElHariri等人,J.Pharm. Pharmacol.[药房和药理学杂志],1992,44,651-654)。
胆汁的生理学作用包括促进脂质和脂溶性维生素的分散和吸收(参见例如,Malmsten,M.,Surfactants and polymers in drug delivery[药物递送中的表面活性剂和聚合物],Informa Health Care[健康传播杂志],纽约,纽约州, 2002;Brunton,第38章,在:Goodman&Gilman's The Pharmacological Basis of Therapeutics[Goodman与Gilman治疗学的药理学基础],第9版, Hardman等人编辑,McGraw-Hill公司,纽约,1996,第934-935页)。不同天然的胆汁盐和它们的合成衍生物用作渗透增强剂。因此术语“胆汁盐”包括胆汁的任何天然存在的组分以及任何它们的合成衍生物。适合的胆盐包括,例如,胆酸(或其药学上可接受的钠盐、胆酸钠)、脱氢胆酸(脱氢胆酸钠)、脱氧胆酸(脱氧胆酸钠)、葡糖胆酸(葡糖胆酸钠)、甘氨胆酸 (甘氨胆酸钠)、甘氨脱氧胆酸(甘氨脱氧胆酸钠)、牛磺胆酸(牛磺胆酸钠)、牛磺脱氧胆酸(牛磺脱氧胆酸钠)、鹅脱氧胆酸(鹅脱氧胆酸钠)、熊脱氧胆酸(UDCA)、牛磺-24,25-二氢褐霉酸钠(STDHF)、糖二氢褐霉酸钠以及聚氧乙烯-9-月桂基醚(POE)(参见例如,Malmsten,M., Surfactants and polymers in drug delivery[药物递送中的表面活性剂和聚合物],Informa Health Care[健康传播杂志],纽约,纽约州,2002;Lee等人,Critical Reviews in Therapeutic Drug Carrier Systems[治疗性药物载体系统锐评],1991,第92页;Swinyard,第39章,在Remington's Pharmaceutical Sciences[雷明顿氏药物科学],第18版,Gennaro编辑,麦克出版公司(Mack Publishing Co.),伊斯顿,宾夕法尼亚州,1990,第782- 783页;Muranishi,Critical Reviews in Therapeutic DrugCarrier Systems[治疗性药物载体系统锐评],1990,7,1-33;Yamamoto等人,J.Pharm.Exp.Ther. [药理学与实验治疗学杂志],1992,263,25;Yamashita等人,药物科学杂志 [J.Pharm.Sci.],1990,79,579-583)。
与本发明有关使用的螯合剂可以定义为通过金属离子与其形成复合物将金属离子从溶液中除去的化合物,结果是通过粘膜的iRNA的吸收得到加强。关于它们在本发明中作为渗透增强剂的应用,因为多数特征化的DNA 核酸酶需要二价金属离子用于催化并且因此可以被螯合剂抑制,螯合剂还具有充当DNase抑制剂的附加优势(Jarrett,J.Chromatogr.[层析学杂志], 1993,618,315-339)。合适的螯合剂包括但不限于乙二胺四乙酸二钠 (EDTA)、柠檬酸、水杨酸盐(如水杨酸钠、5-甲氧水杨酸酯和高香草酸酯(homovanilate))、胶原质的N-酰基衍生物、月桂醇聚醚-9和β-二酮的 N-氨基酰基衍生物(烯胺)(参见例如Katdare,A.等人,Excipient development for pharmaceutical,biotechnology,and drug delivery[用于制药、生物技术和药物递送的赋形剂的发展],CRC出版社,Danvers,MA, 2006;Lee等人,Critical Reviews in Therapeutic DrugCarrier Systems[治疗性药物载体系统锐评],1991,第92页;Muranishi,CriticalReviews in Therapeutic Drug Carrier Systems[治疗性药物载体系统锐评],1990,7,1-33; Buur等人,J.Control Rel.[控制释放杂志],1990,14,43-51)。
如在此使用的,非螯合性非表面活性剂渗透增强化合物可以定义为作为螯合剂或作为表面活性剂展示不明显活性但是反而增强iRNA经消化道粘膜吸收的化合物(见例如Muranishi,Critical Reviews in Therapeutic Drug Carrier Systems[治疗性药物载体系统锐评],1990,7,1-33)。这类别的渗透增强剂包括例如不饱和环状脲、1-烷基-和1-烯基氮杂环-烷酮衍生物(Lee 等人,Critical Reviews in Therapeutic Drug CarrierSystems[治疗性药物载体系统锐评],1991,第92页);以及非类固醇类的抗炎剂,如双氯芬酸钠、引哚美辛和保泰松(Yamashita等人,J.Pharm.Pharmacol.[药物科学杂志],1987,39,621-626)。
加强iRNA在细胞级别上的细胞摄取之试剂还可添加到本发明医药及其他组合物中。例如阳离子脂质,如脂质体(Junichi等人,美国专利号 5,705,188)、阳离子甘油衍生物和聚阳离子分子如聚赖氨酸(Lollo等人, PCT申请WO 97/30731)也已知增强dsRNA的细胞摄取。市售转染试剂的实例包括,例如LipofectamineTM(英杰公司(Invitrogen);卡尔斯巴德,加利福尼亚州)、Lipofectamine 2000TM(英杰公司(Invitrogen);卡尔斯巴德,加利福尼亚州)、293fectinTM(英杰公司(Invitrogen);卡尔斯巴德,加利福尼亚州)、CellfectinTM(英杰公司(Invitrogen);卡尔斯巴德,加利福尼亚州)、DMRIE-CTM(英杰公司(Invitrogen);卡尔斯巴德,加利福尼亚州)、FreeStyleTMMAX(英杰公司(Invitrogen);卡尔斯巴德,加利福尼亚州)、LipofectamineTM2000 CD(英杰公司(Invitrogen);卡尔斯巴德,加利福尼亚州)、LipofectamineTM(英杰公司(Invitrogen);卡尔斯巴德,加利福尼亚州)、RNAiMAX(英杰公司(Invitrogen);卡尔斯巴德,加利福尼亚州)、OligofectamineTM(英杰公司(Invitrogen);卡尔斯巴德,加利福尼亚州)、OptifectTM(英杰公司(Invitrogen);卡尔斯巴德,加利福尼亚州)、X-tremeGENE Q2转染试剂(罗氏公司(Roche);格兰扎克尔街(Grenzacherstrasse),瑞士)、DOTAP脂质体转染试剂(格兰扎克尔街,瑞士)、DOSPER脂质体转染试剂(格兰扎克尔街,瑞士)或 Fugene(格兰扎克尔街,瑞士)、
Figure BDA0003613643930001531
试剂(普洛麦格公司(Promega);麦迪逊,威斯康星州)、TransFastTM转染试剂(普洛麦格公司(Promega);麦迪逊,威斯康星州)、TfxTM-20试剂(普洛麦格公司 (Promega);麦迪逊,威斯康星州)、TfxTM-50试剂(普洛麦格公司 (Promega);麦迪逊,威斯康星州)、DreamFectTM(OZ Biosciences公司;马赛,法国)、EcoTransfect(OZ Biosciences公司;马赛,法国)、 TransPassa D1转染试剂(新英格兰生物实验室公司(New England Biolabs);伊普斯威奇,马萨诸塞州,美国)、LyoVecTM/LipoGenTM(英杰公司(Invitrogen);圣地亚哥,加利福尼亚州,美国)、PerFectin转染试剂(Genlantis公司;圣地亚哥,加利福尼亚州,美国)、NeuroPORTER转染试剂(Genlantis公司;圣地亚哥,加利福尼亚州,美国)、GenePORTER转染试剂(Genlantis公司;圣地亚哥,加利福尼亚州,美国)、GenePORTER 2转染试剂(Genlantis公司;圣地亚哥,加利福尼亚州,美国)、Cytofectin 转染试剂(Genlantis公司;圣地亚哥,加利福尼亚州,美国)、 BaculoPORTER转染试剂(Genlantis公司;圣地亚哥,加利福尼亚州,美国)、TroganPORTERTM转染试剂(Genlantis公司;圣地亚哥,加利福尼亚州,美国)、RiboFect(生物在线公司(Bioline);陶顿,马萨诸塞州,美国)、PlasFect(生物在线公司(Bioline);陶顿,马萨诸塞州,美国)、UniFECTOR(B-Bridge国际公司;山景城,加利福尼亚州,美国)、 SureFECTOR(B-Bridge国际公司;山景城,加利福尼亚州,美国)或 HiFectTM(B-Bridge国际公司,山景城,加利福尼亚州,美国)等。
可利用于加强核酸给药之渗透性的试剂,包括甘油类例如乙二醇及丙二醇、吡咯类例如2-吡咯、月桂氮酮类及萜类例如苎烯及薄荷酮。
v.载体
本发明的某些组合物还将载体化合物结合在配制品中。如在此使用的,“载体化合物”或“载体”可以指核酸或其类似物,它是惰性的(即本身不具有生物活性),但却在体内过程中被认为是核酸,例如通过降解生物活性的核酸或促进其从循环中的除去而减少具有生物活性的核酸的生物利用度。核酸和载体化合物的共给予(典型地后一种物质过量)可以引起肝脏、肾脏或其他外循环储库中回收的核酸量大幅度减少,假定归因于该载体化合物与该核酸之间对共同受体的竞争。例如与聚肌苷酸、硫酸葡聚糖、聚胞苷酸或4-乙酰胺基-4'异硫氰酸茋-2,2'-二磺酸共施用时,肝组织中部分硫代磷酸酯化的 dsRNA的回收可以减少(Miyao等人,DsRNA Res.Dev.[dsRNA研究与研发],1995,5,115-121;Takakura等人,DsRNA&Nucl.Acid Drug Dev. [dsRNA与核酸药物研发],1996,6,177-183)。
vi.赋形剂
与载体化合物相反,“药物载体”或“赋形剂”是药学上可接受的溶剂、悬浮剂或用于将一种或多种核酸递送至动物的任何其他药理学上惰性的媒介物。该赋形剂可以是液体或固体,并且当与核酸和特定药物组合物的其他组分组合时,参考意欲的给予方式,对赋形剂进行选择以提供希望的容积、稠度等。典型的药物载体包括但不限于结合剂(例如,糯性玉米淀粉、聚乙烯吡咯烷酮或羟丙基甲基纤维素等);填充剂(例如,乳糖和其他糖、微晶纤维素、果胶、明胶、硫酸钙、乙基纤维素、聚丙烯酸酯或磷酸氢钙等);润滑剂(例如,硬脂酸镁、滑石、二氧化硅、胶态二氧化硅、硬脂酸、金属硬脂酸盐、氢化植物油、玉米淀粉、聚乙二醇、苯甲酸钠、乙酸钠等);崩解剂(例如,淀粉、淀粉乙醇酸钠等);以及润湿剂(例如,月桂基硫酸钠)。
适合于非肠胃外给予的、不与核酸发生有毒反应的、药学上可接受的有机或无机赋形剂也可以用来配制本发明的组合物。适当的药学上可接受载体包括但不限于:水、盐溶液、醇、聚乙二醇、明胶、乳糖、直链淀粉、硬脂酸镁、滑石、硅酸、粘性石蜡、羟甲基纤维素、聚乙烯吡咯烷酮等。
用于局部给予核酸的配制品可以包括在普通溶剂如醇中的无菌或非无菌的水溶液、非水溶液,或在液体或固体油基质中的核酸溶液。这些溶液还可以含有缓冲液、稀释液和其他合适的添加剂。可以使用适合于非肠胃外给予的、且不与核酸发生有毒反应的、药学上可接受的有机或无机赋形剂。
适当的药学上可接受赋形剂包括但不限于:水、盐溶液、醇、聚乙二醇、明胶、乳糖、直链淀粉、硬脂酸镁、滑石、硅酸、粘性石蜡、羟甲基纤维素、聚乙烯吡咯烷酮等。
vii.其他组分
本发明的这些组合物可以另外地含有其他本领域熟知用量的在药物组合物中常用的辅助组分。因此,例如这些组合物可以含有另外的、可相容的药学上有活性的物质如止痒剂、收敛剂、局部麻醉剂或抗炎剂,或者可以含有对本发明的组合物的各种剂型的物理配制有用的其他物质,如染料、芳香剂、防腐剂、抗氧化剂、遮光剂、增稠剂和稳定剂。然而,当加入此类物质时,它们不应当过度干扰本发明的组合物的成份的生物活性。可以将这些配制品进行灭菌并且如果希望的话与助剂如润滑剂、防腐剂、稳定剂、湿润剂、乳化剂、盐混合,用于影响渗透压的盐、缓冲液、着色物质、芳香物质和/或芬芳物质等进行混合,这些助剂不与该配制品中的一种或多种核酸发生有害的相互作用。
水性混悬液可以含有增加该混悬液的粘度的物质,这样的物质包括例如羧甲基纤维素钠、山梨醇和/或葡聚糖。该混悬液还可以含有稳定剂。
在一些实施例中,在本发明中体现的药物组合物包括(a)一种或多种 iRNA化合物和(b)一种或多种通过非RNAi机制起作用并且可用于治疗溶血障碍的试剂。这些试剂的实例包括但不限于抗炎剂、抗脂肪变性剂、抗病毒和/或抗纤维化剂。另外,其他常用于保护肝脏的物质,如水飞蓟素,也可以与在此描述的iRNA结合使用。其他适用于治疗肝疾病的试剂包括替比夫定(telbivudine)、恩替卡韦(entecavir)及蛋白酶抑制剂例如替拉瑞韦(telaprevir)及其他,例如,在Tung等人,美国专利公开号 2005/0148548、2004/0167116及2003/0144217中;及在Hale等人,美国专利公开号2004/0127488中披露的。
此类化合物的毒性与治疗功效可以通过在细胞培养物或实验动物中的标准药学程序来确定,例如以确定LD50(50%群体的致死剂量)以及ED50 (在50%群体中治疗有效的剂量)。毒性与疗效之间的剂量比为治疗指数,并且它可以被表示为比率LD50/ED50。优选那些表现出高的治疗指数的化合物。
从细胞培养物测定法和动物研究中获得的数据可以在配制人类中使用的剂量范围时使用。在此在本发明中体现的组合物的剂量总体上处在循环浓度范围内,该范围包括具有很小或没有毒性的ED50。该剂量可以取决于所采用的剂型以及使用的给予途径而在该范围内变化。对于任何在本发明表征的方法中使用的化合物,该治疗上有效的剂量可以从细胞培养测定来进行初始估计。可以在动物模型中配制一种剂量以实现包括化合物或(当适宜时)靶标序列的多肽产物的循环血浆浓度范围(例如实现所述多肽浓度减少),其中所述血浆浓度包括如在细胞培养物中所确定的IC50(即,试验化合物的实现症状的半数最大抑制的浓度)。这类信息可以用来更精确地确定用于人类中的剂量。可以测量血浆中的水平,例如通过高效液相色谱法。
除了给予它们之外,如在此所讨论的,还可以将在本发明中表征的 iRNA与在治疗由PCSK9表达介导的病理学过程方面有效的其他已知试剂组合给予。在任何情况下,给予的医师可基于使用所属领域已知或在此描述的效能标准测量所观察到的结果而调整iRNA给予的量及时间。
VI.试剂盒
本发明还提供了用于使用任何iRNA剂和/或执行本发明的任何方法的试剂盒。这样的试剂盒包括一种或多种RNAi试剂和使用说明书,例如用于通过使细胞与该RNAi试剂或这些RNAi试剂以有效抑制PCSK9表达的量接触来抑制该细胞中的该PCSK9表达的说明书。这些试剂盒可以任选地进一步包含用于使该细胞与该RNAi试剂接触的工具(例如,注射装置)或用于测量PCSK9的抑制的工具(例如,用于测量PCSK9 mRNA蛋白的抑制的装置)。这样的用于测量PCSK9的抑制的装置可以包含用于从受试者获得样品(例如像,血浆样品)的装置。本发明的试剂盒可以任选地进一步包含用于将该RNAi试剂或这些RNAi试剂给予至受试者的装置或用于确定治疗有效量或预防有效量的装置。
除非另外限定,否则在此所用的全部技术与科学术语具有如本发明所属领域的普通技术人员通常理解的相同含义。尽管与在此所述的那些方法和材料相似或等同的方法和材料可以用于实施或测试本发明中表征的iRNA和方法,然而现在描述合适的方法和材料。在此提及的所有出版物、专利申请、专利和其他参考文献、以及序列表和附图通过引用以其全文结合。在矛盾的情况下,本发明说明书,包括定义,将占据主导。此外,所述材料、方法和实例仅是说明性的并且不意在是限制性的。
实例
实例1.GalNAc共轭的寡核苷酸的合成
设计、合成靶向人PCSK9基因的核苷酸3544-3623(SEQ ID NO:1)的一系列siRNA双链体。这些相同的序列也被合成为具有不同的核苷酸修饰并且与三价GalNAc共轭。表1中显示了修饰的双链体的正义链和反义链序列。
表B:核酸序列表示中使用的核苷酸单体的缩写。
Figure BDA0003613643930001581
Figure BDA0003613643930001591
Figure BDA0003613643930001601
Figure BDA0003613643930001611
Figure BDA0003613643930001621
Figure BDA0003613643930001631
Figure BDA0003613643930001641
Figure BDA0003613643930001651
Figure BDA0003613643930001661
Figure BDA0003613643930001671
Figure BDA0003613643930001681
Figure BDA0003613643930001691
Figure BDA0003613643930001701
Figure BDA0003613643930001711
实例2:AD-60212的I期临床试验
I期、随机、单盲、安慰剂对照研究(包括单次递增剂量(SAD)组和多次递增剂量(MAD)组)在患有低密度脂蛋白胆固醇升高(LDLc或 LDL-C)的受试者(使用或停用他汀)中进行,以评估皮下给予的AD- 60212的安全性、耐受性、药代动力学和药效学。
更具体地说,在研究的SAD阶段,25mg、100mg、300mg、500mg 或800mg的单次皮下固定剂量的AD-60212(ALN-PCSsc)降低PCSK9蛋白和LDL-C的能力是在健康志愿受试者中进行测试,基线为LDL-C≥100 mg/dl(≥2.6mmol/L)和空腹甘油三酯<400mg/dl(<4.5mmol/L)。在研究的MAD阶段,将受试者(在筛查前使用和停用≥30天稳定剂量的他汀, LDL-C≥100mg/dl并且空腹甘油三酯<400mg/dl(<4.5mmol/L))用多次皮下注射AD-60212进行治疗以测试AD-60212降低PCSK9蛋白和LDL-C 的能力。在研究的多个给予组中的受试者每周一次给予单次125mg固定剂量的AD-60212,持续四周(125mg qW x 4);或每两周一次给予单次250 mg固定剂量的AD-60212,持续一个月(250mg q2W x 2);或每月一次给予单次300mg固定剂量的AD-60212,持续2个月(300mg qM x 2)(不使用他汀疗法);或每月一次给予单次300mg固定剂量的AD-60212,持续2 个月(300mg qM x 2)(使用他汀疗法);或每月一次给予单次500mg固定剂量的AD-60212,持续2个月(500mg qM x 2)(不使用他汀疗法);或每月一次给予单次500mg固定剂量的AD-60212,持续2个月(500mg qM x 2)(使用他汀疗法)。
使用ELISA测定来确定血浆PCSK9蛋白水平,并通过β-定量直接确定血清LDL-C水平(Medpace参考实验室(Medpace Reference Laboratories),勒芬(Leuven),比利时)。还确定了总胆固醇、高密度脂蛋白胆固醇(HDL-C)、非HDL-C(总胆固醇减去HDL-C)、载脂蛋白B、脂蛋白(a)和甘油三酯的水平。
表2A中提供了在研究的SAD阶段中的受试者的组群人口统计特征和基线特征,以及表2B中提供了在研究的MAD阶段中的受试者的组群人口统计特征和基线特征。
AD-60212的未修饰的正义和反义序列是:
正义-5’-CUAGACCUGUTUUGCUUUUGU-3’(SEQ ID NO:686);和
反义-5’-ACAAAAGCAAAACAGGUCUAGAA-3’(SEQ ID NO:685)。
AD-60212的修饰的正义链和反义链是:
正义-5’-csusagacCfuGfudTuugcuuuugu-3’(SEQ ID NO:687);和
反义-5’-asCfsaAfAfAfgCfaAfaAfcAfgGfuCfuagsasa-3’(SEQ ID NO: 688)。
SAD阶段
AD-60212在SAD阶段的所有剂量水平都具有良好的耐受性,并且不存在因为不良事件(AE)而造成的中断并且没有报道严重的AE。
图1显示了单次剂量组群中PCSK9蛋白水平的敲低(示为相对于基线的平均PCSK9敲低百分比),并且图2显示了单次剂量组群中的LDL-C水平降低(示为相对于基线的平均LDL-C降低百分比)。表3提供了在SAD 阶段给药后84和180天,PCSK9的蛋白质水平、LDL-C水平、总胆固醇水平、HDL-C水平、非HDL-C水平、载脂蛋白B水平、甘油三酯水平、和载脂蛋白a水平从基线的平均(SD)百分比变化。
数据表明以剂量依赖性方式给予AD-60212降低PCSK9水平达300 mg。剂量≥300mg产生相似、持续的PCSK9水平降低,其维持至少6个月的时间段。在25-mg和100-mg的剂量组群中,到第180天,PCSK9水平恢复至基线(最后三次测量的平均值≥基线的80%)。在接受≥300mg(n= 12)的剂量的受试者中,PCSK9水平的相对基线的最大个体相对降低为 89%(800-mg剂量,第112天)。平均最大降低百分比(个体最低点的平均降低百分比)为82%并且在800-mg剂量组群中观察到。对于从治疗后第7±1天开始直到治疗后第112天的所有11个测量点,在接受300-800mg的 ALN-PCSsc的受试者(n=2-6/剂量组)中,PCSK9水平从基线的变化显著大于安慰剂治疗的受试者中的变化(P≤0.011)。
这些数据进一步表明,AD-60212给予导致剂量依赖性LDL-C降低达 300mg,在此时达到接近最大的降低。在300-800mg剂量范围内,LDL-C 降低是相似的。在接受这些剂量的受试者中(n=12),LDL-C中从基线的最大个体减少为78%(500-mg剂量;第56天)。平均最大和最大最小二乘平均值(LSM)百分比减少为59%,并在500和800-mg组群中观察到。到最后一次给予25-mg和100-mg剂量后180天,LDL-C水平返回至基线水平。LDL-C降低维持至≥300mg剂量后的至少第180天。在从治疗后第14 ±2天直到治疗后第112天的所有10次确定中,接受300-800mg ALN- PCSsc的受试者(n=3-6)与接受安慰剂的受试者相比,从基线的LDL-C降低具有统计学显著性(P≤0.037)。
在AD-60212治疗的受试者中也注意到总胆固醇、非HDL-C、载脂蛋白 B和脂蛋白(a)浓度的减少。针对大多数比较,与安慰剂相比,这些参数的降低具有统计学显著性。
MAD阶段
AD-60212在MAD阶段的所有剂量水平也都具有良好的耐受性,并且不存在因为不良事件(AE)而造成的中断并且没有报道严重的AE。
图3显示了多剂量组群中PCSK9蛋白水平的敲低(示为相对于基线的平均PCSK9敲低百分比),并且图4显示了多剂量组群中的LDL-C水平降低(示为相对于基线的平均LDL-C降低百分比)。表4提供了在SAD阶段给药后84和180天,PCSK9的蛋白质水平、LDL-C水平、总胆固醇水平、 HDL-C水平、非HDL-C水平、载脂蛋白B水平、甘油三酯水平、和载脂蛋白a水平从基线的平均(SD)百分比变化。
数据表明在给予AD-60212以及所研究的所有治疗方案后,PCSK9蛋白水平降低。降低在所有多剂量组群中是相似的,并且这些降低在最后给药后维持至少6个月。与公开的文献(Khera Av等人(2015),Am J Cardiol[美国心脏病学杂志]115:178-82;Guo YL等人(2013)Clin Drug Investig[药物临床研究]33:877-83)一致,PCSK9的基线值在接受稳定剂量的他汀的受试者中更高。PCSK9降低不依赖于基线PCSK9水平,并且在受试者中是相似的 (无论是否使用他汀)。PCSK9从基线的最大个体降低为94%(在第63 天,500mg QMx2与他汀共同给予)。平均最大百分比降低为89%,可在接受与他汀共同治疗的500mg剂量的受试者中观察到。对于从治疗后第4天直到第126天的所有15个测量点,以单一疗法接受多剂量AD-60212(即,不使用他汀;n=3-6/剂量组)的受试者的PCSK9浓度从基线的变化显著大于接受安慰剂的受试者(P≤0.002)。
数据进一步表明,所有多剂量AD-60212治疗方案均可获得相似的持续 LDL-C降低。LDL-C降低不依赖于基线LDL-C水平,并且在使用和不使用他汀联合疗法的情况下是相似的。最大个体LDL-C降低为83%(在第29 天,500mg QMx2与他汀共同给予)。LDL-C的平均最大降低百分比为64%,在接受300mg剂量而不使用他汀的组群中观察到LSM降低60%。在所有MD组群中的LDL-C降低持续至少6个月。
取决于治疗方案,AD-60212单一疗法受试者(n=3-6)的LDL-C从基线的变化与安慰剂相比在从约8至约17周范围期间内显著不同(P≤ 0.05)。
在ALN-PCSsc治疗的受试者中也注意到总胆固醇、非HDL-C、载脂蛋白B和脂蛋白(a)浓度的减少。针对大多数比较,与安慰剂相比,这些参数的降低具有统计学显著性。
总之,皮下给予靶向PCSK9的AD-60212以降低LDL-C水平在25至 800mg的单次剂量中和在28天时间段内的2-4次(总共500-1000mg)剂量的MD方案中具有良好的耐受性。
如图1和2以及表3所示,在单次剂量后,单次皮下注射固定剂量(≥ 300mg)的AD-60212导致持续的PCSK9敲低和LDL-C降低持续超过6个月。在给予单次固定剂量的AD-60212后,存在高达89%的最大PCSK9敲低,并且平均最大PCSK9降低为82%,以及高达78%的最大LDL-C降低、平均最大LDL-C降低为59%。此外,在单次剂量后第140天,LDL-C显著 (P<0.001)平均减少44%。
如图3和4以及表4所示,在使用或不适用随他汀治疗的情况下,两个每月固定剂量的AD-60212导致PCSK9的高达94%最大敲低达,并且平均最大PCSK9降低为89%,以及LDL-C的高达83%的最大降低,并且平均最大LDL-C降低为64%。
这些数据证明单次剂量的AD-60212(≥300mg)和在此证明的所有多剂量与PCSK9和LDL-C两者的循环浓度的高度持续降低相关。在这些剂量下,对PCSK9和LDL-C的作用仍然显着降低在治疗后持续至少180天,使得在最后一次AD-60212注射后,高达76%的PCSK9降低、以及高达48%的LDL-C降低仍然明显持续6个月,并且在6个月的给药后期间表现出非常小的变化。当添加他汀疗法后,用AD-60212达到附加的血清LDL-C降低,并且组合疗法不影响任一试剂的安全性和耐受性。
在SAD和MAD两个阶段中,在AD-60212治疗的受试者中观察到总胆固醇、非HDL-C、载脂蛋白B和脂蛋白(a)浓度的减少。针对大多数比较,与安慰剂相比,这些参数的降低具有统计学显著性。
Figure BDA0003613643930001771
Figure BDA0003613643930001781
Figure BDA0003613643930001791
Figure BDA0003613643930001801
Figure BDA0003613643930001811
Figure BDA0003613643930001821
Figure BDA0003613643930001831
Figure BDA0003613643930001841
Figure BDA0003613643930001851
Figure IDA0003613643980000011
Figure IDA0003613643980000021
Figure IDA0003613643980000031
Figure IDA0003613643980000041
Figure IDA0003613643980000051
Figure IDA0003613643980000061
Figure IDA0003613643980000071
Figure IDA0003613643980000081
Figure IDA0003613643980000091
Figure IDA0003613643980000101
Figure IDA0003613643980000111
Figure IDA0003613643980000121
Figure IDA0003613643980000131
Figure IDA0003613643980000141
Figure IDA0003613643980000151
Figure IDA0003613643980000161
Figure IDA0003613643980000171
Figure IDA0003613643980000181
Figure IDA0003613643980000191
Figure IDA0003613643980000201
Figure IDA0003613643980000211
Figure IDA0003613643980000221
Figure IDA0003613643980000231
Figure IDA0003613643980000241
Figure IDA0003613643980000251
Figure IDA0003613643980000261
Figure IDA0003613643980000271
Figure IDA0003613643980000281
Figure IDA0003613643980000291
Figure IDA0003613643980000301
Figure IDA0003613643980000311
Figure IDA0003613643980000321
Figure IDA0003613643980000331
Figure IDA0003613643980000341
Figure IDA0003613643980000351
Figure IDA0003613643980000361
Figure IDA0003613643980000371
Figure IDA0003613643980000381
Figure IDA0003613643980000391
Figure IDA0003613643980000401
Figure IDA0003613643980000411
Figure IDA0003613643980000421
Figure IDA0003613643980000431
Figure IDA0003613643980000441
Figure IDA0003613643980000451
Figure IDA0003613643980000461
Figure IDA0003613643980000471
Figure IDA0003613643980000481
Figure IDA0003613643980000491
Figure IDA0003613643980000501
Figure IDA0003613643980000511
Figure IDA0003613643980000521
Figure IDA0003613643980000531
Figure IDA0003613643980000541
Figure IDA0003613643980000551
Figure IDA0003613643980000561
Figure IDA0003613643980000571
Figure IDA0003613643980000581
Figure IDA0003613643980000591
Figure IDA0003613643980000601
Figure IDA0003613643980000611
Figure IDA0003613643980000621
Figure IDA0003613643980000631
Figure IDA0003613643980000641
Figure IDA0003613643980000651
Figure IDA0003613643980000661
Figure IDA0003613643980000671
Figure IDA0003613643980000681
Figure IDA0003613643980000691
Figure IDA0003613643980000701
Figure IDA0003613643980000711
Figure IDA0003613643980000721
Figure IDA0003613643980000731
Figure IDA0003613643980000741
Figure IDA0003613643980000751
Figure IDA0003613643980000761
Figure IDA0003613643980000771
Figure IDA0003613643980000781
Figure IDA0003613643980000791
Figure IDA0003613643980000801
Figure IDA0003613643980000811
Figure IDA0003613643980000821
Figure IDA0003613643980000831
Figure IDA0003613643980000841
Figure IDA0003613643980000851
Figure IDA0003613643980000861
Figure IDA0003613643980000871
Figure IDA0003613643980000881
Figure IDA0003613643980000891
Figure IDA0003613643980000901
Figure IDA0003613643980000911
Figure IDA0003613643980000921
Figure IDA0003613643980000931
Figure IDA0003613643980000941
Figure IDA0003613643980000951
Figure IDA0003613643980000961
Figure IDA0003613643980000971
Figure IDA0003613643980000981
Figure IDA0003613643980000991
Figure IDA0003613643980001001
Figure IDA0003613643980001011
Figure IDA0003613643980001021
Figure IDA0003613643980001031
Figure IDA0003613643980001041
Figure IDA0003613643980001051
Figure IDA0003613643980001061
Figure IDA0003613643980001071
Figure IDA0003613643980001081
Figure IDA0003613643980001091
Figure IDA0003613643980001101
Figure IDA0003613643980001111
Figure IDA0003613643980001121
Figure IDA0003613643980001131
Figure IDA0003613643980001141
Figure IDA0003613643980001151
Figure IDA0003613643980001161
Figure IDA0003613643980001171
Figure IDA0003613643980001181
Figure IDA0003613643980001191
Figure IDA0003613643980001201
Figure IDA0003613643980001211
Figure IDA0003613643980001221
Figure IDA0003613643980001231
Figure IDA0003613643980001241
Figure IDA0003613643980001251
Figure IDA0003613643980001261
Figure IDA0003613643980001271
Figure IDA0003613643980001281
Figure IDA0003613643980001291
Figure IDA0003613643980001301
Figure IDA0003613643980001311
Figure IDA0003613643980001321
Figure IDA0003613643980001331
Figure IDA0003613643980001341
Figure IDA0003613643980001351
Figure IDA0003613643980001361
Figure IDA0003613643980001371
Figure IDA0003613643980001381
Figure IDA0003613643980001391
Figure IDA0003613643980001401
Figure IDA0003613643980001411
Figure IDA0003613643980001421
Figure IDA0003613643980001431
Figure IDA0003613643980001441
Figure IDA0003613643980001451
Figure IDA0003613643980001461
Figure IDA0003613643980001471
Figure IDA0003613643980001481
Figure IDA0003613643980001491
Figure IDA0003613643980001501
Figure IDA0003613643980001511
Figure IDA0003613643980001521
Figure IDA0003613643980001531
Figure IDA0003613643980001541
Figure IDA0003613643980001551
Figure IDA0003613643980001561
Figure IDA0003613643980001571
Figure IDA0003613643980001581
Figure IDA0003613643980001591
Figure IDA0003613643980001601
Figure IDA0003613643980001611
Figure IDA0003613643980001621
Figure IDA0003613643980001631
Figure IDA0003613643980001641
Figure IDA0003613643980001651
Figure IDA0003613643980001661
Figure IDA0003613643980001671
Figure IDA0003613643980001681
Figure IDA0003613643980001691
Figure IDA0003613643980001701
Figure IDA0003613643980001711
Figure IDA0003613643980001721
Figure IDA0003613643980001731
Figure IDA0003613643980001741
Figure IDA0003613643980001751
Figure IDA0003613643980001761
Figure IDA0003613643980001771
Figure IDA0003613643980001781
Figure IDA0003613643980001791
Figure IDA0003613643980001801
Figure IDA0003613643980001811
Figure IDA0003613643980001821
Figure IDA0003613643980001831
Figure IDA0003613643980001841
Figure IDA0003613643980001851
Figure IDA0003613643980001861
Figure IDA0003613643980001871
Figure IDA0003613643980001881
Figure IDA0003613643980001891
Figure IDA0003613643980001901
Figure IDA0003613643980001911
Figure IDA0003613643980001921
Figure IDA0003613643980001931
Figure IDA0003613643980001941
Figure IDA0003613643980001951

Claims (29)

1.一种药物组合物,包含双链核糖核酸(RNAi)试剂或其盐,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,
其中该正义链包含5’-csusagacCfuGfudTuugcuuuugu-3’(SEQ ID NO:687)的核苷酸序列,并且该反义链包含5’-asCfsaAfAfAfgCfaAfaAfcAfgGfuCfuagsasa-3’(SEQ ID NO:688)的核苷酸序列,
其中a、g、c和u分别是2′-O-甲基(2′-OMe)A、G、C和U;Af、Gf、Cf和Uf分别是2'-氟A、G、C和U;dT是2'-脱氧胸苷;以及s为硫代磷酸酯键,
其中该双链核糖核酸RNAi试剂共轭至N-乙酰半乳糖胺(GalNAc)3配体,以及
其中所述药物组合物为用于皮下注射的单位剂型,其每个单位剂型足以(i)抑制人受试者中前蛋白转化酶枯草杆菌蛋白酶kexin(PCSK9)基因的表达至少3个月,(ii)降低人受试者的血清中低密度脂蛋白(LDLc)的水平至少3个月,(iii)治疗人受试者的高脂血症至少3个月或(iv)治疗人受试者的高胆固醇血症至少3个月,其中所述药物组合物的每个单位剂型包含275mg至325mg的固定剂量的所述双链RNAi试剂或其盐。
2.如权利要求1所述的药物组合物,其中该(GalNAc)3配体共轭至该双链核糖核酸RNAi试剂的正义链的3'末端。
3.如权利要求1或2所述的药物组合物,其中该(GalNAc)3配体是
Figure FDA0003613643920000021
4.如权利要求3所述的药物组合物,其中该双链核糖核酸RNAi试剂共轭至该(GalNAc)3配体,如以下示意图中所示
Figure FDA0003613643920000022
并且,其中X是O或S。
5.如权利要求4所述的药物组合物,其中该X是O。
6.如权利要求1-5中任一项所述的药物组合物,其中该双链RNAi试剂存在于非缓冲溶液中的组合物中。
7.如权利要求6所述的药物组合物,其中该非缓冲溶液是盐水或水。
8.如权利要求1-5中任一项所述的药物组合物,其中该双链RNAi存在于缓冲溶液中的组合物中。
9.如权利要求8所述的药物组合物,其中该缓冲溶液包含乙酸盐、柠檬酸盐、醇溶谷蛋白、碳酸盐或磷酸盐或其任何组合。
10.如权利要求8所述的药物组合物,其中该缓冲溶液是磷酸盐缓冲盐水(PBS)。
11.如权利要求1-10中任一项所述的药物组合物,其中该固定剂量为300mg。
12.如权利要求1-11中任一项所述的药物组合物,其中该固定剂量以每季度一次的间隔给予。
13.如权利要求1-11中任一项所述的药物组合物,其中该固定剂量以每半年的间隔给予。
14.药物组合物在制备用于:
(i)抑制人受试者中前蛋白转化酶枯草杆菌蛋白酶kexin 9(PCSK9)基因的表达,或
(ii)降低人受试者的血清中低密度脂蛋白胆固醇(LDLc)的水平,或
(iii)治疗人受试者的高脂血症,或
(iv)治疗人受试者的高胆固醇血症的药物中的用途,
其中该药物组合物包含双链核糖核酸(RNAi)试剂或其盐,
其中该双链RNAi试剂包含形成双链区域的正义链和反义链,
其中该正义链包含5’-csusagacCfuGfudTuugcuuuugu-3’(SEQ ID NO:687)的核苷酸序列,并且该反义链包含5’-asCfsaAfAfAfgCfaAfaAfcAfgGfuCfuagsasa-3’(SEQ ID NO:688)的核苷酸序列,
其中a、g、c和u分别是2′-O-甲基(2′-OMe)A、G、C和U;Af、Gf、Cf和Uf分别是2'-氟A、G、C和U;dT是2'-脱氧胸苷;以及s为硫代磷酸酯键,
其中该双链核糖核酸RNAi试剂共轭至N-乙酰半乳糖胺(GalNAc)3配体,以及
其中该药物组合物为用于皮下注射的单位剂型,其每个单位剂型足以(i)抑制人受试者中前蛋白转化酶枯草杆菌蛋白酶kexin(PCSK9)基因的表达至少3个月,(ii)降低人受试者的血清中低密度脂蛋白(LDLc)的水平至少3个月,(iii)治疗人受试者的高脂血症至少3个月或(iv)治疗人受试者的高胆固醇血症至少3个月,其中且该药物组合物的每个单位剂型包含275mg至325mg的固定剂量的所述双链核糖核酸(RNAi)试剂或其盐。
15.如权利要求14所述的药物组合物的用途,其中该受试者患有高脂血症。
16.如权利要求14所述的药物组合物的用途,其中该受试者患有高胆固醇血症。
17.如权利要求14所述的药物组合物的用途,其中该受试者具有杂合LDL受体基因型。
18.如权利要求14-17中任一项所述的药物组合物的用途,其中该(GalNAc)3配体共轭至该双链核糖核酸RNAi试剂的正义链的3'末端。
19.如权利要求14-18中任一项所述的药物组合物的用途,其中该(GalNAc)3配体是
Figure FDA0003613643920000041
20.如权利要求19所述的药物组合物的用途,其中该双链RNAi试剂共轭至该(GalNAc)3配体,如以下示意图中所示
Figure FDA0003613643920000051
并且,其中X是O或S。
21.如权利要求20所述的药物组合物的用途,其中该X是O。
22.如权利要求14-21中任一项所述的药物组合物的用途,其中该双链RNAi试剂存在于非缓冲溶液中的组合物中。
23.如权利要求22所述的药物组合物的用途,其中该非缓冲溶液是盐水或水。
24.如权利要求14-21中任一项所述的药物组合物的用途,其中该双链RNAi存在于缓冲溶液中的组合物中。
25.如权利要求24所述的药物组合物的用途,其中该缓冲溶液包含乙酸盐、柠檬酸盐、醇溶谷蛋白、碳酸盐或磷酸盐或其任何组合。
26.如权利要求24所述的药物组合物的用途,其中该缓冲溶液是磷酸盐缓冲盐水(PBS)。
27.如权利要求14-26中任一项所述的药物组合物的用途,其中该固定剂量为300mg。
28.如权利要求14-27中任一项所述的药物组合物的用途,其中该固定剂量以每季度一次的间隔给予。
29.如权利要求14-27中任一项所述的药物组合物的用途,其中该固定剂量以每半年的间隔给予。
CN202210440296.3A 2015-08-25 2016-08-25 治疗前蛋白转化酶枯草杆菌蛋白酶kexin(pcsk9)基因相关障碍的方法和组合物 Pending CN114939124A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562209526P 2015-08-25 2015-08-25
US62/209,526 2015-08-25
PCT/US2016/048666 WO2017035340A1 (en) 2015-08-25 2016-08-25 Methods and compositions for treating a proprotein convertase subtilisin kexin (pcsk9) gene-associated disorder
CN201680062334.9A CN108348541A (zh) 2015-08-25 2016-08-25 用于治疗前蛋白转化酶枯草杆菌蛋白酶kexin(pcsk9)基因相关障碍的方法和组合物

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201680062334.9A Division CN108348541A (zh) 2015-08-25 2016-08-25 用于治疗前蛋白转化酶枯草杆菌蛋白酶kexin(pcsk9)基因相关障碍的方法和组合物

Publications (1)

Publication Number Publication Date
CN114939124A true CN114939124A (zh) 2022-08-26

Family

ID=56855841

Family Applications (5)

Application Number Title Priority Date Filing Date
CN202410181197.7A Pending CN118079015A (zh) 2015-08-25 2016-08-25 用于治疗前蛋白转化酶枯草杆菌蛋白酶kexin(pcsk9)基因相关障碍的方法和组合物
CN202210440296.3A Pending CN114939124A (zh) 2015-08-25 2016-08-25 治疗前蛋白转化酶枯草杆菌蛋白酶kexin(pcsk9)基因相关障碍的方法和组合物
CN201680062334.9A Pending CN108348541A (zh) 2015-08-25 2016-08-25 用于治疗前蛋白转化酶枯草杆菌蛋白酶kexin(pcsk9)基因相关障碍的方法和组合物
CN202210306133.6A Pending CN114668774A (zh) 2015-08-25 2016-08-25 治疗前蛋白转化酶枯草杆菌蛋白酶kexin(pcsk9)基因相关障碍的方法和组合物
CN202210175232.5A Pending CN114469984A (zh) 2015-08-25 2016-08-25 用于治疗前蛋白转化酶枯草杆菌蛋白酶kexin(pcsk9)基因相关障碍的方法和组合物

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202410181197.7A Pending CN118079015A (zh) 2015-08-25 2016-08-25 用于治疗前蛋白转化酶枯草杆菌蛋白酶kexin(pcsk9)基因相关障碍的方法和组合物

Family Applications After (3)

Application Number Title Priority Date Filing Date
CN201680062334.9A Pending CN108348541A (zh) 2015-08-25 2016-08-25 用于治疗前蛋白转化酶枯草杆菌蛋白酶kexin(pcsk9)基因相关障碍的方法和组合物
CN202210306133.6A Pending CN114668774A (zh) 2015-08-25 2016-08-25 治疗前蛋白转化酶枯草杆菌蛋白酶kexin(pcsk9)基因相关障碍的方法和组合物
CN202210175232.5A Pending CN114469984A (zh) 2015-08-25 2016-08-25 用于治疗前蛋白转化酶枯草杆菌蛋白酶kexin(pcsk9)基因相关障碍的方法和组合物

Country Status (12)

Country Link
US (4) US20180187198A1 (zh)
EP (1) EP3340994A1 (zh)
JP (3) JP6941598B2 (zh)
KR (1) KR20180054640A (zh)
CN (5) CN118079015A (zh)
AU (2) AU2016310494B2 (zh)
CA (1) CA2996701C (zh)
EA (1) EA201890571A1 (zh)
HK (1) HK1257523A1 (zh)
IL (3) IL310959A (zh)
MX (2) MX2018002158A (zh)
WO (1) WO2017035340A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG171914A1 (en) 2008-12-02 2011-07-28 Chiralgen Ltd Method for the synthesis of phosphorus atom modified nucleic acids
AU2010270714B2 (en) 2009-07-06 2015-08-13 Wave Life Sciences Ltd. Novel nucleic acid prodrugs and methods use thereof
US10428019B2 (en) 2010-09-24 2019-10-01 Wave Life Sciences Ltd. Chiral auxiliaries
DK2734208T3 (en) 2011-07-19 2017-06-19 Wave Life Sciences Ltd PROCEDURES FOR SYNTHESIS OF FUNCTIONALIZED NUCLEIC ACIDS
SG11201500232UA (en) 2012-07-13 2015-04-29 Wave Life Sciences Pte Ltd Chiral control
US9598458B2 (en) 2012-07-13 2017-03-21 Wave Life Sciences Japan, Inc. Asymmetric auxiliary group
HUE035887T2 (en) 2012-12-05 2018-05-28 Alnylam Pharmaceuticals Inc PCSK9 iRNA preparations and methods for their use
JPWO2015108048A1 (ja) 2014-01-15 2017-03-23 株式会社新日本科学 抗腫瘍作用を有するキラル核酸アジュバンド及び抗腫瘍剤
JPWO2015108047A1 (ja) 2014-01-15 2017-03-23 株式会社新日本科学 免疫誘導活性を有するキラル核酸アジュバンド及び免疫誘導活性剤
US10160969B2 (en) 2014-01-16 2018-12-25 Wave Life Sciences Ltd. Chiral design
EA201890571A1 (ru) 2015-08-25 2018-10-31 Элнилэм Фармасьютикалз, Инк. Способы и композиции для лечения нарушения, ассоциированного с геном пропротеинконвертазы субтилизин/кексинового типа (pcsk9)
CN110944675B (zh) 2017-12-01 2024-06-04 苏州瑞博生物技术股份有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
JP7365052B2 (ja) 2017-12-01 2023-10-19 スーチョウ リボ ライフ サイエンス カンパニー、リミテッド 核酸、当該核酸を含む組成物及び複合体ならびに調製方法と使用
EP3719128A4 (en) * 2017-12-01 2021-10-27 Suzhou Ribo Life Science Co., Ltd. DOUBLE STRANDED OLIGONUCLEOTIDE, COMPOSITION AND CONJUGATE WITH DOUBLE STRANDED OLIGONUCLEOTIDE, METHOD OF MANUFACTURING THEREOF AND USE THEREOF
EP3719126A4 (en) 2017-12-01 2021-10-20 Suzhou Ribo Life Science Co., Ltd. NUCLEIC ACID, COMPOSITION AND CONJUGATE CONTAINING NUCLEIC ACID, ASSOCIATED PREPARATION PROCESS AND USE
CN116375774A (zh) 2017-12-29 2023-07-04 苏州瑞博生物技术股份有限公司 缀合物及其制备方法和用途
EP3842534A4 (en) 2018-08-21 2022-07-06 Suzhou Ribo Life Science Co., Ltd. NUCLEIC ACID, COMPOSITION AND CONJUGATE CONTAINING NUCLEIC ACID AND METHOD OF USE THEREOF
WO2020063198A1 (zh) 2018-09-30 2020-04-02 苏州瑞博生物技术有限公司 一种siRNA缀合物及其制备方法和用途
TW202111118A (zh) * 2019-05-22 2021-03-16 大陸商蘇州瑞博生物技術股份有限公司 核酸、藥物組合物與綴合物及製備方法和用途
EP4081642A1 (en) 2020-03-16 2022-11-02 Argonaute Rna Limited Antagonist of pcsk9
WO2023017004A1 (en) * 2021-08-09 2023-02-16 Cargene Therapeutics Pte. Ltd. Inhibitory nucleic acids for pcsk9
WO2023198201A1 (zh) * 2022-04-14 2023-10-19 苏州瑞博生物技术股份有限公司 适配体、缀合物与组合物及制备方法和用途
CN117384907B (zh) * 2023-12-11 2024-03-29 上海鼎新基因科技有限公司 抑制PCSK9表达的siRNA分子及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011028938A1 (en) * 2009-09-02 2011-03-10 Alnylam Pharmaceuticals, Inc. Methods for lowering serum cholestrol in a subject using inhibition of pcsk9
US20130289094A1 (en) * 2010-10-29 2013-10-31 Alnylam Pharmaceuticals, Inc. Compositions and Methods for Inhibition of PCSK9 Genes
CN104854242A (zh) * 2012-12-05 2015-08-19 阿尔尼拉姆医药品有限公司 PCSK9 iRNA组合物及其使用方法
US20160264966A1 (en) * 2013-10-02 2016-09-15 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the lect2 gene

Family Cites Families (228)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054299A (en) 1994-04-29 2000-04-25 Conrad; Charles A. Stem-loop cloning vector and method
US6379957B1 (en) 1998-09-21 2002-04-30 Leslie A. Johnston-Dow Methods for HIV sequencing and genotyping
US6271359B1 (en) 1999-04-14 2001-08-07 Musc Foundation For Research Development Tissue-specific and pathogen-specific toxic agents and ribozymes
DE10100586C1 (de) 2001-01-09 2002-04-11 Ribopharma Ag Verfahren zur Hemmung der Expression eines Ziegens
US20050032733A1 (en) 2001-05-18 2005-02-10 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (SiNA)
US8273866B2 (en) 2002-02-20 2012-09-25 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (SINA)
US20050182008A1 (en) 2000-02-11 2005-08-18 Sirna Therapeutics, Inc. RNA interference mediated inhibition of NOGO and NOGO receptor gene expression using short interfering nucleic acid (siNA)
US8202979B2 (en) 2002-02-20 2012-06-19 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid
WO2005019453A2 (en) 2001-05-18 2005-03-03 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF GENE EXPRESSION USING CHEMICALLY MODIFIED SHORT INTERFERING NUCLEIC ACID (siNA)
US7491805B2 (en) 2001-05-18 2009-02-17 Sirna Therapeutics, Inc. Conjugates and compositions for cellular delivery
US7833992B2 (en) 2001-05-18 2010-11-16 Merck Sharpe & Dohme Conjugates and compositions for cellular delivery
US20050209179A1 (en) 2000-08-30 2005-09-22 Sirna Therapeutics, Inc. RNA interference mediated treatment of Alzheimer's disease using short interfering nucleic acid (siNA)
US20060247194A1 (en) 2000-08-30 2006-11-02 Sirna Therapeutics , Inc. Rna interference mediated treatment of alzheimer's disease using short interfering nucleic acid (sina)
GB2375646A (en) 2001-05-16 2002-11-20 Monox Ltd Safety module for fuel-burning appliance, and appliance using such a safety module
US20070032441A1 (en) 2001-05-18 2007-02-08 Sirna Therapeutics, Inc. Rna interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (sina)
US20070179104A1 (en) 2001-05-18 2007-08-02 Sirna Therapeutics, Inc. RNA interference mediated inhibition of winged helix nude (WHN) gene expression using short interfering nucleic acid (siNA)
US20050153916A1 (en) 2001-05-18 2005-07-14 Sirna Therapeutics, Inc. RNA interference mediated inhibition of telomerase gene expression using short interfering nucleic acid (siNA)
US20060217331A1 (en) 2001-05-18 2006-09-28 Sirna Therapeutics, Inc. Chemically modified double stranded nucleic acid molecules that mediate RNA interference
WO2005014811A2 (en) 2003-08-08 2005-02-17 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF XIAP GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20050143333A1 (en) 2001-05-18 2005-06-30 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (SINA)
US20050130181A1 (en) 2001-05-18 2005-06-16 Sirna Therapeutics, Inc. RNA interference mediated inhibition of wingless gene expression using short interfering nucleic acid (siNA)
US20050176664A1 (en) 2001-05-18 2005-08-11 Sirna Therapeutics, Inc. RNA interference mediated inhibition of cholinergic muscarinic receptor (CHRM3) gene expression using short interfering nucleic acid (siNA)
US20050239731A1 (en) 2001-05-18 2005-10-27 Sirna Therapeutics, Inc. RNA interference mediated inhibition of MAP kinase gene expression using short interfering nucleic acid (siNA)
US20060142225A1 (en) 2001-05-18 2006-06-29 Sirna Therapeutics, Inc. RNA interference mediated inhibition of cyclin dependent kinase-2 (CDK2) gene expression using short interfering nucleic acid (siNA)
US20070270579A1 (en) 2001-05-18 2007-11-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
US20050288242A1 (en) 2001-05-18 2005-12-29 Sirna Therapeutics, Inc. RNA interference mediated inhibition of RAS gene expression using short interfering nucleic acid (siNA)
US20050148530A1 (en) 2002-02-20 2005-07-07 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20080161256A1 (en) 2001-05-18 2008-07-03 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
US20050267058A1 (en) 2001-05-18 2005-12-01 Sirna Therapeutics, Inc. RNA interference mediated inhibition of placental growth factor gene expression using short interfering nucleic acid (sINA)
US20060241075A1 (en) 2001-05-18 2006-10-26 Sirna Therapeutics, Inc. RNA interference mediated inhibition of desmoglein gene expression using short interfering nucleic acid (siNA)
US20050136436A1 (en) 2001-05-18 2005-06-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of G72 and D-amino acid oxidase (DAAO) gene expression using short interfering nucleic acid (siNA)
US20060148743A1 (en) 2001-05-18 2006-07-06 Vasant Jadhav RNA interference mediated inhibition of histone deacetylase (HDAC) gene expression using short interfering nucleic acid (siNA)
US20050137155A1 (en) 2001-05-18 2005-06-23 Sirna Therapeutics, Inc. RNA interference mediated treatment of Parkinson disease using short interfering nucleic acid (siNA)
US20050153914A1 (en) 2001-05-18 2005-07-14 Sirna Therapeutics, Inc. RNA interference mediated inhibition of MDR P-glycoprotein gene expression using short interfering nucleic acid (siNA)
US20050159376A1 (en) 2002-02-20 2005-07-21 Slrna Therapeutics, Inc. RNA interference mediated inhibition 5-alpha reductase and androgen receptor gene expression using short interfering nucleic acid (siNA)
US20050233344A1 (en) 2001-05-18 2005-10-20 Sirna Therapeutics, Inc. RNA interference mediated inhibition of platelet derived growth factor (PDGF) and platelet derived growth factor receptor (PDGFR) gene expression using short interfering nucleic acid (siNA)
US20050159380A1 (en) 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of angiopoietin gene expression using short interfering nucleic acid (siNA)
US20050176025A1 (en) 2001-05-18 2005-08-11 Sirna Therapeutics, Inc. RNA interference mediated inhibition of B-cell CLL/Lymphoma-2 (BCL-2) gene expression using short interfering nucleic acid (siNA)
US20050227935A1 (en) 2001-05-18 2005-10-13 Sirna Therapeutics, Inc. RNA interference mediated inhibition of TNF and TNF receptor gene expression using short interfering nucleic acid (siNA)
US20060019913A1 (en) 2001-05-18 2006-01-26 Sirna Therapeutics, Inc. RNA interference mediated inhibtion of protein tyrosine phosphatase-1B (PTP-1B) gene expression using short interfering nucleic acid (siNA)
US20050159379A1 (en) 2001-05-18 2005-07-21 Sirna Therapeutics, Inc RNA interference mediated inhibition of gastric inhibitory polypeptide (GIP) and gastric inhibitory polypeptide receptor (GIPR) gene expression using short interfering nucleic acid (siNA)
US20050164966A1 (en) 2001-05-18 2005-07-28 Sirna Therapeutics, Inc. RNA interference mediated inhibition of type 1 insulin-like growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20050158735A1 (en) 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of proliferating cell nuclear antigen (PCNA) gene expression using short interfering nucleic acid (siNA)
US20050164968A1 (en) 2001-05-18 2005-07-28 Sirna Therapeutics, Inc. RNA interference mediated inhibition of ADAM33 gene expression using short interfering nucleic acid (siNA)
US20050222066A1 (en) 2001-05-18 2005-10-06 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20050233997A1 (en) 2001-05-18 2005-10-20 Sirna Therapeutics, Inc. RNA interference mediated inhibition of matrix metalloproteinase 13 (MMP13) gene expression using short interfering nucleic acid (siNA)
US20050119212A1 (en) 2001-05-18 2005-06-02 Sirna Therapeutics, Inc. RNA interference mediated inhibition of FAS and FASL gene expression using short interfering nucleic acid (siNA)
US20050124568A1 (en) 2001-05-18 2005-06-09 Sirna Therapeutics, Inc. RNA interference mediated inhibition of acetyl-CoA-carboxylase gene expression using short interfering nucleic acid (siNA)
US20050182006A1 (en) 2001-05-18 2005-08-18 Sirna Therapeutics, Inc RNA interference mediated inhibition of protein kinase C alpha (PKC-alpha) gene expression using short interfering nucleic acid (siNA)
US9994853B2 (en) 2001-05-18 2018-06-12 Sirna Therapeutics, Inc. Chemically modified multifunctional short interfering nucleic acid molecules that mediate RNA interference
US20050277608A1 (en) 2001-05-18 2005-12-15 Sirna Therapeutics, Inc. RNA interference mediated inhibtion of vitamin D receptor gene expression using short interfering nucleic acid (siNA)
US20050159378A1 (en) 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of Myc and/or Myb gene expression using short interfering nucleic acid (siNA)
US20050282188A1 (en) 2001-05-18 2005-12-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
US20050256068A1 (en) 2001-05-18 2005-11-17 Sirna Therapeutics, Inc. RNA interference mediated inhibition of stearoyl-CoA desaturase (SCD) gene expression using short interfering nucleic acid (siNA)
US20050261219A1 (en) 2001-05-18 2005-11-24 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (siNA)
US20050176665A1 (en) 2001-05-18 2005-08-11 Sirna Therapeutics, Inc. RNA interference mediated inhibition of hairless (HR) gene expression using short interfering nucleic acid (siNA)
US20050277133A1 (en) 2001-05-18 2005-12-15 Sirna Therapeutics, Inc. RNA interference mediated treatment of polyglutamine (polyQ) repeat expansion diseases using short interfering nucleic acid (siNA)
US20090299045A1 (en) 2001-05-18 2009-12-03 Sirna Therapeutics, Inc. RNA Interference Mediated Inhibition Of Interleukin and Interleukin Gene Expression Using Short Interfering Nucleic Acid (siNA)
US20050182007A1 (en) 2001-05-18 2005-08-18 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (SINA)
WO2005007855A2 (en) 2003-07-14 2005-01-27 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF B7-H1 GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20060276422A1 (en) 2001-05-18 2006-12-07 Nassim Usman RNA interference mediated inhibition of B7-H1 gene expression using short interfering nucleic acid (siNA)
US20050170371A1 (en) 2001-05-18 2005-08-04 Sirna Therapeutics, Inc. RNA interference mediated inhibition of 5-alpha reductase and androgen receptor gene expression using short interfering nucleic acid (siNA)
US20050164967A1 (en) 2001-05-18 2005-07-28 Sirna Therapeutics, Inc. RNA interference mediated inhibition of platelet-derived endothelial cell growth factor (ECGF1) gene expression using short interfering nucleic acid (siNA)
US20060019917A1 (en) 2001-05-18 2006-01-26 Sirna Therapeutics, Inc. RNA interference mediated inhibition of stromal cell-derived factor-1 (SDF-1) gene expression using short interfering nucleic acid (siNA)
US20050196765A1 (en) 2001-05-18 2005-09-08 Sirna Therapeutics, Inc. RNA interference mediated inhibition of checkpoint Kinase-1 (CHK-1) gene expression using short interfering nucleic acid (siNA)
US20050227936A1 (en) 2001-05-18 2005-10-13 Sirna Therapeutics, Inc. RNA interference mediated inhibition of TGF-beta and TGF-beta receptor gene expression using short interfering nucleic acid (siNA)
US20050182009A1 (en) 2001-05-18 2005-08-18 Sirna Therapeutics, Inc. RNA interference mediated inhibition of NF-Kappa B / REL-A gene expression using short interfering nucleic acid (siNA)
US20050187174A1 (en) 2001-05-18 2005-08-25 Sirna Therapeutics, Inc. RNA interference mediated inhibition of intercellular adhesion molecule (ICAM) gene expression using short interfering nucleic acid (siNA)
US20050176666A1 (en) 2001-05-18 2005-08-11 Sirna Therapeutics, Inc. RNA interference mediated inhibition of GPRA and AAA1 gene expression using short interfering nucleic acid (siNA)
US20050159381A1 (en) 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of chromosome translocation gene expression using short interfering nucleic acid (siNA)
US20050196781A1 (en) 2001-05-18 2005-09-08 Sirna Therapeutics, Inc. RNA interference mediated inhibition of STAT3 gene expression using short interfering nucleic acid (siNA)
US20050119211A1 (en) 2001-05-18 2005-06-02 Sirna Therapeutics, Inc. RNA mediated inhibition connexin gene expression using short interfering nucleic acid (siNA)
US20050203040A1 (en) 2001-05-18 2005-09-15 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular cell adhesion molecule (VCAM) gene expression using short interfering nucleic acid (siNA)
US20080249040A1 (en) 2001-05-18 2008-10-09 Sirna Therapeutics, Inc. RNA interference mediated inhibition of sterol regulatory element binding protein 1 (SREBP1) gene expression using short interfering nucleic acid (siNA)
US20060287267A1 (en) 2001-05-18 2006-12-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of respiratory syncytial virus (RSV) expression using short interfering nucleic acid (siNA)
US20050260620A1 (en) 2001-05-18 2005-11-24 Sirna Therapeutics, Inc. RNA interference mediated inhibition of retinolblastoma (RBI) gene expression using short interfering nucleic acid (siNA)
US20060211642A1 (en) 2001-05-18 2006-09-21 Sirna Therapeutics, Inc. RNA inteference mediated inhibition of hepatitis C virus (HVC) gene expression using short interfering nucleic acid (siNA)
US20050164224A1 (en) 2001-05-18 2005-07-28 Sirna Therapeutics, Inc. RNA interference mediated inhibition of cyclin D1 gene expression using short interfering nucleic acid (siNA)
US20050124566A1 (en) 2001-05-18 2005-06-09 Sirna Therapeutics, Inc. RNA interference mediated inhibition of myostatin gene expression using short interfering nucleic acid (siNA)
US20050159382A1 (en) 2001-05-18 2005-07-21 Sirna Therapeutics, Inc. RNA interference mediated inhibition of polycomb group protein EZH2 gene expression using short interfering nucleic acid (siNA)
US20070042983A1 (en) 2001-05-18 2007-02-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
US20050176024A1 (en) 2001-05-18 2005-08-11 Sirna Therapeutics, Inc. RNA interference mediated inhibition of epidermal growth factor receptor (EGFR) gene expression using short interfering nucleic acid (siNA)
US20070093437A1 (en) 2001-05-18 2007-04-26 Sirna Therapeutics, Inc. Rna interference mediated inhibition of xiap gene expression using short interfering nucleic acid (sina)
US20050124569A1 (en) 2001-05-18 2005-06-09 Sirna Therapeutics, Inc. RNA interference mediated inhibition of CXCR4 gene expression using short interfering nucleic acid (siNA)
US20050233996A1 (en) 2002-02-20 2005-10-20 Sirna Therapeutics, Inc. RNA interference mediated inhibition of hairless (HR) gene expression using short interfering nucleic acid (siNA)
US20050171040A1 (en) 2001-05-18 2005-08-04 Sirna Therapeutics, Inc. RNA interference mediated inhibition of cholesteryl ester transfer protein (CEPT) gene expression using short interfering nucleic acid (siNA)
US20070173473A1 (en) 2001-05-18 2007-07-26 Sirna Therapeutics, Inc. RNA interference mediated inhibition of proprotein convertase subtilisin Kexin 9 (PCSK9) gene expression using short interfering nucleic acid (siNA)
US20050287128A1 (en) 2001-05-18 2005-12-29 Sirna Therapeutics, Inc. RNA interference mediated inhibition of TGF-beta and TGF-beta receptor gene expression using short interfering nucleic acid (siNA)
US20080188430A1 (en) 2001-05-18 2008-08-07 Sirna Therapeutics, Inc. RNA interference mediated inhibition of hypoxia inducible factor 1 (HIF1) gene expression using short interfering nucleic acid (siNA)
US20050079610A1 (en) 2001-05-18 2005-04-14 Sirna Therapeutics, Inc. RNA interference mediated inhibition of Fos gene expression using short interfering nucleic acid (siNA)
US20050070497A1 (en) 2001-05-18 2005-03-31 Sirna Therapeutics, Inc. RNA interference mediated inhibtion of tyrosine phosphatase-1B (PTP-1B) gene expression using short interfering nucleic acid (siNA)
US20050209180A1 (en) 2001-05-18 2005-09-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of hepatitis C virus (HCV) expression using short interfering nucleic acid (siNA)
US20050196767A1 (en) 2001-05-18 2005-09-08 Sirna Therapeutics, Inc. RNA interference mediated inhibition of GRB2 associated binding protein (GAB2) gene expression using short interfering nucleic acis (siNA)
US20050176663A1 (en) 2001-05-18 2005-08-11 Sima Therapeutics, Inc. RNA interference mediated inhibition of protein tyrosine phosphatase type IVA (PRL3) gene expression using short interfering nucleic acid (siNA)
US7517864B2 (en) 2001-05-18 2009-04-14 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20070049543A1 (en) 2001-05-18 2007-03-01 Sirna Therapeutics, Inc. RNA interference mediated inhibition of 11 beta-hydroxysteroid dehydrogenase-1 (11 beta-HSD-1) gene expression using short interfering nucleic acid siNA
US20050191618A1 (en) 2001-05-18 2005-09-01 Sirna Therapeutics, Inc. RNA interference mediated inhibition of human immunodeficiency virus (HIV) gene expression using short interfering nucleic acid (siNA)
US20060142226A1 (en) 2001-05-18 2006-06-29 Sirna Therapeutics, Inc. RNA interference mediated inhibition of cholesteryl ester transfer protein (CETP) gene expression using short interfering nucleic acid (siNA)
US20050124567A1 (en) 2001-05-18 2005-06-09 Sirna Therapeutics, Inc. RNA interference mediated inhibition of TRPM7 gene expression using short interfering nucleic acid (siNA)
US8008472B2 (en) 2001-05-29 2011-08-30 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of human immunodeficiency virus (HIV) gene expression using short interfering nucleic acid (siNA)
EP1298125A1 (en) 2001-09-26 2003-04-02 Aventis Pharma S.A. Substituted benzimidazole compounds and their use for the treatment of cancer
US7893248B2 (en) 2002-02-20 2011-02-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of Myc and/or Myb gene expression using short interfering nucleic acid (siNA)
US7928218B2 (en) 2002-02-20 2011-04-19 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of polycomb group protein EZH2 gene expression using short interfering nucleic acid (siNA)
US7691999B2 (en) 2002-02-20 2010-04-06 Sirna Therapeutics, Inc. RNA interference mediated inhibition of NOGO and NOGO receptor gene expression using short interfering nucleic acid (siNA)
US20090192105A1 (en) 2002-02-20 2009-07-30 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF INTERCELLULAR ADHESION MOLECULE (ICAM) GENE EXPRESSION USING SHORT INTERFERING NUCELIC ACID (siNA)
US7678897B2 (en) 2002-02-20 2010-03-16 Sirna Therapeutics, Inc. RNA interference mediated inhibition of platelet-derived endothelial cell growth factor (ECGF1) gene expression using short interfering nucleic acid (siNA)
US8067575B2 (en) 2002-02-20 2011-11-29 Merck, Sharp & Dohme Corp. RNA interference mediated inhibition of cyclin D1 gene expression using short interfering nucleic acid (siNA)
US8013143B2 (en) 2002-02-20 2011-09-06 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of CXCR4 gene expression using short interfering nucleic acid (siNA)
US7683166B2 (en) 2002-02-20 2010-03-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (siNA)
US20090137507A1 (en) 2002-02-20 2009-05-28 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF ANGIOPOIETIN GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20090137513A1 (en) 2002-02-20 2009-05-28 Sirna Therapeutics, Inc. RNA Interference Mediated Inhibition of Acetyl-CoA-Carboxylase Gene Expression Using Short Interfering Nucleic Acid (siNA)
US7683165B2 (en) 2002-02-20 2010-03-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of interleukin and interleukin receptor gene expression using short interfering nucleic acid (siNA)
US7910724B2 (en) 2002-02-20 2011-03-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of Fos gene expression using short interfering nucleic acid (siNA)
US7667030B2 (en) 2002-02-20 2010-02-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of matrix metalloproteinase 13 (MMP13) gene expression using short interfering nucleic acid (siNA)
US20050222064A1 (en) 2002-02-20 2005-10-06 Sirna Therapeutics, Inc. Polycationic compositions for cellular delivery of polynucleotides
US7897757B2 (en) 2002-02-20 2011-03-01 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of protein tyrosine phosphatase-1B (PTP-1B) gene expression using short interfering nucleic acid (siNA)
US8258288B2 (en) 2002-02-20 2012-09-04 Sirna Therapeutics, Inc. RNA interference mediated inhibition of respiratory syncytial virus (RSV) expression using short interfering nucleic acid (siNA)
US20090253773A1 (en) 2002-02-20 2009-10-08 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF TNF AND TNF RECEPTOR GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US7928219B2 (en) 2002-02-20 2011-04-19 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of placental growth factor gene expression using short interfering nucleic acid (SINA)
US20100240730A1 (en) 2002-02-20 2010-09-23 Merck Sharp And Dohme Corp. RNA Interference Mediated Inhibition of Gene Expression Using Chemically Modified Short Interfering Nucleic Acid (siNA)
US20090137510A1 (en) 2002-02-20 2009-05-28 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF NF-KAPPA B/ REL-A GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US7897752B2 (en) 2002-02-20 2011-03-01 Sirna Therapeutics, Inc. RNA interference mediated inhibition of telomerase gene expression using short interfering nucleic acid (siNA)
US20090137509A1 (en) 2002-02-20 2009-05-28 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF PROLIFERATION CELL NUCLEAR ANTIGEN (PCNA) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20050137153A1 (en) 2002-02-20 2005-06-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of alpha-1 antitrypsin (AAT) gene expression using short interfering nucleic acid (siNA)
US7700760B2 (en) 2002-02-20 2010-04-20 Sirna Therapeutics, Inc. RNA interference mediated inhibition of vascular cell adhesion molecule (VCAM) gene expression using short interfering nucleic acid (siNA)
US7928220B2 (en) 2002-02-20 2011-04-19 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of stromal cell-derived factor-1 (SDF-1) gene expression using short interfering nucleic acid (siNA)
US7897753B2 (en) 2002-02-20 2011-03-01 Sirna Therapeutics, Inc. RNA interference mediated inhibition of XIAP gene expression using short interfering nucleic acid (siNA)
US20090306182A1 (en) 2002-02-20 2009-12-10 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF MAP KINASE GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US7935812B2 (en) 2002-02-20 2011-05-03 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of hepatitis C virus (HCV) expression using short interfering nucleic acid (siNA)
US7667029B2 (en) 2002-02-20 2010-02-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of checkpoint kinase-1 (CHK-1) gene expression using short interfering nucleic acid (siNA)
US20090093439A1 (en) 2002-02-20 2009-04-09 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF CHROMOSOME TRANSLOCATION GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20090253774A1 (en) 2002-02-20 2009-10-08 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF PLATELET DERIVED GROWTH FACTOR (PDGF) AND PLATELET DERIVED GROWTH FACTOR RECEPTOR (PDGFR) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US7662952B2 (en) 2002-02-20 2010-02-16 Sirna Therapeutics, Inc. RNA interference mediated inhibition of GRB2 associated binding protein (GAB2) gene expression using short interfering nucleic acid (siNA)
US20090099117A1 (en) 2002-02-20 2009-04-16 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF MYOSTATIN GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US6649638B1 (en) 2002-08-14 2003-11-18 Ppd Discovery, Inc. Prenylation inhibitors and methods of their synthesis and use
FR2844591B1 (fr) 2002-09-13 2005-04-15 Arvinmeritor Light Vehicle Sys Dispositif de determination du deplacement d'un arbre
US7691998B2 (en) 2002-11-14 2010-04-06 Dharmacon, Inc. siRNA targeting nucleoporin 62kDa (Nup62)
US20090023908A1 (en) 2002-11-14 2009-01-22 Dharmacon, Inc. siRNA targeting ribosomal protein S2 (RPS2)
WO2006006948A2 (en) 2002-11-14 2006-01-19 Dharmacon, Inc. METHODS AND COMPOSITIONS FOR SELECTING siRNA OF IMPROVED FUNCTIONALITY
US9839649B2 (en) 2002-11-14 2017-12-12 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
US9879266B2 (en) 2002-11-14 2018-01-30 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
US7619081B2 (en) 2002-11-14 2009-11-17 Dharmacon, Inc. siRNA targeting coatomer protein complex, subunit beta 2 (COPB2)
US20090030190A1 (en) 2002-11-14 2009-01-29 Dharmacon, Inc. siRNA targeting 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2)
US20080221316A1 (en) 2002-11-14 2008-09-11 Dharmacon, Inc. siRNA targeting ethanolamine Kinase I1 (EKI1)
US20080207884A1 (en) 2002-11-14 2008-08-28 Dharmacon, Inc. siRNA targeting 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC)
US7635770B2 (en) 2002-11-14 2009-12-22 Dharmacon, Inc. siRNA targeting protein kinase N-3 (PKN-3)
US8198427B1 (en) 2002-11-14 2012-06-12 Dharmacon, Inc. SiRNA targeting catenin, beta-1 (CTNNB1)
US9228186B2 (en) 2002-11-14 2016-01-05 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
US9771586B2 (en) 2002-11-14 2017-09-26 Thermo Fisher Scientific Inc. RNAi targeting ZNF205
US20080268457A1 (en) 2002-11-14 2008-10-30 Dharmacon, Inc. siRNA targeting forkhead box P3 (FOXP3)
US7582747B2 (en) 2002-11-14 2009-09-01 Dharmacon, Inc. siRNA targeting inner centromere protein antigens (INCENP)
US20090182134A1 (en) 2002-11-14 2009-07-16 Dharmacon, Inc. siRNA targeting phosphatases
US7592442B2 (en) 2002-11-14 2009-09-22 Dharmacon, Inc. siRNA targeting ribonucleotide reductase M2 polypeptide (RRM2 or RNR-R2)
EP1560931B1 (en) 2002-11-14 2011-07-27 Dharmacon, Inc. Functional and hyperfunctional sirna
US9719094B2 (en) 2002-11-14 2017-08-01 Thermo Fisher Scientific Inc. RNAi targeting SEC61G
US10011836B2 (en) 2002-11-14 2018-07-03 Thermo Fisher Scientific Inc. Methods and compositions for selecting siRNA of improved functionality
US7977471B2 (en) 2002-11-14 2011-07-12 Dharmacon, Inc. siRNA targeting TNFα
US20090023907A1 (en) 2002-11-14 2009-01-22 Dharmacon, Inc. siRNA targeting kinesin spindle protein (KSP)
US20090043084A1 (en) 2002-11-14 2009-02-12 Dharmacon, Inc. siRNA targeting minichromosome maintenance deficient 3 (MCM3)
US20090005548A1 (en) 2002-11-14 2009-01-01 Dharmacon, Inc. siRNA targeting nuclear receptor interacting protein 1 (NRIP1)
US20100113307A1 (en) 2002-11-14 2010-05-06 Dharmacon, Inc. siRNA targeting vascular endothelial growth factor (VEGF)
US9719092B2 (en) 2002-11-14 2017-08-01 Thermo Fisher Scientific Inc. RNAi targeting CNTD2
US7612196B2 (en) 2002-11-14 2009-11-03 Dharmacon, Inc. siRNA targeting cyclin-dependent kinase inhibitor 1B (p27, Kip1) (CDKN1B)
US7951935B2 (en) 2002-11-14 2011-05-31 Dharmacon, Inc. siRNA targeting v-myc myelocytomatosis viral oncogene homolog (MYC)
US20090227780A1 (en) 2002-11-14 2009-09-10 Dharmacon, Inc. siRNA targeting connexin 43
US8937172B2 (en) 2002-11-14 2015-01-20 Thermo Fisher Scientific Inc. siRNA targeting catenin, beta-1 (CTNNB1)
US20080161547A1 (en) 2002-11-14 2008-07-03 Dharmacon, Inc. siRNA targeting serine/threonine protein kinase AKT
US7781575B2 (en) 2002-11-14 2010-08-24 Dharmacon, Inc. siRNA targeting tumor protein 53 (p53)
US20090005547A1 (en) 2002-11-14 2009-01-01 Dharmacon, Inc. siRNa targeting neuropilin 1 (NRP1)
EP1471152A1 (en) 2003-04-25 2004-10-27 Institut National De La Sante Et De La Recherche Medicale (Inserm) Mutations in the human PCSK9 gene associated to hypercholesterolemia
US20050019453A1 (en) 2003-06-09 2005-01-27 Magiccom, Inc. Edible novelty products
CA2528963A1 (en) 2003-06-27 2005-01-13 Sirna Therapeutics, Inc. Rna interference mediated treatment of alzheimer's disease using short interfering nucleic acid (sina)
KR100500579B1 (ko) 2003-06-28 2005-07-12 한국과학기술원 씨모스 게이트 산화물 안티퓨즈를 이용한 3-트랜지스터한번 프로그램 가능한 롬
ITRM20030329A1 (it) 2003-07-07 2005-01-08 Micron Technology Inc Cella "famos" senza precarica e circuito latch in un
EP1644500A2 (en) 2003-07-09 2006-04-12 Sirna Therapeutics, Inc. Polycationic compositions for cellular delivery of polynucleotides
WO2005007859A2 (en) 2003-07-11 2005-01-27 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF ACETYL-COA CARBOXYLASE GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
KR100546342B1 (ko) 2003-07-12 2006-01-26 삼성전자주식회사 반복적으로 배치되는 프리-디코딩된 신호선들의레이아웃을 개선시키는 로우 디코더 구조, 이를 구비한반도체 메모리 장치, 및 그 방법
US6919690B2 (en) 2003-07-22 2005-07-19 Veeco Instruments, Inc. Modular uniform gas distribution system in an ion source
US6854364B1 (en) 2003-08-04 2005-02-15 James Tassano Screw hook socket
US20050028649A1 (en) 2003-08-06 2005-02-10 Dan Settanni Box wrench with hinged socket
CA2437525C (en) 2003-08-15 2007-01-09 Mvp (H.K.) Industries Limited Jacks having a detachable rear-end handle
WO2005035759A2 (en) 2003-08-20 2005-04-21 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF HYPOXIA INDUCIBLE FACTOR 1 (HIF1) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US6989051B2 (en) 2003-08-25 2006-01-24 Delphi Technologies, Inc. Portable air filtration system
US7008469B2 (en) 2003-08-25 2006-03-07 Delphi Technologies, Inc. Portable air filtration system utilizing a conductive coating and a filter for use therein
US6890372B2 (en) 2003-08-27 2005-05-10 Dionex Corporation Denuder assembly for collection and removal of soluble atmospheric gases
US20050045041A1 (en) 2003-08-29 2005-03-03 Hechinger Glenn R. Removable cartridge for swing-type adsorption system
US20050044981A1 (en) 2003-08-29 2005-03-03 Yuan-Hsin Huang Clipping cover for the assembling of a bicycle handle accessories
US7022165B2 (en) 2003-08-29 2006-04-04 The Regents Of The University Of California Tubular hydrogen permeable metal foil membrane and method of fabrication
US7132011B2 (en) 2003-09-02 2006-11-07 Entegris, Inc. Reactive gas filter
US7156903B2 (en) 2003-09-02 2007-01-02 Airsep Corporation Sound enclosure for portable oxygen concentrators
US20050045038A1 (en) 2003-09-03 2005-03-03 Ping Huang Frame structure of an electrostatic precipitator
US8079374B2 (en) 2003-09-15 2011-12-20 Ranir, Llc Dental flosser with bendable head
JP2007505606A (ja) 2003-09-16 2007-03-15 サーナ・セラピューティクス・インコーポレイテッド 低分子干渉核酸(siNA)を使用したC型肝炎ウィルス(HCV)発現のRNA干渉媒介性抑制
WO2005045032A2 (en) 2003-10-20 2005-05-19 Sima Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF EARLY GROWTH RESPONSE GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
WO2005045039A2 (en) 2003-10-23 2005-05-19 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF INTERCELLULAR ADHESION MOLECULE (ICAM) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
US20070185043A1 (en) 2003-10-23 2007-08-09 Sima Therapeutics, Inc. Rna interference mediated inhibition of nogo and nogo receptor gene expression using short interfering nucleic acid (sina)
WO2005045034A2 (en) 2003-10-23 2005-05-19 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED TREATMENT OF PARKINSON DISEASE USING SHORT INTERERING NUCLEIC ACID (siNA)
WO2005045037A2 (en) 2003-10-23 2005-05-19 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF 5-ALPHA REDUCTASE AND ANDROGEN RECEPTOR GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
EP1675949A2 (en) 2003-10-23 2006-07-05 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED INHIBITION OF NOGO AND NOGO RECEPTOR GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
CA2543029A1 (en) 2003-10-23 2005-05-19 Sirna Therapeutics, Inc. Rna interference mediated inhibition of gpra and aaa1 gene expression using short nucleic acid (sina)
US20050105995A1 (en) 2003-11-13 2005-05-19 Vantage Mobility International, Llc Internal lift for light duty motor vehicle
US20100145038A1 (en) 2003-11-24 2010-06-10 Merck & Co., Inc. RNA INTERFERENCE MEDIATED INHIBITION OF GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
EP1735443A2 (en) 2004-04-14 2006-12-27 Sirna Therapeutics, Inc. RNA INTERFERENCE MEDIATED TREATMENT OF POLYGLUTAMINE (POLYQ) REPEAT EXPANSION DISEASES USING SHORT INTERFERING NUCLEIC ACID (siNA)
US7150970B2 (en) 2004-08-02 2006-12-19 University Of Iowa Research Foundation Methods of inhibiting VEGF-C
US20110313024A1 (en) 2004-08-20 2011-12-22 Leonid Beigelman RNA INTERFERENCE MEDIATED INHIBITION OF PROPROTEIN CONVERTASE SUBTILISIN KEXIN 9 (PCSK9) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA)
JP2008537551A (ja) 2005-03-31 2008-09-18 カランド ファーマシューティカルズ, インコーポレイテッド リボヌクレオチドレダクターゼサブユニット2の阻害剤およびその使用
JP2009508476A (ja) * 2005-08-31 2009-03-05 セントカー・インコーポレーテツド 高められたエフェクター機能をもつ抗体定常領域の製造用の宿主細胞株
EP1971336A2 (en) * 2005-12-22 2008-09-24 Shering Corporation Thrombin receptor antagonists as phophylaxis to complications from cardiopulmonary surgery
US20100148013A1 (en) 2005-12-23 2010-06-17 General Electric Company System and method for optical locomotive decoupling detection
KR101547579B1 (ko) 2006-03-31 2015-08-27 알닐람 파마슈티칼스 인코포레이티드 Eg5 유전자의 발현을 억제하는 이본쇄 리보핵산
NZ587616A (en) 2006-05-11 2012-03-30 Alnylam Pharmaceuticals Inc Compositions and methods for inhibiting expression of the pcsk9 gene
WO2008011431A2 (en) 2006-07-17 2008-01-24 Sirna Therapeutics Inc. Rna interference mediated inhibition of proprotein convertase subtilisin kexin 9 (pcsk9) gene expression using short interfering nucleic acid (sina)
US8093222B2 (en) 2006-11-27 2012-01-10 Isis Pharmaceuticals, Inc. Methods for treating hypercholesterolemia
JP2010510807A (ja) 2006-11-27 2010-04-08 アイシス ファーマシューティカルズ, インコーポレーテッド 高コレステロール血症を治療するための方法
CA2910760C (en) 2007-12-04 2019-07-09 Muthiah Manoharan Targeting lipids
CN101493631B (zh) 2008-01-24 2012-01-25 鸿富锦精密工业(深圳)有限公司 机械快门及使用该机械快门的相机模组
WO2009134487A2 (en) 2008-01-31 2009-11-05 Alnylam Pharmaceuticals, Inc. Optimized methods for delivery of dsrna targeting the pcsk9 gene
US8273869B2 (en) 2009-06-15 2012-09-25 Alnylam Pharmaceuticals, Inc. Lipid formulated dsRNA targeting the PCSK9 gene
US8759284B2 (en) 2009-12-24 2014-06-24 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US8529306B2 (en) 2010-09-07 2013-09-10 Aaron Leland Baldwin Device for pedal powering a watercraft
US20130074974A1 (en) 2011-09-26 2013-03-28 Phillip W. Murchie Ductwork stiffener
SI3301177T1 (sl) 2011-11-18 2020-07-31 Alnylam Pharmaceuticals, Inc. Sredstva RNAi, sestavki in postopki njihove uporabe za zdravljenje s transtiretinom (TTR) povezanih bolezni
US9796974B2 (en) 2011-11-18 2017-10-24 Alnylam Pharmaceuticals, Inc. Modified RNAi agents
US9513606B1 (en) 2013-04-05 2016-12-06 The Boeing Company Safety systems and methods for production environments
KR20160079124A (ko) * 2013-11-20 2016-07-05 사이머베이 쎄라퓨틱스, 인코퍼레이티드 동질접합성 가족성 과콜레스테롤증의 치료
KR102403371B1 (ko) 2015-08-03 2022-05-30 삼성전자주식회사 생체 상태를 판단하는 방법 및 장치
EA201890571A1 (ru) 2015-08-25 2018-10-31 Элнилэм Фармасьютикалз, Инк. Способы и композиции для лечения нарушения, ассоциированного с геном пропротеинконвертазы субтилизин/кексинового типа (pcsk9)
MX2019004573A (es) 2016-10-18 2019-10-07 The Medicines Co Metodos para evitar eventos cardiovasculares mediante la reduccion de la proproteinas convertasa subtilisina kexina 9 (pcsk9).

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011028938A1 (en) * 2009-09-02 2011-03-10 Alnylam Pharmaceuticals, Inc. Methods for lowering serum cholestrol in a subject using inhibition of pcsk9
US20130289094A1 (en) * 2010-10-29 2013-10-31 Alnylam Pharmaceuticals, Inc. Compositions and Methods for Inhibition of PCSK9 Genes
CN104854242A (zh) * 2012-12-05 2015-08-19 阿尔尼拉姆医药品有限公司 PCSK9 iRNA组合物及其使用方法
US20160264966A1 (en) * 2013-10-02 2016-09-15 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of the lect2 gene

Also Published As

Publication number Publication date
IL310959A (en) 2024-04-01
IL293355A (en) 2022-07-01
CA2996701C (en) 2024-05-28
KR20180054640A (ko) 2018-05-24
AU2016310494B2 (en) 2022-06-09
CA2996701A1 (en) 2017-03-02
JP2018525416A (ja) 2018-09-06
WO2017035340A9 (en) 2017-04-27
AU2022228147A1 (en) 2022-11-17
WO2017035340A1 (en) 2017-03-02
US20230104125A1 (en) 2023-04-06
HK1257523A1 (zh) 2019-10-25
EA201890571A1 (ru) 2018-10-31
IL257486A (en) 2018-06-28
JP2023134489A (ja) 2023-09-27
US10851377B2 (en) 2020-12-01
IL293355B1 (en) 2024-03-01
IL293355B2 (en) 2024-07-01
CN118079015A (zh) 2024-05-28
IL257486B (en) 2022-07-01
CN114668774A (zh) 2022-06-28
EP3340994A1 (en) 2018-07-04
JP7301921B2 (ja) 2023-07-03
US20200140871A1 (en) 2020-05-07
US20180187198A1 (en) 2018-07-05
MX2023000251A (es) 2023-02-13
JP2022000433A (ja) 2022-01-04
US20210163951A1 (en) 2021-06-03
CN114469984A (zh) 2022-05-13
JP6941598B2 (ja) 2021-09-29
AU2016310494A1 (en) 2018-03-08
MX2018002158A (es) 2018-07-06
CN108348541A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
JP7301921B2 (ja) プロタンパク質転換酵素サブチリシン/ケキシン(pcsk9)遺伝子関連障害を治療するための方法および組成物
CN107250362B (zh) 载脂蛋白C3(APOC3)iRNA组合物及其使用方法
CN107743522B (zh) 类血管生成素3(ANGPTL3)iRNA组合物及其使用方法
CN108220295B (zh) PCSK9 iRNA组合物及其使用方法
CN106103718B (zh) 己酮糖激酶(KHK)iRNA组合物及其使用方法
TWI836281B (zh) 治療serpinc1相關疾患之方法及組成物
CN106574268B (zh) 血管紧张素原(AGT)iRNA组合物及其使用方法
CN105408481B (zh) SERPINA1 iRNA组合物及其使用方法
TW201639961A (zh) 含類馬鈴薯儲藏蛋白磷脂酶域3(PNPLA3)iRNA組成物及其使用方法
TW202336231A (zh) 第十二因子(哈格曼因子)(F12)、激肽釋放素B、血漿(夫列契因子)1(KLKB1)及激肽原1(KNG1)iRNA組成物及其使用方法
JP2022515193A (ja) アミロイド前駆体タンパク質(APP)RNAi薬剤組成物およびその使用方法
CN105980559B (zh) 用于抑制alas1基因表达的组合物与方法
CN112424355A (zh) 己酮糖激酶(KHK)iRNA组合物及其使用方法
CN111727252A (zh) 高速泳动族盒-1(HMGB1)iRNA组合物及其使用方法
JP2024522996A (ja) パタチン様ホスホリパーゼドメイン含有3(PNPLA3)iRNA組成物およびその使用方法
JP7516613B2 (ja) アポリポタンパク質C3(APOC3)iRNA組成物およびその使用方法
EA040631B1 (ru) Способы и композиции для лечения нарушения, ассоциированного с геном пропротеинконвертазы субтилизин/кексинового типа (pcsk9)
CN117561335A (zh) 富含亮氨酸的重复激酶2(LRRK2)iRNA药剂组合物和其使用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination