CN114914293A - 一种双扩散mos晶体管结构及其制造方法 - Google Patents

一种双扩散mos晶体管结构及其制造方法 Download PDF

Info

Publication number
CN114914293A
CN114914293A CN202210601566.4A CN202210601566A CN114914293A CN 114914293 A CN114914293 A CN 114914293A CN 202210601566 A CN202210601566 A CN 202210601566A CN 114914293 A CN114914293 A CN 114914293A
Authority
CN
China
Prior art keywords
type
mos transistor
double
photoresist
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210601566.4A
Other languages
English (en)
Inventor
潘继
徐鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Vodaco Semiconductor Technology Co ltd
Original Assignee
Wuxi Vodaco Semiconductor Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Vodaco Semiconductor Technology Co ltd filed Critical Wuxi Vodaco Semiconductor Technology Co ltd
Priority to CN202210601566.4A priority Critical patent/CN114914293A/zh
Publication of CN114914293A publication Critical patent/CN114914293A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供了一种双扩散MOS晶体管结构,同时提供一种双扩散MOS晶体管的制造方法,其包括P型衬底,所述P型衬底上设置N型埋地层,所述N型埋地层上设置N型外延层,在所述N型外延层上两端分别设置P型体和N阱,在所述N阱上设置厚氧化场,在所述P型衬底、所述N型埋地层、所述N型外延层、所述P型体和所述N阱成型的基体上设置源极、漏极和栅极,在所述栅极上沉积氧化层,其能有效地缩短其开关的时间,从而降低上管的开关损耗。

Description

一种双扩散MOS晶体管结构及其制造方法
技术领域
本发明涉及半导体分立器件的技术领域,特别涉及一种双扩散MOS晶体管结构及其制造方法。
背景技术
横向扩散MOS晶体管 (LDMOS) 和垂直双扩散MOS晶体管 (VDMOS)常用于直流(或交流)硬开关电路应用中,对于作为上管的晶体管,其在开关交换引起的功率损耗占其功率损耗的主要部分,且随着工作频率的升高而增加,由于开关电路应用的工作频率日趋越来越高,上管的开关损耗变得越来越大。
为了降低开关交换引起的功率损耗,如何减低上管的开关损耗变得至关重要, 而降低上管的交叉电容CRSS (CROSS CAPACITANCE) 和输入电容CISS (INPUT CAPACITANCE)能有效地缩短其开关的时间,从而降低上管的开关损耗。
发明内容
为解决的上述技术问题,本发明提供了一种双扩散MOS晶体管结构,其能有效地缩短其开关的时间,从而降低上管的开关损耗,同时提供一种双扩散MOS晶体管的制造方法。
一种双扩散MOS晶体管结构,其包括P型衬底,所述P型衬底上设置N型埋地层,所述N型埋地层上设置N 型外延层,在所述N 型外延层上两端分别设置P型体和N阱,在所述N阱上设置厚氧化场,在所述P型衬底、所述N型埋地层、所述N 型外延层、所述P型体和所述N阱成型的基体上设置源极、漏极和栅极,在所述栅极上沉积氧化层。
其进一步特征在于:所述栅极底部设置栅极氧化层;所述源极设置在所述P型体上;所述漏极设置在所述N阱上;在所述栅极上刻蚀多个氧化层。
一种双扩散MOS晶体管的制造方法,其特征在于,包括如下步骤:
1、在P衬底上离子注入形成NBL层;
2、在NBL层上生长N型外延层;
3、离子注入形成N阱;
4、在N阱上形成厚氧化场;
5、在N阱和N型外延层形成栅极氧化层;
6、在N阱、栅极氧化层和厚氧化场上沉积多晶硅;
7、在多晶硅上沉积光刻胶;
8、刻蚀光刻胶;
9、刻蚀对应的多晶硅和栅极氧化层;
10、去除光刻胶;
11、沉积氧化层OXIDE;
12、沉积光刻胶;
13、蚀刻光刻胶;
14、蚀刻对应氧化层OXIDE;
15、去除光刻胶;
16、离子注入形成P型体PBODY;
17、离子注入形成N+ ;
18、离子注入形成P+ ;
19、形成源极SOURCE, 漏极DRAIN电极。
本发明由于采用上述结构,在栅极上沉积氧化层,由此GATE POLY的面积相应减小,通过MASK设计, GATE POLY面积的减少可控制在任意比例 (比如1%至30%。在LDMOS的开通电阻不会受到明显影响的同时,由于GATE 面积减少,其寄生的CRSS和CISS却明显降低,从而降低上管的交叉电容CRSS (CROSS CAPACITANCE) 和输入电容CISS (INPUTCAPACITANCE) 能有效地缩短其开关的时间,从而减低上管的开关损耗。
附图说明
图1双扩散MOS晶体管结构示意图;
图2为图1的 B-B剖视图;
图3为双扩散MOS晶体管加工艺工流程图;
图4在P衬底上离子注入形成NBL层示意图;
图5在NBL层上生长N型外延层示意图;
图6离子注入形成N阱示意图;
图7在N阱上形成厚氧化场示意图;
图8在N阱和N型外延层形成栅极氧化层示意图;
图9在N阱、栅极氧化层和厚氧化场上沉积多晶硅示意图;
图10在多晶硅上沉积光刻胶示意图;
图11刻蚀光刻胶示意图;
图12刻蚀对应的多晶硅和栅极氧化层示意图;
图13去除光刻胶示意图;
图14沉积氧化层OXIDE示意图;
图15沉积光刻胶示意图;
图16蚀刻光刻胶示意图;
图17蚀刻对应氧化层OXIDE示意图;
图18去除光刻胶示意图;
图19离子注入形成P型体PBODY示意图;
图20离子注入形成N+示意图 ;
图21离子注入形成P+示意图 ;
图22形成源极SOURCE, 漏极DRAIN电极示意图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明所述的厚氧化场是指厚度为不小于0.1微米的氧化场层。
见图1、图2,一种双扩散MOS晶体管结构,其包括P型衬底1,P型衬底1上设置N型埋地层2,N型埋地层2上设置N 型外延层3,在N 型外延层3上两端分别设置P型体4和N阱5,在N阱5上设置厚氧化场6,在P型衬底1、N型埋地层2、N 型外延层3、P型体4和N阱5成型的基体上设置P型体源极7、漏极8和栅极9,在栅极9底部设置栅极氧化层11,源极7设置在P型体4上,漏极8设置在N阱5上;在栅极9上刻蚀多个氧化层10,由此GATE POLY的面积相应减小,在LDMOS的开通电阻不会受到明显影响的同时,由于GATE 面积减少,其寄生的CRSS和CISS却明显降低,从而降低上管的交叉电容CRSS (CROSS CAPACITANCE) 和输入电容CISS (INPUTCAPACITANCE) 能有效地缩短其开关的时间,从而减低上管的开关损耗。
源极7、漏极8和栅极9三个终端都在基体表面,形成横向双扩散MOS晶体管(LDMOS)。
一种双扩散MOS晶体管的制造方法,包括如下步骤:
见图3、图4,在P衬底1上离子注入形成NBL层2;
见图3、图5,在NBL层2上生长N型外延层(N-EPI)3;
见图3、图6,离子注入形成N阱(NWELL)5;
见图3、图7,在N阱上形成厚氧化场(FOX)6;
见图3、图8,在N阱和N型外延层N-EPI形成栅极氧化层(GOX)11;
见图3、图9,在N阱(NWELL)5、栅极氧化层(GOX)6和厚氧化场(FOX)6上沉积多晶硅9(栅极);
见图3、图10,在多晶硅上沉积光刻胶12;
见图3、图11,刻蚀光刻胶12;
见图3、图12,刻蚀对应的多晶硅9(栅极)和栅极氧化层(GOX)6;
见图3、图13,去除光刻胶12;
见图3、图14,沉积氧化层(OXIDE)10;
见图3、图15,沉积光刻胶12;
见图3、图16,蚀刻光刻胶12;
见图3、图17,蚀刻对应氧化层(OXIDE)11;
见图3、图18,去除光刻胶12;
见图3、图19,离子注入形成P型体(PBODY)4;
见图3、图20,离子注入形成N+ 源极(SOURCE)7 ;
见图3、图21,离子注入形成P+ ;
见图3、图22,形成源极(SOURCE)7, 漏极(DRAIN)8电极。
此半导体器件是横向双扩散晶体管(LDMOS)器件,也可以是垂直双扩散晶体管(VDMOS)器件. 栅极(GATE)通过电极间电介质与基体隔离。
本发明的器件是N型或P型晶体管。
该器件通过栅极mask的设计,栅极形状不是单调的线条设计,而是或呈齿状,或有孔隔在其中。
本发明的LDMOS器件,可以是分离半导体器件, 也可以是集成电路工艺中的LDMOS器件。
本发明中, 栅极GATE POLY 可灵活设计,只要在栅极GATE POLY 中刻蚀后沉积氧化层,由此GATE POLY的面积相应减小,在LDMOS的开通电阻不会受到明显影响的同时,由于GATE 面积减少,其寄生的CRSS和CISS却明显降低,从而降低上管的交叉电容CRSS (CROSSCAPACITANCE) 和输入电容CISS (INPUT CAPACITANCE) 能有效地缩短其开关的时间,从而减低上管的开关损耗,都是本发明的保护范围。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (9)

1.一种双扩散MOS晶体管结构,其包括P型衬底,所述P型衬底上设置N型埋地层,所述N型埋地层上设置N 型外延层,在所述N 型外延层上两端分别设置P型体和N阱,在所述N阱上设置厚氧化场,在所述P型衬底、所述N型埋地层、所述N 型外延层、所述P型体和所述N阱成型的基体上设置源极、漏极和栅极,其特征在于:在所述栅极上沉积氧化层。
2.根据权利要求1所述的一种双扩散MOS晶体管结构,其特征在于:所述栅极底部设置栅极氧化层。
3.根据权利要求1所述的一种双扩散MOS晶体管结构,其特征在于:所述源极设置在所述P型体上。
4.根据权利要求1所述的一种双扩散MOS晶体管结构,其特征在于:所述漏极设置在所述N阱上。
5.根据权利要求1所述的一种双扩散MOS晶体管结构,其特征在于:所述漏极氧设置在所述P型衬底上。
6.根据权利要求1所述的一种双扩散MOS晶体管结构,其特征在于:在所述栅极上刻蚀多个氧化层。
7.一种双扩散MOS晶体管的制造方法,其特征在于,包括如下步骤:
(1)在P衬底上离子注入形成NBL层;(2)在NBL层上生长N型外延层;
(3)离子注入形成N阱;(4)在N阱上形成厚氧化场;(5)在N阱和N型外延层形成栅极氧化层;(6)在N阱、栅极氧化层和厚氧化场上沉积多晶硅;(7)在多晶硅上沉积光刻胶;(8)刻蚀光刻胶;(9)刻蚀对应的多晶硅和栅极氧化层;(10)去除光刻胶;(11)沉积氧化层OXIDE;(12)沉积光刻胶;(13)蚀刻光刻胶;(14)蚀刻对应氧化层OXIDE;(15)去除光刻胶;(16)离子注入形成P型体PBODY;(17)离子注入形成N+ ;(18)离子注入形成P+ ;(19)形成源极SOURCE, 漏极DRAIN电极。
8.根据权利要求7所述的一种双扩散MOS晶体管的制造方法,其特征在于:在步骤(8)中使用GATE mask刻蚀光刻胶。
9.根据权利要求7所述的一种双扩散MOS晶体管的制造方法,其特征在于:在步骤(15)中 使用GATE-SPLIT MASK蚀刻光刻胶。
CN202210601566.4A 2022-05-30 2022-05-30 一种双扩散mos晶体管结构及其制造方法 Pending CN114914293A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210601566.4A CN114914293A (zh) 2022-05-30 2022-05-30 一种双扩散mos晶体管结构及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210601566.4A CN114914293A (zh) 2022-05-30 2022-05-30 一种双扩散mos晶体管结构及其制造方法

Publications (1)

Publication Number Publication Date
CN114914293A true CN114914293A (zh) 2022-08-16

Family

ID=82769775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210601566.4A Pending CN114914293A (zh) 2022-05-30 2022-05-30 一种双扩散mos晶体管结构及其制造方法

Country Status (1)

Country Link
CN (1) CN114914293A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7405128B1 (en) * 2007-02-14 2008-07-29 Freescale Semiconductor, Inc. Dotted channel MOSFET and method
CN101819937A (zh) * 2009-05-29 2010-09-01 杭州矽力杰半导体技术有限公司 横向双扩散金属氧化物半导体晶体管的制造方法
US20110241112A1 (en) * 2010-03-31 2011-10-06 Zuniga Marco A LDMOS Device with P-Body for Reduced Capacitance
CN103208522A (zh) * 2012-01-17 2013-07-17 台湾积体电路制造股份有限公司 具有伪栅极的横向dmos器件
US20130341714A1 (en) * 2012-06-20 2013-12-26 Samsung Electronics Co., Ltd. Semiconductor device having power metal-oxide-semiconductor transistor
JP2014107302A (ja) * 2012-11-22 2014-06-09 Renesas Electronics Corp 半導体装置
US20150270389A1 (en) * 2014-03-20 2015-09-24 Silicon Fidelity Power semiconductor transistor with improved gate charge
CN112825334A (zh) * 2019-11-21 2021-05-21 三星电子株式会社 具有金属氧化物半导体结构的半导体装置
CN113707715A (zh) * 2020-05-21 2021-11-26 无锡华润上华科技有限公司 半导体器件

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7405128B1 (en) * 2007-02-14 2008-07-29 Freescale Semiconductor, Inc. Dotted channel MOSFET and method
CN101819937A (zh) * 2009-05-29 2010-09-01 杭州矽力杰半导体技术有限公司 横向双扩散金属氧化物半导体晶体管的制造方法
US20110241112A1 (en) * 2010-03-31 2011-10-06 Zuniga Marco A LDMOS Device with P-Body for Reduced Capacitance
CN102971856A (zh) * 2010-03-31 2013-03-13 沃特拉半导体公司 具有使电容降低的p-本体的LDMOS器件
CN103208522A (zh) * 2012-01-17 2013-07-17 台湾积体电路制造股份有限公司 具有伪栅极的横向dmos器件
US20130341714A1 (en) * 2012-06-20 2013-12-26 Samsung Electronics Co., Ltd. Semiconductor device having power metal-oxide-semiconductor transistor
JP2014107302A (ja) * 2012-11-22 2014-06-09 Renesas Electronics Corp 半導体装置
US20150270389A1 (en) * 2014-03-20 2015-09-24 Silicon Fidelity Power semiconductor transistor with improved gate charge
CN112825334A (zh) * 2019-11-21 2021-05-21 三星电子株式会社 具有金属氧化物半导体结构的半导体装置
CN113707715A (zh) * 2020-05-21 2021-11-26 无锡华润上华科技有限公司 半导体器件

Similar Documents

Publication Publication Date Title
KR101900843B1 (ko) 감소된 온-저항을 가지는 트렌치 전력 mosfet
KR101051507B1 (ko) 트렌치 게이트 mosfet 및 그 제조 방법
US7087958B2 (en) Termination structure of DMOS device
US10861965B2 (en) Power MOSFET with an integrated pseudo-Schottky diode in source contact trench
EP1170803A2 (en) Trench gate MOSFET and method of making the same
TWI475614B (zh) 溝渠裝置結構及製造
US20110306172A1 (en) Lateral trench mosfet having a field plate
CN114038915A (zh) 半导体功率器件及其制备方法
CN108400168B (zh) Ldmos器件及其制造方法
CN104377244A (zh) 一种降低ldmos导通电阻的器件结构
CN107785411B (zh) 集成有结型场效应晶体管的器件及其制造方法
CN105655402A (zh) 低压超结mosfet终端结构及其制造方法
US20190363187A1 (en) Method for Manufacturing Laterally Diffused Metal Oxide Semiconductor Device and Semiconductor Device
JPH01192175A (ja) 半導体装置
CN103872054A (zh) 一种集成器件及其制造方法、分立器件、cdmos
TW200952176A (en) Semiconductor devices and methods for fabricating the same
CN103094319A (zh) 双通道高压结型场效应管降低夹断电压的结构及制造方法
CN114914293A (zh) 一种双扩散mos晶体管结构及其制造方法
CN115020486A (zh) 一种ldmos晶体管结构以及对应的制造方法
CN208240684U (zh) 一种半导体器件
CN109004030B (zh) 一种沟槽型mos器件结构及其制造方法
TWI414025B (zh) Power gold - oxygen half - effect transistor structure and its manufacturing method
CN216958042U (zh) 一种ldmos晶体管结构
CN104218080A (zh) 射频ldmos器件及其制造方法
CN113990942B (zh) 圆形对称结构的ldmos器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220816

RJ01 Rejection of invention patent application after publication