CN114891811B - 水稻三磷酸肌醇激酶基因的应用 - Google Patents

水稻三磷酸肌醇激酶基因的应用 Download PDF

Info

Publication number
CN114891811B
CN114891811B CN202210511750.XA CN202210511750A CN114891811B CN 114891811 B CN114891811 B CN 114891811B CN 202210511750 A CN202210511750 A CN 202210511750A CN 114891811 B CN114891811 B CN 114891811B
Authority
CN
China
Prior art keywords
rice
gene
sequence
ositpk4
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210511750.XA
Other languages
English (en)
Other versions
CN114891811A (zh
Inventor
赵佳
王州飞
何永奇
彭丽玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Agricultural University
Original Assignee
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Agricultural University filed Critical South China Agricultural University
Priority to CN202210511750.XA priority Critical patent/CN114891811B/zh
Publication of CN114891811A publication Critical patent/CN114891811A/zh
Application granted granted Critical
Publication of CN114891811B publication Critical patent/CN114891811B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/8267Seed dormancy, germination or sprouting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01159Inositol-1,3,4-trisphosphate 5/6-kinase (2.7.1.159)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Botany (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Physiology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了水稻NAC转录因子基因在种子活力改良中的应用。所述的基因OsITPK4核苷酸序列如SEQ ID NO.1所示,以及编码相应的蛋白氨基酸序列如序列表SEQ ID NO.2所示。本发明在水稻中首次报道了OsITPK4基因能调控水稻种子活力,通过试验表明突变该基因后,种子活力显著降低,过量表达该基因提高种子活力。证明本发明OsITPK4基因调控了水稻种子活力,利用该基因有助于筛选和培育高活力水稻品种,有利于直播稻生产。

Description

水稻三磷酸肌醇激酶基因的应用
技术领域
本发明属于种子生物技术领域,涉及一个1,3,4-三磷酸肌醇5/6-激酶基因OsITPK4的应用。
背景技术
水稻(Oryza sativa L.)是我国最重要的粮食作物之一。水稻直播栽培方式具有省工、省力,节约成本、经济效益好等优势,近年来生产面积逐年扩大。但直播稻存在难全苗、草害重、易倒伏等难题。高活力种子在田间具有发芽好、成苗快,幼苗生长潜势大、抗逆能力强等特性,这对保障直播稻产量具有重要作用。1,3,4-三磷酸肌醇5/6-激酶(ITPK)是一种保守的多功能酶,在调控磷酸肌醇代谢,生物信号传导及生长发育中起重要作用,广泛参与植酸生物合成、植物抗逆等多种生物学过程。但其在调控水稻种子活力中的功能尚未报道,有待进一步研究。
发明内容
本发明的目的是提供一个调控水稻种子活力的1,3,4-三磷酸肌醇5/6-激酶OsITPK4分离克隆、功能验证和应用。
本发明的目的可通过如下技术方案实现:
本发明的一个来自水稻的1,3,4-三磷酸肌醇5/6-激酶OsITPK4,其核苷酸序列如序列表SEQ ID NO.1所示。
本发明所述的水稻1,3,4-三磷酸肌醇5/6-激酶OsITPK4,其氨基酸序列SEQ IDNO.2所示。
本发明所述的水稻OsITPK4基因或蛋白在筛选或培育高活力水稻品种中的应用。
所述的水稻1,3,4-三磷酸肌醇5/6-激酶OsITPK4在提高水稻种子活力,促进直播稻生产中的应用。
所述的应用优选,过表达OsITPK4基因以提高水稻种子活力。
本发明所述的水稻OsITPK4基因突变体获得和基因功能验证,包括如下步骤:
(1)获得水稻OsITPK4基因的核苷酸序列及氨基酸序列;
(2)设计靶位点及其引物,以pCBC-MT1T2为模板进行PCR扩增,纯化回收PCR产物,获得MT1T2-PCR载体;
(3)将步骤(2)得到的带有OsITPK4基因的目标片段的MT1T2-PCR胶回收产物构建到pHUE411载体上,获得pHUE411+MT1T2-PCR载体;
(4)将步骤(3)得到的带有OsITPK4基因目标片段的质粒转化农杆菌;将带有转化质粒的农杆菌转化水稻;
(5)水稻突变体筛选与鉴定,并进行发芽表型鉴定。
进一步的,在步骤(1)中利用水稻cDNA为模板,PCR克隆出该基因的序列,所述PCR的上游引物序列如序列表SEQ ID NO.3所示,下游引物序列如序列表SEQ ID NO.4所示。
进一步的,在步骤(2)中构建的水稻OsITPK4 CRISPR/Cas9突变体gRNA靶序列(OsITPK4基因中19bp的目标片段)如序列表SEQ ID NO.5、SEQ ID NO.6(两个靶点);以pCBC-MT1T2为模板进行PCR扩增的引物序列如序列表SEQ ID NO.7、SEQ ID NO.8、SEQ IDNO.9、SEQ ID NO.10;
在步骤(3)中,用BsaI酶切pHUE411载体,利用同源重组法获得pHUE411+MT1T2-PCR载体。
在步骤(5)中,筛选纯合突变体所用上游引物序列如序列表所示SEQ ID NO.11,下游引物序列如序列表SEQ ID NO.12所示。
本发明所述的水稻OsITPK4基因过表达材料的构建和基因功能验证,包括如下步骤:
(1)获得水稻OsITPK4基因的核苷酸序列及氨基酸序列;
(2)以水稻cDNA为模板进行PCR扩增,纯化回收PCR产物,获得OsITPK4基因CDS片段;
(3)将步骤(2)获得OsITPK4基因CDS片段,利用带同源重组接头的引物进行PCR扩增,纯化回收PCR产物,获得带同源重组接头的CDS片段;
(4)将步骤(3)得到的带有OsITPK4基因的目标片段构建到pUN1301体上,获得重组质粒;
(5)将步骤(4)得到的带有OsITPK4基因目标片段的质粒转化农杆菌;将带有转化质粒的农杆菌转化水稻;
(6)水稻OsITPK4基因过表达材料筛选及种子活力表型鉴定。
进一步的,在步骤(2)中利用水稻cDNA为模板PCR克隆出该基因的引物序列,所述PCR的上游引物序列如序列表SEQ ID NO.3所示,下游引物序列如序列表SEQ ID NO.4所示。
进一步的,在步骤(3)中利用OsITPK4基因CDS片段为模板PCR克隆出该基因带同源重组接头的引物序列,所述PCR的上游引物序列如序列表SEQ ID NO.13所示,下游引物序列如序列表SEQ ID NO.14所示。
进一步的,在步骤(4)中,用KpnI和SacI酶切pUN1301载体,利用同源重组法获得重组载体。
在步骤(6)中,利用潮霉素抗性标签筛选阳性过表达材料所用上游引物序列如序列表SEQ ID NO.15所示,下游引物序列如序列表SEQ ID NO.16所示。水稻种子活力鉴定。
本发明所述的一种检测OsITPK4在水稻种子吸胀不同阶段的表达特征,包括如下步骤:
(1)分别取不同吸胀时间水稻种子;
(2)用OMEGA HP Plant RNA Kit(R6837-02)试剂盒提取各个样的RNA;
(3)用
Figure BDA0003639599820000031
II Reverse Transcriptase system(Vazyme Biotech Co.,Ltd)试剂盒反转录形成cDNA,以其为模板;
(4)用荧光定量PCR进行分析,荧光定量PCR检测引物序列,所述上游引物序列如序列表SEQ ID NO.17所示,所述下游引物序列如序列表SEQ ID NO.18所示。
在步骤(4)中,采用水稻内参基因OsActin引物,所述上游引物的序列如序列表SEQID NO.19所示,所述下游引物的序列如序列表SEQ ID NO.20所示。
有益效果:
(1)本发明从水稻中分离、克隆获得OsITPK4基因,通过构建CRISPR/Cas9突变体,首次证明了该基因参与水稻种子活力调控。通过构建该基因的过表达载体并将其转染水稻日本晴证实该基因能够正向调控种子萌发及幼苗出土。
(2)本发明为培育高活力水稻品种提供了基础,也为提高水稻直播稻生产提供了重要的基因资源,对生产具有重要意义。
因此,利用参与水稻种子活力调控的1,3,4-三磷酸肌醇5/6-激酶OsITPK4,对筛选和培育高活力水稻品种提供帮助,对直播稻生产具有重要意义。
附图说明
图1:水稻OsITPK4基因在吸胀不同阶段表达分析
图2:OsITPK4在过表达材料中基因的表达量检测
图3:水稻OsITPK4突变体和过表达材料发芽表型鉴定
具体实施方式
本发明结合附图和具体实施例作进一步说明,实施例中所用方法无特别说明均为常规方法,所用引物、测序由广州天一辉远基因科技有限公司完成;实验中用到的各种限制性内切酶、连接酶、DNA Marker、Tag DNA聚合酶、dNTPs等购自广州硕恒生物科技有限公司;反转录试剂盒购于诺唯赞生物科技有限公司;质粒提取试剂盒、胶回收试剂盒以及基因组提取试剂盒购于北京擎科生物科技有限公司,方法均参照说明书进行。
实施例1:基因克隆
利用粳稻品种日本晴cDNA为模板PCR克隆出OsITPK4基因的序列,PCR的上游引物序列如序列表SEQ ID NO.3所示,下游引物序列如序列表SEQ ID NO.4所示。获得水稻OsITPK4基因的核苷酸序列及氨基酸序列,其核苷酸序列如序列表SEQ ID NO.1所示,其氨基酸序列SEQ ID NO.2所示。
实施例2:OsITPK4基因表达分析
利用粳稻品种日本晴,每次重复挑选健康饱满的种子15粒,用0.1%的氯化汞溶液表面消毒5min,蒸馏水冲洗3次,将种子表面擦干,置于培养皿中,加入10ml的蒸馏水,放置25℃条件下光照/黑暗各12h培养,吸胀0、4、8、12、18、24、36、48h后取样。样品经液氮冷冻处理后迅速磨成粉末,样品贮存于-80℃。试验重复3次。
用OMEGA HP Plant RNA Kit(R6837-02)试剂盒提取各个样的RNA;用
Figure BDA0003639599820000051
IIReverse Transcriptase system(Vazyme Biotech Co.,Ltd)试剂盒反转录形成cDNA,以其为模板;用荧光定量PCR进行分析,荧光定量PCR检测OsITPK4的引物序列,所述上游引物序列如序列表SEQ ID NO.17所示,所述下游引物序列如序列表SEQ ID NO.18所示。采用水稻内参基因OsActin引物,所述上游引物的序列如序列表SEQ ID NO.19所示,所述下游引物的序列如序列表SEQ ID NO.20所示。结果表明,随着吸胀时间增加,OsITPK4基因的表达量逐渐下降(图1)。可见,该基因在种子吸胀过程中受诱导表达,我们推测该基因有助于促进种子萌发。
实施例3:突变体构建
登录到网站http://skl.scau.edu.cn/targetdesign/,筛选靶点。靶点序列如序列列表SEQ ID NO.5、SEQ ID NO.6,以靶点序列设计引物,引物结构如序列列表SEQ IDNO.7、SEQ ID NO.8、SEQ ID NO.9、SEQ ID NO.10。以pCBC-MT1T2为模板进行四引物PCR扩增,纯化回收PCR产物,获得MT1T2-PCR载体。用BsaI酶切pHUE411载体,利用同源重组法将MT1T2-PCR胶回收产物构建到pHUE411载体上,获得pHUE411+MT1T2-PCR载体。
得到的含有pHUE411+MT1T2-PCR载体的质粒转化农杆菌;将带有转化质粒的农杆菌转化野生型的粳稻品种日本晴;利用PCR扩增产物测序,与野生型比对,筛选纯合突变体,所用上游引物序列如序列表SEQ ID NO.11所示,下游引物序列如序列表SEQ ID NO.12所示。
实施例4过表达材料的构建
以日本晴水稻cDNA为模板进行PCR扩增,纯化回收PCR产物,获得OsITPK4基因CDS片段,所述PCR的上游引物序列如序列表SEQ ID NO.3所示,下游引物序列如序列表SEQ IDNO.4所示。将获得OsITPK4基因CDS片段为模板,利用带同源重组接头的引物进行PCR扩增,纯化回收PCR产物,获得带同源重组接头的CDS片段,所述PCR的上游引物序列如序列表SEQID NO.13所示,下游引物序列如序列表SEQ ID NO.14所示。利用同源重组法把带有OsITPK4基因的目标片段构建到pUN1301载体上,获得重组质粒;将重组质粒转化农杆菌,将带有转化质粒的农杆菌转化野生型的粳稻品种日本晴;利用PCR扩增潮霉素抗性标签筛选阳性过表达材料,所用上游引物序列如序列表SEQ ID NO.15所示,下游引物序列如序列表SEQ IDNO.16所示。
实施例5:过表达材料中OsITPK4基因表达量检测
利用粳稻品种日本晴及过表达材料,重复挑选健康饱满的种子15粒,用0.1%的氯化汞溶液表面消毒5min,蒸馏水冲洗3次,将种子表面擦干,置于96孔培苗板中,放置25℃条件下光照/黑暗各12h培养,培养至2叶期。样品经液氮冷冻处理后迅速磨成粉末,样品贮存于-80℃。试验重复3次。用OMEGA HP Plant RNA Kit(R6837-02)试剂盒提取野生型和过表达幼苗的RNA;用
Figure BDA0003639599820000061
II Reverse Transcriptase system(Vazyme Biotech Co.,Ltd)试剂盒反转录形成cDNA,以其为模板;用荧光定量PCR进行分析,荧光定量PCR检测OsITPK4的引物序列,所述上游引物序列如序列表SEQ ID NO.17所示,所述下游引物序列如序列表SEQ ID NO.18所示。采用水稻内参基因OsActin引物,所述上游引物的序列如序列表SEQ ID NO.19所示,所述下游引物的序列如序列表SEQ ID NO.20所示。结果表明,OsITPK4在过表达材料中基因的表达量显著高于野生型(图2)。
实施例6:基因突变体和过表达材料表型分析
利用构建的OsITPK4 CRISPR/Cas9突变体Ositpk4-1、Ositpk4-2、Ositpk4-3、OE-1、OE-2和野生型日本晴(WT)水稻品种,进行发芽试验。具体方法如下:每次重复挑选健康饱满的种子30粒,用0.1%的氯化汞溶液表面消毒5min,蒸馏水冲洗3次,将种子表面擦干,分别置于铺有两层滤纸的培养皿中和盛有营养土的育苗盆中,放置25℃条件下光照/黑暗各12h培养,统计发芽情况。试验重复3次。结果表明,与野生型比较,突变Ositpk4基因显著降低了种子活力,过量表达OsITPK4基因可以显著提高种子活力(图3)。可见,该基因对提高种子活力具有重要作用。
序列表
<110> 华南农业大学
<120> 水稻三磷酸肌醇激酶基因的应用
<160> 20
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1068
<212> DNA
<213> 水稻(Oryza sativa L.)
<400> 1
atggcgcccg agctgtcctc cccgtcgtcg tcacctcgct acaccgttgg ctacgcgctg 60
ctgccggaga aggtgagcag cgtcgtgcgg ccgtcgctgg tggcgctggc cgccgaccgc 120
ggggtgcgcc tcgtcgccgt cgacgtgtcg cggccgctcg ccgagcaggg cccgttcgac 180
ctcctcgtgc acaagatgta cgaccgcggg tggcgcgccc agctggagga gctcgccgcg 240
cgccaccccg gggtgaccgt cgtcgtcgac tcccccggcg ccatcgaccg cctcctcgac 300
cgcgccacca tgctcgacgt cgtctccggc ctccgcaccc ccgtctccgt cccgccccag 360
gtcgtcgtca gcgacgccgc cgccgacgcg gacgagctcc tcgcccgcgc cgcgctccgc 420
ttcccgctca tcgccaagcc gctcgccgtc gacggcagcg ccgagtcgca cgacatgcgc 480
ctcgtctacc gccgcgacgg cgtcctcccc ctcctccgcg cgccgctcgt cctccaggag 540
ttcgtcaacc acggcggggt gctcttcaag gtctacgtcg tcggcgaccg cgccacctgc 600
gtgcgccgga gcagcctccc cgacgtgccg gcccgccgcc tcctcgacct ggacgccgag 660
ccctccgtcc ccttcgccaa catctccaac cagccgctcc ccccacctga tgacgacggc 720
ggcgccgccg acgacgacac gccggccgcc ggcttcgtgg acgaggtggc gcgcgggctc 780
cggcgagggc tgggcctgca cctgttcaac ttcgacatga tccgggagag gagcgaggag 840
cacggcgaca ggtacttcat catcgacatc aactacttcc cgggctacgc caagatgccg 900
ggctacgagg cggccctcac ggatttcttc cttgagatgc tccgtggcac aagacctgtt 960
cctgagcagc tgggcccggg ctcgggcctg gacatggagg cccgcaagct cgagcctggg 1020
ctgggtatcg gtctaagaga attggagtct ggccgagctc aggcctag 1068
<210> 2
<211> 355
<212> PRT
<213> 水稻(Oryza sativa L.)
<400> 2
Met Ala Pro Glu Leu Ser Ser Pro Ser Ser Ser Pro Arg Tyr Thr Val
1 5 10 15
Gly Tyr Ala Leu Leu Pro Glu Lys Val Ser Ser Val Val Arg Pro Ser
20 25 30
Leu Val Ala Leu Ala Ala Asp Arg Gly Val Arg Leu Val Ala Val Asp
35 40 45
Val Ser Arg Pro Leu Ala Glu Gln Gly Pro Phe Asp Leu Leu Val His
50 55 60
Lys Met Tyr Asp Arg Gly Trp Arg Ala Gln Leu Glu Glu Leu Ala Ala
65 70 75 80
Arg His Pro Gly Val Thr Val Val Val Asp Ser Pro Gly Ala Ile Asp
85 90 95
Arg Leu Leu Asp Arg Ala Thr Met Leu Asp Val Val Ser Gly Leu Arg
100 105 110
Thr Pro Val Ser Val Pro Pro Gln Val Val Val Ser Asp Ala Ala Ala
115 120 125
Asp Ala Asp Glu Leu Leu Ala Arg Ala Ala Leu Arg Phe Pro Leu Ile
130 135 140
Ala Lys Pro Leu Ala Val Asp Gly Ser Ala Glu Ser His Asp Met Arg
145 150 155 160
Leu Val Tyr Arg Arg Asp Gly Val Leu Pro Leu Leu Arg Ala Pro Leu
165 170 175
Val Leu Gln Glu Phe Val Asn His Gly Gly Val Leu Phe Lys Val Tyr
180 185 190
Val Val Gly Asp Arg Ala Thr Cys Val Arg Arg Ser Ser Leu Pro Asp
195 200 205
Val Pro Ala Arg Arg Leu Leu Asp Leu Asp Ala Glu Pro Ser Val Pro
210 215 220
Phe Ala Asn Ile Ser Asn Gln Pro Leu Pro Pro Pro Asp Asp Asp Gly
225 230 235 240
Gly Ala Ala Asp Asp Asp Thr Pro Ala Ala Gly Phe Val Asp Glu Val
245 250 255
Ala Arg Gly Leu Arg Arg Gly Leu Gly Leu His Leu Phe Asn Phe Asp
260 265 270
Met Ile Arg Glu Arg Ser Glu Glu His Gly Asp Arg Tyr Phe Ile Ile
275 280 285
Asp Ile Asn Tyr Phe Pro Gly Tyr Ala Lys Met Pro Gly Tyr Glu Ala
290 295 300
Ala Leu Thr Asp Phe Phe Leu Glu Met Leu Arg Gly Thr Arg Pro Val
305 310 315 320
Pro Glu Gln Leu Gly Pro Gly Ser Gly Leu Asp Met Glu Ala Arg Lys
325 330 335
Leu Glu Pro Gly Leu Gly Ile Gly Leu Arg Glu Leu Glu Ser Gly Arg
340 345 350
Ala Gln Ala
355
<210> 3
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
atggcgcccg agctgtcc 18
<210> 4
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
ctaggcctga gctcggccag a 21
<210> 5
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
cgtcacctcg ctacaccgt 19
<210> 6
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
gcacaagatg tacgaccgc 19
<210> 7
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
aataatggtc tcaggcgcgt cacctcgcta caccgt 36
<210> 8
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
gcgtcacctc gctacaccgt gttttagagc tagaaatagc 40
<210> 9
<211> 33
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
gcggtcgtac atcttgtgcc gcttcttggt gcc 33
<210> 10
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
attattggtc tctaaacgcg gtcgtacatc ttgtgc 36
<210> 11
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
cactgccacc actatcaacc aca 23
<210> 12
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
gatgagcggg aagcggagc 19
<210> 13
<211> 39
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
agctttcgcg agctcggtac catggcgccc gagctgtcc 39
<210> 14
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
caggtcgact ctagaggatc cctaggcctg agctcggcca ga 42
<210> 15
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
atgaaatcac gccatgtagt 20
<210> 16
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
actatccttc gcaagacctt 20
<210> 17
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 17
acccagcgtt tgaacatgtg tg 22
<210> 18
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 18
gcttgcactt gtagcatttg cttg 24
<210> 19
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 19
aggaaggctg gaagaggacc 20
<210> 20
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 20
cgggaaattg tgagggacat 20

Claims (2)

1.水稻1,3,4-三磷酸肌醇5/6-激酶编码基因OsITPK4在培育高种子活力水稻品种中的应用,所述的水稻1,3,4-三磷酸肌醇5/6-激酶编码基因OsITPK4核苷酸序列如SEQ ID NO.1所示。
2.根据权利要求1所述的应用,其特征在于过表达所述的基因OsITPK4,能够提高水稻种子活力。
CN202210511750.XA 2022-05-12 2022-05-12 水稻三磷酸肌醇激酶基因的应用 Active CN114891811B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210511750.XA CN114891811B (zh) 2022-05-12 2022-05-12 水稻三磷酸肌醇激酶基因的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210511750.XA CN114891811B (zh) 2022-05-12 2022-05-12 水稻三磷酸肌醇激酶基因的应用

Publications (2)

Publication Number Publication Date
CN114891811A CN114891811A (zh) 2022-08-12
CN114891811B true CN114891811B (zh) 2023-05-26

Family

ID=82722349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210511750.XA Active CN114891811B (zh) 2022-05-12 2022-05-12 水稻三磷酸肌醇激酶基因的应用

Country Status (1)

Country Link
CN (1) CN114891811B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101230354A (zh) * 2007-01-24 2008-07-30 武汉大学 水稻三磷酸肌醇激酶基因的克隆及应用
CN108715903A (zh) * 2018-05-03 2018-10-30 南京农业大学 水稻α-异丙基苹果酸合酶基因的应用
CN110592114A (zh) * 2019-10-09 2019-12-20 华南农业大学 水稻生长素糖基转移酶基因的应用
CN113699177A (zh) * 2021-08-27 2021-11-26 华南农业大学 OsABF1基因在水稻育种调控和/或水稻种子活力机制研究中的应用
CN114196678A (zh) * 2021-12-10 2022-03-18 南京农业大学 一个控制水稻种子活力刺猬互作蛋白OsHIPL1基因及其工程应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101230354A (zh) * 2007-01-24 2008-07-30 武汉大学 水稻三磷酸肌醇激酶基因的克隆及应用
CN108715903A (zh) * 2018-05-03 2018-10-30 南京农业大学 水稻α-异丙基苹果酸合酶基因的应用
CN110592114A (zh) * 2019-10-09 2019-12-20 华南农业大学 水稻生长素糖基转移酶基因的应用
CN113699177A (zh) * 2021-08-27 2021-11-26 华南农业大学 OsABF1基因在水稻育种调控和/或水稻种子活力机制研究中的应用
CN114196678A (zh) * 2021-12-10 2022-03-18 南京农业大学 一个控制水稻种子活力刺猬互作蛋白OsHIPL1基因及其工程应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Induction of phytic acid synthesis by abscisic acid in suspension-cultured cells of rice;Koya Matsuno 等;《Plant Science》;第152-157页 *
Mutation of Inositol 1,3,4-trisphosphate 5/6-kinase6 Impairs Plant Growth and Phytic Acid Synthesis in Rice;Meng Jiang 等;《Plants》;第8卷(第5期);第1-12页 *
RNAi-Mediated Silencing of ITPK Gene Reduces Phytic Acid Content, Alters Transcripts of Phytic Acid Biosynthetic Genes, and Modulates Mineral Distribution in Rice Seeds;Aritra KARMAKAR 等;《Rice Science》;第27卷(第4期);第315-328页 *
花生1,3,4-三磷酸肌醇5/6激酶ITPK家族基因的鉴定和分析;任婧瑶 等;《中国油料作物学报》;第42卷(第3期);第432-440页 *

Also Published As

Publication number Publication date
CN114891811A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
CN110592114B (zh) 水稻生长素糖基转移酶基因的应用
CN113388622B (zh) 火龙果HubHLH93基因及其编码蛋白在抗盐胁迫中的应用
CN108715903A (zh) 水稻α-异丙基苹果酸合酶基因的应用
CN110117318B (zh) 通过下调eIFiso4G1基因和eIFiso4G2基因提高植物对干旱耐受性的方法
CN114891811B (zh) 水稻三磷酸肌醇激酶基因的应用
US20170088849A1 (en) Use of tanac2 protein and encoding gene thereof
CN112795580B (zh) 火龙果基因HuAAE3及其在调控植物抗高温胁迫中的应用
CN116042640B (zh) 水稻nac转录因子基因在种子活力改良中的应用
CN112391405B (zh) 茶树己糖激酶CsHXK3基因在调控植物生长发育和增强抗寒能力中的应用
CN104561036A (zh) 植物耐盐相关基因PpSIG1及其编码蛋白和应用
CN108948162B (zh) 一种花生逆境胁迫基因AhDOG1L及其应用
CN110407922B (zh) 水稻耐冷基因qSCT11及其应用
CN112501188B (zh) 水稻生长素糖基转移酶基因在培育耐淹水稻品种中的应用
CN114292857A (zh) 一种花生耐盐基因AhMADS50及其应用
Cong et al. Isolation of the P5CS gene from reed canary grass and its expression under salt stress
CN109355270B (zh) 一种水稻激酶osk1及其应用
CN110564887B (zh) 水稻生长素响应基因的应用
CN108148849B (zh) 一种苹果MdPHR1基因及其制备方法和应用
CN116286878B (zh) 水稻OsJAZ5基因的应用
CN106011152A (zh) 一种提高水稻耐盐性的转录因子tfsalt1及其应用
CN111662368A (zh) 橡胶草耐旱基因TkMYC2、蛋白质、引物、载体、宿主菌及其应用
CN116732048B (zh) 水稻转录因子基因OsbZIP48在获得高锌水稻籽粒和/或调节氮素吸收中的应用
CN109722441A (zh) 一种黄瓜小热激蛋白Cu-sHSP基因及其应用
CN107663233A (zh) 植物转录因子stf1及其编码蛋白和应用
CN113322260B (zh) 高粱基因SbbZIP51在调控耐盐性中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant