CN114874962B - 一种用于亚精胺合成的基因及高产亚精胺菌株的构建 - Google Patents

一种用于亚精胺合成的基因及高产亚精胺菌株的构建 Download PDF

Info

Publication number
CN114874962B
CN114874962B CN202210629535.XA CN202210629535A CN114874962B CN 114874962 B CN114874962 B CN 114874962B CN 202210629535 A CN202210629535 A CN 202210629535A CN 114874962 B CN114874962 B CN 114874962B
Authority
CN
China
Prior art keywords
spermidine
gene
escherichia coli
methionine
coli
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210629535.XA
Other languages
English (en)
Other versions
CN114874962A (zh
Inventor
张山
丁利平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Upfo Biotech Co ltd
Original Assignee
Shenzhen Upfo Biotech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Upfo Biotech Co ltd filed Critical Shenzhen Upfo Biotech Co ltd
Priority to CN202210629535.XA priority Critical patent/CN114874962B/zh
Publication of CN114874962A publication Critical patent/CN114874962A/zh
Application granted granted Critical
Publication of CN114874962B publication Critical patent/CN114874962B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/21Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Pseudomonadaceae (F)
    • C07K14/212Moraxellaceae, e.g. Acinetobacter, Moraxella, Oligella, Psychrobacter
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01057Diamine N-acetyltransferase (2.3.1.57)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01006Methionine adenosyltransferase (2.5.1.6), i.e. adenosylmethionine synthetase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01016Spermidine synthase (2.5.1.16)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01017Ornithine decarboxylase (4.1.1.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01057Methionine decarboxylase (4.1.1.57)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种用于亚精胺合成的基因及高产亚精胺菌株的构建,属于生物技术领域。本发明在大肠杆菌中表达了来源于里氏木霉的甲硫氨酸脱羧酶基因speD,并在大肠杆菌中过表达内源的speE、speF和metK,敲除亚精胺代谢途径中的亚精胺乙酰转移酶speG和亚精胺吸收转运体PotD,异源表达来源于鲍曼不动杆菌中负责多胺类物质外泌的蛋白AmvA,构建得到了能够高效合成亚精胺的重组大肠杆菌BWΔGΔD‑DEFK‑A。重组大肠杆菌BWΔGΔD‑DEFK‑A在摇瓶和发酵罐体系中亚精胺的产量分别可达347mg/L和2.11g/L,单位菌体的亚精胺合成量分别为115.7mg/gDCW和132.7mg/gDCW。亚精胺合成量在现有的亚精胺生物合成领域占有领先优势、具备广阔的应用前景。

Description

一种用于亚精胺合成的基因及高产亚精胺菌株的构建
技术领域
本发明涉及一种用于亚精胺合成的基因及高产亚精胺菌株的构建,属于生物技术领域。
背景技术
亚精胺(三盐酸亚精胺,C7H19N3,Spermidine)是含有3个氨基的低分子量脂肪族含氮碱,是存在于所有生物体中的天然多胺之一。亚精胺普遍存在于动植物以及微生物细胞中,它是一类带正电的烷基胺类聚合阳离子,极易与带负电的分子——DNA、RNA、蛋白质和脂质等结合。研究表明,亚精胺的大部分生物学功能是通过与DNA、RNA和蛋白质等带负电的生物分子的静电反应来完成的。由于亚精胺对核酸高的亲和力,它能中和磷酸主链中一部分负电荷从而稳定DNA和RNA,并且亚精胺还参与细胞生长、增殖和死亡等重要的生命过程。另外,研究发现亚精胺能有效激活细胞的自噬作用,再次证明亚精胺对细胞衰老具有重要调控作用和功能。临床研究表面,亚精胺能保护心血管疾病,预防癌症和消炎。亚精胺作为一种无毒的天然物质,功能强大,将其作为一种新型预防和抗衰老的药剂具有相当大的潜力。目前已有亚精胺的膳食补充剂投放市场,但是通过从小麦胚芽中化学提取得到,过程复杂并且产量低,所以如何大量生产安全天然的亚精胺成为亟待解决的问题。
目前有关亚精胺生物合成的研究很少,南京工业大学利用大肠杆菌表达亚精胺合成所需的酶并采用酶液催化的方法得到亚精胺,亚精胺产量为3.7g/L,但由于底物SAM价格昂贵,不适合大规模生产(Atwo-enzyme cascade system for the bio-production ofspermidine from putrescine,公开于2021年)。所以在大肠杆菌中实现亚精胺高效生物合成并实现其外泌是亟待解决的问题。亚精胺在大肠杆菌中存在两条合成途径(如图1),分别是鸟氨酸途径和精氨酸途径,前者鸟氨酸在鸟氨酸脱羧酶(Ornithine Decarboxylase,ODC)作用下生成腐胺,后者精氨酸在精氨酸脱羧酶(Arginine Decarboxylase,ADC)作用下生成胍丁胺(Agmatine),进而生成腐胺,腐胺在亚精胺合成酶(Spermidine Synthase)作用下接受S-腺苷甲硫氨酸(S-Adenosyl Methionine,SAM)在S-腺苷甲硫氨酸脱羧酶(S-Adenosylmethionine Decarboxylase)作用下生成的氨丙基从而得到亚精胺。亚精胺合成途径的实现涉及几个关键酶基因:鸟氨酸脱羧酶基因(speF)、亚精胺合成酶基因(speE)、S-腺苷甲硫氨酸合成酶(metK)、S-腺苷甲硫氨酸脱羧酶(speD)。虽然亚精胺的合成途径是比较明晰的,但目前仍然缺少高效的酶、使得生物法生产亚精胺的效率还不高。
发明内容
本发明选择大肠杆菌为表达代谢宿主,通过表达亚精胺合成通路的关键基因,阻断亚精胺的降解的同时增强亚精胺的外泌,实现高效合成,满足市场对于亚精胺的需求。
本发明首先从不同物种来源的亚精胺合成过程中的关键基因——甲硫氨酸脱羧酶基因(S-adenosylmethionine decarboxylase,speD)中,候选的物种包括玉米、大肠杆菌、酿酒酵母、人等,筛选得到来自里氏木霉(Trichoderma reesei)的甲硫氨酸脱羧酶基因(TrspeD),该酶的催化活性显著高于目前已报道的其他物种来源的甲硫氨酸脱羧酶。并通过优化亚精胺在大肠杆菌内的摄取、合成、降解和外泌过程,在大肠杆菌中构建高效亚精胺合成途径,建立高效合成亚精胺的细胞工厂。
其次,首次将鲍曼不动杆菌的AmvA(multidrug efflux MFS transporter AmvA)基因应用到大肠杆菌亚精胺合成中,使亚精胺胞外分泌量显著提高。S-腺苷甲硫氨酸合成酶(metK)
最后将上并通过一系列合成通路优化:过表达大肠杆菌来源的speE、speF、metK和木霉来源的speD等关键酶基因,敲除亚精胺代谢途径中的亚精胺乙酰转移酶(Acetyl-spermidine,speG)和亚精胺转运体potD,过表达负责多胺类物质外泌的蛋白AmvA。由此构建一株亚精胺高效生物合成工程菌BWΔGΔD-DEFK-A,摇瓶培养亚精胺产量达347mg/L,发酵罐培养亚精胺产量达到2.11g/L,实现大肠杆菌中亚精胺的高效分泌,生产过程简单且原料易得成本低,具有良好的工业化应用前景。
本发明的第一个目的是提供一种合成亚精胺的重组大肠杆菌,异源表达里氏木霉来源的甲硫氨酸脱羧酶基因speD,并过表达内源的亚精胺合成酶基因speE和鸟氨酸脱羧酶基因speF。
优选地,利用pBAD/HisA质粒串联表达所述speD、speE和speF。
优选地,所述speE和speF均来源于大肠杆菌,(Gene ID:947726),speD来源于里氏木霉;所述speD的核苷酸序列如SEQ ID NO.1所示;所述speE和speF的核苷酸序列分别如SEQ ID NO.2和3所示。
在一种实施方式中,在表达speD、speE、speF的质粒上表达S-腺苷甲硫氨酸合成酶基因metK。
优选地,所述metK来源于大肠杆菌,metK的核苷酸序列如SEQ ID NO.4所示。
在一种实施方式中,在大肠杆菌基因组中敲除亚精胺乙酰转移酶基因speG;所述speG基因的Gene ID:946117。
在一种实施方式中,表达MdtJI基因或AmvA基因以增强亚精胺的外泌能力。
在一种实施方式中,利用pZH粒表达所述MdtJI基因或AmvA基因,pZH质粒是在pBAD/HisA基础进行改造将原本的pBR322复制起点换成p15A复制起点,将氨苄抗性换成氯霉素抗性。
优选地,所述AmvA基因来源于鲍曼不动杆菌,其Gene ID:66396847,核苷酸序列如SEQ ID NO.5所示;
或者所述MdtJI基因来源于大肠杆菌,其核苷酸序列如SEQ ID NO.6所示。
在一种实施方式中,敲除亚精胺吸收转运体蛋白基因potD,其Gene ID:945682。
在一种实施方式中,所述大肠杆菌的出发菌株优选为大肠杆菌BW25113。
本发明的第二个目的是提供生产亚精胺的方法,所述方法是利用所述重组大肠杆菌,以鸟氨酸和甲硫氨酸为底物转化生产亚精胺。
在一种实施方式中,将所述重组大肠杆菌培养至OD600=3,按照1%的量接种至摇瓶发酵体系中,发酵体系中还含有0.2%(v/v)的L-阿拉伯糖,在28℃、200rpm诱导发酵12h后,向体系中加入20mM鸟氨酸和30mM甲硫氨酸,催化24h;
或者,将所述重组大肠杆菌在种子培养基中培养得到种子液,再将种子液接种至发酵罐体系中,培养至OD600=30,此时添加终浓度为0.2%(v/v)的L-阿拉伯糖,在30℃诱导培养24h,再向发酵体系中添加终浓度1.5g/L甲硫氨酸和3g/L硫酸。
在一种实施方式中,在发酵罐体系中,发酵过程中以4mL/h/L的流加速度流加50g/100mL葡萄糖水溶液(葡萄糖按照每小时每升发酵液中添加2g的量添加,即2g/L/h),并通过调整搅拌转速和通气量维持溶氧在20%±2%,通过2.7M氨水和1M磷酸维持pH至7.0±0.5。
在一种实施方式中,所述发酵罐体系的培养基每升含有葡萄糖10g,(NH4)2HPO48g,KH2PO4 13.3g,MgSO4·7H2O 1.2g,柠檬酸1.7g,微量盐溶液10mL,用水定容至1L,5MNaOH调至pH7.0。
本发明还提供了所述重组大肠杆菌在生产亚精胺及其衍生物中的应用。
本发明的有益效果:
本发明从不同物种来源的亚精胺合成途径中的关键基因——甲硫氨酸脱羧酶基因speD中,筛选得到来自里氏木霉的甲硫氨酸脱羧酶基因TrspeD。在大肠杆菌中过表达内源的speE、speF和metK,以及里氏木霉来源的speD等关键酶基因,敲除亚精胺代谢途径中的亚精胺乙酰转移酶speG和亚精胺吸收转运体PotD,通过表达鲍曼不动杆菌中负责多胺类物质外泌的蛋白AmvA,由此构建一株亚精胺高效生物合成工程菌BWΔGΔD-DEFK-A,通过摇瓶培养发酵液中亚精胺含量达347mg/L,在发酵罐中亚精胺产量达到2.11g/L,实现了亚精胺在大肠杆菌中的高效合成,具有良好的工业化应用前景。
附图说明
图1为亚精胺在大肠杆菌中的合成途径。
图2为不同来源s-腺苷甲硫氨酸脱羧酶基因在E.coli中表达情况;M:marker;1:BL-pET21-E.colispeE;2:BL-pET21-E.colispeD;3:BL-pET21-TrspeD;4:BL-pET21-SCspeD;5:BL-pET21-HumanspeD;6:BL-pET21-ZeaspeD。
图3为亚精胺标准曲线图。
图4为500mg/L亚精胺、腐胺和100mg/L二氨基庚烷标品出峰位置。
图5为不同物种来源s-腺苷甲硫氨酸脱羧酶在E.coli中活性的比较图。
图6为重组菌胞内胞外亚精胺含量图。
图7为BWΔG-DEFK-M和BWΔG-DEFK-A菌株胞外亚精胺含量。
图8为发酵罐上potD基因敲除菌体OD值变化。
图9为发酵罐上potD基因敲除胞外亚精胺含量。
具体实施方式
重组菌BL-pET21-E.colispeE、BL-pET21-E.colispeD、BL-pET21-TrspeD、BL-pET21-SCspeD、BL-pET21-ZeaspeD、BL-pET21-HumanspeD使用的培养为LB培养基(1L):胰蛋白胨10g,酵母提取物5g,氯化钠10g;自来水定容至1L,自然pH,115℃高压蒸汽灭菌。
感受态细胞Trans1-T1:Phage Chemically Comptent Cell,全式金(CD501-03)。
重组克隆试剂盒:CloneMultiS One Step Cloning Kit,诺唯赞(C113-02)。
大肠杆菌BW25113:Thermo Cat#OEC5042。
种子培养基组分为LB培养基(1L):胰蛋白胨10g,酵母提取物5g,氯化钠10g;自来水定容至1L,自然pH,115℃高压蒸汽灭菌。
ZYM培养基(1L):
1%胰蛋白胨,0.5%酵母提取物,20mL 50×M(1.25M Na2HPO4·12H2O、1.25MKH2PO4、2.5M NH4Cl、0.25M Na2SO4),20mL50×5052(25%甘油、2.5%葡萄糖),2mL 1MMgSO4,1mL 1000×微量元素(50mM FeCl3·6H2O、20mM CaCl2·2H2O、10mM MnCl2·4H2O、10mM ZnSO4·7H2O、2mM CoCl2·6H2O、2mM CuCl2·2H2O、2mM NiCl2·6H2O、2mM Na2SeO3、2mMNa2MoO4·2H2O、2mM H3BO3)。
发酵罐培养基(R培养基,1L):
葡萄糖10g,(NH4)2HPO4 8g,KH2PO4 13.3g,MgSO4·7H2O 1.2g,柠檬酸1.7g,微量盐溶液10mL,用水定容至1L,5M NaOH调至pH7.0。后期补料液为50%的葡萄糖,20%MgSO4·7H2O。
微量盐溶液由溶剂和溶质组成,溶剂为5M盐酸水溶液,溶质及其在微量盐溶液中的浓度分别为FeSO4·7H2O 10g/L,ZnSO4·7H2O 2.25g/L,CuSO4·5H2O 1g/L,MnSO4·5H2O0.5g/L,Na2B4O7·10H2O 0.23g/L,CaCl2·2H2O 2g/L和(NH4)6Mo7O24 0.1g/L。
摇瓶培养转化合成亚精胺:将过夜培养的OD600=3的待测菌株菌液按1%的接种量,转接至50mL含有终浓度100μg/mL氨苄青霉素的ZYM培养基中,并向体系中加入L-阿拉伯糖(L-阿拉伯糖所得体系中的质量百分比浓度0.2%),而后将所得体系于28℃、200rpm诱导发酵12h后,向培养基中加底物20mM(在反应体系中的浓度)鸟氨酸和30mM(在反应体系中的浓度)甲硫氨酸,催化24h后检测发酵液中亚精胺含量。
实施例1:甲硫氨酸脱羧酶的筛选
1、不同来源的甲硫氨酸脱羧酶基因的获取
大肠杆菌来源speE(Gene ID:947726)和speD(Gene ID:947719)基因获取是根据BW25113全基因组序列查找其相应的序列,以BW25113菌株为模板,利用引物P1(F-E.colispeE、R-E.colispeE)和P2(F-E.colispeD、R-E.colispeD)进行PCR扩增,将所得序列正确的PCR产物分别标记为E.colispeE(867bp)、E.colispeD(795bp)。
里氏木霉(Trichoderma reesei)speD基因获取是提取里氏木霉QM9414(ATCC26921)的RNA,反转录为cDNA,以所得cDNA为模板,利用引物P3(F-TrspeD、R-TrspeD)进行PCR扩增,将所得序列正确的PCR产物分别标记为TrspeD(1512bp)。
酿酒酵母(S.cerevisiae)speD基因获取是通过提取试剂盒酿酒酵母全基因组序列,以所得序列为模板,利用引物P4(F-SCspeD、R-SCspeD)进行PCR扩增,将所得序列正确的PCR产物分别标记为SCspeD(1191bp)。
玉米(Zea mays)和人(Homo sapines)的speD基因获取是通过从NCBI中获取其mRNA序列(玉米来源speD基因的NCBI Reference Sequence:NM_001156222.1)(人来源speD基因的NCBI Reference Sequence:NM_001287214.1),将序列送擎科生物技术有限公司合成,上述两个基因片段直接由公司连接于pET-21a(+)载体上,构建的质粒分别为pET21-ZeaspeD(玉米)、pET21-HumanspeD(人),目的基因启动子为T7启动子,筛选标记为氨苄青霉素Amp。
2、基因表达载体的构建
以pET21质粒为模板,用引物F-pET21、R-pET21进行PCR扩增,得到系列正确的DNA片段即为线性化载体pET21vector(5424bp),利用相应的引物以上述扩增得到的不同来源的speD基因为模板进行扩增,得到的片段用于连接线性化载体pET21vector。
所用引物序列如下:
F-E.colispeE:5’-TAAGAAGGAGATATACATatggccgaaaaaaaacagtggc-3’,
R-E.colispeE:5’-CTCAGTGGTGGTGGTGGTGGTGggacggctgtgaagccagtg-3’;
F-E.colispeD:5’-TTAAGAAGGAGATATACATAtgaaaaaactgaaactgcatggct-3’,
R-E.colispeD:5’-TCTCAGTGGTGGTGGTGGTGGTGaacagctggcatattgcgccc-3’;
F-TrspeD:5’-AACTTTAAGAAGGAGATATACATATGGCCAACTTTTCGGTGCC-3’,
R-TrspeD:5’-TCAGTGGTGGTGGTGGTGGTGAATCTCCTCGCCGACGCGAG-3’;
F-SCspeD:5’-TAAGAAGGAGATATACATATGACTGTCACCATAAAAGAATTGACTAACC-3’,
R-SCspeD:5’-GTGGTGGTGGTGGTGTATTTTCTTCTGCAATTTCATATAGAAAAGGTGG-3’;
F-pET21:5’-GATCCGGCTGCTAACAAAGC-3’,
R-pET2:5’-GGATCCGCGACCCATTTGCT-3’。
采用重组克隆试剂盒(CloneMultiS One Step Cloning Kit,诺唯赞(C113-02))将E.colispeE、E.colispeD、TrspeD、SCspeD分别和pET21vector进行两片段连接,利用氯化钙化学转化法转化至感受态细胞Trans1-T1(Phage Chemically ComptentCell,全式金(CD501-03))中,挑取阳性克隆,提取质粒进行测序,将所得序列正确的重组质粒标记为pET21-E.colispeE(大肠杆菌)、pET21-E.colispeD(大肠杆菌)、pET21-TrspeD(里氏木霉)、pET21-SCspeD(酿酒酵母),目的基因启动子为T7启动子,筛选标记为氨苄青霉素Amp。
将所得载体pET21-E.colispeE、pET21-E.colispeD、pET21-TrspeD、pET21-SCspeD、pET21-ZeaspeD、pET21-HumanspeD分别导入大肠杆菌BL21(DE3)中,将得到的重组菌分别命名为BL-pET21-E.colispeE、BL-pET21-E.colispeD、BL-pET21-TrspeD、BL-pET21-SCspeD、BL-pET21-ZeaspeD、BL-pET21-HumanspeD。
3、蛋白质的诱导、表达和检测
将以上所得重组菌作为待测菌株,按照如下步骤进行蛋白的表达与检测:将过夜培养的待测菌株菌液按1%的接种量,转接至5mL含有终浓度100μg/mL氨苄青霉素的LB培养基中,37℃、200rpm培养1.5h,然后向体系中加入1mM IPTG诱导剂,而后将所得体系于28℃200rpm诱导发酵24h,得到发酵液。
将发酵液收集至离心管中,13000rpm离心2min,弃上清,向菌体沉淀加入1mL PBS缓冲液(pH 7.0),利用超声破碎仪破碎,得到细胞破碎液,将细胞破碎液13000rpm离心2min,取上清制蛋白样(上清),利用SDS-PAEG检测蛋白表达情况。
结果如图2所示,BL-pET21-E.colispeE、BL-pET21-E.colispeD、BL-pET21-TrspeD、BL-pET21-SCspeD、BL-pET21-ZeaspeD、BL-pET21-HumanspeD单酶表达情况如图所示,根据蛋白胶可以看出,大肠杆菌来源speE大小为32KDa,大肠杆菌来源speD大小为18KDa比预测(30KDa)大小要小,是因为在翻译时发生了剪切,但并不影响蛋白功能。里氏木霉来源speD大小为45KDa,酿酒酵母来源speD大小为35KDa,玉米来源speD大小为35KDa和45KDa,人来源speD大小为35KDa,不同来源酶都实现可溶性表达且表达水平相当。
4、不同来源的甲硫氨酸脱羧酶催化性能的比较
(1)亚精胺检测方法建立
将750ul 0.4mol/L高氯酸添加到250ul发酵液中,15min后震荡离心1min,取250ul上清液,依次加入100ul内标溶液(100mg/L 1,7-二氨基庚烷),75ul饱和NaHCO3,25ul2mol/L NaOH,500ul 5g/L丹磺酰氯,在避光条件下进行衍生处理50℃45min;衍生完了后加入25ul氨水终止反应,避光50℃15min。结束后加入500ul乙腈混匀,离心1min,取500ul上清与500ul乙腈混匀后离心3min,上清溶液经0.22um有机过滤膜过滤,通过高效液相色谱检测亚精胺和腐胺含量。
HPLC检测仪为Agilent 1260Infinity LC,检测柱为Agilent E clipse plus C18柱,紫外检测波长为254nm,流动相为乙腈和ddH2O溶液,流速1.0mL/min,进样量10μL。二级质谱采用LC/MS液相色谱/三重四极杆串联质谱联用仪(Agilent 1260/6460LC/TripleQuadrupole MS),流动相采用乙腈和ddH2O,检测柱为Agilent E clipse plus C18柱。
亚精胺HPLC检测方法成功建立,亚精胺标准曲线如图3所示,500mg/L腐胺、100mg/L二氨基庚烷和500mg/L亚精胺标品的出峰位置为4.99min、8.77min和14.06min,都是单一的强吸收峰(见图4),检测样品和标品的出峰位置一致,后根据标准曲线计算出样品亚精胺含量。
(2)通过亚精胺酶法催化检测各物种来源speD的催化活性
将过夜培养的BL-pET21-E.colispeE、BL-pET21-E.colispeD、BL-pET21-TrspeD、BL-pET21-SCspeD、BL-pET21-ZeaspeD和BL-pET21-HumanspeD等6株重组菌株按1%的接种量,转接至50mL含有终浓度100μg/mL氨苄青霉素LB培养基中,在37℃、200rpm培养1.5h,然后向体系中加入IPTG诱导剂,于28℃、200rpm继续培养24h。用紫外分光光度计检测OD600,分别取OD600=100菌至离心管中,5000rpm离心10min,弃上清,向菌体沉淀加入5mL PBS缓冲液(pH 7.0),利用超声破碎仪破碎,得到细胞破碎液,5000rpm离15min,取上清,得到各物种来源speE和大肠杆菌来源的speD粗酶液。
配制2×转化液:5g/L腐胺,30g/L S-腺苷甲硫氨酸,40mg MgSO4,pH7.2。分别取1ml speE酶液与1ml各物种来源speD酶液混合,后再与2ml转化液混合,37℃、200rpm反应6h,用HPLC检测反应时间点为1h、3h和6h的亚精胺生成量。
从图5中可以看出相同菌体量但不同物种来源的s-腺苷甲硫氨酸脱羧酶催化生成的亚精胺含量有显著差异,里氏木霉来源的甲硫氨酸脱羧酶的催化活性显著高于目前已报道的其他物种来源的甲硫氨酸脱羧酶。
实施例2:大肠杆菌中亚精胺合成途径优化
1、过表达metK的重组大肠杆菌的构建及亚精胺的生产
(1)pBAD-DEFK载体构建
将亚精胺合成途径中speD、speE、speF串联表达,speD来源于里氏木霉,以里氏木霉cDNA为模板,利用引物P5(F-muspeD、R-muspeD)进行PCR扩增,将所得序列正确的PCR产物记为speD(1512bp);以大肠杆菌BW25113基因组为模板利用引物P6(F-muED、R-speE2)和P7(F-speEF、R-speF)进行PCR扩增,将所得序列正确的PCR产物记为speE(867bp)和speF(2199bp);以pBAD/HisA质粒(invitrogen,V430-01)为模板,用引物pBAD-F、pBAD-R进行PCR扩增,得到序列正确的DNA片段即为线性化载体pBADve(3993bp),所用引物序列如下:
F-muspeD:5’-ttgggctaacaggaggaattaaccATGGCCAACTTTTCGGTGCC-3’,
R-muspeD:5’-TTAAATCAAATCTCCTCGCCGACGCGA-3’;
F-muED:5’-GAGGAGATTTGATTTAACTTTAAGAAGGAGATATACatggccgaaaaaaaacagtggcat-3’,
R-speE2:5’-TTAAAttaggacggctgtgaagcca-3’;
F-speEF:5’-cagccgtcctaaTTTAACTTTAAGAAGGAGATATACatgtcaaaattaaaaattgcggtt-3’,
R-speF:5’-ccgccaaaacagccaagctttcataatttttcccctttcaacag-3;
pBAD-F:5’-aagcttggctgttttggcgg-3’,
pBAD-R:5’-ggttaattcctcctgttagcccaaaaaacgg-3’。
采用重组克隆试剂盒将speD、speE、speF和pBADve进行4片段连接(每个基因都有各自的RBS),将连接产物利用氯化钙化学转化法转化至感受态细胞Trans1-T1中,挑取阳性克隆,提取质粒进行测序,将所得序列正确的重组质粒记为pBAD-DEF。质粒pBAD-DEF通过T7核糖体结合位点RBS连接,启动子为araBAD,筛选标记为氨苄青霉素Amp,复制起点为Pbr322ori。
另外以上一步质粒pBAD-DEF为模板,利用引物R-speFK和pBAD-F进行PCR扩增,将所得序列正确的PCR产物分别记为DEF-pBADve(8582bp),以大肠杆菌BW25113基因组为模板利用引物P8(F-metK、R-metK)进行PCR扩增,将所得序列正确的PCR产物记为metK(1155bp)所用引物序列如下:
R-speFK:5’-GTTAAAtcataatttttcccctttcaaca-3’,
pBAD-F:5’-aagcttggctgttttggcgg-3’;
F-metK:5’-gaaaaattatgaTTTAACTTTAAGAAGGAGATATACatggcaaaacacctttttacgtcc-3’,
R-metK:5’-ccgccaaaacagccaagcttttacttcagaccggcagcatcg-3’。
采用重组克隆试剂盒将载体DEF-pBADve和单片段metK进行无缝拼接,利用氯化钙化学转化法转化至感受态细胞Trans1-T1中,挑取阳性克隆,提取质粒进行测序,将所得序列正确的重组质粒记为pBAD-DEFK。
将所得质粒pBAD-DEF和pBAD-DEFK分别导入大肠杆菌BW25113中,将得到的重组菌分别记为BW-DEF和BW-DEFK。
(2)BW-DEFK菌株全细胞催化得到亚精胺
将BW-DEF和BW-DEFK作为待测菌株,按照如下步骤进行摇瓶培养转化合成亚精胺:将OD600=3的过夜培养的待测菌株菌液按1%的接种量,转接至50mL含有终浓度100μg/mL氨苄青霉素的ZYM培养基中,并向体系中加入L-阿拉伯糖(L-阿拉伯糖所得体系中的质量百分比浓度0.2%),而后将所得体系于28℃、200rpm诱导发酵12h后,向培养基中加底物20mM鸟氨酸和30mM甲硫氨酸,催化24h后检测发酵液中亚精胺含量。
重组菌BW-DEF和BW-DEFK摇瓶转化结果如图6。通过对比重组菌胞内和胞外亚精胺含量可以看出metK基因有利于胞内积累亚精胺,10OD菌体量BW-DEF重组菌亚精胺含量为21.2mg/L,过表达metK后10OD菌体量亚精胺含量为31.7mg/L,胞外无亚精胺积累。
2、敲除speG基因的重组大肠杆菌的构建及亚精胺的发酵生产
(1)speG基因的敲除
采用大肠杆菌λ-Red同源重组方法在BW25113菌株中进行speG基因(Gene ID:946117)的敲除。首先设计敲除引物P9(F-qiaospeG、R-qiaospeG)后进行PCR扩增含有kana(1300bp)抗性基因的打靶片段;然后将打靶片段电击转入含有pKD46质粒的BW25113感受态细胞中,利用kana抗性平板筛选阳性转化子;设计鉴定引物P10(F-JD-qiaoG、R-JD-qiaoG)进行PCR鉴定是否成功将kana抗性基因整合到基因组speG(561bp)基因位点;筛选的阳性转化子制备成化转感受态后将热敏质粒pCP20转入其中,30℃培养8h后42℃培养过夜,热诱导FRT重组酶表达,从而删除FRT位点之间的kana抗性基因,同时消除pCP20质粒;培养好的菌液用接种环在无抗平板上划线,37℃培养后挑出单克隆点到含有kana抗性的平板上,如果kana抗性平板菌体没有长起来则抗性基因已被成功删除。敲除菌株记为:BWΔG菌株。
敲除speG用到的引物如下:
F-qiaospeG:5’-cgttattaccccctaacctgttattgatttaaggaatgtaaggacacgttgtgtaggctggagctgcttc-3’,
R-qiaospeG:5’-gccgtcgaacgggtttacaccatcaaaaatacgatcgattattattaatgattccggggatccgtcgacc-3’;
F-JD-qiaoG:caatggaatgacacgcgcaatctg,
R-JD-qiaoG:cacgccatcaacggatccgatca。
(2)BWΔG-DEFK菌株亚精胺的合成
将质粒pBAD-DEFK导入BWΔG菌株中,将得到的重组菌记为BWΔG-DEFK。使用ZYW培养基进行摇瓶培养转化合成亚精胺,并检测亚精胺的含量。结果见图6,从图中可以看出敲除speG基因后胞内亚精胺大量积累,10OD菌体可以得到120mg/L亚精胺,相较于BW-DEFK菌提高了3倍左右,并且在胞外也检测到亚精胺,大约24.4mg/L。
3、亚精胺外泌能力增强的重组大肠杆菌的构建及亚精胺的生产
(1)pZS-M和pZS-A载体构建
MdtJI基因的获取是以大肠杆菌BW25113基因组为模板,利用引物P11(F-MdtJI、R-MdtJI)进行PCR扩增;AmvA基因(Gene ID:66396847)的获取是以鲍曼不动杆菌基因组为模板利用引物P12(F-AmvA、R-AmvA)进行PCR扩增,将所得序列正确的PCR产物记为MdtJI(682bp)、和AmvA(1479bp);以pZH粒为模板,用引物pZH-F、pZH-R进行PCR扩增,得到序列正确的DNA片段即为线性化载体pZHve(4093bp),所用引物序列如下:
F-MdtJI:5’-ttgggctaacaggaggaattaaccATGTATATTTATTGGATTTTATTAGGTCTGGCT-3’,R-MdtJI:5’-ctctcatccgccaaaacagccTCAGGCAAGTTTCACCATGATCATTCCAG-3’;
F-AmvA:5’-taacaggaggaattaaccATGCAAAAAAAATGGTTAATCCTGACAAT-3’,
R-AmvA:5’-atccgccaaaacagccTTAGTTTACTTTCTTTGGAAAGCTAAACCAG-3’;
pZH-F:5’-ggctgttttggcggatgag-3’,
pZH-F:5’-ggttaattcctcctgttagccca-3’。
采用重组克隆试剂盒将MdtJI、AmvA分别和pZHve进行2片段连接,利用氯化钙化学转化法转化至感受态细胞Trans1-T1中,挑取阳性克隆,提取质粒进行测序,将所得序列正确的重组质粒记为pZH-M和pZH-A。质粒pZH-M和pZH-A启动子为araBAD,筛选标记为氯霉素CmR,复制起点为P15A ori。
(2)菌株BWΔG-DEFK-M和BWΔG-DEFK-A胞外亚精胺含量比较
将所得质粒pZH-M和pZH-A分别导入大肠杆菌BWΔG-DEFK菌株中,将得到的重组菌分别记为BWΔG-DEFK-M和BWΔG-DEFK-A。使用ZYW培养基进行摇瓶培养转化合成亚精胺,并检测亚精胺的含量。
从图7可以看出BWΔG-DEFK-M菌株胞外亚精胺含量为107mg/L,胞外亚精胺含量是菌株BWΔG-DEFK的4倍,过表达AmvA后胞外亚精胺含量大幅度上升,是过表达MdtJI的3倍,达到347mg/L,单位菌体的合成量为115.7mg/gDCW。
4、亚精胺耐受性增强的重组大肠杆菌的构建及亚精胺的生产
(1)potD基因的敲除
采用大肠杆菌λ-Red同源重组方法在BWΔG菌株中进行potD基因的敲除。首先设计敲除引物P13(F-qiaopotD、R-qiaopotD)后进行PCR扩增含有kana(1300bp)抗性基因的打靶片段;然后将打靶片段电击转入含有pKD46质粒的BWΔG感受态细胞中,利用kana抗性平板筛选阳性转化子;设计鉴定引物P14(F-JD-qiaoD、R-JD-qiaoD)进行PCR鉴定是否成功将kana抗性基因整合到基因组potD(1047bp)基因位点;筛选的阳性转化子制备成化转感受态后将热敏质粒pCP20转入其中,30℃培养8h后42℃培养过夜,热诱导FRT重组酶表达,从而删除FRT位点之间的kana抗性基因,同时消除pCP20质粒;培养好的菌液用接种环在无抗平板上划线,37℃培养后挑出单克隆点到含有kana抗性的平板上,如果kana抗性平板菌体没有长起来则抗性基因已被成功删除。敲除菌株记为:BWΔGΔD菌株。
敲除potD用到的引物如下:
F-qiaopotD:5’-ggcggtaataccaccgcccgcttgctgaattaacgtcctgctttcagcttgtgtaggctggagctgcttc-3’,
R-qiaopotD:5’-atggttattgccagccagcttattgctcgtgataaaacgaaaggtaacacattccggggatccgtcgacc-3’;
F-JD-qiaoD:5’-tatcaacaatgacgccttcggtatg-3’,
R-JD-qiaoD:5’-ggcgtatcgccggaagttaacg-3’。
(2)BWΔGΔD-DEFK-A摇瓶转化结果
将质粒pBAD-DEFK和质粒pZH-A共转入BWΔGΔD菌株中,将得到的重组菌记为BWΔGΔD-DEFK-A。使用ZYW培养基进行摇瓶培养转化合成亚精胺,并检测亚精胺的含量。
摇瓶结果BWΔGΔD-DEFK-A菌株亚精胺产量为335mg/L,单位菌体的合成量为112mg/gDCW,与BWΔG-DEFK-A相当。
(3)BWΔGΔD-DEFK-A发酵罐培养转化结果
将待测菌株按1%的接种量接种到100mL种子培养基中,37℃、200rpm过夜培养得到种子液;将种子液(100mL)接种到900mL含氨苄青霉素(100μg/ml)和氯霉素(17μg/ml)的发酵培养基中(2L发酵罐),37℃搅拌培养,直至菌液浓度达OD600=30(约24h),然后向所得体系中加入L-阿拉伯糖(L-阿拉伯糖在所得体系中的质量百分比浓度0.2%),30℃诱导培养,发酵24小时后向培养基中加底物1.5g甲硫氨酸,并补加3g硫酸铵,整个过程以4mL/h/L的流加速度流加50g/100mL葡萄糖水溶液,并通过调整搅拌转速和通气量维持溶氧在20%左右,通过2.7M氨水和1M磷酸维持pH至7.0±0.5以接种种子液时记为0h,每间隔12h取样检测OD600后离心收集上清液检测上清液中亚精胺的含量。
结果如图8和图9所示,BWΔGΔD-DEFK-A菌体OD值持续上升,在48h时OD达53,亚精胺含量也在持续上升,最高产量为2.11g/L。BWΔG-DEFK-A菌体OD值在24h达到最高为25,后期OD不再变化,亚精胺产量为1.06g/L。BWΔGΔD-DEFK-A菌株生长强度高于BWΔG-DEFK-A菌株,亚精胺会对细胞产生毒性造成细胞死亡,敲除potD增强菌体对亚精胺的耐受性。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。
SEQUENCE LISTING
<110> 深圳中科欣扬生物科技有限公司
<120> 一种用于亚精胺合成的基因及高产亚精胺菌株的构建
<130> BAA220532A
<160> 6
<170> PatentIn version 3.3
<210> 1
<211> 1512
<212> DNA
<213> 人工序列
<400> 1
atggccaact tttcggtgcc caacaactac actttctctc cttcgtcggc cactccccac 60
ttgacaatca accacgataa tgcggccgag ctggactcca cctatgcctt cgaaggaccc 120
gagaagctcc tagaggtatg gttcgctccg agtgcttcgg cgctgcctca gggcgctcga 180
cccgccggcc tcaaggccgt gaccgccgag acttgggaga ctatgcttga catggtcaac 240
tgcaaaatcc tctcggtgct caagaccgat gctgtcgacg cctaccttct ctccgagtcg 300
agcatgtttg tctttcccca caagctcatt ctcaagactt gcggcaccac gacgctgctc 360
ctcggactgc agcgcctgct ccacattgcc gccgagtttg cgggcttccc cttcaacaac 420
gccacgtccg caaaggagat caaggctgtt gctattccct accgagtctt ctatagccgc 480
aagaacttcc tcttccccga caagcagcag ggtccccacc gcagctggaa gcaggaagtc 540
aagtacctgg acgacatggt ggatggcggc agtgcctaca tggtgggaaa gatgaacggc 600
gaccactggt acctgtacat cacgtcgccc aaccgaatgt tcactcctcc cctgaccccc 660
gactcggaga agaatgagac ggccccggcc agcttctcga tgcccgccaa catggagctt 720
ggaggacctg gaagcgacga gacgctcgag atcttgatga cggatctcga tccgttgaat 780
gccaagcagt tttacctggc gcacgcgagt gcggtcgcgt gcgacaagct gtctgccgaa 840
ggcagcaagg ccggtaacac tgctgacaac gtgagcgagg tcaacgtctt cgccgacggc 900
atcgagtccg acctgcatga gtcggctgag aagcctgctg agatggagtc tctgaccact 960
gaaggccacg ccctcggcac ggtcgtgtcg gagcagtgcg gcctcgccga cgtgtatccg 1020
acttcggtct atcccgatgc acgcatcgac tcatacctct tcagcccctg cggcttctct 1080
gccaacggca tcatccctcc gcccccagcc acgcaggagg atggccagca gagcggcaac 1140
aacgctggac actacttcag cgtccacgtc acgcccgaga ctggcttctc gtttgcttcg 1200
tttgagacca acgttccggg cggccaaagc ggacgaacca cggccgagat cattgagcac 1260
gtcgttgaca tcttcaagcc tggccgcttc agcgtcaccc tctttgaggc caagggtcgc 1320
ggcgagaacc cttacggctc gaccagctcc cacaagggcc ttgccaccca gagacttgtc 1380
gataccgttc gcggataccg tcgcatcgat cgcatcgtcc atgactttga agactacgac 1440
ttggtgttcc gcttctacga gcgcgagggc tgggttggtg acaagaaggc tcgcgtcggc 1500
gaggagattt ga 1512
<210> 2
<211> 867
<212> DNA
<213> 人工序列
<400> 2
atggccgaaa aaaaacagtg gcatgaaacg ctacacgacc agtttgggca gtactttgcg 60
gtagataacg ttctgtatca tgaaaagacc gatcaccagg atctgatcat ttttgagaac 120
gctgcatttg gtcgcgtaat ggcgctggat ggcgtagtac aaaccaccga gcgcgacgag 180
tttatctatc atgagatgat gacccatgtt ccgctactgg cccatggtca cgcgaaacat 240
gtgctgatta tcggcggcgg cgacggtgcc atgctgcgtg aagtaacccg acataaaaac 300
gttgagtcaa tcacgatggt ggaaatcgat gcgggtgtcg tatcgttctg ccgtcagtat 360
ctacccaacc ataacgccgg tagctacgac gatccgcgct ttaagctggt gatcgacgat 420
ggcgtcaatt tcgttaatca aaccagccag acctttgatg tcattatctc cgactgcacc 480
gatcctatcg gtcccggcga aagccttttc acttcggcat tttatgaagg ctgcaaacgt 540
tgcctgaatc ctggcggtat cttcgtcgca caaaacggcg tctgcttttt acagcaggaa 600
gaagccatcg acagccatcg caaactcagc cattacttca gcgacgttgg cttttatcag 660
gcggcgatcc cgacctatta cggcggtatc atgacttttg catgggcgac agataacgac 720
gccttacgcc atctctcaac cgaaattatt caggcgcgtt ttctcgcctc tggcctgaaa 780
tgccgttatt acaatccggc aatccatacg gcagcttttg ccttacctca gtatctgcaa 840
gacgcactgg cttcacagcc gtcctaa 867
<210> 3
<211> 2199
<212> DNA
<213> 人工序列
<400> 3
atgtcaaaat taaaaattgc ggttagtgat tcttgcccgg actgttttac cacgcagcga 60
gaatgtatct acattaatga aagtcgtaat atcgatgtgg cggcaatagt tttatcgctc 120
aacgatgtta catgcggaaa actcgatgaa atcgatgcca cgggttatgg catcccggta 180
tttattgcta ctgaaaatca agaacgtgta cccgcagagt atttgccccg tatttcgggt 240
gtctttgaga attgcgaatc gcgacgagaa ttttatggtc gccagttaga aaccgctgcc 300
agccattatg aaactcaact gcgcccacct ttcttccgcg cactggtcga ttatgtcaat 360
caaggtaaca gcgcgtttga ttgccctggt catcagggcg gcgaattttt ccgtcgccat 420
ccggcgggga atcagtttgt ggaatacttt ggtgaggcgc tgttccgtgc cgacttgtgc 480
aacgccgacg tagcgatggg cgatctgctg attcacgaag gcgcgccatg cattgcacag 540
caacatgcgg caaaagtgtt taatgccgat aaaacctact tcgttttaaa tggcacttca 600
tcttctaaca aagtggtttt aaacgccctg ctaacaccgg gtgatctggt gctgtttgat 660
cgcaataacc acaaatctaa ccaccacgga gcgttgctac aggctggtgc aacaccggtt 720
tatctggaaa cggcacgtaa cccgtatggc tttatcggtg gcattgatgc gcactgtttt 780
gaagaaagtt acctgcgtga gctgatcgcg gaagtcgcac cgcagcgggc aaaagaggct 840
cgtcctttcc gcctcgctgt gattcagtta ggcacctacg acggtacgat ttataacgcc 900
cgccaagtgg tggataaaat tggtcatctg tgtgactaca tcctgtttga ctcagcatgg 960
gtcggctatg aacagtttat tccgatgatg gcggactgtt cgccgctgtt gctggatctt 1020
aatgagaacg atccgggtat tctggttacg caatctgtgc ataaacaaca ggctggtttt 1080
tctcagactt cacaaattca taaaaaagac agccacatca aagggcaaca gcgttatgta 1140
ccgcacaaac gcatgaacaa cgcctttatg atgcacgcct ccaccagccc gttctatccg 1200
ctgtttgccg cactgaatat caacgccaaa atgcatgaag gtgtcagcgg tcgtaatatg 1260
tggatggatt gtgtggtaaa tggcattaat gcccgcaaac tgatcctcga taactgtcag 1320
catattcgtc cgttcgtacc tgaactggtg gatggtaaac cctggcagtc gtatgaaaca 1380
gcgcaaattg cggttgatct gcgcttcttc cagtttgtac caggggaaca ctggcattct 1440
tttgaaggct atgcagagaa tcaatacttt gtcgatccat gcaaactgtt gctgacaacc 1500
ccaggtattg atgcacgtaa cggcgaatat gaagcgttcg gtgtacccgc gacgattctt 1560
gctaacttcc tgcgcgaaaa tggcgtagtg ccggaaaaat gcgatcttaa ctccatcctc 1620
ttcctgctga ctccggcaga agatatggcc aaacttcagc aacttgttgc cctgctggta 1680
cgcttcgaaa aactgcttga gtccgacgcg ccattagcag aagtgctacc ttccatctac 1740
aaacagcatg aagagcgcta cgccggttat accctgcgtc agttgtgtca ggaaatgcat 1800
gatttgtatg cccgccacaa cgtgaaacaa ctgcaaaaag agatgttccg taaggagcac 1860
ttcccacgcg tcagcatgaa tccgcaagaa gccaactacg cctatttacg cggtgaagtg 1920
gaactggttc gtctgccgga tgcagaaggc cgtatcgctg ccgaaggtgc gcttccttat 1980
cctccgggtg tgctgtgtgt tgttccgggt gaaatctggg gtggtgctgt tctgcgttac 2040
ttcagcgctc tggaagaagg gatcaacctg ctgccaggtt ttgcaccgga gctgcagggt 2100
gtctatatcg aagaacatga tggtcgtaag caagtttggt gctatgtcat caagcctcgt 2160
gatgcgcaaa gcaccctgtt gaaaggggaa aaattatga 2199
<210> 4
<211> 1155
<212> DNA
<213> 人工序列
<400> 4
atggcaaaac acctttttac gtccgagtcc gtctctgaag ggcatcctga caaaattgct 60
gaccaaattt ctgatgccgt tttagacgcg atcctcgaac aggatccgaa agcacgcgtt 120
gcttgcgaaa cctacgtaaa aaccggcatg gttttagttg gcggcgaaat caccaccagc 180
gcctgggtag acatcgaaga gatcacccgt aacaccgttc gcgaaattgg ctatgtgcat 240
tccgacatgg gctttgacgc taactcctgt gcggttctga gcgctatcgg caaacagtct 300
cctgacatca accagggcgt tgaccgtgcc gatccgctgg aacagggcgc gggtgaccag 360
ggtctgatgt ttggctacgc aactaatgaa accgacgtgc tgatgccagc acctatcacc 420
tatgcacacc gtctggtaca gcgtcaggct gaagtgcgta aaaacggcac tctgccgtgg 480
ctgcgcccgg acgcgaaaag ccaggtgact tttcagtatg acgacggcaa aatcgttggt 540
atcgatgctg tcgtgctttc cactcagcac tctgaagaga tcgaccagaa atcgctgcaa 600
gaagcggtaa tggaagagat catcaagcca attctgcccg ctgaatggct gacttctgcc 660
accaaattct tcatcaaccc gaccggtcgt ttcgttatcg gtggcccaat gggtgactgc 720
ggtctgactg gtcgtaaaat tatcgttgat acctacggcg gcatggcgcg tcacggtggc 780
ggtgcattct ctggtaaaga tccatcaaaa gtggaccgtt ccgcagccta cgcagcacgt 840
tatgtcgcga aaaacatcgt tgctgctggc ctggccgatc gttgtgaaat tcaggtttcc 900
tacgcaatcg gcgtggctga accgacctcc atcatggtag aaactttcgg tactgagaaa 960
gtgccttctg aacaactgac cctgctggta cgtgagttct tcgacctgcg cccatacggt 1020
ctgattcaga tgctggatct gctgcacccg atctacaaag aaaccgcagc atacggtcac 1080
tttggtcgtg aacatttccc gtgggaaaaa accgacaaag cgcagctgct gcgcgatgct 1140
gccggtctga agtaa 1155
<210> 5
<211> 1479
<212> DNA
<213> 人工序列
<400> 5
atgcaaaaaa aatggttaat cctgacaatt atcgtcctta tatatttacc agttacgatt 60
gatgcaacgg tgatgcatgt tgcaacacca tctttaagtg cagcattgaa tttaactgcc 120
aatcagcttt tatgggtcat tgatatttat tcactgatta tggcgggttt gattttaccg 180
atgggtgcac ttggtgatcg tattggcttt aaaaaattat tatttattgg aactgcaatt 240
tttggagtcg gttcgttagc tgcggctttt tctccaacag cttacgcctt aattgcttcc 300
cgtgctgttt taggtctagg ggcagcaatg cttattcctg ccactttatc aggcattcgt 360
aatgctttta ccgaagaaaa gcagagaaat tttgcacttg gtctttggtc tacagtgggt 420
ggtggcggag cagcttttgg tccattagtt ggtggatttg tactagaaca tttccattgg 480
ggagcagtat tcctcatcaa tatcccgatt attttagtgg ttctggtcat gatcgcgatg 540
atcattccaa aacaacaaga gaaaactgat cagccaatta acttagggca agctttaatt 600
ttagtcgtgg caattttaag cctcatctat tcaatcaaat cggcaatgta caacttctcg 660
gtacttacgg ttgtgatgtt tgtggtgggt ataagcacat taattcactt cattcgaagc 720
caaaaaagaa gtacgactcc aatgattgat ctggaattgt ttaagcatcc agtgatttct 780
accagtattg ttatggccgt ggtttccatg attgctttgg ttgggtttga attactcttg 840
tctcaagagt tgcagtttgt gcatgggttt tctccattac aggcagccat gtttattatt 900
ccattcatga ttgcgattag tttaggtggt ccattagcag gaatttgttt aaataaatgg 960
gggcttagac ttgtatctac tgttggtatt ttaataagtg gatttagtct atgggggctt 1020
gcccagctta acttttcgac tgatcacttt ttagcgtgga cgtgtatggt ctttttaggc 1080
tttagcattg agattgcatt actggcttca actgctgcga ttatgtcatc cgtcccacct 1140
caaaaggcaa gtgcagcagg tgcgattgaa ggtatggcct atgagcttgg tgctggttta 1200
ggtgtcgcta ttttcgggtt aatgttgtct tggttttata gtcgctcaat tattttacca 1260
gcagagcttc cgtcgaactt aattgaaaaa gcgagtatat cgattggcga aaccatgcaa 1320
ttagcttcta accttgaaag ccctttggga gggcaattaa ttgcagttgc tcagcaagct 1380
tttagctatg cgcatagttg ggtgcttaca atctccgcca tttgtttctt ccttttaact 1440
gtatttgtct ggtttagctt tccaaagaaa gtaaactaa 1479
<210> 6
<211> 682
<212> DNA
<213> 人工序列
<400> 6
atgtatattt attggatttt attaggtctg gctattgcta cagaaattac cggtacgctg 60
tcaatgaaat gggcgagcgt cagtgaggga aatggcggct ttattttaat gctggtgatg 120
atttctctgt cgtatatatt tctctctttc gccgttaaaa aaatcgcctt aggcgtagct 180
tatgcgctgt gggaaggtat cggtatttta tttattacct tgtttagcgt tttgttattc 240
gacgaaagtt tatcgctgat gaaaattgcc gggttaacca ccctggtcgc cgggattgtg 300
ttgataaaat caggtacccg taaagcgcgt aaacctgaac tggaggtgaa ccatggcgca 360
gtttgaatgg gttcacgccg cctggctggc attggcaatc gtgctggaaa tcgttgctaa 420
cgtctttttg aaattttctg acggctttcg tcgcaaaata tttggcttgc tctccctggc 480
ggcggtgctg gctgccttta gtgcgctttc tcaagccgtt aaagggatcg acttgtctgt 540
cgcttatgca ttgtggggcg ggtttggtat tgccgccacg ttagccgcag gttggatctt 600
gtttggtcaa cggttaaatc gtaaaggctg gattggcctg gtcttgctgt tggctggaat 660
gatcatggtg aaacttgcct ga 682

Claims (6)

1. 一种重组大肠杆菌,其特征在于,以大肠杆菌为宿主,利用质粒串联表达里氏木霉来源的甲硫氨酸脱羧酶基因亚精胺合成酶基因和鸟氨酸脱羧酶基因,并在此质粒上同时表达S-腺苷甲硫氨酸合成酶基因;所述甲硫氨酸脱羧酶基因的核苷酸序列如SEQ ID NO.1所示;所述亚精胺合成酶基因的核苷酸序列如SEQ ID NO.2所示;所述鸟氨酸脱羧酶基因的核苷酸序列如SEQ ID NO.3所示;所述S-腺苷甲硫氨酸合成酶基因的核苷酸序列如SEQ IDNO.4所示;
在大肠杆菌基因组中敲除亚精胺乙酰转移酶基因;所述亚精胺乙酰转移酶基因的GeneID:946117;
表达鲍曼不动杆菌来源的AmvA基因;所述AmvA基因的Gene ID:66396847;
并敲除亚精胺吸收转运体蛋白基因potD,所述基因potD的Gene ID:945682。
2.一种生产亚精胺的方法,其特征在于,利用权利要求1所述的重组大肠杆菌,以鸟氨酸和甲硫氨酸为底物转化生产亚精胺。
3.根据权利要求2所述的方法,其特征在于,将所述重组大肠杆菌培养至OD600=3±0.5,按照1%~5%的量接种至摇瓶发酵体系中,在L-阿拉伯糖的诱导下培养不少于10h,再向体系中加入10~20mM鸟氨酸和15~30mM甲硫氨酸,催化不少于20h;
或者,将所述重组大肠杆菌在种子培养基中培养得到种子液,再将种子液接种至发酵罐体系中,培养至OD600=30,在L-阿拉伯糖的诱导下培养不少于20h,再向发酵体系中添加甲硫氨酸和硫酸。
4.根据权利要求2或3所述的方法,其特征在于,发酵过程中以2g/L/h的量添加葡萄糖,并通过调整搅拌转速和通气量维持溶氧在20%±2%,并维持发酵体系中pH为7.0±0.5。
5.根据权利要求4所述的方法,其特征在于,所述L-阿拉伯糖在发酵体系中的质量百分比为不少于0.1%;添加终浓度为1.0~1.5g/L甲硫氨酸和1.5~3g/L硫酸的量加入甲硫氨酸和硫酸。
6.权利要求1所述的重组大肠杆菌在生产亚精胺中的应用。
CN202210629535.XA 2022-06-01 2022-06-01 一种用于亚精胺合成的基因及高产亚精胺菌株的构建 Active CN114874962B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210629535.XA CN114874962B (zh) 2022-06-01 2022-06-01 一种用于亚精胺合成的基因及高产亚精胺菌株的构建

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210629535.XA CN114874962B (zh) 2022-06-01 2022-06-01 一种用于亚精胺合成的基因及高产亚精胺菌株的构建

Publications (2)

Publication Number Publication Date
CN114874962A CN114874962A (zh) 2022-08-09
CN114874962B true CN114874962B (zh) 2023-10-24

Family

ID=82679844

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210629535.XA Active CN114874962B (zh) 2022-06-01 2022-06-01 一种用于亚精胺合成的基因及高产亚精胺菌株的构建

Country Status (1)

Country Link
CN (1) CN114874962B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101679964A (zh) * 2008-04-10 2010-03-24 韩国科学技术院 具有腐胺高产能力的突变微生物以及使用其生产腐胺的方法
CN110257313A (zh) * 2019-05-16 2019-09-20 华中农业大学 一株高产亚精胺的解淀粉芽胞杆菌工程菌
CN111019960A (zh) * 2019-11-26 2020-04-17 南京工业大学 一种酶法制备亚精胺的方法
CN111201316A (zh) * 2017-07-14 2020-05-26 克里希有限公司 用于亚精胺产生的微生物细胞
CN112111536A (zh) * 2019-06-20 2020-12-22 江南大学 一种以氨基酸为底物生产亚精胺的方法及工程菌
CN112442518A (zh) * 2019-09-04 2021-03-05 江南大学 一种以廉价底物生产亚精胺的方法及工程菌
CN112725251A (zh) * 2019-10-14 2021-04-30 江南大学 一种生产亚精胺的工程菌

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101679964A (zh) * 2008-04-10 2010-03-24 韩国科学技术院 具有腐胺高产能力的突变微生物以及使用其生产腐胺的方法
CN111201316A (zh) * 2017-07-14 2020-05-26 克里希有限公司 用于亚精胺产生的微生物细胞
CN110257313A (zh) * 2019-05-16 2019-09-20 华中农业大学 一株高产亚精胺的解淀粉芽胞杆菌工程菌
CN112111536A (zh) * 2019-06-20 2020-12-22 江南大学 一种以氨基酸为底物生产亚精胺的方法及工程菌
CN112442518A (zh) * 2019-09-04 2021-03-05 江南大学 一种以廉价底物生产亚精胺的方法及工程菌
CN112725251A (zh) * 2019-10-14 2021-04-30 江南大学 一种生产亚精胺的工程菌
CN111019960A (zh) * 2019-11-26 2020-04-17 南京工业大学 一种酶法制备亚精胺的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ACCESSION NO.XM_006964726,Trichoderma reesei QM6a uncharacterized protein (TRIREDRAFT_77309), partial mRNA;Martinez,D. et al;《GenBank》;FEATURES,ORIRGIN *
The Acinetobacter baumannii disinfectant resistance protein, AmvA, is a spermidine and spermine efflux pump;Short FL et al;《Commun Biol》;第4卷(第1期);第1页摘要,第2页左栏最后1段-右栏第1段,第4页左栏最后1段-第6页左栏倒数第2段 *

Also Published As

Publication number Publication date
CN114874962A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
CN107267576B (zh) 微生物发酵生产n-乙酰-d-氨基葡萄糖和/或d-氨基葡萄糖盐的方法
CN113122491B (zh) 一种产n-乙酰神经氨酸的重组微生物及其应用
CN111471638B (zh) 一株产l-高丝氨酸的谷氨酸棒杆菌突变株的构建与应用
KR102052134B1 (ko) 헴, 코프로포르피린 iii 및 우로포르피린 iii의 생산능력이 향상된 재조합 미생물 및 이를 이용한 헴, 코프로포르피린 iii 및 우로포르피린 iii의 생산방법
CN113755354B (zh) 利用葡萄糖生产天麻素的重组酿酒酵母及其用途
CN112175893B (zh) 一种产唾液酸的重组微生物及其应用
KR101250651B1 (ko) 신규 o-아세틸호모세린 설피드릴라제 또는 변이체 및 이를 이용한 메치오닌 전환 방법
CN116121161B (zh) 一种生产麦角硫因的基因工程菌及其构建方法与应用
CN115873886B (zh) 生物合成麦角硫因的方法及载体
CN111235191B (zh) 一种微生物合成乙酰氨基酚的方法
CN114874962B (zh) 一种用于亚精胺合成的基因及高产亚精胺菌株的构建
CN114540261A (zh) 一种产氨基己二酸的基因工程菌
CN110904062B (zh) 一株高产l-丙氨酸的菌株
CN114854660B (zh) 一种高产麦角硫因的基因工程菌
CN110684811B (zh) 一种提高甲硫氨酸产量的方法
CN113789307A (zh) 一种泛酸合成酶突变体、编码基因、载体及应用
CN108866017B (zh) 一种酶法制备β-羟基-β-甲基丁酸的方法
CN117946991A (zh) 一种a-异丙基苹果酸合酶突变体及其应用
CN117247914A (zh) 乙酰羟酸合酶突变体及其应用
CN115873852A (zh) 重组核酸序列、基因工程菌及生产1,5-戊二胺的方法
CN116262915A (zh) 3-异丙基苹果酸脱水酶突变体及其应用
CN117701519A (zh) 支链氨基酸生物合成所用酶的突变体及其构建方法与应用
CN118165951A (zh) 高效合成麦角硫因的酶突变体及应用
CN118685371A (zh) 一种用于生产麦角硫因的亚砜合成酶及生物材料、生产方法与应用
CN115197954A (zh) 用于发酵生产1,5-戊二胺的重组dna、菌株及其用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant