CN114854404B - 基于氮掺杂碳量子点的功能化无机荧光微球及其制备方法 - Google Patents

基于氮掺杂碳量子点的功能化无机荧光微球及其制备方法 Download PDF

Info

Publication number
CN114854404B
CN114854404B CN202210438901.3A CN202210438901A CN114854404B CN 114854404 B CN114854404 B CN 114854404B CN 202210438901 A CN202210438901 A CN 202210438901A CN 114854404 B CN114854404 B CN 114854404B
Authority
CN
China
Prior art keywords
carbon quantum
nitrogen
quantum dots
doped carbon
urea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210438901.3A
Other languages
English (en)
Other versions
CN114854404A (zh
Inventor
刘清浩
郭金春
刘红彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN202210438901.3A priority Critical patent/CN114854404B/zh
Publication of CN114854404A publication Critical patent/CN114854404A/zh
Application granted granted Critical
Publication of CN114854404B publication Critical patent/CN114854404B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/40Chemically modified polycondensates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Luminescent Compositions (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

一种基于氮掺杂碳量子点的功能化无机荧光微球及其制备方法,是以白菜汁的加热反应产物与氨水、尿素、二乙烯三胺或多乙烯多胺加热反应制备氮掺杂碳量子点NCDs,与NaCl、尿素和甲醛反应得到脲醛树脂荧光微球,再与乙醇和四乙氧基硅烷反应得到羟基脲醛树脂荧光微球。本发明采用简单易行的方法制备了绿色无毒的白菜碳量子点,氮掺杂后呈现更好的荧光性能;将其作为荧光探针应用于荧光微球制备方面,获得了羟基脲醛树脂荧光微球,具有单分散性良好、功能基含量丰富,易与生物分子结合,体现良好的生物相容性和低毒性,在生物、医学领域具有很好的应用前景。

Description

基于氮掺杂碳量子点的功能化无机荧光微球及其制备方法
技术领域
本申请是针对原申请号为201810007274.1,发明创造名称为一种氮掺杂碳量子点的功能化无机荧光微球及其制备方法的专利申请提出的分案申请。
本发明属于功能化无机荧光微球制备方法技术领域,具体涉及一种基于氮掺杂碳量子点的功能化无机荧光微球及其制备方法。
背景技术
碳量子点(CDs)作为一种新型的荧光探针,相比传统的半导体量子点和有机染料,具备宽而连续的激发光谱、窄而对称的发射光谱,良好的生物相容性和低毒性,在生物医学、标记、重金属检测等领域有良好的应用前景。但CDs荧光量子产率相对较低,研究表明在碳量子点表面进行氮掺杂可钝化表面缺陷且促进高产辐射复合,从而改善其荧光性能及水溶性。因而本文以白菜为碳源、多乙烯多胺为氮源,制备了绿色无毒的氮掺杂碳量子点(NCDs)。据文献报道,无机材料三聚氰胺甲醛具有耐热、耐老化及易溶于诸多有机溶剂等优良性能,其末端含有-NH2、-NH、-OH等基团,可与生物基团键合实现进一步的应用。脲醛树脂是亲水性的材料,具有机械强度高、热稳定性好、抗溶剂溶解、抗生物分解作用强,及制备容易等优点。二氧化硅具有物理刚性、化学稳定性、无毒性、胶体稳定性、高生物相容性及表面易功能化的特性,尤其是表面巯基化的二氧化硅微球,其活性巯基可以用来吸附重金属离子和蛋白质。由此,本文将NCDs作为荧光探针,分别以无机材料三聚氰胺甲醛、脲醛树脂和二氧化硅作为载体,用于功能化无机荧光微球的制备。
三聚氰胺甲醛微球含有丰富的氨基、亚氨基和羟基基团,可以供应大量的吸附活性点,用来吸附重金属离子Pb2+,但是其吸附活性点在生物上的应用还很少(Colloids andSurfaces A: Physicochem. Eng. Aspects, 2015, 482, 491-499 and ChemicalEngineering Journal, 2016, 288, 745-757)。脲醛树脂微球的制备方法报道很多,但忽略了在其表面引入功能基团,不便后续生物学等方面的研究(Materials Letters, 2015,145, 27-29 and Journal of Industrial and Engineering Chemistry, 201, 218,919-925)。单分散大孔二氧化硅微球和巯基化二氧化硅微球都可以用于蛋白质的分离,但大孔二氧化硅微球的制备过程繁杂,巯基化二氧化硅微球易于制备(Journal ofChromatography A, 2016,1471, 138-144 and Journal of Applied Polymer Science,2015, 132 (20), 113-114)。而本文制备的发蓝色荧光的三聚氰胺甲醛荧光微球,可以应用于流式细胞仪(Journal of Photochemistry and Photobiology B: Biology, 2013,129, 125-134)和荧光免疫检测(Science of the Total Environment, 2017, 583, 222-227)方面;脲醛树脂荧光微球和二氧化硅荧光纳米球分别经15分钟和3个小时就可以制备得到,不仅实验操作时间短,还在其表面分别引入了硅羟基和巯基。本文获得的三种功能化无机荧光微球单分散性良好、功能基含量丰富,易与生物分子结合,体现了良好的生物相容性和低毒性,在生物、医学领域具有很好的应用前景。
发明内容
本发明的目的是提供一种具有良好的单分散性,荧光性能好且稳定的基于氮掺杂碳量子点的功能化无机荧光微球及其制备方法。
一种基于氮掺杂碳量子点的功能化无机荧光微球的制备方法,包括以下步骤:
(1)氮掺杂碳量子点NCDs的制备
量取35~50mL白菜汁,并转移至反应釜中,置于烘箱中180~200℃加热5~7h;反应结束后,自然冷却至室温,采用孔径0.22µm的微孔滤膜过滤产物,将滤液在12000r/min转速下离心,去除大颗粒杂质;在纯化后的溶液中加入氨水、尿素、二乙烯三胺或多乙烯多胺,继续在180~200℃的烘箱中反应5~7h;反应后将反应釜自然冷却至室温,得到棕色溶液,采用孔径0.22µm的微孔滤膜过滤,将滤液在12000r/min转速下离心,去除大颗粒杂质;并用1000分子量的透析袋透析所得滤液,最后用冷冻干燥法处理,得到纯净的氮掺杂碳量子点NCDs,其为疏松多孔、海绵状的固体;
(2)三聚氰胺甲醛荧光微球的制备
将摩尔比为3.5~3.0的甲醛和三聚氰胺加入到100mL三口烧瓶中,机械搅拌混合均匀,水浴加热到60~65℃,反应30~35min后得到均匀的预聚物羟甲基三聚氰胺;
量取42~48mL蒸馏水和0.2~0.5mL步骤(1)中所述的纯净的氮掺杂碳量子点NCDs,称取1.3g聚乙烯吡咯烷酮,混合后加入到250mL三口烧瓶中,用冰乙酸调节溶液的pH为4.5~4.6,机械搅拌下水浴加热到60~65℃,将所述的预聚物羟甲基三聚氰胺迅速加入其中,使用冰乙酸迅速微调pH到4.5~4.6,当出现白色浑浊后,每隔10min在显微镜下观察微球的形貌,根据生成球的情况调整反应时间,反应15~30min后加入大量冰水停止反应;依次用蒸馏水、无水乙醇反复洗涤后真空干燥,即得三聚氰胺甲醛荧光微球;
(3)羟基脲醛树脂荧光微球的制备
在塑料杯中加入42~45mL蒸馏水、4.2~4.5g NaCl、0.8~1g尿素和0.2~0.5mL步骤(1)中所述的纯净的氮掺杂碳量子点NCDs,待NaCl和尿素完全溶解后用硝酸将混合液的pH值调为1.7~2.0,然后加入1.3~1.8mL甲醛溶液,在室温下放置2~15min,期间不断用显微镜监测微球的形貌;当微球粒径达到均一时,加入100~150mL蒸馏水结束反应,静置沉降后抽滤,滤饼再分别用甲醇、丙酮抽洗直至上清液无荧光为止,50~60℃真空干燥,即得到脲醛树脂荧光微球;
将2g脲醛树脂荧光微球置于三口烧瓶中,加入乙醇80mL,蒸馏水16mL,四乙氧基硅烷0.5mL,氨水2mL,在室温下,剧烈搅拌3h,然后再用乙醇和蒸馏水反复洗涤,弃去上清液,50~60℃真空干燥,即得到羟基脲醛树脂荧光微球;
(4)巯基化二氧化硅荧光纳米球的制备
按质量比1:4:8量取氨水、蒸馏水、无水乙醇加入到反应瓶中,混和均匀,再加入3.5~4.5mL正硅酸乙酯和0.1~0.5mL步骤(1)中所述的纯净的氮掺杂碳量子点NCDs,室温下磁力搅拌3~3.5h;将产物离心分离,用水和无水乙醇超声清洗至上清液无荧光;
50~60℃真空干燥,即得到二氧化硅荧光纳米球;将0.3~0.4g的SiO2荧光纳米球和0.2~0.3mL的γ-巯丙基三甲氧基硅烷KH590加入到三口烧瓶中,并加入无水甲苯,使无水甲苯:KH590为1:75,在回流条件下反应24h,即得到巯基化二氧化硅荧光纳米球。
前述步骤(1)中用1000分子量的透析袋透析所得溶液的时间为2d,条件为每6h换一次水。
前述步骤(1)中用冷冻干燥法处理的具体工艺为:首先将氮掺杂碳量子点溶液冻结成固态,然后在-55℃下冷冻干燥24~48h。
前述步骤(2)中真空干燥的温度为50~60℃,干燥时间为12~24h。
一种基于氮掺杂碳量子点的功能化无机荧光微球,采用前述任意一种基于氮掺杂碳量子点的功能化无机荧光微球的制备方法所制备。
本发明的有益之处在于:本发明中的一种基于氮掺杂碳量子点的功能化无机荧光微球的制备方法,采用简单易行的水热法制备了绿色无毒的白菜碳量子点,氮掺杂后呈现更好的荧光性能;将氮掺杂碳量子点作为荧光探针,应用于荧光微球制备方面,获得了表面氨基化的三聚氰胺甲醛荧光微球、羟基脲醛树脂荧光微球和巯基二氧化硅纳米荧光球。这些发蓝色荧光的荧光微球单分散性良好、功能基含量丰富,可以与生物分子结合,在免疫分析、高通量药物筛选、药物载体、固定化酶、细菌和病毒诊断、细胞因子鉴定以及单细胞分析等方面具有良好的应用前景。
附图说明
图1是本发明的实施例中氮掺杂碳量子点的制备的合成示意图。
图2是本发明的实施例中氮掺杂碳量子点的紫外-可见吸收光谱。
图3是本发明的实施例中氮掺杂碳量子点的荧光发射光谱。
图4是本发明的实施例中氮掺杂碳量子点的红外谱图。
图5是本发明的实施例中具有氨基的三聚氰胺甲醛荧光微球的制备过程图。
图6是本发明的实施例中三聚氰胺甲醛微球、三聚氰胺甲醛荧光微球的扫描电镜图和荧光照片。
图7是本发明的实施例中的三聚氰胺甲醛微球、三聚氰胺甲醛荧光微球的红外谱图。
图8是本发明的实施例中制备的三聚氰胺甲醛荧光微球和氮掺杂碳量子点的荧光光谱图。
图9是本发明的实施例中羟基脲醛树脂荧光微球的制备过程图。
图10是本发明的实施例中羟基脲醛树脂荧光微球、脲醛树脂荧光微球的红外谱图。
图11是本发明的实施例中脲醛树脂荧光微球、羟基脲醛树脂荧光微球的扫描电镜图和荧光照片。
图12是本发明的实施例中的羟基脲醛树脂荧光微球和氮掺杂碳量子点的荧光光谱图。
图13是本发明的实施例中的二氧化硅荧光纳米球的制备过程图。
图14是本发明的实施例中二氧化硅荧光纳米球、巯基二氧化硅荧光纳米球的红外谱图。
图15是本发明的实施例中巯基化二氧化硅荧光纳米球的扫描电镜图、投射电镜图和荧光照片。
图16是本发明的实施例中的巯基化二氧化硅荧光纳米球和氮掺杂碳量子点的荧光光谱图。
具体实施方式
氮掺杂碳量子点的功能化无机荧光微球的制备方法,包括以下步骤:
(1)氮掺杂碳量子点(NCDs)的制备
量取35mL白菜汁并转移至反应釜中,置于烘箱中200℃加热5h;反应结束后,自然冷却至室温,采用孔径0.22µm的微孔滤膜过滤产物,将滤液在12000r/min转速下离心,去除大颗粒杂质;在纯化后的溶液中加入氨水、尿素、二乙烯三胺或多乙烯多胺,继续在200℃的烘箱中反应5h。反应后将反应釜自然冷却至室温,得到棕色溶液,采用孔径0.22µm的微孔滤膜过滤产物,将滤液在12000r/min转速下离心,去除大颗粒杂质;并用1000分子量的透析袋透析所得溶液的时间为2d,条件为每6h换一次水;最后用冷冻干燥法处理得到纯净的氮掺杂碳量子点,呈现出疏松多孔、海绵状的固体,合成过程如图1所示。
对氮掺杂碳量子点的固体进行表征,结果如下:
参考图2为在相同浓度下在CDs中分别加入尿素(b),氨水(c),二乙烯三胺(d),多乙烯多胺(e)的实验组和CDs(a)对照组的紫外-可见吸收光谱。由图可知,实验组较对照组的最大吸收峰由280nm红移至350nm,这是因为经钝化剂尿素、氨水、二乙烯三胺、多乙烯多胺修饰后,其吸收波长会相应增加。
图3为在相同浓度下在CDs中分别加入尿素(b),氨水(c),二乙烯三胺(d),多乙烯多胺(e)的实验组和CDs(a)对照组的荧光发射光谱,激发波长为相应紫外的最大吸收波长。由图可知,氮掺杂碳量子点荧光强度逐渐增强,且发射波长发生了红移,这是由于有机溶剂钝化,使CDs表面产生能量势阱,且随着氨基含量的增加而增加,从而导致NCDs的荧光增强。CDs和NCDs溶液在自然光下均呈现淡黄色透明状;在365nm紫外灯激发下,NCDs比CDs有更高的荧光强度且呈现亮蓝色。这与发射波长433nm~470nm是一致的,进一步揭示了CDs和NCDs具有强烈的蓝色荧光。选多乙烯多胺氮掺杂碳量子点为荧光探针应用于荧光微球制备方面,以0.1mol /L H2SO4,54%的硫酸奎宁为标准参照物,测得CDs的荧光量子产率为26.2%,NCDs的荧光量子产率为53.3%,实验结果说明进行多乙烯多胺氮掺的碳量子点的荧光量子产率高。
参照图4为实验组NCDs和对照组CDs和的红外谱图。对照组CDs在3394cm-1处为羟基特征吸收峰,1638cm-1为C=O伸缩振动峰,1386cm-1和1097cm-1处为-OH和C-H的弯曲振动峰;实验组NCDs在3455cm-1处为O-H的伸缩振动或在多乙烯多胺条件下水热产生的N-H伸缩振动,在2932cm-1、1712cm-1、1397cm-1和1184cm-1处的吸收分别对应C-H、C=O、C-N和C-O-C伸缩振动。结果表明,所制得的NCDs表面富含-NH2、-C=O、-OH等含氧官能团,使NCDs的亲水性和稳定性得到提高,且在水溶液中表现出电负性。
(2)三聚氰胺甲醛荧光微球的制备
将1.4g三聚氰胺和2.7mL甲醛加入到100mL三口烧瓶中,机械搅拌混合均匀;水浴加热到60℃,反应30min后得到均匀的预聚物羟甲基三聚氰胺。
量取45mL蒸馏水和0.5mL的氮掺杂碳量子点的固体粉末,称取1.3g聚乙烯吡咯烷酮做分散剂,混合加入到250mL三口烧瓶中,用冰乙酸调节溶液的pH为4.5~4.6,机械搅拌下水浴加热到60℃;将预聚物羟甲基三聚氰胺迅速全部加入其中,使用冰乙酸迅速微调pH到4.5~4.6,当出现白色浑浊后,每隔10min在显微镜下观察微球的形貌,根据生成球的情况调整反应时间;反应30min后加入大量冰水停止反应,依次用蒸馏水、无水乙醇反复洗涤后,50℃真空干燥,即得三聚氰胺甲醛荧光微球的制备,制备过程如图5所示。
对三聚氰胺甲醛荧光微球进行表征,结果如下:
参考图6,A、B和C分别为三聚氰胺甲醛微球、三聚氰胺甲醛荧光微球的扫描电镜图和荧光照片。由图可知,三聚氰胺甲醛荧光微球单分散性良好,NCDs在微球中分布均匀,使得微球发光效率高且很稳定,这是NCDs与三聚氰胺甲醛微球形成的作用力密切相关。首先三聚氰胺经羟甲基化形成预聚物,然后通过羟甲基之间或羟甲基与氨基、亚胺基之间发生缩聚反应形成醚键或亚甲基,同时NCDs中的羟基、氨基和羰基基团与预聚物中的亚氨基和羟甲基形成牢固的氢键,最后逐渐成核与长大生成交联网状的三聚氰胺甲醛荧光微球,致使NCDs不易从三聚氰胺甲醛荧光微球中泄露出来。
参考图7,a为三聚氰胺甲醛微球的红外谱图,3410cm-1处较强的吸收带为N-H伸缩振动峰,1552cm-1与1492cm-1处与三嗪环上C=N伸缩振动及N-H剪切弯曲振动峰,在2940cm-1和1348cm-1处分别为C-H和环内C-N的伸缩振动峰,1158cm-1和1004cm-1处是醚键C-O-C和醇类的C-O伸缩振动峰,815cm-1处是三聚氰胺骨架的面外弯曲振动吸收峰;b是三聚氰胺甲醛荧光微球的红外谱图,其峰型和官能团的归属基本与三聚氰胺甲醛微球一致,这是由于NCDs在三聚氰胺甲醛荧光微球中含量极少,红外图谱不能表征出NCDs的特征峰。
参考图8,三聚氰胺甲醛荧光微球的最大发射波长(b)相对于NCDs(a)发生了一定的移动,这是由于当碳量子点包埋在微球中,其荧光光谱会发生一定的变化。
(3)羟基脲醛树脂荧光微球的制备
在塑料杯中加入42mL蒸馏水,4.2g NaCl、1g尿素和0.4mL氮掺杂碳量子点,待NaCl和尿素完全溶解后用硝酸将混合液的pH值调为1.7,然后加入1.5mL甲醛溶液,在室温下放置一定时间,在显微镜下观察有微球产生;加入125mL蒸馏水,静置沉降后抽滤,滤饼再分别用甲醇、丙酮抽洗,直至上清液无荧光为止,60℃真空干燥24h,即得到脲醛树脂荧光微球。
将2g脲醛树脂荧光微球置于250ml三口瓶中,加入乙醇80ml,蒸馏水16ml,四乙氧基硅烷0.5ml,氨水2ml;室温下,剧烈搅拌3h;然后在下用乙醇和蒸馏水反复洗涤,弃去清液,60℃真空干燥24h,即得到羟基脲醛树脂荧光微球,制备过程如图9所示。
对羟基脲醛树脂荧光微球进行表征,结果如下:
参考图10,a是羟基脲醛树脂荧光微球的红外谱图,b是脲醛树脂荧光微球的红外谱图;图a中3348cm-1处的峰归属于-NH-,1642cm-1是-C=O官能团的峰,因此可以确定有-NH-C=O-存在,-NH-C=O-是脲醛树脂中主要的官能团;1090cm-1附近归属于Si-O-Si,表明脲醛树脂荧光微球表面包覆了一层二氧化硅。
参考图11,A、B和C分别为脲醛树脂荧光微球、羟基脲醛树脂荧光微球的扫描电镜图和荧光照片;由图可知,脲醛树脂荧光微球单分散性良好,NCDs在微球中分布均匀,使得微球发光效率高且很稳定,这与NCDs与脲醛树脂微球形成的氢键作用力密切相关。
参考图12,脲醛树脂荧光微球的最大发射波长(b)相对于NCDs(a)发生了一定的移动。这是由于当碳量子点包埋在微球中,其荧光光谱会发生一定的变化。
(5)巯基化二氧化硅荧光纳米球的制备
在28mL蒸馏水,56mL乙醇,7mL氨水的混合溶液中加入4.2mL正硅酸乙酯和0.4mL氮掺杂碳量子点,在室温下磁力搅拌3个小时;将产物离心分离,用水和无水乙醇超声清洗至上清液无荧光;50~60℃下真空干燥,即得到二氧化硅荧光纳米球,制备过程如图13所示。
将0.35g SiO2荧光纳米球和0.25mL γ-巯丙基三甲氧基硅烷(KH590)加入到三口烧瓶中,并加入18mL无水甲苯,在回流条件下反应24h。
对巯基化二氧化硅荧光纳米球进行表征,结果如下:
参考图14,a是二氧化硅荧光纳米球的红外谱图,b是巯基二氧化硅荧光纳米球的红外谱图。图a、b中3429cm-1处的峰归属于Si-OH;图b中2924cm-1和2851cm-1处有新峰出现,为巯基硅烷偶联剂上-CH2-的特征峰,表明有巯基引入。
参考图15,A、B和C分别为巯基化二氧化硅荧光纳米球的扫描电镜图、投射电镜图和荧光照片。由图可知,巯基化二氧化硅荧光纳米球的单分散性良好,NCDs在微球中分布均匀,使得微球发光效率高且很稳定。
参考图16,巯基化二氧化硅荧光纳米球的最大发射波长(a)相对于NCDs(b)发生了一定的移动。这是由于当碳量子点包埋在微球中,其荧光光谱会发生一定的变化。
应当理解,以上所描述的具体实施例仅用于解释发明,并不用于限定本发明。由发明的精神所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (4)

1.一种基于氮掺杂碳量子点的功能化无机荧光微球的制备方法,其特征在于,包括以下步骤:
(1)氮掺杂碳量子点NCDs的制备
量取35~50mL白菜汁,并转移至反应釜中,置于烘箱中180~200℃加热5~7h;反应结束后,自然冷却至室温,采用孔径0.22µm的微孔滤膜过滤产物,将滤液在12000r/min转速下离心,去除大颗粒杂质;在纯化后的溶液中加入氨水、尿素、二乙烯三胺或多乙烯多胺,继续在180~200℃的烘箱中反应5~7h;反应后将反应釜自然冷却至室温,得到棕色溶液,采用孔径0.22µm的微孔滤膜过滤,将滤液在12000r/min转速下离心,去除大颗粒杂质;并用1000分子量的透析袋透析所得滤液,最后用冷冻干燥法处理,得到纯净的氮掺杂碳量子点NCDs,其为疏松多孔、海绵状的固体;
(2)羟基脲醛树脂荧光微球的制备
在塑料杯中加入42~45mL蒸馏水、4.2~4.5g NaCl、0.8~1g尿素和0.2~0.5mL步骤(1)中所述的纯净的氮掺杂碳量子点NCDs,待NaCl和尿素完全溶解后用硝酸将混合液的pH值调为1.7~2.0,然后加入1.3~1.8mL甲醛溶液,在室温下放置2~15min,期间不断用显微镜监测微球的形貌;当微球粒径达到均一时,加入100~150mL蒸馏水结束反应,静置沉降后抽滤,滤饼再分别用甲醇、丙酮抽洗直至上清液无荧光为止,50~60℃真空干燥,即得到脲醛树脂荧光微球;
将2g脲醛树脂荧光微球置于三口烧瓶中,加入乙醇80mL,蒸馏水16mL,四乙氧基硅烷0.5mL,氨水2mL,在室温下,剧烈搅拌3h,然后再用乙醇和蒸馏水反复洗涤,弃去上清液,50~60℃真空干燥,即得到羟基脲醛树脂荧光微球。
2.根据权利要求1所述的基于氮掺杂碳量子点的功能化无机荧光微球的制备方法,其特征在于,步骤(1)中所述用1000分子量的透析袋透析所得溶液的时间为2d,条件为每6h换一次水。
3.根据权利要求1所述的基于氮掺杂碳量子点的功能化无机荧光微球的制备方法,其特征在于,步骤(1)中所述用冷冻干燥法处理的具体工艺为:首先将氮掺杂碳量子点溶液冻结成固态,然后在-55℃下冷冻干燥24~48h。
4.一种基于氮掺杂碳量子点的功能化无机荧光微球,其特征在于,根据权利要求1-3任意一种所述的基于氮掺杂碳量子点的功能化无机荧光微球的制备方法所制备。
CN202210438901.3A 2018-01-04 2018-01-04 基于氮掺杂碳量子点的功能化无机荧光微球及其制备方法 Active CN114854404B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210438901.3A CN114854404B (zh) 2018-01-04 2018-01-04 基于氮掺杂碳量子点的功能化无机荧光微球及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210438901.3A CN114854404B (zh) 2018-01-04 2018-01-04 基于氮掺杂碳量子点的功能化无机荧光微球及其制备方法
CN201810007274.1A CN108192601B (zh) 2018-01-04 2018-01-04 一种氮掺杂碳量子点的功能化无机荧光微球及其制备方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201810007274.1A Division CN108192601B (zh) 2018-01-04 2018-01-04 一种氮掺杂碳量子点的功能化无机荧光微球及其制备方法

Publications (2)

Publication Number Publication Date
CN114854404A CN114854404A (zh) 2022-08-05
CN114854404B true CN114854404B (zh) 2023-10-20

Family

ID=62587887

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210438901.3A Active CN114854404B (zh) 2018-01-04 2018-01-04 基于氮掺杂碳量子点的功能化无机荧光微球及其制备方法
CN201810007274.1A Active CN108192601B (zh) 2018-01-04 2018-01-04 一种氮掺杂碳量子点的功能化无机荧光微球及其制备方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201810007274.1A Active CN108192601B (zh) 2018-01-04 2018-01-04 一种氮掺杂碳量子点的功能化无机荧光微球及其制备方法

Country Status (1)

Country Link
CN (2) CN114854404B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474146B (zh) * 2020-03-19 2021-11-19 中国石油大学(北京) 氮硫掺杂碳量子点及其制法和在检测银纳米颗粒中的应用
CN114113023B (zh) * 2021-12-16 2024-04-26 郑州轻工业大学 基于单核增生李斯特菌来源的氮掺杂碳点的制备方法和应用
CN114956048B (zh) * 2022-05-12 2023-10-13 中山安康德美生物科技有限公司 用于检测铁离子的碳材料及其合成方法和应用
CN115672287B (zh) * 2022-09-16 2024-02-09 苏州博进生物技术有限公司 一种用于重金属离子吸附的改性鳌合树脂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1480476A (zh) * 2003-07-21 2004-03-10 天津大学 铁磁性脲醛树脂微球介质及其制备方法
CN101974326A (zh) * 2010-09-21 2011-02-16 上海大学 一种新型荧光二氧化硅纳米球的制备方法
CN103275700A (zh) * 2013-06-03 2013-09-04 南京工业大学 聚合物荧光微球的制备方法
CN106634945A (zh) * 2016-09-26 2017-05-10 福州大学 一种荧光编码微球的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103372407A (zh) * 2012-04-26 2013-10-30 北京化工大学 一种磁性荧光复合纳米球的制备方法
CN104416152B (zh) * 2013-08-21 2018-04-06 安徽医科大学第一附属医院 一种用于活体细胞免疫荧光标记及光热治疗的金纳米花/量子点复合探针
CN104907019A (zh) * 2015-04-29 2015-09-16 复旦大学 一种磁性荧光拉曼双编码复合微球及其制备方法和应用
CN107118763A (zh) * 2017-05-19 2017-09-01 浙江工业大学 一种双发射比率型荧光探针及其制备与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1480476A (zh) * 2003-07-21 2004-03-10 天津大学 铁磁性脲醛树脂微球介质及其制备方法
CN101974326A (zh) * 2010-09-21 2011-02-16 上海大学 一种新型荧光二氧化硅纳米球的制备方法
CN103275700A (zh) * 2013-06-03 2013-09-04 南京工业大学 聚合物荧光微球的制备方法
CN106634945A (zh) * 2016-09-26 2017-05-10 福州大学 一种荧光编码微球的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Green preparation of nitrogen doped carbon quantum dot films as fluorescent probes;Yanfei He et al.,;《RSC Adv.》;第7卷;第56087-56092页 *
功能化脲醛树脂磁性荧光微球的制备及表征;刘清浩等;《高分子材料科学与工程》;第32卷(第11期);第168-172页 *

Also Published As

Publication number Publication date
CN108192601A (zh) 2018-06-22
CN108192601B (zh) 2022-08-05
CN114854404A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
CN114854404B (zh) 基于氮掺杂碳量子点的功能化无机荧光微球及其制备方法
CN106833613B (zh) 一种磁性荧光双功能纳米材料的制备
TW200533694A (en) Organo-inorganic compound nanofiber, organo-inorganic compound structure, and method for producing the same
CN108893102A (zh) 一种NaYF4与碳点纳米复合材料及其制备方法及其应用
CN1523076A (zh) 一种具有核壳结构的磁性荧光双功能微球及其制备方法
CN109810698A (zh) 一种发光碳量子点及其制备方法和应用
KR101482721B1 (ko) 불규칙 다공성 실리카 재료의 제조 및 지방 알코올 폴리옥시에틸렌 에테르의 상기 제조 과정에서의 용도
CN111154485B (zh) 硫氮双掺杂碳量子点的制备及其在四环素检测中的应用
CN110885678B (zh) 金纳米团簇自组装体及其制备方法和发光材料
CN114685907B (zh) 一种可调节双疏性荧光聚苯乙烯微球填料的制备方法以及应用
CN105803679A (zh) 一种pH响应型多尺度结构聚偏氟乙烯纳米纤维膜的制备方法
CN114574196B (zh) 一种高荧光量子产率的碳量子点制备方法及应用
CN113416535A (zh) 荧光碳量子点@二氧化硅微球及其制备方法与应用
CN113583442A (zh) 一种用于增材制造的具有光热性能的自修复性聚亚胺复合材料的制备方法
CN111944152B (zh) 一种CdTe/CdSe@MIPs QDs分子印迹聚合物的制备与应用
CN108864699B (zh) 硅烷偶联剂辅助制备磁性树状大分子纳米复合材料的方法
CN107603608B (zh) 一种以绞股蓝为碳源制备荧光碳点的方法
CN115216034B (zh) 丝蛋白/溶菌酶可转移蛋白质纳米薄膜或涂层及其制备
KR101445805B1 (ko) 다공성 디아세틸렌 입자 및 그 제조방법
WO2003060037A1 (fr) Spheres de silice contenant des molecules de colorant fluorescent
CN107955602A (zh) 氮、钴双掺杂的荧光碳量子点材料及其制备方法
CN104910893A (zh) 一种基于新型双亲性聚合物超声乳液法制备亲水量子点的制备方法
CN112919543B (zh) 一种二硫化钼量子点的制备和使用方法
CN113368706A (zh) 一种基于聚多巴胺基印迹策略的仿生抽滤型双层分子印迹纳米纤维复合膜的制备方法及应用
CN114854406B (zh) 一种增强碳点固态荧光的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant