CN114807823A - 一种燃气轮机热端部件用高温防护涂层制备方法 - Google Patents

一种燃气轮机热端部件用高温防护涂层制备方法 Download PDF

Info

Publication number
CN114807823A
CN114807823A CN202210382735.XA CN202210382735A CN114807823A CN 114807823 A CN114807823 A CN 114807823A CN 202210382735 A CN202210382735 A CN 202210382735A CN 114807823 A CN114807823 A CN 114807823A
Authority
CN
China
Prior art keywords
coating
temperature protective
powder
temperature
protective coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210382735.XA
Other languages
English (en)
Other versions
CN114807823B (zh
Inventor
郭智兴
高栗寒
鲁静
王珑钢
熊计
鲜广
荆凯峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202210382735.XA priority Critical patent/CN114807823B/zh
Publication of CN114807823A publication Critical patent/CN114807823A/zh
Application granted granted Critical
Publication of CN114807823B publication Critical patent/CN114807823B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明公开了一种燃气轮机热端部件用高温防护涂层制备方法,其特征在于先制备含Ta‑Nb‑Hf‑Zr‑Ti难熔高熵合金的高温防护涂层粉末;然后大气等离子喷涂制备涂层,再采用超音速喷丸处理在表面形成细晶层,利于高温下内部Al元素向外扩散形成防护层;最后在高温下经过真空和氧分压气氛烧结在表面形成致密Al2O3陶瓷氧化膜进一步提高抗氧化性能。

Description

一种燃气轮机热端部件用高温防护涂层制备方法
技术领域
本发明涉及一种涂层的制备方法,特别涉及一种燃气轮机热端部件用高温防护涂层制备方法,属于表面工程领域。
背景技术
燃气轮机为了获得较高的效率而采用较高的涡轮进口温度,其热端部件,如如燃烧室、涡轮、尾喷管等需要承受氧化腐蚀及高速气流的冲刷,极易发生失效。目前普遍采用表面制备高温防腐涂层的方法进行防护。
CN110423976A高温抗剥落Y-Al2O3/MCrAlY复合涂层及其制备方法,属于表面工程技术领域。Y-Al2O3/MCrAlY复合涂层,M是Ni、Co或Fe中的一种或几种,涂层具有多层结构,且Al2O3膜中不含有Y2O3及Y-Al-O氧化物。该涂层由Y-Al2O3层和MCrAlY层组成,Y-Al2O3层位于MCrAlY层上表面。Y-Al2O3层中,Y原子占据Al2O3晶格中Al原子位置,涂层结构仍为Al2O3晶型;Y-Al2O3层不含有Y2O3及Y-Al-O氧化物。本发明提供的Y-Al2O3/MCrAlY复合涂层具有结合强度高、耐高温氧化、使用寿命长等特点,可用于防护航空、舰船、电力、冶金等领域高温热端部件。CN114086101A公开了一种抗高温氧化和热腐蚀热障涂层及制备方法,所述热障涂层包括由内至外依次设置在基体合金上的MCrAlY粘结层、Al-Cr共渗层和ZrO2-6~8Y2O3陶瓷层,M=Ni或Co或Ni+Co。其中所述的Al-Cr共渗涂层为在MCrAlY粘结层表面进行Al-Cr共渗,内扩散形成内层富Cr的改性铝化物涂层。本发明的热障涂层与未进行Al-Cr共渗处理的传统热障涂层相比,高温氧化速率明显更低,抗高温氧化和热腐蚀性能更为优异。
随着燃气轮机的发展,对涂层的高温性能要求越来越高,现有涂层的抗氧化性已不足,开发具有优异的高温防护性能的涂层制备技术具有重要的价值。
发明内容
针对目前燃气轮机热端部件用高温防护涂层制备方法存在的问题,本发明提出先制备含Ta-Nb-Hf-Zr-Ti难熔高熵合金的高温防护涂层粉末;大气等离子喷涂制备涂层后采用超音速喷丸处理在表面形成细晶层,利于高温下内部Al元素向外扩散形成防护层;最后在高温下经过真空和氧分压气氛烧结在表面形成致密Al2O3陶瓷氧化膜进一步提高抗氧化性能。
本发明的燃气轮机热端部件用高温防护涂层制备方法,其特征在于依次包含以下步骤:
(1)高温防护涂层粉末制备:采用真空熔炼-雾化法制备Ta-Nb-Hf-Zr-Ti难熔高熵合金粉末, 其成分为按摩尔百分比Ta-Nb-Hf-Zr-Ti=1:1:1:1:1;采用真空熔炼-雾化法制备NiCoCrAlY粉末,其成分为 Cr占20~25wt.%, Al 占5~10wt.%, Y占0.5~1wt.%, Ni占30~35wt.%, Co为余量;NiCoCrAlY和Ta-Nb-Hf-Zr-Ti的平均粒度均为35~45μm;将Ta-Nb-Hf-Zr-Ti难熔高熵合金粉与NiCoCrAlY粉末按比例混合,其中Ta-Nb-Hf-Zr-Ti难熔高熵合金粉在混合粉末中占10~15wt.%,将混合粉末在行星球磨机中混合1~2h制备出高温防护涂层粉末;
(2)高温防护涂层涂层制备:以经过喷砂处理的耐热钢作为基体,以高温防护涂层粉末作为喂料,采用大气等离子喷涂方法制备涂层,功率30kW, 电流600A,喷距80~100mm,Ar流量45L/min,H2流量6~7L/min,喷涂后涂层的厚度为100~180μm;涂层中NiCoCrAlY的物相组成为α-Cr(FCC)固溶体+β-Ni(Co)Al 相(FCC)+γ-Ni(Co)相(FCC),Ta-Nb-Hf-Zr-Ti的物相组成为BCC结构单相;涂层孔隙率2.0~2.5%;
(3)表面细晶层形成:将制备的涂层进行超音速喷丸处理,采用α-Al2O3颗粒,喷射角度为60~90°,气体压力为1.0~1.5MPa,气流速率700~1200m/s,喷射距离20~40mm,喷射时间60~90s,处理后在表面形成厚度20~40μm的表面细晶层,其晶粒尺寸为0.06μm~0.2μm,数量巨大的晶界可作为Al元素向外扩散形成防护层的通道;
(4)表面陶瓷氧化膜高温防护层形成:先将超音速喷丸后的涂层放入烧结炉中,在真空加热到1000~1100℃并保温1~2h,使涂层中NiCoCrAlY中析出Ni3Al相,Ta-Nb-Hf-Zr-Ti中析出TiAl相,涂层孔隙度降低到1.5~2.0%;保温结束后通入氩气和氧气,控制烧结炉气氛中的氧分压,温度不变并保温4~6h然后随炉冷却,涂层孔隙度降低到1.0~1.5%,涂层表面生成2.5~3.5μm厚的致密Al2O3陶瓷氧化膜高温防护层;获得在1000℃保温48h的静态氧化增重≦0.45mg/cm2
本发明的燃气轮机热端部件用高温防护涂层制备方法,其进一步的特征在于:
(1)高温防护涂层粉末制备时行星球磨机转速为150~250r/min,球罐中不装球,运行时球磨机以1r/min的速度翻转;
(2)高温防护涂层制备时耐热钢表面进行喷砂的气体压力为3~5bar,刚玉砂颗粒的粒度为12~24目,喷砂时间为1~2min;
(3)表面细晶层形成时,先将涂层抛光处理到粗糙度小于5μm;对涂层表面喷丸采用的α-Al2O3颗粒平均粒度为70~90μm;
(4)表面陶瓷氧化膜高温防护层形成时,升温速度为10℃/min,真空度≦2*10-3Pa;充入氩气和氧气后控制氧分压P=0.1~0.5Pa。
本发明的优点在于:(1)引入的Ta-Nb-Hf-Zr-Ti难熔高熵合金具有十分优异的抗高温氧化性能;(2)表面细晶层中存在数量巨大的晶界,在高温工况下,内部的Al元素有更多的向外扩散的通道,这将有助于致密Al2O3膜的形成,从而提高抗氧化性;(3)表面陶瓷氧化膜高温防护层形成过程中析出的Ni3Al和TiAl相在高温下具有优异的抗氧化性等高温性能;(4)表面陶瓷氧化膜是致密Al2O3,可在涂层高温工况下起到防护作用;(5)表面陶瓷氧化膜高温防护层形成过程中高温下发生相变和熔合,涂层孔隙度降低,致密度提高。
附图说明
图1 本发明的燃气轮机热端部件用高温防护涂层制备方法示意图。
具体实施方式
实例1 按以下步骤制备燃气轮机热端部件用高温防护涂层:
(1)采用真空熔炼-雾化法制备Ta-Nb-Hf-Zr-Ti难熔高熵合金粉末, 其成分为按摩尔百分比Ta-Nb-Hf-Zr-Ti=1:1:1:1:1;采用真空熔炼-雾化法制备NiCoCrAlY粉末,其成分为 Cr占20wt.%, Al 占6wt.%, Y占0.6wt.%, Ni占31wt.%, Co为余量;NiCoCrAlY的平均粒度均为36μm,Ta-Nb-Hf-Zr-Ti的平均粒度均为40μm;将Ta-Nb-Hf-Zr-Ti难熔高熵合金粉与NiCoCrAlY粉末按比例混合,其中Ta-Nb-Hf-Zr-Ti难熔高熵合金粉在混合粉末中占11wt.%,将混合粉末在行星球磨机中混合1h,行星球磨机转速为160r/min,球罐中不装球,运行时球磨机以1r/min的速度翻转,制备出高温防护涂层粉末;
(2)高温防护涂层涂层制备:先对耐热钢表面进行喷砂处理,喷砂气体压力为3bar,刚玉砂颗粒的粒度为15目,喷砂时间为1min;以经过喷砂处理的耐热钢作为基体,以高温防护涂层粉末作为喂料,采用大气等离子喷涂方法制备涂层,功率30kW, 电流600A,喷距80mm,Ar流量45L/min,H2流量6L/min,喷涂后涂层的厚度为120μm;涂层中NiCoCrAlY的物相组成为α-Cr(FCC)固溶体+β-Ni(Co)Al 相(FCC)+γ-Ni(Co)相(FCC),Ta-Nb-Hf-Zr-Ti的物相组成为BCC结构单相;涂层孔隙率2.3%;
(3)表面细晶层形成:先将涂层抛光处理到粗糙度3.2μm,然后将制备的涂层进行超音速喷丸处理,采用平均粒度为72μm的α-Al2O3颗粒,喷射角度为60°,气体压力为1.1MPa,气流速率720m/s,喷射距离20mm,喷射时间70s,处理后在表面形成厚度22μm的表面细晶层,其晶粒尺寸为0.1μm,数量巨大的晶界可作为Al元素向外扩散形成防护层的通道;
(4)表面陶瓷氧化膜高温防护层形成:先将超音速喷丸后的涂层放入烧结炉中,升温速度为10℃/min,真空度1.2*10-3Pa,在真空加热到1050℃并保温1h,使涂层中NiCoCrAlY中析出Ni3Al相,Ta-Nb-Hf-Zr-Ti中析出TiAl相,涂层孔隙度降低到1.8%;保温结束后通入氩气和氧气,控制烧结炉气氛中的氧分压P=0.2Pa,温度不变并保温5h然后随炉冷却,涂层孔隙度降低到1.3%,涂层表面生成2.7μm厚的致密Al2O3陶瓷氧化膜高温防护层;获得在1000℃保温48h的静态氧化增重0.43mg/cm2
实例2 按以下步骤制备燃气轮机热端部件用高温防护涂层:
(1)采用真空熔炼-雾化法制备Ta-Nb-Hf-Zr-Ti难熔高熵合金粉末, 其成分为按摩尔百分比Ta-Nb-Hf-Zr-Ti=1:1:1:1:1;采用真空熔炼-雾化法制备NiCoCrAlY粉末,其成分为 Cr占23wt.%, Al 占8wt.%, Y占0.7wt.%, Ni占34wt.%, Co为余量;NiCoCrAlY的平均粒度均为40μm,Ta-Nb-Hf-Zr-Ti的平均粒度为42μm;将Ta-Nb-Hf-Zr-Ti难熔高熵合金粉与NiCoCrAlY粉末按比例混合,其中Ta-Nb-Hf-Zr-Ti难熔高熵合金粉在混合粉末中占14wt.%,将混合粉末在行星球磨机中混合2h,行星球磨机转速为220r/min,球罐中不装球,运行时球磨机以1r/min的速度翻转,制备出高温防护涂层粉末;
(2)高温防护涂层涂层制备:先对耐热钢表面进行喷砂处理,喷砂气体压力为5bar,刚玉砂颗粒的粒度为20目,喷砂时间为2min;以经过喷砂处理的耐热钢作为基体,以高温防护涂层粉末作为喂料,采用大气等离子喷涂方法制备涂层,功率30kW, 电流600A,喷距90mm,Ar流量45L/min,H2流量7L/min,喷涂后涂层的厚度为170μm;涂层中NiCoCrAlY的物相组成为α-Cr(FCC)固溶体+β-Ni(Co)Al 相(FCC)+γ-Ni(Co)相(FCC),Ta-Nb-Hf-Zr-Ti的物相组成为BCC结构单相;涂层孔隙率2.4%;
(3)表面细晶层形成:先将涂层抛光处理到粗糙度4.2μm,然后将制备的涂层进行超音速喷丸处理,采用平均粒度为85μm的α-Al2O3颗粒,喷射角度为90°,气体压力为1.4MPa,气流速率900m/s,喷射距离30mm,喷射时间80s,处理后在表面形成厚度29μm的表面细晶层,其晶粒尺寸为0.12μm,数量巨大的晶界可作为Al元素向外扩散形成防护层的通道;
(4)表面陶瓷氧化膜高温防护层形成:先将超音速喷丸后的涂层放入烧结炉中,升温速度为10℃/min,真空度≦1.6*10-3Pa,在真空加热到1080℃并保温2h,使涂层中NiCoCrAlY中析出Ni3Al相,Ta-Nb-Hf-Zr-Ti中析出TiAl相,涂层孔隙度降低到1.6%;保温结束后通入氩气和氧气,控制烧结炉气氛中的氧分压P=0.4Pa,温度不变并保温6h然后随炉冷却,涂层孔隙度降低到1.2%,涂层表面生成3.1μm厚的致密Al2O3陶瓷氧化膜高温防护层;获得在1000℃保温48h的静态氧化增重0.41mg/cm2

Claims (2)

1.一种燃气轮机热端部件用高温防护涂层制备方法,其特征在于依次包含以下步骤:
(1)高温防护涂层粉末制备:采用真空熔炼-雾化法制备Ta-Nb-Hf-Zr-Ti难熔高熵合金粉末, 其成分为按摩尔百分比Ta-Nb-Hf-Zr-Ti=1:1:1:1:1;采用真空熔炼-雾化法制备NiCoCrAlY粉末,其成分为 Cr占20~25wt.%, Al 占5~10wt.%, Y占0.5~1wt.%, Ni占30~35wt.%, Co为余量;NiCoCrAlY和Ta-Nb-Hf-Zr-Ti的平均粒度均为35~45μm;将Ta-Nb-Hf-Zr-Ti难熔高熵合金粉与NiCoCrAlY粉末按比例混合,其中Ta-Nb-Hf-Zr-Ti难熔高熵合金粉在混合粉末中占10~15wt.%,将混合粉末在行星球磨机中混合1~2h制备出高温防护涂层粉末;
(2)高温防护涂层涂层制备:以经过喷砂处理的耐热钢作为基体,以高温防护涂层粉末作为喂料,采用大气等离子喷涂方法制备涂层,功率30kW, 电流600A,喷距80~100mm,Ar流量45L/min,H2流量6~7L/min,喷涂后涂层的厚度为100~180μm;涂层中NiCoCrAlY的物相组成为α-Cr(FCC)固溶体+β-Ni(Co)Al 相(FCC)+γ-Ni(Co)相(FCC),Ta-Nb-Hf-Zr-Ti的物相组成为BCC结构单相;涂层孔隙率2.0~2.5%;
(3)表面细晶层形成:将制备的涂层进行超音速喷丸处理,采用α-Al2O3颗粒,喷射角度为60~90°,气体压力为1.0~1.5MPa,气流速率700~1200m/s,喷射距离20~40mm,喷射时间60~90s,处理后在表面形成厚度20~40μm的表面细晶层,其晶粒尺寸为0.06μm~0.2μm,数量巨大的晶界可作为Al元素向外扩散形成防护层的通道;
(4)表面陶瓷氧化膜高温防护层形成:先将超音速喷丸后的涂层放入烧结炉中,在真空加热到1000~1100℃并保温1~2h,使涂层中NiCoCrAlY中析出Ni3Al相,Ta-Nb-Hf-Zr-Ti中析出TiAl相,涂层孔隙度降低到1.5~2.0%;保温结束后通入氩气和氧气,控制烧结炉气氛中的氧分压,温度不变并保温4~6h然后随炉冷却,涂层孔隙度降低到1.0~1.5%,涂层表面生成2.5~3.5μm厚的致密Al2O3陶瓷氧化膜高温防护层;获得在1000℃保温48h的静态氧化增重≦0.45mg/cm2
2.根据权利要求1所述的燃气轮机热端部件用高温防护涂层制备方法,其进一步的特征在于:
(1)高温防护涂层粉末制备时行星球磨机转速为150~250r/min,球罐中不装球,运行时球磨机以1r/min的速度翻转;
(2)高温防护涂层制备时耐热钢表面进行喷砂的气体压力为3~5bar,刚玉砂颗粒的粒度为12~24目,喷砂时间为1~2min;
(3)表面细晶层形成时,先将涂层抛光处理到粗糙度小于5μm;对涂层表面喷丸采用的α-Al2O3颗粒平均粒度为70~90μm;
(4)表面陶瓷氧化膜高温防护层形成时,升温速度为10℃/min,真空度≦2*10-3Pa;充入氩气和氧气后控制氧分压P=0.1~0.5Pa。
CN202210382735.XA 2022-04-13 2022-04-13 一种燃气轮机热端部件用高温防护涂层制备方法 Active CN114807823B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210382735.XA CN114807823B (zh) 2022-04-13 2022-04-13 一种燃气轮机热端部件用高温防护涂层制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210382735.XA CN114807823B (zh) 2022-04-13 2022-04-13 一种燃气轮机热端部件用高温防护涂层制备方法

Publications (2)

Publication Number Publication Date
CN114807823A true CN114807823A (zh) 2022-07-29
CN114807823B CN114807823B (zh) 2023-04-07

Family

ID=82534808

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210382735.XA Active CN114807823B (zh) 2022-04-13 2022-04-13 一种燃气轮机热端部件用高温防护涂层制备方法

Country Status (1)

Country Link
CN (1) CN114807823B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116441527A (zh) * 2023-02-28 2023-07-18 四川大学 一种抗高温氧化的复合高熵合金粉及其应用

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1489796A (en) * 1974-05-13 1977-10-26 United Technologies Corp High temperature nicocraly coatings
JPH08246901A (ja) * 1995-03-14 1996-09-24 Mitsubishi Heavy Ind Ltd 耐酸化性に優れた遮熱コーティング膜
FR2787471A1 (fr) * 1998-12-16 2000-06-23 Onera (Off Nat Aerospatiale) Procede pour former un revetement d'alliage metallique de type mcraly
US6528178B1 (en) * 2001-12-17 2003-03-04 Siemens Westinghouse Power Corporation High temperature resistant article with improved protective coating bonding and method of manufacturing same
US20040131865A1 (en) * 2002-07-22 2004-07-08 Kim George E. Functional coatings for the reduction of oxygen permeation and stress and method of forming the same
US20080057214A1 (en) * 2004-09-14 2008-03-06 Ignacio Fagoaga Altuna Process For Obtaining Protective Coatings Against High Temperature Oxidation
US20140112758A1 (en) * 2012-10-24 2014-04-24 Hitachi, Ltd. High Temperature Components With Thermal Barrier Coatings for Gas Turbine
CN104862510A (zh) * 2015-06-03 2015-08-26 华中科技大学 一种高熵合金颗粒增强铝基复合材料及其制备方法
CN107805775A (zh) * 2017-09-28 2018-03-16 中国航发动力股份有限公司 一种高温可磨耗封严涂层及其制备方法
CN108179371A (zh) * 2017-12-25 2018-06-19 中国航发动力股份有限公司 一种高温可磨耗封严涂层及其制备方法
CN108396278A (zh) * 2018-05-14 2018-08-14 北方工业大学 长寿命MCrAlY涂层、制备方法和在热端部件的应用
JP2018162506A (ja) * 2017-03-27 2018-10-18 川崎重工業株式会社 高温部材及びその製造方法
CN111961906A (zh) * 2020-07-29 2020-11-20 济南大学 一种高强高韧耐蚀镍基复合材料的制备方法及所得产品
CN113881912A (zh) * 2021-10-09 2022-01-04 矿冶科技集团有限公司 一种纳米氧化物弥散型MCrAlY抗氧化涂层及其制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1489796A (en) * 1974-05-13 1977-10-26 United Technologies Corp High temperature nicocraly coatings
JPH08246901A (ja) * 1995-03-14 1996-09-24 Mitsubishi Heavy Ind Ltd 耐酸化性に優れた遮熱コーティング膜
FR2787471A1 (fr) * 1998-12-16 2000-06-23 Onera (Off Nat Aerospatiale) Procede pour former un revetement d'alliage metallique de type mcraly
US6528178B1 (en) * 2001-12-17 2003-03-04 Siemens Westinghouse Power Corporation High temperature resistant article with improved protective coating bonding and method of manufacturing same
US20040131865A1 (en) * 2002-07-22 2004-07-08 Kim George E. Functional coatings for the reduction of oxygen permeation and stress and method of forming the same
US20080057214A1 (en) * 2004-09-14 2008-03-06 Ignacio Fagoaga Altuna Process For Obtaining Protective Coatings Against High Temperature Oxidation
US20140112758A1 (en) * 2012-10-24 2014-04-24 Hitachi, Ltd. High Temperature Components With Thermal Barrier Coatings for Gas Turbine
CN104862510A (zh) * 2015-06-03 2015-08-26 华中科技大学 一种高熵合金颗粒增强铝基复合材料及其制备方法
JP2018162506A (ja) * 2017-03-27 2018-10-18 川崎重工業株式会社 高温部材及びその製造方法
CN107805775A (zh) * 2017-09-28 2018-03-16 中国航发动力股份有限公司 一种高温可磨耗封严涂层及其制备方法
CN108179371A (zh) * 2017-12-25 2018-06-19 中国航发动力股份有限公司 一种高温可磨耗封严涂层及其制备方法
CN108396278A (zh) * 2018-05-14 2018-08-14 北方工业大学 长寿命MCrAlY涂层、制备方法和在热端部件的应用
CN111961906A (zh) * 2020-07-29 2020-11-20 济南大学 一种高强高韧耐蚀镍基复合材料的制备方法及所得产品
CN113881912A (zh) * 2021-10-09 2022-01-04 矿冶科技集团有限公司 一种纳米氧化物弥散型MCrAlY抗氧化涂层及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JINLONG WANG等: "High temperature oxidation and interdiffusion behavior of recoated NiCoCrAlY coating on a nickel-based superalloy", 《CORROSION SCIENCE》 *
YUXIN LI等: "High-Temperature Oxidation Behavior of NiCoCrAlY Coatings Deposited by Laser Cladding on 304 Stainless Steel", 《METALS AND MATERIALS INTERNATIONAL》 *
李瑶等: "真空热处理对NiCrAlY薄膜表面高温氧化的影响", 《电子元件与材料》 *
王志平等: "超音速颗粒轰击处理对MCrAlY涂层TGO生长的影响", 《焊接学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116441527A (zh) * 2023-02-28 2023-07-18 四川大学 一种抗高温氧化的复合高熵合金粉及其应用
CN116441527B (zh) * 2023-02-28 2024-03-15 四川大学 一种抗高温氧化的复合高熵合金粉及其应用

Also Published As

Publication number Publication date
CN114807823B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
CN111809094B (zh) 一种耐高温氧化的高熵合金、热障涂层及热障涂层的制备方法
CN108101533B (zh) 一种热障涂层用陶瓷靶材的制备方法
CN108468011B (zh) 双陶瓷层界面成分呈连续变化的梯度热障涂层及其制备方法
CN111424242B (zh) 一种抗cmas双层结构防护涂层、热障涂层多层结构及其制备方法
CN104451655A (zh) 抗高温材料用表面合金涂层复合材料、涂层及其制备方法
CN103184400A (zh) 纳米陶瓷复合喷涂粉末及其制备方法
CN113151772A (zh) 一种新型高温耐蚀的双陶瓷层结构热障涂层及其制备方法
CN106746666B (zh) 玻璃陶瓷复合热障涂层及涂层制备方法
CN114807823B (zh) 一种燃气轮机热端部件用高温防护涂层制备方法
CN113529065B (zh) 一种基于冷喷涂高速沉积增材制造技术制备金属铱涂层的方法及装置
CN108715987B (zh) 一种提高热障涂层结合强度的方法
CN111962028A (zh) 一种eb-pvd/aps复合结构双陶瓷层热障涂层及其制备方法
CN114000090B (zh) 一种氧化物/氧化物复合材料表面环境障涂层的制备方法
CN113651619A (zh) 一种船舶柴油机用高熵陶瓷粉体、应用及应用方法
CN112157269B (zh) 一种基于热处理铝合金粉末的冷喷涂涂层制备方法
CN113088883A (zh) 一种高温合金复合金属陶瓷涂层及其制备方法
CN113584416A (zh) 一种用于TiAl合金表面的TiAlCr抗氧化涂层及其制备方法
CN114737083B (zh) 一种用于激光增材制造的gh3536原料粉末及其制备方法及其合金的制备方法
CN114351007B (zh) 一种耐高温紧固件及其制造方法
CN114703440B (zh) 一种纳米氧化物分散强化高熵合金粘结层及其制备方法和应用
CN102776512A (zh) 一种新型梯度热障涂层的制备方法
CN115821262A (zh) 一种难熔金属表面碳化物高温扩散障及其制备方法
CN114438432A (zh) 一种抗氧化粘结层及其热障涂层的制备方法
CN113186484A (zh) 一种高结合的同/异质多界面毫米级厚质热障涂层及制备方法
CN112941454A (zh) 一种超音速火焰热喷涂制备抗高温氧化腐蚀MCrAlY涂层的激光重熔后处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant