CN113088883A - 一种高温合金复合金属陶瓷涂层及其制备方法 - Google Patents

一种高温合金复合金属陶瓷涂层及其制备方法 Download PDF

Info

Publication number
CN113088883A
CN113088883A CN202110359221.8A CN202110359221A CN113088883A CN 113088883 A CN113088883 A CN 113088883A CN 202110359221 A CN202110359221 A CN 202110359221A CN 113088883 A CN113088883 A CN 113088883A
Authority
CN
China
Prior art keywords
coating
temperature
preparing
metal ceramic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110359221.8A
Other languages
English (en)
Other versions
CN113088883B (zh
Inventor
王金龙
赵宗科
孟博
杨潇文
陈明辉
王群昌
王福会
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN202110359221.8A priority Critical patent/CN113088883B/zh
Publication of CN113088883A publication Critical patent/CN113088883A/zh
Application granted granted Critical
Publication of CN113088883B publication Critical patent/CN113088883B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0688Cermets, e.g. mixtures of metal and one or more of carbides, nitrides, oxides or borides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明涉及高温防护涂层领域,特别提供一种高温合金复合金属陶瓷涂层及其制备方法。该复合涂层旨在传统NiCrAlY涂层中添加Al2O3陶瓷来降低涂层/氧化膜之间的热膨胀系数差异,降低氧化膜开裂、剥落的倾向,以期提高涂层的抗氧化性能。利用SPS放电等离子烧结金属陶瓷复合靶材,并通过真空多弧离子镀技术在K38G基体表面制备金属陶瓷涂层。相较于传统NiCrAlY涂层,该复合涂层具有优异的抗高温氧化、抗热腐蚀、抗热循环剥落综合性能。

Description

一种高温合金复合金属陶瓷涂层及其制备方法
技术领域
本发明涉及一种高温防护涂层领域,具体涉及一种高温合金复合金属陶瓷涂层及其制备方法。
背景技术
当前,高温防护涂层与高温合金、高效冷却并称为燃气涡轮发动机涡轮叶片的三大关键技术。高性能燃气涡轮发动机热端部件工作环境极其严苛,其涡轮前燃气进口温度高达1650K以上,需要承受高温、复杂应力、腐蚀气氛和高速微粒冲蚀等破坏因素。而高温合金凭借其优异的高温力学性能和良好的抗高温腐蚀性能,成为发动机热端部件材料的最佳选择。高温合金的设计理念以高温蠕变性能为第一优化目标值,适当兼顾抗高温氧化和抗热腐蚀性能。为延长发动机寿命,通常在热端部件表面施加高温防护涂层来满足抗氧化和耐腐蚀性能。因此,开发具有优良高温力学性能的材料对燃气涡轮发动机的发展和应用具有至关重要的意义。
MCrAlY(M代表Fe,Ni,Co或其组合)涂层具有优异的抗氧化性能和力学性能,广泛用于航空发动机和工业燃气轮机的涡轮叶片或其它热端部件上,既可以用作热障涂层的粘结层,也可以直接作为包覆涂层。但传统的MCrAlY涂层与其表面形成的保护性氧化膜的热膨胀系数差别较大,在冷热循环中,表面氧化膜承受较高的热应力,可能导致开裂和剥落。
发明内容
本发明提供一种高温合金复合金属陶瓷涂层及其制备方法,本发明采用放电等离子烧结以及多弧离子镀技术制备的金属陶瓷涂层,克服了传统金属涂层在高温服役时因涂层与其表面形成的保护性氧化膜热膨胀系数差异较大而造成的涂层开裂与剥落等缺点,解决了现有金属陶瓷涂层应用于高温腐蚀环境中抗氧化、耐腐蚀以及抗剥落欠佳等问题。
本发明的技术方案如下:
一种高温合金复合金属陶瓷涂层,该金属陶瓷涂层由MCrAlY金属相母体和弥散分布的微米级氧化铝陶瓷相颗粒组成,陶瓷颗粒选用为粒晶在1~10μm之间的Al2O3颗粒,按质量百分比计,陶瓷颗粒的添加量占金属陶瓷涂层的10wt.%,MCrAlY金属颗粒的添加量占金属陶瓷涂层的90wt.%,即90wt.%NiCrAlY+10wt.%Al2O3;其中NiCrAlY的化学成分为Cr:24.17~27.16wt.%,Al:5.14~11.03wt.%,Y:0.55~0.65wt.%,Fe:0.07~0.08wt.%,Si:0.03wt.%,C:0.005wt.%,余量为Ni。
进一步的,上述的一种高温合金复合金属陶瓷涂层,该金属陶瓷涂层的总体厚度为20~25μm。
一种高温合金复合金属陶瓷涂层的制备方法,包括以下步骤:
(1)合金靶材的制备:采用SPS放电等离子烧结的方法制备多组元合金作为阴极靶材;
(2)工件前处理:镀膜前对试样进行常规打磨、倒角和喷砂处理,最后用酒精丙酮混合溶液超声清洗;
(3)涂层制备:利用DH-7型多弧离子镀设备进行涂层的制备。
进一步的,上述的一种高温合金复合金属陶瓷涂层的制备方法,步骤(1)具体步骤为:
(a)高能球磨混粉:以质量比计,利用精度为0.01mg的Sartorius BP211D电子天平按照配方称取干燥的90wt.%NiCrAlY+10wt.%Al2O3混合粉末900g,经60~80℃干燥箱10h后取出,放入硬质合金罐并利用QM-3SP4型行星式球磨机混粉,预设球料比10:1,球磨时间100h,球磨机转速400r/min,球磨机每运行30min,停机15min,球磨后取出混合粉末过100目筛得到颗粒度均匀的粉料,置于干燥箱中60~80℃干燥5h后取出备用;
(b)放电等离子烧结:将合金化后的干燥混合粉料装入内径为Φ60mm的石墨模具,模具内腔喷氮化硼,粉体外围衬石墨纸,粉体两端垫石墨垫片,模具外壁包碳毡,液压机30MPa预压,最后利用SPS放电等离子烧结技术制备尺寸为Φ60×45mm的AIP靶材,烧结步骤如下:
RT→300℃,均匀加热;
300℃→450℃,均匀加热3min,升温速率50℃/min;
450℃,保温15min;
450℃→1200℃,均匀加热15min,升温速率50℃/min;
1200℃,保温30min;
1200→RT,随炉均匀降温,降温速率25±5℃;
烧结压力均为40MPa。
进一步的,上述的一种高温合金复合金属陶瓷涂层的制备方法,步骤(2)具体步骤为:取高温合金K38G为基体,其化学成分为C:0.16wt.%,Cr:16.34wt.%,Co:8.38wt.%,W:2.66wt.%,Mo:1.77wt.%,Ta:1.75wt.%,Al:4.01wt.%,Ti:3.81wt.%,Nb:0.76wt.%,余量为Ni,利用电火花线切割技术将K38G合金切成的试样,经400号SiC砂纸打磨表面并对棱边倒角,在0.3MPa压力下石英砂粒喷砂后,用丙酮和酒精混合溶液超声清洗备用。
进一步的,上述的高温合金复合金属陶瓷涂层的制备方法,步骤(3)具体步骤为:
将步骤(2)制备好的样品置于真空镀膜室的样品架上,抽真空后通入纯度99.99%的Ar和纯度99.99%的N2,控制反应气体量使真空室的气压;采用电弧放电的方式,在固体阴极靶材表面产生强烈发光的阴极弧斑,使靶材金属蒸发电离,反应气体和阴极弧斑放出的阴极离子混合成等离子体,经负偏压加速后沉积在基片上形成金属陶瓷涂层,具体参数为:
(1)离子清洗参数为:真空度:P<6×10-3Pa;电弧电流:60-80A;基片负偏压:900V;氩气:0.2Pa;清洗时间:3~10min。
(2)涂层沉积参数:真空度:P<6×10-3Pa;电弧电流:60~80A;电弧电压:18~22V;基片负偏压:100V;基片温度:200~250℃;氩气:0.2Pa;沉积时间:135min。
本发明的有益效果为:
本发明旨在传统NiCrAlY涂层中添加Al2O3陶瓷来降低涂层/氧化膜之间的热膨胀系数差异,降低氧化膜开裂、剥落的倾向,以期提高涂层的抗氧化性能。提供了一种“高能球磨—放电等离子烧结”制备90wt.%NiCrAlY+10wt.%Al2O3复合材料,并用于多弧离子镀阴极靶材的方法。相较于传统NiCrAlY涂层,该复合涂层具有优异的抗高温氧化、抗热腐蚀、抗热循环剥落综合性能。
附图说明
图1为在高温合金K38G基体上制备的金属陶瓷涂层的表面照片;
图2为在高温合金K38G基体上制备的金属陶瓷涂层的截面照片;
图3为按照实施例1制备的金属陶瓷涂层在1000℃恒温氧化动力学曲线,及其普通多弧离子镀NiCrAlY涂层之间的对比;
图4为按照实施例1制备的金属陶瓷涂层在1000℃空气中恒温氧化100h后的表面照片;
图5为按照实施例1制备的金属陶瓷涂层在1000℃空气中恒温氧化100h后的截面照片;
图6为按照实施例1制备的金属陶瓷涂层在1000℃循环氧化动力学曲线,及其普通多弧离子镀NiCrAlY涂层之间的对比;
图7为按照实施例1制备的金属陶瓷涂层在1000℃空气中循环氧化100h后的表面照片;
图8为按照实施例1制备的金属陶瓷涂层在1000℃空气中循环氧化100h后的截面照片。
具体实施方式
下面结合附图和实施例对本发明作进一步说明,但本发明不仅限于实施例。
实施例1
以镍基高温合金K38G为基体,采用多弧离子镀技术为该金属陶瓷涂层的制备方法,其制备工艺如下:
(1)合金靶材的制备:按如下方法通过SPS放电等离子烧结的方法,制备了90wt.%NiCrAlY+10wt.%Al2O3多组元合金作为阴极靶材:
一种基于高能球磨—放电等离子烧结的90wt.%NiCrAlY+10wt.%Al2O3复合材料,由以下方法制备而成:
(a)高能球磨混粉:首先配制6组90wt.%NiCrAlY+10wt.%Al2O3混合粉末,每组150g,其中MNiCrAlY=135g,MAl2O3=15g,共计900g。其中NiCrAlY的合金成分为Cr:24.17~27.16wt.%,Al:5.14~11.03wt.%,Y:0.55~0.65wt.%,Fe:0.07~0.08wt.%,Si:0.03wt.%,C:0.005wt.%,余量为Ni。在干燥箱中经60~80℃干燥10h后取出2组分别倒入装有1450~1500g硬质合金球的硬质合金罐中,预设球料比10:1,利用QM-3SP4型行星式球磨机对两个硬质合金罐混粉,球磨时间100h,球磨机转速400r/min,球磨机每运行30min,停机15min,重复上述完成6组混合粉末的高能球磨。球磨后取出混合粉末过100目筛得到颗粒度均匀的粉料,将其置于干燥箱中60~80℃干燥5h后取出备用。
(b)放电等离子烧结:将合金化后的干燥混合粉料装入内径为Φ60mm的石墨模具,模具内腔喷氮化硼,粉体外围衬石墨纸,粉体两端垫石墨垫片,模具外壁包碳毡,液压机30MPa预压,最后利用SPS放电等离子烧结技术制备尺寸为Φ60×45mm的AIP靶材,烧结步骤如下:
RT→300℃,均匀加热;
300℃→450℃,均匀加热3min,升温速率50℃/min;
450℃,保温15min;
450℃→1200℃,均匀加热15min,升温速率50℃/min;
1200℃,保温30min;
1200→RT,随炉均匀降温,降温速率25±5℃;
烧结压力均为40MPa。
(2)零件前处理:镀膜前对试样进行常规打磨、倒角和喷砂处理,最后用酒精和丙酮的混合溶液超声清洗备用;
(3)涂层制备:将制备好的样品置于真空镀膜室的样品架上,抽真空后通入纯度99.99%的Ar和纯度99.99%的N2,控制反应气体量使真空室的气压≥0.2Pa;采用电弧放电的方式,在固体阴极靶材表面产生强烈发光的阴极弧斑,使靶材金属蒸发电离,反应气体和阴极弧斑放出的阴极离子混合成等离子体,经负偏压加速后沉积在基片上形成金属陶瓷涂层,具体参数为:
离子清洗参数为:真空度:P<6×10-3Pa;电弧电流:60-80A;基片负偏压:900V;氩气:0.2Pa;清洗时间:3~10min;
涂层沉积参数:真空度:P<6×10-3Pa;电弧电流:60~80A;电弧电压:18~22V;基片负偏压:100V;基片温度:200~250℃;氩气:0.2Pa;沉积时间:135min。
在沉积结束后,使真空室缓慢降温,为防止工件受热氧化,2.5h后再取出工件。制备后的涂层表面照片如图1所示,涂层表面致密无孔洞、裂纹。涂层截面照片如图2所示,涂层厚度为20~25μm,合金基体与涂层之间结合良好。
实施例2
本实施例对实施例1所述金属陶瓷涂层和普通多弧离子镀NiCrAlY涂层的抗高温氧化性能进行对比,图3展示了两种涂层在1000℃空气中的恒温氧化100h后的动力学曲线。
实施例3
本实施例对按照实施例1制备的金属陶瓷涂层在微观结构上表现出的抗氧化效果,图4和图5分别为金属陶瓷涂层在1000℃空气中恒温氧化100h后的表面照片和截面照片。涂层经1000℃恒温氧化100h后,涂层表面生成氧化膜的厚度为5~8μm,氧化膜连续致密,内部没有裂纹生成,与该复合金属陶瓷涂层结合良好。
实施例4
本实施例对实施例1所述金属陶瓷涂层和普通多弧离子镀NiCrAlY涂层的抗高温氧化性能进行对比。图6展示了两种涂层在1000℃空气中的循环氧化100h后的动力学曲线。
实施例5
本实施例对按照实施例1制备的金属陶瓷涂层在微观结构上表现出的抗氧化效果,图7和图8分别为金属陶瓷涂层在1000℃空气中循环氧化100h后的表面照片和截面照片。涂层表面生成了一层连续致密的氧化膜,无明显的剥落、开裂现象,具有良好的抗氧化性。

Claims (6)

1.一种高温合金复合金属陶瓷涂层,其特征在于,该金属陶瓷涂层由金属相母体和弥散分布的微米级氧化铝陶瓷相颗粒组成,即90wt.%NiCrAlY+10wt.%Al2O3,其中NiCrAlY的化学成分为Cr:24.17~27.16wt.%,Al:5.14~11.03wt.%,Y:0.55~0.65wt.%,Fe:0.07~0.08wt.%,Si:0.03wt.%,C:0.005wt.%,余量为Ni。
2.根据权利要求1所述的一种高温合金复合金属陶瓷涂层,其特征在于,该金属陶瓷涂层的总体厚度为20~25μm。
3.一种权利要求1所述的高温合金复合金属陶瓷涂层的制备方法,其特征在于,包括以下步骤:
(1)合金靶材的制备:采用SPS放电等离子烧结的方法制备多组元合金作为阴极靶材;
(2)工件前处理:镀膜前对试样进行常规打磨、倒角和喷砂处理,最后用酒精丙酮混合溶液超声清洗;
(3)涂层制备:利用DH-7型多弧离子镀设备进行涂层的制备。
4.根据权利要求3所述的高温合金复合金属陶瓷涂层的制备方法,其特征在于:步骤(1)具体步骤为:
(a)高能球磨混粉:以质量比计,配备90wt.%NiCrAlY+10wt.%Al2O3混合粉末900g,烘干后置于硬质合金罐中混粉,预设球料比10:1,球磨时间100h,球磨机转速400r/min,球磨机每运行30min,停机15min,球磨后取出混合粉末过100目筛并置于干燥箱中60~80℃干燥5h后取出备用;
(b)放电等离子烧结:将合金化后的干燥混合粉料装入内径为Φ60mm的石墨模具,利用SPS设备烧结,具体为:升温速率为50℃/min,烧结温度至1200℃,并在此温度下保温30min,压力为40Mpa,加热结束后随炉冷却,速率为25±5℃/min。
5.据权利要求3所述的高温合金复合金属陶瓷涂层的制备方法,其特征在于,步骤(2)具体步骤为:取高温合金K38G为基体,其化学成分为C:0.16wt.%,Cr:16.34wt.%,Co:8.38wt.%,W:2.66wt.%,Mo:1.77wt.%,Ta:1.75wt.%,Al:4.01wt.%,Ti:3.81wt.%,Nb:0.76wt.%,余量为Ni,利用电火花线切割技术将K38G合金切成的试样,经400号SiC砂纸打磨表面并对棱边倒角,在0.3MPa压力下石英砂粒喷砂后,用丙酮和酒精混合溶液超声清洗备用。
6.根据权利要求3所述的高温合金复合金属陶瓷涂层的制备方法,其特征在于,步骤(3)具体步骤为:
将步骤(2)制备好的样品置于真空镀膜室的样品架上,抽真空后通入纯度99.99%的Ar和纯度99.99%的N2,控制反应气体量使真空室的气压;采用电弧放电的方式,在固体阴极靶材表面产生强烈发光的阴极弧斑,使靶材金属蒸发电离,反应气体和阴极弧斑放出的阴极离子混合成等离子体,经负偏压加速后沉积在基片上形成金属陶瓷涂层,具体参数为:
(1)离子清洗参数为:真空度:P<6×10-3Pa;电弧电流:60-80A;基片负偏压:900V;氩气:0.2Pa;清洗时间:3~10min。
(2)涂层沉积参数:真空度:P<6×10-3Pa;电弧电流:60~80A;电弧电压:18~22V;基片负偏压:100V;基片温度:200~250℃;氩气:0.2Pa;沉积时间:135min。
CN202110359221.8A 2021-05-12 2021-05-12 一种高温合金复合金属陶瓷涂层及其制备方法 Active CN113088883B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110359221.8A CN113088883B (zh) 2021-05-12 2021-05-12 一种高温合金复合金属陶瓷涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110359221.8A CN113088883B (zh) 2021-05-12 2021-05-12 一种高温合金复合金属陶瓷涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN113088883A true CN113088883A (zh) 2021-07-09
CN113088883B CN113088883B (zh) 2022-12-20

Family

ID=76673006

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110359221.8A Active CN113088883B (zh) 2021-05-12 2021-05-12 一种高温合金复合金属陶瓷涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN113088883B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804925A (zh) * 2021-01-27 2022-07-29 深圳麦克韦尔科技有限公司 一种金属发热膜、陶瓷发热体及制备方法和电子雾化装置
CN115110018A (zh) * 2022-06-22 2022-09-27 武汉钢铁有限公司 结晶器铜板用涂层的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102115836A (zh) * 2009-12-30 2011-07-06 沈阳天贺新材料开发有限公司 一种McrAlY合金体系的高温防护涂层及制备方法
WO2012146807A1 (es) * 2011-04-29 2012-11-01 Universitat Jaume I De Castellón Composición de recubrimiento de materiales metálicos
CN109811338A (zh) * 2019-04-08 2019-05-28 大连理工大学 一种激光增材制造热障涂层材料的方法
CN111378935A (zh) * 2019-03-15 2020-07-07 中国科学院宁波材料技术与工程研究所 Al/NiCrAlY/Al2O3复合涂层、其制备方法及应用
CN112496350A (zh) * 2020-11-30 2021-03-16 华中科技大学 一种电磁辅助激光打印NiCrAlY-Al2O3陶瓷的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102115836A (zh) * 2009-12-30 2011-07-06 沈阳天贺新材料开发有限公司 一种McrAlY合金体系的高温防护涂层及制备方法
WO2012146807A1 (es) * 2011-04-29 2012-11-01 Universitat Jaume I De Castellón Composición de recubrimiento de materiales metálicos
CN111378935A (zh) * 2019-03-15 2020-07-07 中国科学院宁波材料技术与工程研究所 Al/NiCrAlY/Al2O3复合涂层、其制备方法及应用
CN109811338A (zh) * 2019-04-08 2019-05-28 大连理工大学 一种激光增材制造热障涂层材料的方法
CN112496350A (zh) * 2020-11-30 2021-03-16 华中科技大学 一种电磁辅助激光打印NiCrAlY-Al2O3陶瓷的方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GOSIPATHALA SREEDHAR ETC: "Hot corrosion behaviour of plasma sprayer YSZ/Al2O3 dispersed NiCrAlY Coatings on Inconel-718 superalloy", 《SURFACE & COATINGS TECHNOLOGY》 *
JIANRONG SONG ETC: "Simultaneous synthesis by spark plasma sintering of a thermal barrier coating system with a NiCrAlY bond coat", 《SURFACE & COATINGS TECHNOLOGY》 *
魏垚: "MCrAlY类涂层在高温环境中的行为和机理研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804925A (zh) * 2021-01-27 2022-07-29 深圳麦克韦尔科技有限公司 一种金属发热膜、陶瓷发热体及制备方法和电子雾化装置
CN115110018A (zh) * 2022-06-22 2022-09-27 武汉钢铁有限公司 结晶器铜板用涂层的制备方法
CN115110018B (zh) * 2022-06-22 2023-11-10 武汉钢铁有限公司 结晶器铜板用涂层的制备方法

Also Published As

Publication number Publication date
CN113088883B (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
US9511436B2 (en) Composite composition for turbine blade tips, related articles, and methods
JP5124468B2 (ja) ストロンチウムチタン酸化物及びそれから製造された被削性コーティング
CN113088883B (zh) 一种高温合金复合金属陶瓷涂层及其制备方法
CN111235511B (zh) 多元陶瓷复合涂层的制备方法
EP3255254B1 (en) Outer airseal abradable rub strip
JP2004068157A (ja) オーバレイコーティング
CN111254376A (zh) 高熵陶瓷复合涂层的制备方法
CN111334742B (zh) 过渡族金属难熔化合物陶瓷复合涂层的制备方法
CN113025951B (zh) 一种含抗氧化复合涂层的钼合金及其制备方法
CN113105115B (zh) 一种具有自修复功能的耐高温搪瓷基复合涂层及其制备方法
CN110527940B (zh) 高结合强度抗高温氧化多孔MCrAlY可磨耗涂层及其制备方法
CN113584416B (zh) 一种用于TiAl合金表面的TiAlCr抗氧化涂层及其制备方法
CN112063966B (zh) 一种提高钼合金表面抗高温烧蚀性能的方法
Gao et al. Microstructure, mechanical and oxidation characteristics of detonation gun and HVOF sprayed MCrAlYX coatings
CN104441821A (zh) 一种高温合金复合纳米晶涂层及其制备方法
CN115821262A (zh) 一种难熔金属表面碳化物高温扩散障及其制备方法
CN114703440A (zh) 一种纳米氧化物分散强化高熵合金粘结层及其制备方法和应用
CN114737083A (zh) 一种用于激光增材制造的gh3536原料粉末及其制备方法及其合金的制备方法
CN108707897B (zh) 排气管陶瓷涂层及其制备方法
CN108396279A (zh) 一种超高温封严涂层材料、涂层及其制备方法
CN114277350A (zh) 一种结构稳定的纳米高温防护涂层及其制备方法
CN116219376B (zh) 一种钽表面抗高温烧蚀涂层及其制备方法
Nagy et al. Durable Abrasive Tip Design for Single Crystal Turbine Blades
CN118773548A (zh) 一种NiCoCrAlYRe低膨胀金属粘结层及其制备方法
CN116103541A (zh) 一种原位多相强韧化的镍基合金复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant