CN108707897B - 排气管陶瓷涂层及其制备方法 - Google Patents

排气管陶瓷涂层及其制备方法 Download PDF

Info

Publication number
CN108707897B
CN108707897B CN201810412513.1A CN201810412513A CN108707897B CN 108707897 B CN108707897 B CN 108707897B CN 201810412513 A CN201810412513 A CN 201810412513A CN 108707897 B CN108707897 B CN 108707897B
Authority
CN
China
Prior art keywords
layer
exhaust pipe
zro
sio
ceramic coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810412513.1A
Other languages
English (en)
Other versions
CN108707897A (zh
Inventor
简明德
王乾廷
刘成武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian University of Technology
Original Assignee
Fujian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian University of Technology filed Critical Fujian University of Technology
Priority to CN201810412513.1A priority Critical patent/CN108707897B/zh
Publication of CN108707897A publication Critical patent/CN108707897A/zh
Application granted granted Critical
Publication of CN108707897B publication Critical patent/CN108707897B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明提供一种排气管陶瓷涂层及其制备方法,陶瓷涂层包括从下至上依次涂布于排气管内表面的粘结底层、第二过渡层、第三过渡层、第四过渡层和面层;制备方法包括:对排气管的内表面进行预处理;采用静电喷涂法预置粉末,得到预置层;对所述预置层进行电子束焊覆,得到陶瓷涂层。本发明的陶瓷涂层具有高硬度、高强度、抗氧化、耐磨蚀、耐高温及耐热震性等优异性能,有效提高了陶瓷层与金属基体之间的结合强度,提高了面层的抗高温氧化性。

Description

排气管陶瓷涂层及其制备方法
技术领域
本发明涉及一种排气管陶瓷涂层及其制备方法。
背景技术
热障涂层因其热导率低、较强的抗热冲击、抗热氧化及抗腐蚀性,可通过降低金属基体材料温度以延长高温部件的寿命,在航空、航天、海面船舶、大型火力发电和汽车动力等方面具有重要的应用价值,是现代国防尖端技术领域中的重要技术之一。热障涂层是一类用于隔热、抗氧化、抗腐蚀的功能材料,它们能有效地保护在高温等恶劣环境下工作的部件。热障涂层材料利用陶瓷的隔热和抗腐蚀的特点来保护金属材料。
陶瓷热障涂层材料应该具有较高的热膨胀系数,较低的热导率及良好的抗热冲击性,德国专利DE19801424公开了可以用于1000℃以上的陶瓷高温隔热材料,具体为具有烧绿石结构的La2Zr2O7和具有钙钛矿结构的BaZrO3与SrZrO3。稀土锆酸盐(Ln2Zr2O7,Ln=La,Nd,Sm,Eu,Gd,Dy)具有相对较低的热导率和氧传导率,但其热膨胀系数相对较低、韧性较差。钙钛矿结构锆酸锶(SrZrO3)具有相对较高的热膨胀系数和优异的高温化学稳定性,但其热导率相对较高、韧性较差,且从室温到高温条件下相稳定性较差。此外,不论是稀土锆酸盐还是锆酸锶,由其制备的热障涂层的热循环寿命相对较短,更致命的是,现有的陶瓷热障涂层与基体之间的结合力都很差,在高温时非常容易脱落。
发明内容
本发明要解决的技术问题之一,在于提供一种排气管陶瓷涂层。
本发明是这样实现的:一种排气管陶瓷涂层,包括从下至上依次涂布于排气管内表面的粘结底层、第二过渡层、第三过渡层、第四过渡层和面层;其中,各层包括以下重量百分数的各组分:
粘结底层:NiCr2O3合金粉末;
第二过渡层:70%NiCr2O3合金粉末、30%Y2O3ZrO2/SiO2/Al2O3合金粉末;
第三过渡层:50%NiCr2O3合金粉末、50%Y2O3ZrO2/SiO2/Al2O3合金粉末;
第四过渡层:30%NiCr2O3合金粉末、70%Y2O3ZrO2/SiO2/Al2O3合金粉末;
面层:Y2O3ZrO2/SiO2/Al2O3合金粉末。
进一步地,所述NiCr2O3合金粉末包括20%Ni和80%Cr2O3
进一步地,所述第二过渡层中,30%Y2O3ZrO2/SiO2/Al2O3合金粉末包括10%Y2O3ZrO2合金、10%SiO2和10%Al2O3
进一步地,所述第三过渡层中,所述50%Y2O3ZrO2/SiO2/Al2O3合金粉末包括20%Y2O3ZrO2合金、15%SiO2和15%Al2O3
进一步地,所述第四过渡层中,所述70%Y2O3ZrO2/SiO2/Al2O3合金粉末包括20%Y2O3ZrO2合金、15%SiO2和15%Al2O3
进一步地,所述面层中,所述Y2O3ZrO2/SiO2/Al2O3合金粉末包括50%Y2O3ZrO2合金、25%SiO2和25%Al2O3
进一步地,所述Y2O3ZrO2合金包括6%-18%Y2O3和82%-94%ZrO2
本发明要解决的技术问题之二,在于提供一种所述的排气管陶瓷涂层的制备方法。
本发明是这样实现的:一种所述的排气管陶瓷涂层的制备方法,包括以下步骤:
步骤1:对排气管的内表面进行预处理,清理掉排气管内表面的灰尘、油垢和锈蚀;
步骤2:采用静电喷涂法预置粉末方式,在排气管内表面依次涂布粘结底层、第二过渡层、第三过渡层、第四过渡层和面层,得到预置层;
步骤3:对所述预置层进行电子束焊覆,得到陶瓷涂层。
进一步地,所述静电喷涂的工艺参数如下:静电输出60~90kV,电流10~20uA,流速压力0.3~0.45MPa,机体预热温度100~180℃,喷涂时间20~50S,喷枪往复速度30~60mm/秒,喷涂流量2~5cc/秒,树脂/纳米粉末比0.2~0.6,烘烤时间20~50min。
进一步地,所述电子束焊覆的工艺参数如下:加速电压25-300kV,聚焦电流400-500mA,电子束流50-80mA,焊接速度10-30mm/s,扫描频率100-300Hz,扫描形状为圆形。
本发明具有如下优点:陶瓷涂层具有高硬度、高强度、抗氧化、耐磨蚀、耐高温及耐热震性等优异性能,有效提高了陶瓷层与金属基体之间的结合强度,提高了面层的抗高温氧化性。
具体实施方式
一种排气管陶瓷涂层的制备方法,包括以下步骤:
步骤1:对排气管的内表面进行预处理,清理掉排气管内表面的灰尘、油垢和锈蚀;
步骤2:采用静电喷涂法预置粉末方式,在排气管内表面依次涂布一粘结底层、复数个过渡层和一面层,得到预置层;
所述静电喷涂法预置粉末的工艺类型为:多道轨迹搭接、多层轨迹层叠和封闭曲线轨迹对接,根据该排气管的尺寸确定采用所述静电喷涂工艺的类型中的一种或复数种。
所述静电喷涂的工艺参数如下:静电输出60~90kV,电流10~20uA,流速压力0.3~0.45MPa,机体预热温度100~180℃,喷涂时间20~50S,喷枪往复速度30~60mm/秒,喷涂流量2~5cc/秒,树脂/纳米粉末比值0.2~0.6,烘烤时间20~50min。
步骤3:对所述预置层进行电子束焊覆,得到热障涂层;所述电子束焊覆的工艺参数如下:加速电压25-300kV,聚焦电流400-500mA,电子束流50-80mA,焊接速度10-30mm/s,扫描频率100-300Hz,扫描形状为圆形。
所述粘结底层为NiCr2O3合金粉末,所述面层为Y2O3ZrO2/SiO2/Al2O3合金粉末;所述面层中,所述Y2O3ZrO2/SiO2/Al2O3合金粉末包括50%Y2O3ZrO2合金、25%SiO2和25%Al2O3。所述复数个过渡层分别为不同配比的NiCr2O3合金粉末和Y2O3ZrO2/SiO2/Al2O3合金粉末。
所述过渡层优选为3层,各层包括重量百分数的以下各组分:
第二过渡层:70%NiCr2O3合金粉末、30%Y2O3ZrO2/SiO2/Al2O3合金粉末;所述30%Y2O3ZrO2/SiO2/Al2O3合金粉末包括10%Y2O3ZrO2合金、10%SiO2和10%Al2O3;第二过渡层的合金粉末之间的配比混合可降低不同粉末的热膨胀系数,提高各层附着性,减少涂层剥离。
第三过渡层:50%NiCr2O3合金粉末、50%Y2O3ZrO2/SiO2/Al2O3合金粉末;所述50%Y2O3ZrO2/SiO2/Al2O3合金粉末包括20%Y2O3ZrO2合金、15%SiO2和15%Al2O3。第三过渡层的合金粉末之间的配比混合可降低不同粉末的热膨胀系数,提高各层附着性,减少涂层剥离。
第四过渡层:30%NiCr2O3合金粉末、70%Y2O3ZrO2/SiO2/Al2O3合金粉末;所述70%Y2O3ZrO2/SiO2/Al2O3合金粉末包括20%Y2O3ZrO2合金、15%SiO2和15%Al2O3。所述Y2O3ZrO2合金均包括6%-18%Y2O3和82%-94%ZrO2,能增加二氧化锆以立方晶相稳定存在的温度范围。
上述NiCr2O3合金粉末包括20%Ni和80%Cr2O3,Cr2O3熔点为2435℃,加少量粘结相Ni可强化腐蚀性能。上述各物质的含量均以重量百分数计。
其中,Y2O3ZrO2/SiO2/Al2O3的制备方法:以纯度为99.99%的Y2O3ZrO2,SiO2和Al2O3为原料,按上述各个配比称量配料,将称量好的原料放入刚玉坩埚中研磨搅拌,制得复合合金粉末;然后将复合合金粉末置于干燥箱中,于100℃保温2h后冷却至室温,得到Y2O3ZrO2/SiO2/Al2O3合金粉末;
NiCr2O3合金的制备方法:以纯度为99.99%的Ni和Cr2O3为原料,按上述配比称量,将称量好的原料放入刚玉坩埚中研磨搅拌,制得复合合金粉末;将复合合金粉末置于干燥箱中,于100℃保温2h后冷却至室温,即得。
与传统排气管镀硬铬相比,本发明的排气管陶瓷涂层具有以下优点:
Figure GDA0002283168040000051
本发明的面层Y2O3ZrO2/SiO2/Al2O3为稀土氧化物双陶瓷材料即陶瓷层,具有许多优异性能,如高硬度、高强度、抗氧化、耐磨蚀、耐高温及耐热震性等。NiCr2O3合金的主要作用是提高陶瓷层的结合强度,同时缓解热障涂层之间的应力配适性。在高温时,Y2O3ZrO2/SiO2/Al2O3会发生相变,将产生3%-5%的体积膨胀,诱发相变应力,热障涂层容易开裂,容易剥落失效,本发明采用复数个过渡层的梯度结构有效减小了陶瓷层与粘结底层因热膨胀系数不同引起的内应力,改善金属基体和陶瓷层之间的物理兼容性,提高了陶瓷层与金属基体之间的结合强度,提高了面层的抗高温氧化性。
本发明的过渡层是从基体至面层表面,沿陶瓷涂层厚度方向,Y2O3ZrO2/SiO2/Al2O3含量逐渐增多,NiCr2O3合金的含量逐渐减少,表现出成分的梯度化分布,其力学性能和组织沿厚度方向逐步变化,消除了金属基体和陶瓷层由于物性参数巨大差异而在陶瓷涂层内部产生的热应力界面,达到了缓和热应力的目的,提高了陶瓷涂层的耐热性能,陶瓷涂层各成分间并不存在明显的成分突变和微观连续性的分布特征。过渡层缓和了面层中的界面成分的突变,降低热喷涂陶瓷层的热应力集中,延缓了界面处贯穿裂纹的产生,提高陶瓷层的结合强度。本发明采用静电喷涂工艺预置粉末方式,通过电子束焊覆工艺,熔覆后互熔呈冶金方式结合,熔覆层致密、无龟裂及气孔判断,实现将陶瓷材料Y2O3ZrO2/SiO2/Al2O3完美地附着在金属基体上,提高了排气管抗高温能力,解决了传统排气管在长期承受高温及高温下尾气反应生成物的腐蚀的问题。因为Y2O3ZrO2/SiO2/Al2O3具有耐高温、高强度、韧性好和耐腐蚀等性质,能完美地克服传统排气管的不足,提高排气管的使用寿命。
本发明成型好的样件的陶瓷涂层具有组织致密和高结合力,优良的抗高温氧化性能、抗热腐蚀性能,抗热冲击性能;本发明可以缓解陶瓷层的应力集中,降低裂纹产生的危险,陶瓷涂层隔热效果良好,且和金属基体结合牢固,解决了目前陶瓷涂层难以成功应用以及在热循环条件下容易脱落失效的问题。本发明能够满足实际应用需要,且本发明工艺简单,效率高,可大幅度降低制备成本,易于放大,适用于工业化生产。

Claims (9)

1.一种排气管陶瓷涂层,其特征在于:包括从下至上依次涂布于排气管内表面的粘结底层、第二过渡层、第三过渡层、第四过渡层和面层;其中,各层包括以下重量百分数的各组分:
粘结底层:NiCr2O3合金粉末;
第二过渡层:70%NiCr2O3合金粉末、30%Y2O3ZrO2/SiO2/Al2O3合金粉末;
第三过渡层:50%NiCr2O3合金粉末、50%Y2O3ZrO2/SiO2/Al2O3合金粉末;
第四过渡层:30%NiCr2O3合金粉末、70%Y2O3ZrO2/SiO2/Al2O3合金粉末;
面层:Y2O3ZrO2/SiO2/Al2O3合金粉末。
2.根据权利要求1所述的排气管陶瓷涂层,其特征在于:所述NiCr2O3合金粉末包括20%Ni和80%Cr2O3
3.根据权利要求1所述的排气管陶瓷涂层,其特征在于:所述第二过渡层中,30%Y2O3ZrO2/SiO2/Al2O3合金粉末包括10%Y2O3ZrO2合金、10%SiO2和10%Al2O3
4.根据权利要求1所述的排气管陶瓷涂层,其特征在于:所述第三过渡层中,所述50%Y2O3ZrO2/SiO2/Al2O3合金粉末包括20%Y2O3ZrO2合金、15%SiO2和15%Al2O3
5.根据权利要求1所述的排气管陶瓷涂层,其特征在于:所述面层中,所述Y2O3ZrO2/SiO2/Al2O3合金粉末包括50%Y2O3ZrO2合金、25%SiO2和25%Al2O3
6.根据权利要求2至5中的任一项所述的排气管陶瓷涂层,其特征在于:所述Y2O3ZrO2合金包括6%-18%Y2O3和82%-94%ZrO2
7.一种根据权利要求1所述的排气管陶瓷涂层的制备方法,其特征在于:包括以下步骤:
步骤1:对排气管的内表面进行预处理,清理掉排气管内表面的灰尘、油垢和锈蚀;
步骤2:采用静电喷涂法预置粉末方式,在排气管内表面依次涂布粘结底层、第二过渡层、第三过渡层、第四过渡层和面层,得到预置层;
步骤3:对所述预置层进行电子束焊覆,得到陶瓷涂层。
8.根据权利要求7所述的排气管陶瓷涂层的制备方法,其特征在于:所述静电喷涂的工艺参数如下:静电输出60~90kV,电流10~20μA ,流速压力0.3~0.45MPa,机体预热温度100~180℃,喷涂时间20~50S,喷枪往复速度30~60mm/秒,喷涂流量2~5cc/秒,树脂/纳米粉末比0.2~0.6,烘烤时间20~50min。
9.根据权利要求7所述的排气管陶瓷涂层的制备方法,其特征在于:所述电子束焊覆的工艺参数如下:加速电压25-300kV,聚焦电流400-500mA,电子束流50-80mA,焊接速度10-30mm/s,扫描频率100-300Hz,扫描形状为圆形。
CN201810412513.1A 2018-05-03 2018-05-03 排气管陶瓷涂层及其制备方法 Expired - Fee Related CN108707897B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810412513.1A CN108707897B (zh) 2018-05-03 2018-05-03 排气管陶瓷涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810412513.1A CN108707897B (zh) 2018-05-03 2018-05-03 排气管陶瓷涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN108707897A CN108707897A (zh) 2018-10-26
CN108707897B true CN108707897B (zh) 2020-04-03

Family

ID=63868749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810412513.1A Expired - Fee Related CN108707897B (zh) 2018-05-03 2018-05-03 排气管陶瓷涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN108707897B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190210B (zh) * 2019-03-12 2024-05-24 华电电力科学研究院有限公司 一种便于边缘封接的固体氧化物燃料电池结构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07305162A (ja) * 1994-03-14 1995-11-21 Toshiba Corp セラミック被覆の製造方法
CN100482813C (zh) * 2007-09-04 2009-04-29 广州市锐优表面科技有限公司 一种退火炉炉辊表面强化涂层及其制备方法
US20090162690A1 (en) * 2007-12-24 2009-06-25 Bangalore Aswatha Nagaraj Thermal barrier coating systems
CN103184399A (zh) * 2011-12-31 2013-07-03 江苏太阳宝新能源有限公司 太阳能光热发电高温防护涂层及其制备方法
CN103556098B (zh) * 2013-11-01 2015-11-18 中国科学院上海硅酸盐研究所 一种抗火山灰侵蚀的多层热障涂层

Also Published As

Publication number Publication date
CN108707897A (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
CN106435443B (zh) 一种环境障涂层的制备方法
CN110093579A (zh) 一种耐腐蚀抗烧蚀复合涂层的制备方法
CN110643930A (zh) 一种耐高温cmas和雨水腐蚀的复合热障涂层的制备方法
Saremi et al. Hot corrosion resistance and mechanical behavior of atmospheric plasma sprayed conventional and nanostructured zirconia coatings
CN112176275B (zh) 一种热障涂层及其制备方法和应用
CN106011721B (zh) 一种采用热喷涂法制备多层涂层的方法
CN108715987B (zh) 一种提高热障涂层结合强度的方法
CN112279685A (zh) 具有环境热障涂层MTaO4的石墨基复合材料及其制备方法
CN107604299B (zh) 一种隔热涂层用的复合材料及其涂层制备方法
CN104451675A (zh) 高抗热震性陶瓷封严涂层的制备方法
CN101545087B (zh) 微复合Fe-Al/Al2O3陶瓷涂层及其制备方法
CN108707897B (zh) 排气管陶瓷涂层及其制备方法
CN112250476B (zh) 具有高温陶瓷涂层YSZ-RETaO4的SiC基复合材料及其制备方法
CN102102203A (zh) 耐熔蚀FeAl金属间化合物基复合结构涂层的制备方法
CN110205626A (zh) 一种功能梯度热障涂层及其制备方法
Das et al. Thermal cyclic behavior of glass–ceramic bonded thermal barrier coating on nimonic alloy substrate
CN111041401B (zh) 一种铁基非晶-陶瓷叠层隔热涂层及其制备方法和应用
RU2586376C2 (ru) Высокотемпературное теплозащитное покрытие
CN111875416A (zh) 一种陶瓷基可磨耗封严材料、涂层、复合涂层及制备方法
KR20180024053A (ko) 열차폐 코팅 구조 및 이의 제조방법
CN115094365B (zh) 一种抗高温酸腐蚀的绝缘涂层及其制备方法
CN112760545A (zh) 耐铝液腐蚀的金属陶瓷复合材料、粉末及其涂层、沉没辊
CN112795830A (zh) 耐熔融铝腐蚀的二硼化锆基金属陶瓷复合材料制备方法
Ke et al. Preparation and properties of supersonic atmospheric plasma sprayed TiB2− SiC coating
Gond et al. Hot corrosion behaviour of yttria-stabilised zirconia as plasma sprayed coated boiler steel in air and salt at 900 C under cyclic condition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200403