CN1147939C - 厚度延伸振动模式压电谐振器和压电谐振器组件 - Google Patents

厚度延伸振动模式压电谐振器和压电谐振器组件

Info

Publication number
CN1147939C
CN1147939C CNB981089372A CN98108937A CN1147939C CN 1147939 C CN1147939 C CN 1147939C CN B981089372 A CNB981089372 A CN B981089372A CN 98108937 A CN98108937 A CN 98108937A CN 1147939 C CN1147939 C CN 1147939C
Authority
CN
China
Prior art keywords
piezoelectric
resonator
piezoelectric board
electrode
piezo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB981089372A
Other languages
English (en)
Other versions
CN1199249A (zh
Inventor
开田弘明
山田光洋
井上二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP33057697A external-priority patent/JP3317219B2/ja
Priority claimed from JP35343597A external-priority patent/JPH1127083A/ja
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN1199249A publication Critical patent/CN1199249A/zh
Application granted granted Critical
Publication of CN1147939C publication Critical patent/CN1147939C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/178Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator of a laminated structure of multiple piezoelectric layers with inner electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

厚度延伸压电谐振器利用厚度延伸振动模式的谐波并具有小尺寸,其电容明显增大而对安装该谐振器的电路板的寄生电容的影响不敏感。该谐振器1包括压电条、位于压电条的两个主表面上的第一和第二激励电极以及位于压电条内部的内部电极。内部电极的位置与第一和第二电极相对,于是形成振动区。振动衰减区只沿压电条的纵向位于振动区的两侧。沿压电条的横向不形成振动衰减区。

Description

厚度延伸振动模式压电谐振器和压电谐振器组件
技术领域
本发明涉及各种谐振器、振荡器和类似的装置中所使用的压电谐振器和压电谐振器组件,尤其是涉及在最大程度上利用厚度延伸振动模式谐波的厚度延伸振动模式压电谐振器和压电谐振器组件。
背景技术
在诸如压电振荡器的压电滤波器等各种压电谐振器组件中使用压电谐振器。这种类型的公知压电谐振器根据所需的频率而利用各种压电振动模式。
在117409/1989号日本未审查公开专利中揭示了一种利用厚度延伸振动模式的二次波的能量限制型(trap)压电谐振器。现在参考图20和21来描述此压电谐振器。
如图20的分解透视图所示,通过依次堆叠压电材料制成的陶瓷生材板61、62并把这两块板61、62烧结起来而构成图20和21所示的压电谐振器。环形激励电极63位于陶瓷生材板61的中央。激励电极63通过引出电极64延伸至陶瓷生材板61的一端。环形激励电极65位于陶瓷生材板62上表面的中央。激励电极65通过引出电极66延伸至陶瓷生材板62的一端。如图20的下部投影图所示,激励电极67位于在陶瓷生材板62的下表面。激励电极67通过引出电极68延伸至陶瓷生材板62的一端。注意,只局部地形成电极63、65、67,这些电极只局部覆盖分别位于生材板61、62、72中央区域的各个生材板的表面,且不延伸到超过生材板61、62、72的整个宽度或长度。即,各个生材板61、62、72的表面沿所有的方向包围环形电极63、65、67。
把陶瓷生材板61和62彼此堆叠,并沿厚度方向加压。然后,对生材板61、62进行烧结,于是产生一烧结体。然后,此烧结体被偏振。于是,获得如图21所示的压电谐振器70。
在压电谐振器70中,压电层71和72沿箭头方向即厚度方向是均匀偏振的。
在驱动如图21所示的装置时,把激励电极63和67连接在一起,在激励电极63、67和激励电极65之加上AC电压。这样,驱动压电谐振器70如此谐振,从而振动能量被限制在激励电极63、65、67相互重叠的区域,即谐振部分A。
把利用厚度延伸模式的谐波的已有技术的压电谐振器70设计成如上所述的能量限制型压电谐振器。因此,为了起到能量限制型谐振器的作用,此谐振器70需要振动衰减区,这些区域如此定位,从而沿所有的方向包围谐振区A,以衰减区域A中所产生的振动。尤其是,由于环形电极63、65、67被设有振动衰减区的各个生材板61、62和72的表面所包围,所以与谐振区相比,振动衰减区具有大尺寸。沿所有的方向包围电极63、65、67和谐振区A的振动衰减区的大尺寸和布局是必要的,从而足以抑制振动。于是,由于需要大的振动衰减区,所以难于减小压电谐振器70的尺寸。
在235422/1990号日本未审查公开专利中也揭示了一种能量限制型压电谐振器,它使用压电陶瓷条,而且在谐振区几乎不需要包围谐振区而使振动衰减的额外压电基板区。
在图22所示的装置中,在细长的压电基板81的上下主表面上分别形成激励电极82a和激励电极82b。激励电极82a和82b沿压电基板81的整个宽度和部分长度延伸并彼此相对放置,其间有压电基板81。电极82a、82b在压电基板81的纵向中心相互堆叠,以限定一谐振区。这两个激励电极82a和82b分别延伸到压电基板81的纵向端81a和81b。
当压电谐振器80受到激发而成为厚度延伸振动模式时,由于压电基板81的宽度W与厚度T之间尺寸关系而产生不想要的振动。相应地,235422/1990号未审查公开专利中揭示了在使用基波时,如果谐振频率为16MHz,则应使用的W/T=5.33,在使用三次波时,把W/T大致设定为2.87(这里,谐振频率为大约16MHz)可减少谐振和反谐振频率之间不想要的伪波。
如上所述,117409/1989号日本未审查公开专利中所揭示的利用厚度延伸振动模式的能量限制型压电谐振器需要靠近谐振区的大的振动衰减区。因此,难于减小谐振器的尺寸。
235422/1990号日本未审查公开专利中所揭示的能量限制型压电谐振器不需要靠近谐振器组件的振动衰减区,这样可减少尺寸。然而,由于此谐振器利用厚度延伸振动模式的谐波,所以除了谐振和反谐振频率之间的伪波以外,还出现各种不想要的伪波。由于此谐振器不具有包围谐振区的额外区域,所以产生不可抑制的伪波。结果,在此谐振器中不能获得有效而充分的谐振特性。
235422/1990号日本未审查公开专利中压电谐振器具有相对小的电容,于是对电路板或类似装置的寄生电容的影响很敏感。
发明内容
为了克服上述问题,本发明的较佳实施例提供了在最大程度上利用厚度延伸振动模式的谐波的厚度延伸压电谐振器和压电谐振器组件,具有明显减小的尺寸,具有大电容以及对其上安装有该谐振器和谐振器组件的电路板的寄生电容的影响不敏感。
本发明的较佳实施例也提供了在最大程度上利用厚度延伸振动模式的谐波的厚度延伸压电谐振器和压电谐振器组件,具有明显减小的尺寸,具有大电容以及可有效地抑制不想要的伪分量以及实现良好的谐振特性。
依据本发明的一个较佳实施例,利用厚度延伸振动模式的谐波的厚度延伸振动模式压电谐振器包括:矩形的压电板,具有上下表面;设置在上表面上的第一激励电极和设置在下表面上的第二激励电极,第一和第二激励电极彼此相向,其间设有压电板;至少一个内部电极,位于压电板上并与第一和第二激励电极至少局部相向;第一和第二激励电极、内部电极和压电板的相向区域限定谐振区;多个振动衰减区,只沿压电板的纵向位于谐振部分的两侧;以及第一和第二激励电极沿垂直于压电板的纵向的方向延伸至压电板的两端。
由上述本发明较佳实施例的结构,与没有内部电极的已有技术的厚度延伸振动模式压电谐振器相比,电容增加了相应于内部电极的量。此布局和增加的电容减少了其上安装有此谐振器的电路板寄生电容的不利影响。于是,实现了具有良好谐振特性的厚度延伸压电谐振器。此外,只沿压电板的纵向设置振动衰减区。在振动区的两侧沿垂直于设置振动衰减区的这压电板的纵向的方向上没有振动衰减区。结果,垂直于这压电板的纵向的厚度延伸压电谐振器的尺寸可减小。结果,得到了一种尺寸非常小的厚度延伸压电谐振器。
本发明的实施例还提供了一种利用厚度延伸振动模式的谐波的厚度延伸振动模式压电谐振器,它包括:矩形的压电板,具有上下表面;第一和第二激励电极,分别设置在所述上下表面上并通过压电板彼此相向;至少一个内部电极,位于此压电板中并与第一和第二激励电极至少局部相向;其中所述压电板用压电常数满足|d31|≤20×10-12C/N的压电材料制成。
由上述的厚度延伸振动模式压电谐振器的较佳实施例,可有效地抑制由所用的谐波以外的横向模式和谐波所引起的不想要的伪振动。结果,实现了具有良好谐振特性的厚度延伸压电谐振器。
对于如以上第一较佳实施例所述的厚度延伸振动模式压电谐振器,也可以用压电常数满足|d31|≤20×10-12C/N的压电材料制成的压电板。
由于在依据本发明较佳实施例的谐振器中存在内部电极,所以电容很大。因此,可抑制电路板寄生电容的不利影响。
此外,在振动区的两侧沿垂直于这压电板的纵向的方向上不形成振动衰减区。因此,可明显地减少压电谐振器的尺寸。压电板用压电常数的绝对值d31不超过大约20×10-12C/N的压电材料制成。结果,可有效地抑制不想要的伪分量。
因此,实现了具有良好谐振特性的小尺寸厚度延伸振动模式压电谐振器。
在依据本发明较佳实施例的厚度延伸振动模式压电谐振器中,所述压电板可具有细长的压电条形状。
由依据本发明较佳实施例的结构,还可实现减小厚度延伸压电谐振器的尺寸。
依据另一个较佳实施例,依据以上对其他较佳实施例的描述而构成的厚度延伸振动模式压电谐振器还可包括:电容器,所述电容器的上表面与所述谐振器下表面相对,并且在所述电容器与所述谐振器之间有一间隔,使得不阻碍压电谐振器振动。由此结构,一电容器经由一不会阻碍谐振器振动的空间间隔粘到上述厚度延伸压电谐振器上。因此,可构成具有内置电容器的压电振荡器,该压电振荡器具有良好的谐振特性并产生较少的伪分量。
本发明的较佳实施例还提供了一种压电谐振器组件,它包括:限定一外壳的壳体基板和盖;电极接合区(land),位于壳体基板的上表面;多个外部电极,电气连接到电极接合区并延伸至外壳的外表面;板状电容器,通过导电粘合材料固定于所述壳体基板的上表面并电气连接到所述电极接合区;上述厚度延伸振动模式压电谐振器通过导电粘合材料粘接到所述板状电容器,与此同时限定允许谐振器自由振动的空间间隔;所述盖固定地安装到上表面依次堆叠平板形电容器和厚度延伸振动模式压电谐振器的壳体基板之上。由此结构,厚度延伸压电谐振器和板状电容器堆叠在壳体基板上。盖粘接到壳体基板而限定一外壳。在内部空间中容纳了板状电容器和厚度延伸压电谐振器。结果,可提供一种小尺寸的片状压电谐振器,它装有片状电容器,并使用厚度延伸压电谐振器,而且对寄生电容的影响不敏感。由于通过厚度延伸压电谐振器和导电粘合材料来堆叠和固定板状电容器,所以即使在厚度延伸压电谐振器较薄时,板状电容器也可加固厚度延伸压电谐振器。因此,可增强厚度延伸压电谐振器对机械震动的抵抗力。
如果电容器的横向尺寸大于厚度延伸压电谐振器的横向尺寸,则在装配期间,可有效地防止厚度延伸压电谐振器接触谐振器盖的内表面。厚度延伸振动模式压电谐振器组件的强度得到增强。
附图说明
图1是示出依据本发明第一较佳实施例的厚度延伸压电谐振器的透视图;
图2是依据第一较佳实施例的厚度延伸压电谐振器的剖面图;
图3是示出压电体横向模式WE1的位移分布图,用有限元法来分析该分布;
图4是示出压电体横向模式WE2的位移分布图,用有限元法来分析该分布;
图5是示出厚度延伸振动的二次波的位移分布图,用有限元法来分析该分布;
图6是示出阻抗-频率特性曲线的图,表示作为伪振动出现在已有技术厚度延伸压电谐振器中的横向模式WE1和WE2
图7是示出依据本发明第一较佳实施例的厚度延伸压电谐振器的阻抗-频率特性曲线的图;
图8是示出压电常数d31的绝对值与相对带宽之间关系的图;
图9是示出依据本发明第二较佳实施例的厚度延伸压电谐振器的透视图;
图10是示出依据本发明较佳实施例的厚度延伸压电谐振器第一变化例子的剖面图;
图11是示出依据本发明较佳实施例的厚度延伸压电谐振器第二变化例子的剖面图;
图12是示出依据本发明较佳实施例的厚度延伸压电谐振器第三变化例子的剖面图;
图13是示出依据本发明较佳实施例的厚度延伸压电谐振器第四变化例子的剖面图;
图14是示出包括内置电容器的压电谐振器的透视图,该谐振器是依据本发明的第三实施例构成的;
图15是示出图14所示压电谐振器电路结构的图;
图16是示出依据本发明较佳实施例的厚度延伸压电谐振器进一步变化例子的透视图;
图17是示出依据本发明的片状压电谐振器组件的一个较佳实施例的分解透视图;
图18是示出图17所示片状压电谐振器组件的外观的透视图;
图19是在图17所示片状压电谐振器组件中作为壳体基板的壳体基板的平面图;
图20是示出已有技术厚度延伸压电谐振器一个例子的分解透视图;
图21是图20所示厚度延伸压电谐振器的剖面图;以及
图22是示出已有技术厚度延伸压电谐振器另一个例子的透视图。
具体实施方式
图1是示出依据本发明第一较佳实施例的厚度延伸压电谐振器的透视图。图2是图1所示谐振器的剖面图。
厚度延伸压电谐振器1最好包括矩形的细长细长压电条2,此压电条最好由诸如锆酸铅钛酸铅基陶瓷等压电陶瓷制成。例如,所使用的压电材料最好具有由|d31|≤20×10-12C/N所定义的压电常数d31。然而,可使用具有其他压电常数的压电材料。
压电条2沿图1和2中箭头所示的方向均匀偏振。第一激励电极3位于压电条2的上表面上。第二激励电极4位于压电条的下表面上。在压电条2的上下表面上,激励电极3和4从压电条2的一端2a向另一端2b延伸。然而,电极3、4不达到压电条2的另一端2b。
激励电极3和4通过位于压电条2的端面2a上的连接电极5连接起来。
内部电极6最好位于压电条2内中间的平面。内部电极6最好延伸至压电条2的端面2b,并与端面2b上的端电极7电气连接。
在工作期间,在第一和第二激励电极3、4与内部电极6之间加上AC电压,于是强烈地感应出厚度延伸振动模式的二次波,从而在最大程度上利用厚度延伸振动的谐波。因此,可把该谐振器用作利用厚度延伸振动模式二次波的压电谐振器。
在本实施例中,第一和第二激励电极3和4最好通过压电条2纵向中心的压电层而堆叠在内部电极6上。因此,在内部电极6与第一和第二激励电极3、4重叠的压电条2的部分中,限定能量限制型谐振区。当此谐振区谐振时,通过谐振区向端面2a和2b延伸的压电区使能量衰减。
如果上述谐振区位于被认为是沿谐振器2长度的近似中央区的位置,则振动衰减区只位于沿压电条2纵向的纵向相对两侧。即,振动衰减区不位于沿压电条宽度方向的谐振区周围。第一和第二激励电极3、4沿垂直于压电条纵向的方向(沿宽度方向)延伸至压电条的末端。
第一和第二激励电极3、4和内部电极6只在谐振区中沿压电条2的整个宽度延伸。在谐振区外部,可减少第一和第二激励电极3、4的宽度。例如,激励电极3只需要在谐振区中沿压电条2的整个宽度延伸。端面2a一侧上激励电极3的部分可以比谐振区处的宽度薄,这是因为激励电极3的这部分与连接电极5只是简单的电气连接。
在依据本发明较佳实施例的厚度延伸振动模式谐振器中,只沿压电体2的纵向在振动区的两侧上限定振动衰减区。振动衰减区不跨越压电体2。因此,明显地减少了厚度延伸振动模式谐振器1的宽度。结果,可大大地减少压电谐振器的尺寸。
此外,与没有内部电极的已有技术厚度延伸振动模式压电谐振器80相比,由于第一和第二激励电极3、4和内部电极6通过压电层堆叠在一起,使本谐振器具有较大的电容。此外,此谐振器也不容易受到电路板寄生电容的影响,并对其有大得多的抵抗力。
进而,因第一和第二激励电极3和4分别向上延伸至压电谐振器2的横向末端这一布局,增大了电容。因此,谐振器对电路板寄生电容的影响不敏感。
如参考图3-8所述,与已有技术的条状厚度延伸压电谐振器不同的是,依据本实施例的较佳实施例的厚度延伸压电谐振器1有效地抑制因横向模式振动所引起的不想要的伪振动。
在图22所述的已有技术的条状压电谐振器80中,由压电基板81的厚度W所确定的横向模式产生了强烈的谐振。在图6中示出此已有技术压电谐振器80的阻抗-频率特性曲线,其中由箭头TE2所示的振动模式是厚度延伸振动模式的二次波,由WE1和WE2所示的响应是因横向模式引起的伪振动。图6所示的阻抗-频率特性曲线是谐振频率为10MHz的压电谐振器80的特性曲线。从图6可看出,WE1所示的横向模式伪振动出现在6MHz附近,而WE2所示的横向模式伪振动出现在7MHz附近。可观察到这二个伪振动相当强。
本发明的发明人在这里已分析了横向模式伪振动WE1和WE2处压电谐振器的位移。获得图3和4所示的结果。图3-5是条状厚度延伸压电谐振器的水平剖面,示意地示出在垂直于纵向的方向和在厚度方向所取得的条状压电谐振器表面的位移。
图3示出在横向模式WE1下产生振动的情况。图4是示出在横向模式WE2中的位移分布。图5是示出厚度延伸振动模式的二次波TE2中的位移图。通过把图3和4与图5相比较可看出,在厚度延伸振动模式的二次波TE2的情况下,压电体沿厚度方向发生压缩形变。另一方面,在横向模式WE1和WE2的情况下,压电谐振器发生大的横向位移。
根据此发现,发明人试图抑制因上述横向模式WE1和WE2所引起的伪振动,他们已发现如用某些材料来制成图1所示厚度延伸压电谐振器1的压电条2,则明显地减少了横向模式WE1和WE2的响应,而只强烈地激励厚度延伸振动模式的二次波TE2,从而在最大程度上利用厚度延伸振动模式的谐波。在图7中示出依据本发明较佳实施例的压电谐振器1的阻抗-频率特性曲线。该阻抗-频率特性曲线是在最好用-d31=9×10-12C/N的钛酸铅基陶瓷来构成压电条2的条件下得到的。从图7可看出,在依据本较佳实施例的压电谐振器1中,由箭头TE2所示的厚度延伸振动模式的二次波受到强激励。与已有技术相比,横向模式的伪振动WE2的幅值明显地减小。横向模式WE1和WE2都同样衰减得很多,尽管从图7看得还不是很清楚。
由于与厚度延伸振动模式的六次波TE6相比,横向模式所引起的响应WE1和WE2更靠近厚度延伸振动模式的二次波TE2,所以横向模式响应WE1和WE2最好小于六次波TE6的响应。
另一方面,由d31=-42×10-12C/N的锆酸铅钛酸铅基陶瓷制成的压电条2而得到图6所示的特性曲线。
在压电条2由上述锆酸铅钛酸铅基陶瓷来制成时,得到了图7所示的良好特性曲线。由于这个事实,改变用于形成压电条2的压电材料的压电常数d31,用有限元法来检验获得的相对带宽。在图8中示出结果。
相对带宽由:
(fa-fr)×100/fa(%)
来定义,这里fr是谐振频率,fa是反谐振频率。
从图8可看出,如果改变压电常数d31,则相对带宽变化。尤其是,当该常数超过20×10-12C/N,则横向模式WE1增加。如果压电常数d31为50×10-12C/N,则二次波TE2与横向模式WE1具有相同的响应。因此,可理解,如果压电常数d31小于大约20×10-12C/N,则可有效地抑制横向模式WE1、WE2和六次波TE6的响应,而不减少二次波TE2的响应。
图8中箭头B-E所示的各种点表示用锆酸铅钛酸铅基陶瓷(-d31=42×10-12C/N)作压电材料时六次波、横向模式WE1、WE2和二次波的相对带宽实际测量值。
于是,可看出使用介电常数d31=-42×10-12C/N的锆酸铅钛酸铅基陶瓷而制成的压电谐振器的相对带宽与上述有限元法的分析结果一致。
在依据本实施例的较佳实施例的厚度延伸压电谐振器1中,压电条2的压电常数d31的绝对值最好小于大约20×10-12C/N。因此,很清楚,在适于使用厚度延伸振动模式的二次波TE2的本发明较佳实施例的压电谐振器中,有效地抑制横向模式WE1、WE2和六次波TE6所引起的不想要伪振动。结果,实现良好的谐振特性。
在依据第一较佳实施例的厚度延伸压电谐振器1中,压电条2沿厚度方向均匀偏振。压电谐振器以并联的结构连接,从而使所加的电场相对于连续层中的每一层都相反。本发明也可应用于串联型压电谐振器,其中多个压电层沿厚度方向以交替方式相反地偏振。图9中示出此串联型厚度延伸压电谐振器。
图9所示的厚度延伸压电谐振器11最好包括细长的矩形压电条12。第一激励电极13位于压电条12的上表面上。第二激励电极14位于下表面上。第一和第二激励电极13和14分别位于压电条12的相对一侧。第一和第二激励电极13和14在压电条12的纵向中心处彼此相对。第一和第二激励电极13和14彼此相对的压电条12的区域限定能量限制型谐振器组件。
此外,在本较佳实施例中,第一和第二激励电极13和14最好分别延伸至压电条12的端面12a和12b。除了位于谐振器组件处的部分之外的电极13、14的部分不必沿压电条12的整个长度延伸。
激励电极13和14限定振动衰减区只沿压电条12的纵向设置的能量限制型谐振器组件。为此,第一和第二激励电极13和14沿垂直于纵向的方向即沿压电条12的宽度方向延伸至压电条12的末端。
内部电极16位于压电条12内的竖直中央部分处,该内部电极16起到使压电条12偏振的作用。即,在偏振期间,通过给内部电极16和激励电极13、14分别加上较高的电压和较低的电压,使压电层12c和12d沿箭头所示的厚度方向以相反方向偏振。
在工作期间,在第一和第二激励电极13和14之间分别加上AC电压。即,内部电极16不用于谐振器的操作,而只用于给成12c、12d提供交替的相反偏振。如此构成谐振器11,从而激发厚度延伸振动模式的二次波TE2
在依据第二较佳实施例的厚度延伸压电谐振器11中,振动衰减区不沿压电条12的横向或厚度方向位于振动区的相对两侧。振动衰减区只沿振动区的纵向位于振动区的相对两侧。因此,可以用与依据第一较佳实施例的厚度延伸振动模式谐振器1相同的方式来制造小尺寸的厚度延振动模式谐振器。此外,谐振器最好包括与第一较佳实施例相同的内部电极16。使激励电极13和14最好延伸至压电条12的横向末端。结果,可增加电容。此外,该谐振器不受其上安装该谐振器的电路板寄生电容的影响。
以与依据第一较佳实施例的厚度延伸振动模式压电谐振器1相同的方式,通过用压电常数d31的绝对值小于大约20×10-12C/N的材料来制造压电条12,可使依据第二较佳实施例的厚度延伸振动模式压电谐振器11有效地抑制横向模式WE1、WE2和六次波TE6引起的不想要的伪振动。结果,可实现良好的谐振特性。
第一和第二较佳实施例所提供的压电谐振器1和11都利用获得延伸振动模式的二次波。依据本发明较佳实施例的压电谐振器还可利用除厚度延伸振动模式的二次波以外的谐波。图10-13是示出利用这些谐波的压电谐振器的剖面图,这些图相应于描述第一较佳实施例的图2。
图10是利用厚度延伸振动模式三次波的并联型厚度延伸压电谐振器21。尤其是,在压电体2中放置了两个内部电极22和23。压电体2沿图10中箭头所示的厚度方向均匀偏振。于是,可制造利用厚度延伸振动模式的三次波的压电谐振器21。
图11所示的厚度延伸压电谐振器24是一剖面图,示出利用厚度延伸振动模式的四次波的并联型压电谐振器24。在厚度延伸压电谐振器24中,压电条2沿厚度方向均匀偏振。在该谐振器24中,三个内部电极25-27沿厚度方向规则地相互隔开。结果,可有效地激发厚度延伸振动模式的四次波。
图12是示出利用厚度延伸振动模式的三次波的串联型厚度延伸压电谐振器28的剖面图。在这一厚度延伸压电谐振器28中,在压电体12中放置了两个内部电极29和30。压电体12的内部分成三个压电层12e-12g。使用这两个内部电极29和30来进行偏振,从而沿厚度方向相互邻近的压电层以相反方向偏振。于是,通过把AC电压加到第一和第二激励电极13和14可激发厚度延伸振动模式的三次波。
同样,图13是示出利用厚度延伸振动模式的四次波的串联型压电谐振器31。这里,在压电体12中放置了三个内部电极32-34。使用这三个内部电极32-34来进行偏振,使得沿厚度方向相互邻近的压电层以相反方向偏振。
因此,通过第一和第二激励电极13、14加上AC电压可构成如利用厚度延伸振动模式的四次波的压电谐振器进行操作的谐振器31。
在图10-13所示厚度延伸振动的压电谐振器中,如上所述,只沿压电板的纵向来设置振动衰减区。第一和第二激励电极如此布局,从而沿垂直于振动衰减区的压电板的纵向的方向延伸至或靠近于压电体的末端。因此,可制造小尺寸的厚度延伸振动模式压电谐振器。所有的这些谐振器最好具有内部电极,这些电极可增加电容并使谐振器对安装该谐振器的电路板的寄生电容影响不敏感。
此外,通过用压电常数d31的绝对值小于大约20×10-12C/N的压电材料来制造压电体或条2、12,并通过与第一和第二较佳实施例中相同的方式利用厚度延伸振动模式的谐波,图10-13所示的厚度延伸压电谐振器有效地抑制横向模式或其他谐波的响应所引起的不想要的伪振动。
图14是示出依据本发明第三较佳实施例的厚度延伸压电谐振器的透视图。图15是示出其等效电路的图。图14示出的压电谐振器41是依据第一较佳实施例的厚度延伸压电谐振器1与电容器42的组合。此电容器42通过导电粘合剂43、44粘接到厚度延伸压电谐振器1的下表面。
在电容器42中,在介电基板42a的上表面上通过一间隙形成电容电极42b和42c。公共电极42d位于介电基板42a的下表面上。公共电极42d和电容电极42b、42c位于介电基板42a的两相对面上。
导电粘合剂43把电容电极42b粘到端电极7。导电粘合剂44把电容电极42c粘到端电极5。
因此,如图15所示,可把压电谐振器41用作组合有两个电容单元的压电谐振器。
厚度延伸压电谐振器1的横向尺寸得以明显地减小,因此,提供了一种虽具有内置电容器但其仍具有非常小的尺寸的压电谐振器。此外,厚度延伸压电谐振器1具有内部电极。结果,此谐振器装置不易受到电路板寄生电容以及电容器42的寄生电容的不良影响。此外,厚度延伸压电成型器1是一种利用厚度延伸振动的二次波的压电谐振器。可有效地抑制横向模式WE1、WE2和六次波TE6所引起的伪振动。因此,可提供具有良好频率特性的压电谐振器。
图16是示出依据本发明较佳实施例的厚度延伸压电谐振器的进一步变化例子的透视图。
依据本发明较佳实施例的厚度延伸压电谐振器设备包括利用厚度延伸振动的谐波的压电谐振器,还包括压电常数d31的绝对值最好小于大约20×10-12C/N的材料制成的压电体条,于是抑制了横向模式和其他谐波所引起的不想要的伪振动。即,本发明不限于能量限制型压电谐振器。如图16所示,除了能量限制型以外,本发明也可应用于厚度延伸压电谐振器。
参考图16,厚度延伸压电谐振器45包括矩形的细长压电条46。此压电条46最好由介电常数d31的绝对值小于大约20×10-12C/N的压电材料制成。第一激励电极47和第二激励电极48如此布局,从而分别覆盖压电条46的整个上表面和整个下表面。内部电极50置于压电条内。在此压电条46中,相邻的压电层46a和46b沿厚度方向相反地偏振。
此外,在压电谐振器45中,压电条最好由具有上述压电常数的压电材料制成。用与依据第二较佳实施例的厚度延伸压电谐振器11相同的方式来有效地抑制横向模式和其他谐波引起的不想要的伪振动。因此,实现了良好的谐振特性。
参考图17-19来描述依据本发明的片状压电谐振器组件的较佳实施例。
图17是依据本发明较佳实施例的片状压电谐振器组件的分解透视图。图18是示出图17所示组件的装配形式的透视图。片状压电谐振器51包括依据第一较佳实施例的厚度延伸振动模式压电谐振器1以及最好为平板形的电容器52。谐振器1和电容器52包含在一壳体中,此壳体包括起到限定壳体基板的壳体基板53以及粘接到壳体基板53上的金属盖57。
壳体基板53最好由诸如矾土(alumina)或合成树脂等绝缘材料制成。
如图19的平面图所示,最好在壳体基板53的侧面53a和53b中形成槽口53c-53e、53f-53h。
电极接合区54a位于壳体基板53的上表面上。电极接合区54a限定用于电气连接的一个区域并延伸到槽口53c和53f。延伸到槽口53c和53f中的电极接合区的延伸区域限定外部电极。同样,电极接合区54b位于壳体基板53的上表面上,以连接电极接合区54b中的槽口53d和53g。电极接合区54b中延伸到槽口53d和53g的延伸区域构成外部电极。同样,电极接合区54c位于壳体基板53的上表面上,以连接槽口53e和53h。延伸至电极接合区54c两端槽口53e和53h的延伸区域限定外部电极。
电容器52通过诸如导电粘合剂的导电粘合材料55a-55c粘接到壳体基板53上。最好如此构成电容器52,使得它包括由诸如介电陶瓷等介电材料制成的矩形介电基板来制造。一对电容电极52b和52c如此布局,从而在介电基板52a上表面的中心区域中彼此相对。由图17左边虚线示出,电容电极52d位于近似中心并局部面对电容电极52b和52c。
电容电极52b和52c如此布局,从而从介电基板52a纵向末端的端面延伸到下表面。尤其是,电容电极52d位于介电基板52a下表面的近似中心。电容电极52b和52c具有分别位于纵向末端相对面上的电极延伸区域52b1和52c1
上述导电粘合材料55a-55c分别粘接到电极延伸区域52b1、电容电极52d和电容电极延伸区域52c1并把这些元件分别连接到电极接合区54a-54c。
相应地,导电粘合材料55a-55c以机械方式把平板形电容器52连到壳体基板53。平板形电容器52分别与电极接合区54a-54c电气连接。
厚度延伸振动模式压电谐振器1通过导电粘合材料56a和56b粘接到平板形电容器52上。
由图17中虚线所示,与内部电极6相连的连接电极7的延伸区域7a以及第二激励电极4位于厚度延伸压电谐振器1的下表面。导电粘合材料56a把连接电极7的电极延伸区域7a与平板形电容器52的电容电极52b电气连接起来。导电粘合材料56b粘接到靠近厚度延伸压电谐振器1(靠近压电板2的末端)的第二激励电极4区域的导电粘合材料56b。激励电极4和电容电极52c电气连接在一起。
导电粘合材料56a和56b在固化后具有给定的厚度,以保证有一个空间间隔,当厚度延伸压电谐振器1粘接到平板形电容器52上时这个空间间隔不阻碍该谐振器振动区域的振动。
在依据本较佳实施例的片状压电谐振器组件中,平板形电容器52和厚度延伸压电谐振器1堆叠在壳体基板53上,然后把金属盖57连到壳体基板53。最好由金属来制成金属盖57,以增强其电磁屏蔽性能。为了防止电极接合区54a-54c以及外部电极的短路,在连接盖57前,在连有金属盖57的壳体基板53部分区域上加上介电薄膜58。介电薄膜58最好由合适的合成树脂来制成,只要该树脂能防止电极接合区54a-54c以及外部电极的短路。介电薄膜的厚度取一合适的值,只要该厚度可实现上述的电气绝缘。
把介电粘合剂加到介电薄膜58上,并把金属盖57与此介电粘合剂相连。在此情况下,介电薄膜58本身可以用介电粘合剂来制成,可把金属盖57粘接到壳体基板53上。
如上所述装配和配置图18所示的片状压电谐振器组件51。
依据本较佳实施例的片状压电谐振器组件51使用所示厚度延伸振动模式压电谐振器1。因此,如上所述明显地减少了横向尺寸。明显地减少了整个片状压电谐振器组件的尺寸。厚度延伸压电谐振器不产生不想要的伪分量。结果,以与第一较佳实施例相同的方式获得良好的谐振特性。
此外,平板形电容器52加固厚度延伸压电谐振器1,因为谐振器1耦合到该平板形电容器52。即,如果谐振器1很薄,则可通过机械地粘接平板形电容器52来进行加固。
最好把上述平板形电容器52的横向尺寸设定为大于厚度延伸压电谐振器1的横向尺寸。通过把平板形电容器52的横向尺寸设定为大于谐振器1的横向尺寸可防止金属盖57的内壁接触厚度延伸压电谐振器1。
虽然参考本发明的较佳实施例特别描述了本发明,但本领域熟练的技术人员应理解可对本发明的形式和细节进行上述的和其他的变化而不背离本发明的精神。

Claims (13)

1.一种厚度延伸振动模式压电谐振器,其特征在于包括:
矩形的压电板,具有上下表面;
第一激励电极,位于所述压电板的所述上表面上;
第二激励电极,位于所述压电板的所述下表面上并配置成与所述第一激励电极相向,所述压电板位于所述第一和第二激励电极之间;
至少一个内部电极,置于所述压电板中并与所述第一和第二激励电极至少局部相向;
谐振区,由所述第一和第二激励电极、所述内部电极和所述压电板的相向区域所限定;
多个振动衰减区,只沿压电板的纵向位于所述谐振区的两侧;以及
所述第一和第二激励电极沿垂直于所述压电板的纵向的方向延伸至压电板的两端。
2.如权利要求1所述的厚度延伸振动模式压电谐振器,其特征在于所述压电板用压电常数满足|d31|≤20×10-12C/N的压电材料制成。
3.如权利要求1至2中任一项所述的厚度延伸振动模式压电谐振器,其特征在于所述压电板具有细长条形状。
4.如权利要求1至2中任一项所述的厚度延伸振动模式压电谐振器,其特征在于还包括电容器,所述电容器的上表面与所述谐振器下表面相对,并且在所述电容器与所述谐振器之间有一间隔,使得不阻碍压电谐振器振动。
5.一种厚度延伸振动模式压电谐振器,其特征在于包括:
矩形的压电板,具有上下表面;
第一激励电极,位于所述压电板的所述上表面上;
第二激励电极,位于所述压电板的所述下表面上并配置成与所述第一激励电极相向,所述压电板位于所述第一和第二激励电极之间;
至少一个内部电极,置于所述压电板中并与所述第一和第二激励电极至少局部相向;
所述压电板用压电常数满足|d31|≤20×10-12C/N的压电材料制成。
6.如权利要求5所述的厚度延伸振动模式压电谐振器,其特征在于所述压电板具有细长条形状。
7.如权利要求5至6中任一项所述的厚度延伸振动模式压电谐振器,其特征在于还包括电容器,所述电容器的上表面与所述谐振器下表面相对,并且在所述电容器与所述谐振器之间有一间隔,使得不阻碍压电谐振器振动。
8.一种压电谐振器组件,其特征在于包括:
一外壳,包括壳体基板和盖;
电极接合区,位于壳体基板的上表面上;
多个外部电极,电气连接到所述电极接合区并延伸至所述外壳的外表面;
平板形电容器,位于所述壳体基板的上表面并电气连接到所述电极接合区;
厚度延伸振动模式压电谐振器,包括:
矩形的压电板,具有上下表面;
第一激励电极,位于所述压电板的所述上表面上;
第二激励电极,位于所述压电板的所述下表面上并配置成与所述第一激励电极相向,所述压电板位于所述第一和第二激励电极之间;
至少一个内部电极,置于所述压电板中并与所述第一和第二激励电极至少局部相向;
谐振区,由所述第一和第二激励电极、所述内部电极和所述压电板的相向区域所限定;
多个振动衰减区,只沿压电板的纵向位于所述谐振区的两侧;以及
所述第一和第二激励电极沿垂直于所述压电板的纵向的方向延伸至压电板的两端;
谐振器和电容器如此配置,从而限定一不阻碍谐振器振动的空间间隔;以及
所述盖固定地安装到上表面依次堆叠平板形电容器和厚度延伸振动模式压电谐振器的壳体基板之上。
9.如权利要求8所述的压电谐振器组件,其特征在于所述压电板用压电常数满足|d31|≤20×10-12C/N的压电材料制成。
10.如权利要求8所述的压电谐振器组件,其特征在于所述压电板具有细长条形状。
11.一种压电谐振器组件,其特征在于包括:
一外壳,包括壳体基板和盖;
电极接合区,位于壳体基板的上表面上;
多个外部电极,电气连接到所述电极接合区并延伸至所述外壳的外表面;
平板形电容器,位于所述壳体基板的上表面并电气连接到所述电极接合区;
厚度延伸振动模式压电谐振器,包括:
矩形的压电板,具有上下表面;
第一激励电极,位于所述压电板的所述上表面上;
第二激励电极,位于所述压电板的所述下表面上并配置成与所述第一激励电极相向,所述压电板位于所述第一和第二激励电极之间;
至少一个内部电极,置于所述压电板中并与所述第一和第二激励电极至少局部相向;
所述压电板用压电常数满足|d31|≤20×10-12C/N的压电材料制成;
谐振器和电容器如此配置,从而限定一不阻碍谐振器振动的空间间隔;以及
所述盖固定地安装到上表面依次堆叠平板形电容器和厚度延伸振动模式压电谐振器的壳体基板之上。
12.如权利要求11所述的压电谐振器组件,其特征在于所述压电板具有细长条形状。
13.如权利要求11所述的压电谐振器组件,其特征在于还包括谐振区,所述谐振区由所述第一和第二激励电极、所述内部电极和所述压电板的相向区域所限定;
多个振动衰减区,只沿压电板的纵向位于所述谐振区的两侧;以及
所述第一和第二激励电极沿垂直于所述压电板的纵向的方向延伸至压电板的两端。
CNB981089372A 1997-05-09 1998-05-11 厚度延伸振动模式压电谐振器和压电谐振器组件 Expired - Lifetime CN1147939C (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP11958997 1997-05-09
JP119589/1997 1997-05-09
JP119589/97 1997-05-09
JP33057697A JP3317219B2 (ja) 1997-12-01 1997-12-01 容量内蔵型圧電共振部品
JP330576/1997 1997-12-01
JP330576/97 1997-12-01
JP353435/97 1997-12-22
JP353435/1997 1997-12-22
JP35343597A JPH1127083A (ja) 1997-05-09 1997-12-22 厚み縦圧電共振子及び圧電共振部品

Publications (2)

Publication Number Publication Date
CN1199249A CN1199249A (zh) 1998-11-18
CN1147939C true CN1147939C (zh) 2004-04-28

Family

ID=27313856

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB981089372A Expired - Lifetime CN1147939C (zh) 1997-05-09 1998-05-11 厚度延伸振动模式压电谐振器和压电谐振器组件

Country Status (3)

Country Link
US (1) US6051910A (zh)
EP (1) EP0877480A3 (zh)
CN (1) CN1147939C (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3461453B2 (ja) * 1998-12-16 2003-10-27 株式会社村田製作所 厚み縦圧電共振子及び圧電共振部品
JP2000183683A (ja) * 1998-12-17 2000-06-30 Murata Mfg Co Ltd 厚み縦圧電共振子及び圧電共振部品
JP3324536B2 (ja) * 1998-12-18 2002-09-17 株式会社村田製作所 厚み縦圧電共振子及び圧電共振部品
JP3334669B2 (ja) * 1999-03-29 2002-10-15 株式会社村田製作所 圧電共振部品
JP2001068961A (ja) * 1999-08-26 2001-03-16 Murata Mfg Co Ltd 厚み縦圧電共振子、ラダー型フィルタ及び圧電共振部品
US6262517B1 (en) * 2000-02-11 2001-07-17 Materials Systems, Inc. Pressure resistant piezoelectric acoustic sensor
JP5935870B2 (ja) * 2012-03-08 2016-06-15 コニカミノルタ株式会社 圧電デバイス、超音波探触子、液滴吐出装置および圧電デバイスの製造方法
US9354051B2 (en) 2012-09-13 2016-05-31 Laser Technology, Inc. System and method for a rangefinding instrument incorporating pulse and continuous wave signal generating and processing techniques for increased distance measurement accuracy
US9213101B2 (en) 2012-09-13 2015-12-15 Laser Technology, Inc. Self-aligned aiming system and technique for a laser rangefinder incorporating a retroreflector
DE102016105551A1 (de) * 2016-03-24 2017-09-28 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Akustoelektrischer oszillator
CN112039478A (zh) * 2020-08-26 2020-12-04 武汉大学 一种可提高fom值的二维兰姆波射频谐振器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3699484A (en) * 1970-06-24 1972-10-17 Vernitron Corp Width extensional resonator and coupled mode filter
US4384229A (en) * 1980-02-14 1983-05-17 Nippon Electric Co., Ltd. Temperature compensated piezoelectric ceramic resonator unit
US4542315A (en) * 1984-05-15 1985-09-17 Murata Manufacturing Co., Ltd. Chip-shaped piezoelectric vibrator mount
JPS6194408A (ja) * 1984-10-15 1986-05-13 Nec Corp セラミツクフイルタ
JP2790178B2 (ja) * 1987-06-26 1998-08-27 株式会社村田製作所 電歪共振装置
JP2790177B2 (ja) * 1987-07-06 1998-08-27 株式会社村田製作所 電歪共振素子
JPS6412711A (en) * 1987-07-07 1989-01-17 Murata Manufacturing Co Chip type resonator
JP2790180B2 (ja) * 1987-12-29 1998-08-27 株式会社村田製作所 電歪共振装置
US5045744A (en) * 1988-12-23 1991-09-03 Murata Mfg. Co. Energy-trapping-by-frequency-lowering-type piezoelectric-resonance device
JPH02312310A (ja) * 1989-05-27 1990-12-27 Murata Mfg Co Ltd 圧電部品及びその製造方法
US5065066A (en) * 1989-07-19 1991-11-12 Murata Mfg. Co., Ltd. Piezoelectric resonator
US5345136A (en) * 1991-03-18 1994-09-06 Murata Manufacturing Co. Ltd. Composite type piezoelectric component
JPH0559955U (ja) * 1992-01-09 1993-08-06 株式会社村田製作所 圧電共振器

Also Published As

Publication number Publication date
EP0877480A3 (en) 2000-03-22
US6051910A (en) 2000-04-18
CN1199249A (zh) 1998-11-18
EP0877480A2 (en) 1998-11-11

Similar Documents

Publication Publication Date Title
CN1240184C (zh) 多模式压电滤波器
CN1144299C (zh) 电子元件位于封装件表面上且二者之间有空隙的装置
CN1147939C (zh) 厚度延伸振动模式压电谐振器和压电谐振器组件
CN1127206C (zh) 压电谐振元件
CN1118931C (zh) 厚度延伸振动压电谐振器和压电谐振设备
CN1146106C (zh) 压电谐振器和抑制压电谐振器产生的一次谐波的方法
CN1114989C (zh) 厚度延伸振动模式压电谐振器
CN1182655C (zh) 双模滤波器
CN1105415C (zh) 能量束缚型厚度延伸模式压电共振器
CN1144300C (zh) 压电谐振器
CN1147941C (zh) 利用厚度延伸振动模式的谐波的压电谐振器
CN1078405C (zh) 压电谐振器以及使用它的电子元件
CN1171381C (zh) 压电谐振器、压电元件和梯形滤波器
CN1156968C (zh) 压电谐振部件
CN1314199C (zh) 包含电容器的压电谐振单元
CN1175125A (zh) 压电谐振器以及使用它的电子元件
CN1237713C (zh) 压电滑动共振子、复合压电滑动共振子以及压电共振零件
CN1121755C (zh) 能量限制型厚度延伸振动模式压电谐振器
CN1127209C (zh) 电子元件、带通滤波器和通信设备
CN1130825C (zh) 厚度延伸振动压电谐振器和压电谐振装置
CN1198037A (zh) 压电谐振器和使用它的电子元件
CN1169237C (zh) 压电变压器元件及将其装入外壳的方法
CN1147994C (zh) 压电谐振器支持结构和含有该结构的压电元件
CN1038972C (zh) 压电元件
CN1122362C (zh) 压电谐振器、包含该压电谐振器的电子元件和通信设备

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20040428

CX01 Expiry of patent term