CN114747593A - 一种MXene-氧化锌纳米复合材料及其制备方法和应用其制得的可循环疏水抗菌材料 - Google Patents

一种MXene-氧化锌纳米复合材料及其制备方法和应用其制得的可循环疏水抗菌材料 Download PDF

Info

Publication number
CN114747593A
CN114747593A CN202210356362.9A CN202210356362A CN114747593A CN 114747593 A CN114747593 A CN 114747593A CN 202210356362 A CN202210356362 A CN 202210356362A CN 114747593 A CN114747593 A CN 114747593A
Authority
CN
China
Prior art keywords
mxene
zinc oxide
oxide nano
composite material
nano composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210356362.9A
Other languages
English (en)
Other versions
CN114747593B (zh
Inventor
李玲
彭昌
连珊珊
陈树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Agricultural University
Original Assignee
Hunan Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Agricultural University filed Critical Hunan Agricultural University
Priority to CN202210356362.9A priority Critical patent/CN114747593B/zh
Publication of CN114747593A publication Critical patent/CN114747593A/zh
Application granted granted Critical
Publication of CN114747593B publication Critical patent/CN114747593B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/44Oxides or hydroxides of elements of Groups 2 or 12 of the Periodic Table; Zincates; Cadmates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/36Biocidal agents, e.g. fungicidal, bactericidal, insecticidal agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/12Hydrophobic properties

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种MXene‑氧化锌纳米复合材料及其制备方法和应用其制得的可循环疏水抗菌材料,通过低温水浴合成MXene‑氧化锌纳米复合材料,具有优异的协同抗菌效果,进一步将其与聚二甲基硅氧烷进行简单的共混,分散在二氯甲烷、乙酸乙酯等溶剂中,最后喷涂在棉布、纤维纸等基底上,获得了抗菌效果优异、光热协同效应快速杀菌、自清洁、可重复使用的疏水抗菌材料。

Description

一种MXene-氧化锌纳米复合材料及其制备方法和应用其制得 的可循环疏水抗菌材料
技术领域
本发明属于二维复合抗菌材料技术领域,具体涉及一种MXene-氧化锌纳米复合材料及其制备方法和应用其制得的可循环疏水抗菌材料,可用于循环抗菌疏水衣物和粮食包装等方面。
背景技术
2020年初以来新冠肺炎肆虐全球,人们对微生物的影响有了更深刻的认识,对日常防护及食品微生物安全的要求也骤然加剧。基于人类日常一次性防护用品成本高及对环境污染的问题,粮食及食品在储存及运输过程中易受到细菌污染的现状,人们迫切需求开发一种可循环利用的、能广泛使用的高效抗菌材料,既能用于食品的包装也可用于人类日常的防护用品。
Ti3C2TxMXene材料是一种片层状的、有较大比表面积的碳材料,基于其具有的超薄结构和出色的物理化学(光热转换、催化、电磁屏蔽等)特性,已被广泛用于抗菌、生物传感、肿瘤治疗等领域,但由于其片层结构堆积等问题,抗菌效果有限。
发明内容
针对MXene材料存在的缺陷,本发明的目的是在于提供一种MXene-氧化锌纳米复合材料及其制备方法和应用其制得可循环疏水抗菌材料。通过低温水浴合成MXene-氧化锌纳米复合材料,具有优异的协同抗菌效果,进一步将其与聚二甲基硅氧烷进行简单的共混,分散在二氯甲烷、乙酸乙酯等溶剂中,最后喷涂在棉布、纤维纸等基底上,获得了抗菌效果优异、光热协同效应快速杀菌、自清洁、可重复使用的疏水抗菌材料。
为了实现上述技术目的,本发明采用如下技术方案:
一种MXene-氧化锌纳米复合材料的制备方法,包括如下步骤:
S1.按照Ti3C2TxMXene和醋酸锌(Zn(CH3COO)2)的重量比为1:0.25~6,将醋酸锌加入至Ti3C2TxMXene溶液中,依次进行搅拌、超声分散,离心洗涤,直至上清液与氢氧化钠反应无白色沉淀产生,弃去上清液,将下层沉淀物分散至超纯水中,得分散液;
S2.在S1得到的分散液中加入质量比为1:1000的氢氧化钠和水的混合溶液,水浴40℃加热反应,多次离心洗涤至中性,干燥后即得到MXene-氧化锌纳米复合材料。
优选的,步骤S1中,Ti3C2TxMXene和醋酸锌(Zn(CH3COO)2)的重量比为1:2。
优选的,步骤S1中,搅拌、超声分散时长为各2h,搅拌的转速为700r/min,离心的转速为10000rpm,每次离心时长为5min。
优选的,步骤S1中,下层沉淀物分散后的分散液体积等于Ti3C2TxMXene溶液的体积。
优选的,步骤S2中,混合溶液与S1中得到的分散液的体积比为1:10。
优选的,步骤S2中,离心的转速为8000rpm,每次离心洗涤的时长为8min。
优选的,步骤S2中,干燥的温度为30℃,干燥时长为48h。
本发明还提供了上述制备方法制得的MXene-氧化锌纳米复合材料。
本发明还提供了一种可循环疏水抗菌材料,由上述MXene-氧化锌纳米复合材料制得,具体为:将MXene-氧化锌纳米复合材料与聚二甲基硅氧烷混合,分散于溶剂中,得混合液;将混合液涂覆至基底材料表面,干燥后即得到可循环疏水抗菌材料。
优选的,所述MXene-氧化锌纳米复合材料与聚二甲基硅氧烷的质量比为1:1~5;进一步优选为1:3。
优选的,所述溶剂为二氯甲烷或乙酸乙酯。
优选的,所述基底材料为棉布、纤维纸或尼龙袋。
本发明的MXene-氧化锌纳米复合材料,有效的避免了氧化锌纳米粒子的堆积问题以及MXene的片层结构堆积问题,氧化锌纳米粒子在MXene片上均匀分布,两者协同抗菌,具有优异的协同抗菌效果,同时可利用MXene纳米材料的光热转换实现快速升温杀菌;进一步地,MXene和氧化锌能够增加基底材料表面粗糙度,通过与聚二甲基硅氧烷混合,实现复合材料疏水,一方面实现自清洁的效果,防止过多细菌粘附在材料表面形成细菌膜,另一方面能够用简单的冲洗等方式清洁材料,实现材料的多次利用。
相比于现有技术,本发明具有以下有益效果:
1.本发明的MXene-氧化锌纳米复合材料,采用40℃的低温水浴合成,合成所用温度低,条件温和,且相对于单一氧化锌纳米材料,复合材料中的氧化锌纳米颗粒粒径仅为5~15纳米,且MXene在此温度下不易被氧化,不需要惰性气氛保护。
2.本发明的MXene-氧化锌纳米复合材料,有效的避免了氧化锌纳米粒子的堆积问题以及MXene的片层结构堆积问题,氧化锌纳米粒子在MXene片上均匀分布,两者协同抗菌,具有优异的协同抗菌效果。
3.本发明的MXene-氧化锌纳米复合材料,除复合材料本身的抗菌性能外,MXene本身的光热转换效应能使复合材料在红外光照下升温,通过光热协同效应达到快速杀菌的效果。
4.本发明的可循环疏水抗菌材料,除具有优异的抗菌性能外,还具有自清洁的性能,能极大的降低细菌在材料上的黏附,且可以通过水冲的简单的手段去除表面的污渍,能达到持久、重复的杀菌效果。
5.本发明的MXene-氧化锌纳米复合材料和由其制得的可循环疏水抗菌材料,生物毒性低,可在多个领域应用,且其循环使用性能够大大降低现有一次性抗菌材料带来的污染问题。
附图说明
图1为实施例1制备的MXene-氧化锌纳米复合材料的XRD图;
如图1所示,根据XRD图,2θ=6.1°处对应有衍射峰,对比标准卡(JCPDSNo.52-0875),其为MXene的(002)晶面的衍射峰;在2θ=30°~70°之间可观察到有多个衍射峰,对比标准卡(JCPDSNo.36–1451),其为氧化锌的不同晶面的衍射峰。根据XRD证实,成功合成了MXene-氧化锌纳米复合材料。
图2为实施例1制备的MXene-氧化锌纳米复合材料(b、c、d)和对比例2制备的氧化锌纳米材料的TEM图(a);
如图2所示,对比例2制备的氧化锌颗粒易堆积,其直径约为100纳米;而实施例1制备的MXene-氧化锌纳米复合材料中,氧化锌均匀的分散在MXene纳米片上,粒径仅为5~15纳米,远小于100纳米,经过对MXene-氧化锌纳米复合材料高分辨TEM图像的分析,对其晶面间距进行测量,确定其为纳米氧化锌的(101)晶面,进一步证实了纳米氧化锌与MXene复合成功,且与MXene复合的氧化锌有效的避免了单一氧化锌的堆积。
图3为实施例1制备的疏水抗菌材料的SEM图;
如图3所示,(a)为纯棉布的SEM图像,表面光滑;而(b)、(c)为实施例1制备的疏水抗菌材料在不同放大倍数下的SEM图像,表面粗糙。
图4为实施例1制备的疏水抗菌材料对泥土的自清洁效果图;
如图4所示,疏水抗菌材料可通过简单的水冲洗的方式实现自清洁。
图5为实施例1(a)制备的疏水抗菌材料、对比例4(b)制备的疏水抗菌材料、对比例1(c)制备的MXene疏水抗菌材料、对比例2(d)制备的氧化锌疏水抗菌材料的接触角测试对比图;
如图5所示,实施例1制备的疏水抗菌材料接触角为~156°,对比例4制备的疏水抗菌材料接触角为~140°,对比例1制备的MXene疏水抗菌材料接触角为~133°,对比例2制备的氧化锌疏水抗菌材料接触角为~114°。实施例1和对比例4制备的疏水抗菌材料的接触角相比对比例1和对比例2大,说明相较单一的MXene和氧化锌,喷涂MXene-氧化锌纳米复合材料对棉布表面的粗糙度增加效果显著得多;而实施例1制备的疏水抗菌材料的接触角相较对比例4大,说明采用实施例1所述相对低温度制备的疏水抗菌材料粗糙度更佳。
图6为实施例1制备的疏水抗菌材料、对比例1制备的MXene疏水抗菌材料、对比例2制备的氧化锌疏水抗菌材料和棉布的红外热成像图;
如图6所示,在红外光照(1mW,520纳米)30s后,对比能达到的最高温度:棉布(20.2℃)、对比例1制备的MXene疏水抗菌材料(49.9℃)、对比例2制备的氧化锌疏水抗菌材料(20.3℃)、实施例1制备的疏水抗菌材料(49.3℃)证实,光热转换性能是MXene的性能,且MXene的光热转换性能不受复合氧化锌的影响。
图7为实施例1-3制备的疏水抗菌材料(d、e、f)、对比例1制备的MXene疏水抗菌材料(b)、对比例2制备的氧化锌疏水抗菌材料(c)、对比例3制备的疏水抗菌材料(g)的抗菌效果图;实施例1制备的疏水抗菌材料红外光照5分钟后的抗菌效果图(h),以及对比例4制备的疏水抗菌材料(i)的抗菌效果图。
如图7所示,实施例1-3制备的疏水抗菌材料相较对比例1制备的MXene疏水抗菌材料、对比例2制备的氧化锌疏水抗菌材料,抗菌测试后生长的菌落少,抗菌效果好,说明MXene与氧化锌具有优异的协同抗菌效果;实施例1-3制备的疏水抗菌材料相较对比例3制备的疏水抗菌材料抗菌测试生长的菌落少,抗菌效果好,说明本发明的低温水浴合成方法不适于制备MXene-氧化铜基疏水抗菌材料;实施例1制备的疏水抗菌材料红外光照5分钟后抗菌效果测试结果证实其在经过红外光照后有很好的抗菌效果;实施例1和对比例4制备的疏水抗菌材料的抗菌测试结果显示实施例1所述的温度下制备的疏水抗菌材料抗菌效果更佳。
图8为实施例1制备的可循环疏水抗菌材料的抗摩擦性能测试。
如图8所示,疏水抗菌材料经过多次摩擦后,依然能保持良好的疏水性能。
具体实施说明
为了便于本领域普通技术人员理解和实施本发明,下面结合附图与具体实施方式对本发明作进一步详细描述(应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明)。
实施例1
S1.将200mg醋酸锌(Zn(CH3COO)2)粉末加入含100mgTi3C2TxMXene的MXene溶液中,在转速为700r/min下磁力搅拌2h,超声分散2h,转速为10000rpm下离心洗涤,直至上清液与氢氧化钠反应无白色沉淀产生,弃去上清液,将离心管中沉淀分散至MXene溶液体积的超纯水中,得到分散液;
S2.在S1得到的分散液中加入质量比为1:1000的氢氧化钠和水的混合溶液,分散液和混合溶液的体积比为10:1,水浴40℃加热下反应2h。溶液缓慢冷却到室温,离心洗涤,至中性,30℃下干燥48h得MXene-氧化锌纳米复合材料;
S3.取100mgMXene-氧化锌纳米复合材料与300mg的聚二甲基硅氧烷混合,分散于二氯甲烷中,喷涂至100cm2棉布,后干燥,得到可循环疏水抗菌材料。
实施例2
S1.将600mg醋酸锌(Zn(CH3COO)2)粉末加入含100mgTi3C2TxMXene的MXene溶液中,在转速为700r/min下磁力搅拌2h,超声分散2h,转速为10000rpm下离心洗涤,直至上清液与氢氧化钠反应无白色沉淀产生,弃去上清液,将离心管中沉淀分散至MXene溶液体积的超纯水中,得到分散液;
S2.在S1得到的分散液中加入质量比为1:1000的氢氧化钠和水的混合溶液,分散液和混合溶液的体积比为10:1,水浴40℃加热下反应2h。溶液缓慢冷却到室温,离心洗涤,至中性,30℃下干燥48h得MXene-氧化锌纳米复合材料;
S3.取100mgMXene-氧化锌纳米复合材料与500mg的聚二甲基硅氧烷混合,分散于二氯甲烷中,喷涂至100cm2棉布,后干燥,得到可循环疏水抗菌材料。
实施例3
S1.将25mg醋酸锌(Zn(CH3COO)2)粉末加入含100mgTi3C2TxMXene的MXene溶液中,在转速为700r/min下磁力搅拌2h,超声分散2h,转速为10000rpm下离心洗涤,直至上清液与氢氧化钠反应无白色沉淀产生,弃去上清液,将离心管中沉淀分散至MXene溶液体积的超纯水中,得到分散液;
S2.在S1得到的分散液中加入质量比为1:1000的氢氧化钠和水的混合溶液,分散液和混合溶液的体积比为10:1,水浴40℃加热下反应2h。溶液缓慢冷却到室温,离心洗涤,至中性,30℃下干燥48h得MXene-氧化锌纳米复合材料;
S3.取100mgMXene-氧化锌纳米复合材料与500mg的聚二甲基硅氧烷混合,分散于二氯甲烷中,喷涂至100cm2棉布,后干燥,得到可循环疏水抗菌材料。
对比例1
S1.LiF(1g,98.5%)加入到HCl溶液(7.5mL,质量分数为36%~38%)和超纯水(2.5mL)的混合液中,然后将Ti3AlC2(1g)缓慢加入到上述混合物中并在搅拌下加热至35℃反应24h。之后,在转速为8500rpm下离心,用超纯水洗涤固体残留物,直到上清液的pH值高于5。通过冷冻干燥得到多层Ti3C2Tx粉末。
S2.将多层Ti3C2Tx(1g)分散在去离子水(250mL)中,在氩气保护下超声处理1h。然后将分散液以3500rpm的转速离心1h,并收集深绿色上清液以获得MXene分散液,通过冷冻干燥得MXene材料;
S3.取100mg的MXene材料与300mg的聚二甲基硅氧烷混合,分散于二氯甲烷中,喷涂至100cm2棉布,后干燥,得到MXene疏水抗菌材料。
对比例2
S1.将300mg醋酸锌(Zn(CH3COO)2)粉末加入100mL超纯水中,在转速为700r/min下磁力搅拌2h,超声分散2h。
S2.在S1得到的溶液中加入质量比为1:1000的氢氧化钠和水的混合溶液,S1得到的溶液和混合溶液的体积比为10:1,水浴40℃加热下反应2h。离心洗涤,至中性,30℃下干燥48h得氧化锌纳米材料;
S3.取100mg氧化锌纳米材料与300mg的聚二甲基硅氧烷混合,分散于二氯甲烷中,喷涂至100cm2棉布,后干燥,得到氧化锌疏水抗菌材料。
对比例3
S1.将200mg醋酸铜(Cu(CH3COO)2)粉末加入含100mgTi3C2TxMXene的MXene溶液中,在转速为700r/min下磁力搅拌2h,超声分散2h,转速为10000rpm下离心洗涤,直至上清液与氢氧化钠反应无白色沉淀产生,弃去上清液,将离心管中沉淀分散至MXene溶液体积的超纯水中,得到分散液;
S2.在S1得到的分散液中加入质量比为1:1000的氢氧化钠和水的混合溶液,分散液和混合溶液的体积比为10:1,水浴40℃加热下反应2h。溶液缓慢冷却到室温,离心洗涤,至中性,30℃下干燥48h得复合材料;
S3.取100mg复合材料与300mg的聚二甲基硅氧烷混合,分散于二氯甲烷中,喷涂至100cm2棉布,后干燥,得到MXene-氧化铜基疏水抗菌材料。
对比例4
S1.将200mg醋酸锌(Zn(CH3COO)2)粉末加入含100mgTi3C2TxMXene的MXene溶液中,在转速为700r/min下磁力搅拌2h,超声分散2h,转速为10000rpm下离心洗涤,直至上清液与氢氧化钠反应无白色沉淀产生,弃去上清液,将离心管中沉淀分散至MXene溶液体积的超纯水中,得到分散液;
S2.在S1得到的分散液中加入质量比为1:1000的氢氧化钠和水的混合溶液,分散液和混合溶液的体积比为10:1,通入氩气,水浴80℃加热下反应2h。持续通入氩气至反应结束且溶液冷却到室温,离心洗涤,至中性,30℃下干燥48h得MXene-氧化锌纳米复合材料;
S3.取100mgMXene-氧化锌纳米复合材料与300mg的聚二甲基硅氧烷混合,分散于二氯甲烷中,喷涂至100cm2棉布,后干燥,得到疏水抗菌材料。
抗菌性能测试:
采用振荡法对实施例1-3和对比例1-4制得的不同疏水抗菌材料的抗菌性能进行测试,培养大肠杆菌的浓度至107CFU/mL,将菌液稀释,滴加定量体积的菌液至疏水抗菌材料上,适温条件下培养后,将疏水抗菌材料加入有生理盐水的试管中振荡,使其上的细菌洗脱至试管中,取试管中的菌液涂布,观察菌落生长情况,结果如图7所示。
抗摩擦性能测试:
将实施例1制得的疏水抗菌材料放在1000目的砂纸上,施加200g的重量,来回拖动数次(20厘米为一个周期),测定不同拖动摩擦数次后的接触角。

Claims (10)

1.一种MXene-氧化锌纳米复合材料的制备方法,其特征在于,包括如下步骤:
S1.按照Ti3C2TxMXene和醋酸锌的重量比为1:0.25~6,将醋酸锌加入至Ti3C2TxMXene溶液中,依次进行搅拌、超声分散,离心洗涤,直至上清液与氢氧化钠反应无白色沉淀产生,弃去上清液,将下层沉淀物分散至超纯水中,得分散液;
S2.在S1得到的分散液中加入质量比为1:1000的氢氧化钠和水的混合溶液,水浴40℃加热反应,多次离心洗涤至中性,干燥后即得到MXene-氧化锌纳米复合材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤S1中,Ti3C2TxMXene和醋酸锌的重量比为1:2。
3.根据权利要求1所述的制备方法,其特征在于,步骤S1中,搅拌、超声分散时长为各2h,搅拌的转速为700r/min,离心的转速为10000rpm,每次离心时长为5min;下层沉淀物分散后的分散液体积等于Ti3C2TxMXene溶液的体积。
4.根据权利要求1所述的制备方法,其特征在于,步骤S2中,混合溶液与S1中得到的分散液的体积比为1:10。
5.根据权利要求1所述的制备方法,其特征在于,步骤S2中,离心的转速为8000rpm,每次离心洗涤的时长为8min;
干燥的温度为30℃,干燥时长为48h。
6.权利要求1-5任一项所述的制备方法制得的MXene-氧化锌纳米复合材料。
7.一种可循环疏水抗菌材料,其特征在于,由权利要求6所述的MXene-氧化锌纳米复合材料制得,具体为:
将MXene-氧化锌纳米复合材料与聚二甲基硅氧烷混合,分散于溶剂中,得混合液;将混合液涂覆至基底材料表面,干燥后即得到可循环疏水抗菌材料。
8.根据权利要求7所述的可循环疏水抗菌材料,其特征在于,所述MXene-氧化锌纳米复合材料与聚二甲基硅氧烷的质量比为1:1~5。
9.根据权利要求7所述的可循环疏水抗菌材料,其特征在于,所述溶剂为二氯甲烷或乙酸乙酯。
10.根据权利要求7所述的可循环疏水抗菌材料,其特征在于,所述基底材料为棉布、纤维纸或尼龙袋。
CN202210356362.9A 2022-04-06 2022-04-06 一种MXene-氧化锌纳米复合材料及其制备方法和应用其制得的可循环疏水抗菌材料 Active CN114747593B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210356362.9A CN114747593B (zh) 2022-04-06 2022-04-06 一种MXene-氧化锌纳米复合材料及其制备方法和应用其制得的可循环疏水抗菌材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210356362.9A CN114747593B (zh) 2022-04-06 2022-04-06 一种MXene-氧化锌纳米复合材料及其制备方法和应用其制得的可循环疏水抗菌材料

Publications (2)

Publication Number Publication Date
CN114747593A true CN114747593A (zh) 2022-07-15
CN114747593B CN114747593B (zh) 2023-06-23

Family

ID=82328988

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210356362.9A Active CN114747593B (zh) 2022-04-06 2022-04-06 一种MXene-氧化锌纳米复合材料及其制备方法和应用其制得的可循环疏水抗菌材料

Country Status (1)

Country Link
CN (1) CN114747593B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115779940A (zh) * 2022-12-08 2023-03-14 安徽师范大学 具有双重模拟酶性质的CeO2-x/MXene复合材料及其制备方法和应用
CN116273103A (zh) * 2023-02-17 2023-06-23 南京信息工程大学 一种氧化锌-MXene复合热释电催化剂的制备方法及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105899077A (zh) * 2014-02-20 2016-08-24 昭和电工株式会社 抗病毒性组合物、抗病毒剂、光催化剂以及病毒灭活方法
CN106491377A (zh) * 2016-10-31 2017-03-15 苏州宇希新材料科技有限公司 一种纳米复合粉体材料的制备方法
CN107244650A (zh) * 2017-06-14 2017-10-13 哈尔滨工业大学 一种二维层状化合物/氧化锌纳米棒复合材料的制备方法及其应用
US20180304208A1 (en) * 2014-11-17 2018-10-25 Qatar Foundation For Education, Science And Community Development Two-dimensional metal carbide antimicrobial membrane and antimicrobial agent
CN108822333A (zh) * 2018-06-29 2018-11-16 湖南农业大学 一种疏水-超亲油海绵及其制备方法和应用
CN111248224A (zh) * 2020-03-04 2020-06-09 北京科技大学 基于MXene量子点的抗菌剂的制备及抗菌活性测试方法
US20200254396A1 (en) * 2020-04-03 2020-08-13 Qatar University Precise Fabrication of Activated-Hydrophilic-Hydrophobic MXenes-based Multidimensional Nanosystems for Efficient and Prompt Water Purification from Petroleum Wastes and Desalination Process under Ambient Conditions
CN111678425A (zh) * 2020-05-22 2020-09-18 扬州大学 一种透气防水的多响应织物传感器
CN112973476A (zh) * 2021-02-20 2021-06-18 华南理工大学 一种疏水多孔MXene膜及其制备方法与应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105899077A (zh) * 2014-02-20 2016-08-24 昭和电工株式会社 抗病毒性组合物、抗病毒剂、光催化剂以及病毒灭活方法
US20180304208A1 (en) * 2014-11-17 2018-10-25 Qatar Foundation For Education, Science And Community Development Two-dimensional metal carbide antimicrobial membrane and antimicrobial agent
CN106491377A (zh) * 2016-10-31 2017-03-15 苏州宇希新材料科技有限公司 一种纳米复合粉体材料的制备方法
CN107244650A (zh) * 2017-06-14 2017-10-13 哈尔滨工业大学 一种二维层状化合物/氧化锌纳米棒复合材料的制备方法及其应用
CN108822333A (zh) * 2018-06-29 2018-11-16 湖南农业大学 一种疏水-超亲油海绵及其制备方法和应用
CN111248224A (zh) * 2020-03-04 2020-06-09 北京科技大学 基于MXene量子点的抗菌剂的制备及抗菌活性测试方法
US20200254396A1 (en) * 2020-04-03 2020-08-13 Qatar University Precise Fabrication of Activated-Hydrophilic-Hydrophobic MXenes-based Multidimensional Nanosystems for Efficient and Prompt Water Purification from Petroleum Wastes and Desalination Process under Ambient Conditions
CN111678425A (zh) * 2020-05-22 2020-09-18 扬州大学 一种透气防水的多响应织物传感器
CN112973476A (zh) * 2021-02-20 2021-06-18 华南理工大学 一种疏水多孔MXene膜及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAZ T ET AL.: "A facile approach to synthesize ZnO-decorated titanium carbide nanoarchitectures to boost up the photodegradation performance", vol. 47, pages 33456 *
李能等: "插层限域工程制备MXene及其复合材料的研究进展", vol. 41, no. 41, pages 49 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115779940A (zh) * 2022-12-08 2023-03-14 安徽师范大学 具有双重模拟酶性质的CeO2-x/MXene复合材料及其制备方法和应用
CN116273103A (zh) * 2023-02-17 2023-06-23 南京信息工程大学 一种氧化锌-MXene复合热释电催化剂的制备方法及其应用

Also Published As

Publication number Publication date
CN114747593B (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
CN114747593A (zh) 一种MXene-氧化锌纳米复合材料及其制备方法和应用其制得的可循环疏水抗菌材料
Shaheen et al. Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics
Perelshtein et al. CuO–cotton nanocomposite: Formation, morphology, and antibacterial activity
Akhavan et al. Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria
Ravichandran et al. Copper and Graphene activated ZnO nanopowders for enhanced photocatalytic and antibacterial activities
Ramani et al. From zinc oxide nanoparticles to microflowers: A study of growth kinetics and biocidal activity
Nirmala et al. Synthesis and characterization of undoped and TM (Co, Mn) doped ZnO nanoparticles
Hadavand et al. Preparation of modified nano ZnO/polyester/TGIC powder coating nanocomposite and evaluation of its antibacterial activity
WO2006109847A1 (ja) アルナイト型化合物粒子、その製造方法およびその利用
Iqbal et al. Facile synthesis as well as structural, Raman, dielectric and antibacterial characteristics of Cu doped ZnO nanoparticles
Naeimi et al. Preparation of Fe3O4 encapsulated-silica sulfonic acid nanoparticles and study of their in vitro antimicrobial activity
Kim et al. Preparation and characterization of positively surface charged zinc oxide nanoparticles against bacterial pathogens
Sharifalhoseini et al. Evaluation of antibacterial activity of anticorrosive electroless Ni–P coating against Escherichia coli and its enhancement by deposition of sono-synthesized ZnO nanoparticles
CN111867376A (zh) 包含纳米晶体纤维素和氧化镁的抗微生物涂层材料及其制备方法
Jegan et al. One-pot synthesis and characterization of biopolymer-iron oxide nanocomposite
Yaghoubidoust et al. A Simple method for the preparation of antibacterial cotton fabrics by coating graphene oxide nanosheets
Hosseini-Hosseinabad et al. Development of g-C3N4/ZnO nanocomposite as a novel, highly effective and durable photocatalytic antibacterial coating for cotton fabric
CN114344465B (zh) 一种铜纳米颗粒/尺寸可控球状富勒醇复合材料的制备方法和应用
Namratha et al. Antimicrobial activity of silver doped ZnO designer nanoparticles
CN115068605A (zh) 一种Ag2S@TCPP-UiO-66-NH2光响应纳米抗菌材料及其制备方法和应用
TW202043491A (zh) 金屬銅微粒粉末及其製造方法
WO2021115868A1 (en) Method and composition for increasing the electrical and thermal conductivity of a textile article and textile article thus obtained.
Jastrzębska et al. Synthesis and bioactivity of RGO/TiO2-noble metal nanocomposite flakes
Dhineshbabu et al. Multifunctional property of graphene oxide nanostructures on silica-coated cotton fabrics
CN111068525A (zh) 一种表面具有二氧化钛纳米棒阵列的复合膜、及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant