CN114733552A - 一种整体式轻质双磁性光催化复合材料的制备方法及应用 - Google Patents

一种整体式轻质双磁性光催化复合材料的制备方法及应用 Download PDF

Info

Publication number
CN114733552A
CN114733552A CN202210501923.XA CN202210501923A CN114733552A CN 114733552 A CN114733552 A CN 114733552A CN 202210501923 A CN202210501923 A CN 202210501923A CN 114733552 A CN114733552 A CN 114733552A
Authority
CN
China
Prior art keywords
magnetic
composite material
bamboo powder
carbon
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210501923.XA
Other languages
English (en)
Other versions
CN114733552B (zh
Inventor
柴希娟
李琛
解林坤
刘守庆
李雪梅
徐开蒙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Forestry University
Original Assignee
Southwest Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Forestry University filed Critical Southwest Forestry University
Priority to CN202210501923.XA priority Critical patent/CN114733552B/zh
Publication of CN114733552A publication Critical patent/CN114733552A/zh
Application granted granted Critical
Publication of CN114733552B publication Critical patent/CN114733552B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种整体式轻质双磁性光催化复合材料的制备方法,主要包括生物质磁性泡沫碳制备、磁性氮化碳制备、整体式轻质磁性光催化复合材料;本发明采用新颖的轻质磁性载体(磁性泡沫碳、磁性沸石等)对具备磁性的催化剂(TiO2、g‑C3N4等及其复合体系)进行负载,构建了整体式磁性光催化材料,即通过磁性连接的方式使轻质磁性载体和磁性粉状光催化剂很好的结合;磁性载体可以是磁性泡沫炭,磁性沸石等;磁性粉体可以是TiO2、g‑C3N4等光催化剂与Fe3O4、Co3O4或α‑Fe2O3等形成的异质结。

Description

一种整体式轻质双磁性光催化复合材料的制备方法及应用
技术领域
本发明属于光催化材料技术领域,具体涉及一种整体式轻质双磁性光催化复合材料的制备方法及应用。
背景技术
近年来,光催化技术在环境领域占据了重要地位,尤其在光催化制氢、染料降解、有机废水处理等领域表现出巨大潜力。其中,非金属半导体g-C3N4有着良好的化学稳定性、廉价易得、环境友好等优点,其独特的电子结构更易于进行改性调控,在污水治理等方面发挥着独特作用。然而,粉体光催化剂的催化效率高但存在分离和回收难的问题,薄膜光催化剂又存在比表面积较小,光催化反应效率低的缺陷,以上种种均极大限制了光催化技术的广泛应用。
为了解决这一问题,研究者通常将粉体g-C3N4等光催化剂负载于各类大尺寸多孔状的载体上,进而获得同时具有较高催化活性和较高比表面积的负载型光催化剂。如RidhaDjellabi以聚乙烯醇、聚偏二氟乙烯及聚醋酸乙烯酯为原料制备了气凝胶,然后采用浸渍法将生物质碳/TiO2负载于气凝胶上制备了自浮型生物质碳/TiO2@气凝胶复合光催化材料。该自浮型光催化材料具有优异的光催化降解Cr(Ⅵ)的能力,并显示出了良好的可回收性能[Ridha Djellabia,b,Laiqi Zhanga,Bo Yang,et al.Sustainable self-floatinglignocellulosic biomass-TiO2@Aerogel for outdoor solar photocatalytic Cr(VI)reduction.Separation and Purification Technology 229(2019)11583]。黄宝萱等以聚氨酯泡沫炭为载体,采用浸渍法制备出聚氨酯泡沫炭负载TiO2光催化材料,表现出良好的催化降解甲醛功能的能力[黄宝萱,张弘庆,孟振东,等.光催化降解甲醛功能泡沫炭的制备与表征.功能材料,2016,47(1):1213-1217]。Qian等以酚醛树脂泡沫炭为载体,将介孔TiO2薄膜沉积在泡沫碳上制备了TiO2/泡沫炭材料,用于光催化氧化丙酮和甲苯,材料显示出优异的光催化降解能力[Xufang Qian,Meng Ren,Dongting Yue,et al.Mesoporous TiO2films coated on carbon foam based on waste polyurethane for enhancedphotocatalytic oxidation of VOCs.Applied Catalysis B:Environmental,2017(212):1–6]。
然而,分析以上研究不难发现,以往案例中合成的整体式光催化材料,粉体光催化材料通常采用浸渍法被固定于大尺寸多孔载体之上。但此类负载方式通常仅靠单纯的物理作用结合,虽然增大了光照面积,提高了光催化材料的回收利用性能,但始终存在粉体光催化材料易掉渣,吸附不牢固等问题。
发明内容
针对上述光催化剂常规负载存在的缺陷,本发明采用新颖的轻质磁性载体(磁性泡沫碳、磁性沸石等)对具备磁性的催化剂(TiO2、g-C3N4等及其复合体系)进行负载,构建了整体式磁性光催化材料,即通过磁性连接的方式使轻质磁性载体和磁性粉状光催化剂很好的结合。磁性载体可以是磁性泡沫炭,磁性沸石等。磁性粉体可以是TiO2、g-C3N4等光催化剂与Fe3O4、Co3O4或α-Fe2O3等形成的异质结。
为了达到上述技术目的,本发明是通过以下技术方案实现的,一种整体式轻质双磁性光催化复合材料的制备方法,包括以下步骤:
S1:将一定量的液化剂苯酚加入到三口烧瓶中,体系加热至80-100℃时加入一定量催化剂浓硫酸,继续加热至110-120℃时,缓慢加入已干燥好的竹粉;体系继续加热到140-160℃后,恒温加热100-150min,反应结束后得到黑棕色粘稠液体竹粉液化产物;液化试剂苯酚用量为竹粉质量的3-5倍,浓硫酸用量为竹粉质量的3-5%;
S2:取一定量的竹粉液化产物置于圆底烧瓶中,放入60℃的水浴中,开动冷凝器,然后向其中加入溶解有1.6-1.9g的NaOH水溶液,充分搅拌3-5min后,再缓慢加入43.4-48.5ml浓度为37%甲醛溶液;
S3:向S2中加料完毕后的整个体系升温至70-80℃并开始计时,反应2h后停止搅拌,即得竹粉基可发性酚醛树脂;
S4:配制1.5mol/L的FeCl3溶液,向溶液中添加S3所得竹粉基可发性酚醛树脂,搅拌使二者混合均匀;将聚氨酯泡沫切割为2cm*1cm*1cm的块状长方体,在1.5mol/LFeCl3溶液和生物质酚醛树脂的混合溶液中浸渍30min后放入100℃烘箱中干燥,反复浸渍3-6次后,在750-850℃的管式炉高温炭化2h(升温速率8℃/min),得到具有多孔结构的生物质磁性泡沫碳;
S5:称取Fe掺杂氮化碳(Fe-CN)粉末,加入到120ml体积比为1:2的乙醇-水混合液中,超声20-30min使其分散均匀;随后,将0.55-0.58g FeCl3和0.3-0.4g FeCl2·4H2O溶解于蒸馏水中,所形成的溶液逐滴加入到Fe-CN悬浮液中,于80℃下磁力搅拌30min后,向其中加入9-11ml浓氨水;继续搅拌20-40min后,将混合液冷却至20-25℃;分别用无水乙醇和蒸馏水清洗3-5次后离心分离,于60℃下干燥10-12h,即得磁性氮化碳Fe3O4-Fe-CN;
S6:将S5所得的磁性氮化碳加入到去离子水中,超声震荡5-10min后,向体系中加入生物质磁性泡沫碳,继续超声震荡5-10min后取出,于105℃烘箱中干燥4h,即得整体式轻质磁性光催化复合材料;
优选的,所述S1中液化温度为140-160℃;液化时间1.5-2h;
优选的,所述S1中催化剂浓硫酸用量为竹粉用量的3-5%;苯酚与竹粉的质量比为3:1-5:1;
优选的,所述S2中竹粉液化产物含有苯酚,Mol甲醛/苯酚=1.7-1.9,Mol氢氧化钠/苯酚=0.48-0.49;
优选的,所述S4中FeCl3溶液=1.0-2.0mol/L。
本发明的有益效果是:
磁性负载具有负载牢固、易于解附、负载物易于更换以及易于回收等优点。同时,该整体式轻质磁性光催化材料还可漂浮于液体表面上,最大限度地接收太阳光和氧气,继而在促进各类氧化还原物质生成的同时避免了传统催化剂易沉入颜色较深的废水中,使光催化剂接受光的能力大打折扣的缺陷。该整体式轻质双磁性光催化光催化系统的另一个特点是,它可以有效地用于降解不溶性/悬浮性有机污染物,如含油废水。此外,将磁性泡沫炭作为载体与氮化碳等光催化剂复合后,磁性泡沫炭可作为吸附中心对低浓度有机污染物进行有效富集、浓缩,为氮化碳提供高浓度反应环境,加快氮化碳的光催化降解速度。磁性泡沫炭的吸附作用还可有效减少挥发性光催化中间产物的释放,减小挥发性中间产物所产生的二次污染。同时磁性泡沫炭与含磁催化剂间的磁链接,可以有效实现催化剂和泡沫炭之间的回收再利用,也使得催化剂与载体之间获得良好的结合,具备了负载牢固、不易脱落的优点。
附图说明
图1(a,b,c)为生物质磁性泡沫碳的SEM及EDS。图1(d,e,f)为Fe3O4-Fe-CN/磁性泡沫碳的SEM图和EDS图片;
图2为生物质磁性泡沫碳的磁滞回线;
图3为磁性泡沫碳和Fe3O4-Fe-CN/磁性泡沫碳的BET图像;
图4为磁性泡沫碳和Fe3O4-Fe-CN/磁性泡沫碳的孔径分布曲线;
图5(a)为磁性泡沫碳负载氮化碳的光芬顿降解图像;
图5(b)磁性泡沫碳负载氮化碳的一级动力学曲线图;
图5(c)磁性泡沫碳负载氮化碳的光芬顿循环降解图像。
以上附图中的磁性泡沫炭所选取的FeCl3溶液的浓度均为1.5mol/L。
具体实施方式
为了对本发明的技术方案及技术效果做出清楚完整的描述,通过以下实施例进行详细说明;
实施例1
一种整体式轻质双磁性光催化复合材料的制备方法,其特征在于,包括以下步骤:
S1:将一定量的液化剂苯酚加入到三口烧瓶中,体系加热至90℃时加入一定量催化剂浓硫酸,继续加热至120℃时,缓慢加入已干燥好的竹粉;体系继续加热到150℃后,恒温加热2h,反应结束后得到黑棕色粘稠液体竹粉液化产物;
S2:取一定量的竹粉液化产物置于圆底烧瓶中,放入60℃的水浴中,开动冷凝器,然后向其中加入一定量的NaOH水溶液,充分搅拌5min后,再缓慢加入37%甲醛溶液;NaOH水溶液为竹粉液化产物的1.63%;37%甲醛溶液与竹粉液化产物的液固比为1.203;
S3:向S2中加料完毕后的整个体系升温至80℃并开始计时,反应2h后停止搅拌,即得竹粉基可发性酚醛树脂;
S4:配制100ml的1.5mol/L的FeCl3溶液,向溶液中添加S3所得竹粉基可发性酚醛树脂,搅拌使二者混合均匀;将聚氨酯泡沫切割为2cm*1cm*1cm的块状长方体,在1.5mol/LFeCl3溶液和生物质酚醛树脂的混合溶液中浸渍30min后放入100℃烘箱中干燥,反复浸渍3-6次后,在750-850℃的管式炉高温炭化2h(升温速率8℃/min),得到具有多孔结构的生物质磁性泡沫碳;
S5:称取1.6g Fe掺杂氮化碳(Fe-CN)粉末,加入到120ml体积比为1:2的乙醇-水混合液中,超声20min使其分散均匀;随后,将0.5605g FeCl3和0.3435g FeCl2·4H2O溶解于20ml蒸馏水中,所形成的溶液逐滴加入到Fe-CN悬浮液中,于80℃下磁力搅拌30min后,向其中加入10ml浓氨水;继续搅拌30min后,将混合液冷却至20-25℃;分别用无水乙醇和蒸馏水清洗3次后离心分离,于在60℃下干燥12h,即得磁性氮化碳Fe3O4-Fe-CN;
S6:将S5所得的磁性氮化碳加入到去离子水中,超声震荡5min后,向体系中加入生物质磁性泡沫碳,继续超声震荡5min后取出,于105℃的烘箱中干燥4h,即得整体式轻质磁性光催化复合材料;
优选的,所述S1中液化温度为140-160℃;液化时间1.5-2h;
优选的,所述S1中催化剂浓硫酸用量为竹粉用量的3-5%;苯酚与竹粉的质量比为3:1-5:1;
优选的,所述S2中竹粉液化产物含有苯酚,Mol甲醛/苯酚=1.7-1.9,Mol氢氧化钠/苯酚=0.48-0.49;
优选的,所述S4中FeCl3溶液=1.0-2.0mol/L。
图1为磁性泡沫碳(a,b,c)和Fe3O4-Fe-CN/磁性泡沫碳(d,e,f)的SEM及EDS映射图像。由图1(a)(50倍)可知,磁性泡沫碳由泡孔、泡孔壁及韧带组成,其表面呈多孔结构,有着较高的开孔率,大孔径约为400-600um。磁性泡沫碳的开孔结构为后续氮化碳的磁性连接以及可见光催化提供了通道。从图1(b)(2200倍)可以清楚地看到磁性泡沫碳内部的细孔结构。磁性泡沫碳的EDS(图1c)映射图谱说明,磁性泡沫碳泡沫碳主要由C、O、Fe三种元素组成,且分布均匀。由图1(d,e)(50倍/2200倍)可知,负载Fe3O4-Fe-CN后,磁性泡沫碳的大体形貌基本不变,但在其泡孔可以观察到大量的Fe3O4-Fe-CN片层结构。在磁性泡沫碳磁场的作用下,本身具有磁性的Fe3O4-Fe-CN片层自身聚集成规则的绣球状结构。此片层绣球结构一方面有利于入射光在其中进行多次反射,进而增强Fe3O4-Fe-CN/磁性泡沫碳对光的捕获能力。另一方面也为光催化提供了更丰富反应点。此外,Fe3O4-Fe-CN规则的片层绣球结构也充分证明了Fe3O4-Fe-CN与MCF之间强有力的磁性连接。Fe3O4-Fe-CN/MCF的EDS(图1f)映射图谱说明,Fe3O4-Fe-CN/MCF主要由C、O、Fe三种元素组成,且分布均匀。
图2为掺杂Fe3O4磁性泡沫碳的磁滞回线,从图2中可以得出:1.5mol/LFe3O4磁性泡沫碳与负载0.04g 4%Fe3O4-Fe-CN的1.5mol/LFe3O4磁性泡沫碳均表现出良好的铁磁特性;未负载氮化碳的磁性最强,负载氮化碳后的磁性泡沫碳磁性稍有减弱,但依然表现出了较强的磁化强度;磁性减弱推测是由于负载Fe3O4-Fe-CN后,Fe3O4-Fe-CN和磁性泡沫炭之间发生了磁性连接,消耗了磁性泡明天的一部分磁性所致。这同时也证明了Fe3O4-Fe-CN和磁性泡沫炭之间构建起有效的磁性连接;
图3为磁性泡沫炭(FeCl3溶液的浓度为1.5mol/L)和Fe3O4-Fe-CN/磁性泡沫炭的BET吸附-脱附曲线图图。由图3可知,两种泡沫碳在低压端(P/P0<0.1)的吸附曲线偏向于Y轴,吸附量快速增长。说明泡沫碳中存在有较多的微孔,N2在微孔内产生了强吸附势。三种曲线的吸附-脱附曲线均不闭合,这可能是因为,泡沫碳材料多具有墨水瓶型的孔型,气体在发生吸附之后孔口直径发生了收缩,导致吸附的气体无法全部脱附下来,产生低压滞后现象,从而导致脱氮与吸氮曲线不闭合所致。
图4为磁性泡沫炭(FeCl3溶液的浓度为1.5mol/L)和Fe3O4-Fe-CN/磁性泡沫炭的孔径分布曲线图。由图4可知,磁性泡沫炭和Fe3O4-Fe-CN/磁性泡沫炭主要存在微孔和介孔结构。由表1可见,Fe3O4-Fe-CN/磁性泡沫炭的比表面积明显小于磁性泡沫炭,这是由于负载氮化碳堵塞了通道,使得相应的比表面积有所减少。同时通过Fe3O4-Fe-CN/磁性泡沫炭的曲线可以看出,由于磁性氮化碳的负载,在一定程度上使得微孔结构减少,这与表1的数据结果一致。
图5(a)为磁性泡沫碳负载4%Fe3O4-Fe-CN光芬顿降解反应曲线图,由图5(a)可知在负载量为0.04g条件下,复合体系对MB的降解效率最优20min内达到了近100%,这表明了Fe离子的引入有效的构建起Fenton体系,同时也证明了泡沫碳与氮化碳之间构建起了有效的磁链接;图5(b)为磁性泡沫碳负载4%Fe3O4-Fe-CN光芬顿降解的一级动力学曲线图,其中,磁性泡沫碳负载量为0.04g的样品k值为0.09026min-1,是空白泡沫碳负载样品的2.15倍,说明负载氮化碳催化剂后相比空白不掺铁泡沫碳使得催化活性显著提高,增强了复合材料在可见光作用下对MB溶液的降解能力;为了研究磁性泡沫碳负载氮化碳催化剂的耐久性和稳定性,进行了回收试验,通过对磁性泡沫碳进行烘干处理,然后在进一步的反应中重复使用;图5(c)表明,即使经过五次降解反应循环,催化剂的活性在光芬顿条件下降约30%,结果表明,磁性泡沫碳建立的载体与催化剂之间的磁性连接具有较高的稳定性和可重复使用性;二者通过自发的磁性连接后对MB模拟废水溶液5次循环反应仍可达到80%降解率。
表1磁性泡沫炭与Fe3O4-Fe-CN/磁性泡沫炭的比表面积、孔容、平均孔径
Figure BDA0003634720100000071
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (6)

1.一种整体式轻质双磁性光催化复合材料的制备方法,其特征在于,包括以下步骤:
S1:将一定量的液化剂苯酚加入到三口烧瓶中,体系加热至80-100℃时加入一定量催化剂浓硫酸,继续加热至110-120℃时,缓慢加入已干燥好的竹粉;体系继续加热到140-160℃后,恒温加热100-150min,反应结束后得到黑棕色粘稠液体竹粉液化产物;液化试剂苯酚用量为竹粉质量的3-5倍,浓硫酸用量为竹粉质量的3-5%;
S2:取一定量的竹粉液化产物置于圆底烧瓶中,放入60℃的水浴中,开动冷凝器,然后向其中加入溶解有1.6-1.9g的NaOH水溶液,充分搅拌3-5min后,再缓慢加入43.4-48.5ml浓度为37%甲醛溶液;
S3:向S2中加料完毕后的整个体系升温至70-80℃并开始计时,反应2h后停止搅拌,即得竹粉基可发性酚醛树脂;
S4:配制1.5mol/L的FeCl3溶液,向溶液中添加S3所得竹粉基可发性酚醛树脂,搅拌使二者混合均匀;将聚氨酯泡沫切割为2cm*1cm*1cm的块状长方体,在1.5mol/L FeCl3溶液和生物质酚醛树脂的混合溶液中浸渍30min后放入100℃烘箱中干燥,反复浸渍3-6次后,在750-850℃的管式炉高温炭化2h(升温速率8℃/min),得到具有多孔结构的生物质磁性泡沫碳;
S5:称取Fe掺杂氮化碳(Fe-CN)粉末,加入到120ml体积比为1:2的乙醇-水混合液中,超声20-30min使其分散均匀;随后,将0.55-0.58g FeCl3和0.3-0.4g FeCl2·4H2O溶解于蒸馏水中,所形成的溶液逐滴加入到Fe-CN悬浮液中,于80℃下磁力搅拌30min后,向其中加入9-11ml浓氨水;继续搅拌20-40min后,将混合液冷却至20-25℃;分别用无水乙醇和蒸馏水清洗3-5次后离心分离,于60℃下干燥10-12h,即得磁性氮化碳Fe3O4-Fe-CN;
S6:将S5所得的磁性氮化碳加入到去离子水中,超声震荡5-10min后,向体系中加入生物质磁性泡沫碳,继续超声震荡5-10min后取出,于105℃烘箱中干燥4h,即得整体式轻质磁性光催化复合材料。
2.根据权利要求1所述一种整体式轻质双磁性光催化复合材料的制备方法,其特征在于,所述S1中液化温度为140-160℃;液化时间1.5-2h。
3.根据权利要求1所述一种整体式轻质双磁性光催化复合材料的制备方法,其特征在于,所述S1中催化剂浓硫酸用量为竹粉用量的3-5%;苯酚与竹粉的质量比为3:1-5:1。
4.根据权利要求1所述一种整体式轻质双磁性光催化复合材料的制备方法,其特征在于,所述S2中竹粉液化产物含有苯酚,Mol甲醛/苯酚=1.7-1.9,Mol氢氧化钠/苯酚=0.48-0.49。
5.根据权利要求1所述一种整体式轻质双磁性光催化复合材料的制备方法,其特征在于,所述S4中FeCl3溶液=1.0-2.0mol/L。
6.根据权利要求1-5任一项所述一种整体式轻质双磁性光催化复合材料的制备方法,其特征在于,公开了轻质双磁性光催化复合材料在污水处理方面的应用。
CN202210501923.XA 2022-05-09 2022-05-09 一种整体式轻质双磁性光催化复合材料的制备方法及应用 Active CN114733552B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210501923.XA CN114733552B (zh) 2022-05-09 2022-05-09 一种整体式轻质双磁性光催化复合材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210501923.XA CN114733552B (zh) 2022-05-09 2022-05-09 一种整体式轻质双磁性光催化复合材料的制备方法及应用

Publications (2)

Publication Number Publication Date
CN114733552A true CN114733552A (zh) 2022-07-12
CN114733552B CN114733552B (zh) 2022-09-20

Family

ID=82285784

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210501923.XA Active CN114733552B (zh) 2022-05-09 2022-05-09 一种整体式轻质双磁性光催化复合材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN114733552B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115445631A (zh) * 2022-09-27 2022-12-09 中国五冶集团有限公司 一种金属有机框架的碳基催化材料的制备方法及试验方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005334737A (ja) * 2004-05-25 2005-12-08 Futaba Shoji Kk 磁性吸着剤、光触媒担持吸着剤、磁性光触媒、光触媒担持磁性吸着剤および有害物の分解処理方法
CN104014343A (zh) * 2014-06-23 2014-09-03 山东大学 一种双功能磁性固体碱催化剂及其制备方法与应用
CN105597724A (zh) * 2015-12-15 2016-05-25 浙江工业大学 一种磁性生物炭负载光催化剂的制备方法
CN106732713A (zh) * 2016-11-25 2017-05-31 江苏大学 一种三元磁性复合光催化纳米材料及其制备方法和用途
CN107469796A (zh) * 2017-08-28 2017-12-15 天津科技大学 一种壳核型磁性木质素改性酚醛微球吸附剂及其制备方法
CN108658057A (zh) * 2018-07-03 2018-10-16 中国矿业大学(北京) 一种磁性泡沫炭的常压制备方法
CN110327983A (zh) * 2019-07-03 2019-10-15 莆田学院 一种磁性石墨相氮化碳/MIL-125(Ti)复合光催化剂及其制备方法
US20190344245A1 (en) * 2018-05-11 2019-11-14 Jiangxi University Of Science & Technology Method of preparing large-size high-porosity fe-doped photocatalytic porous magnetic microspheres and uses thereof
CN110483049A (zh) * 2019-09-23 2019-11-22 四川大学 可回弹的磁性碳泡沫及其制备方法
CN113926483A (zh) * 2021-11-22 2022-01-14 西南林业大学 一种磁回收型双芬顿Fe3O4-Fe-CN复合材料的制备方法及应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005334737A (ja) * 2004-05-25 2005-12-08 Futaba Shoji Kk 磁性吸着剤、光触媒担持吸着剤、磁性光触媒、光触媒担持磁性吸着剤および有害物の分解処理方法
CN104014343A (zh) * 2014-06-23 2014-09-03 山东大学 一种双功能磁性固体碱催化剂及其制备方法与应用
CN105597724A (zh) * 2015-12-15 2016-05-25 浙江工业大学 一种磁性生物炭负载光催化剂的制备方法
CN106732713A (zh) * 2016-11-25 2017-05-31 江苏大学 一种三元磁性复合光催化纳米材料及其制备方法和用途
CN107469796A (zh) * 2017-08-28 2017-12-15 天津科技大学 一种壳核型磁性木质素改性酚醛微球吸附剂及其制备方法
US20190344245A1 (en) * 2018-05-11 2019-11-14 Jiangxi University Of Science & Technology Method of preparing large-size high-porosity fe-doped photocatalytic porous magnetic microspheres and uses thereof
CN108658057A (zh) * 2018-07-03 2018-10-16 中国矿业大学(北京) 一种磁性泡沫炭的常压制备方法
CN110327983A (zh) * 2019-07-03 2019-10-15 莆田学院 一种磁性石墨相氮化碳/MIL-125(Ti)复合光催化剂及其制备方法
CN110483049A (zh) * 2019-09-23 2019-11-22 四川大学 可回弹的磁性碳泡沫及其制备方法
CN113926483A (zh) * 2021-11-22 2022-01-14 西南林业大学 一种磁回收型双芬顿Fe3O4-Fe-CN复合材料的制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAILIAN SUN等: ""Foam carbon loading Fe3O4 nanoparticles for superior lithium-ion batteries anode material"", 《IONICS》 *
XIAOTIAN ZHANG等: ""Mapping the transition from carbon-onions filled with Fe3C to carbon-foam completely filled with α-Fe: Unlocking mass-production of ferromagnetic carbon foam"", 《MATERIALS TODAY COMMUNICATIONS》 *
陶磊等: ""竹粉基聚氨酯负载Cu2O 复合材料制备及光降解亚甲基蓝"", 《工程塑料应用》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115445631A (zh) * 2022-09-27 2022-12-09 中国五冶集团有限公司 一种金属有机框架的碳基催化材料的制备方法及试验方法

Also Published As

Publication number Publication date
CN114733552B (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
Lee et al. Recent advances in preparations and applications of carbon aerogels: A review
Zhong et al. The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts
Li et al. Trace pyrolyzed ZIF-67 loaded activated carbon pellets for enhanced adsorption and catalytic degradation of Rhodamine B in water
CN110813251B (zh) 一种改性纳米材料及其在含锑废水处理中的应用
CN104009242B (zh) 一种燃料电池阴极催化剂金属/金属氧化物负载的氮掺杂的多孔碳网络结构材料制备方法
JP5876499B2 (ja) メソ細孔が形成された多孔性炭素材料の製造方法及びこれから製造された燃料電池用触媒の担持体
CN103752313B (zh) 负载Fe的介孔碳材料及其制备方法和应用
Mo et al. Preparation and characterization of magnetic polyporous biochar for cellulase immobilization by physical adsorption
CN108704611A (zh) 一种磁性锰铁氧化物负载的介孔纤维素生物炭复合材料及其制备方法与应用
CN113976145B (zh) 一种硫改性铁钴氧化物纳米片类芬顿催化剂及其制备方法和使用方法
CN114733552B (zh) 一种整体式轻质双磁性光催化复合材料的制备方法及应用
CN104117339B (zh) 用于吸附染料的吸附剂的制备方法及其应用方法
CN110694685B (zh) 一种由超薄纳米片组装的锰铁钴类普鲁士蓝和锰氧化物复合纳米盒的制备方法及应用
CN109665525B (zh) 一种“哑铃型”铁氮双掺杂多孔碳的制备方法
CN108878176A (zh) 一种超级电容器用氮掺杂介孔碳复合金属氧化物电极材料的制备技术
CN106564868A (zh) 一种氮掺杂多孔碳材料的制备方法
CN109437151A (zh) 一种基于廉价碳黑制备有序多孔碳材料的方法及应用
CN109650450B (zh) 一种中空MoS2微球的制备方法及其应用
CN110283288A (zh) 一种可大量生产的杂原子掺杂的具有空腔结构聚合物纳米微球及其制备方法
CN112938971A (zh) 一种椰壳基中孔活性炭及其制备方法和应用
Zhuang et al. Facile fabrication of three-dimensional porous CuFe2O4 cages as highly efficient and recyclable heterogeneous catalyst
CN113830826A (zh) 一种沉淀-自组装法制备壳核结构介孔量子氧化钛的方法
Yu et al. Ternary metal oxide embedded carbon derived from metal organic frameworks for adsorption of methylene blue and acid red 73
CN113813975A (zh) 一种zif-8衍生的多级孔m-n-c催化剂及其制备方法
CN106423087B (zh) 一种磁性壳聚糖碳球的制备及在吸附去除水中Cr(Ⅵ)上的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant