CN113830826A - 一种沉淀-自组装法制备壳核结构介孔量子氧化钛的方法 - Google Patents

一种沉淀-自组装法制备壳核结构介孔量子氧化钛的方法 Download PDF

Info

Publication number
CN113830826A
CN113830826A CN202111195631.XA CN202111195631A CN113830826A CN 113830826 A CN113830826 A CN 113830826A CN 202111195631 A CN202111195631 A CN 202111195631A CN 113830826 A CN113830826 A CN 113830826A
Authority
CN
China
Prior art keywords
quantum
porous material
titanium oxide
mesoporous
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111195631.XA
Other languages
English (en)
Inventor
曾和平
冯光
胡梦云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Huapu Environmental Protection Technology Co ltd
Chongqing Huapu Quantum Technology Co ltd
Chongqing Menghe Biotechnology Co ltd
East China Normal University
Chongqing Institute of East China Normal University
Shanghai Langyan Optoelectronics Technology Co Ltd
Yunnan Huapu Quantum Material Co Ltd
Original Assignee
East China Normal University
Chongqing Institute of East China Normal University
Shanghai Langyan Optoelectronics Technology Co Ltd
Yunnan Huapu Quantum Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University, Chongqing Institute of East China Normal University, Shanghai Langyan Optoelectronics Technology Co Ltd, Yunnan Huapu Quantum Material Co Ltd filed Critical East China Normal University
Priority to CN202111195631.XA priority Critical patent/CN113830826A/zh
Publication of CN113830826A publication Critical patent/CN113830826A/zh
Priority to US18/046,185 priority patent/US20230125338A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/398Egg yolk like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种沉淀‑自组装法制备介孔量子氧化钛的方法。本发明采用偏钛酸为钛源,将硫酸与偏钛酸混合反应制得硫酸氧钛溶液,然后加入多孔材料制得混合液,利用多孔材料表面亲水性能,硫酸氧钛溶液快速扩散到多孔材料孔隙中,得到硫酸氧钛包覆的多孔材料。继续添加碱性物质并与多孔材料表面的硫酸氧钛生成氢氧化钛壳‑多孔材料核的壳核结构材料。继续进行固液分离、洗涤、干燥,将沉淀产物进行高温煅烧得到多孔核‑介孔量子氧化钛壳的壳核结构光催化粉体。该方法操作简便易行,对设备要求低,生产成本低,使其有望在印染废水处理、空气净化、抗菌防臭、自清洁、防紫外等领域得到广泛地应用。

Description

一种沉淀-自组装法制备壳核结构介孔量子氧化钛的方法
技术领域
本发明涉及一种光催化材料的制备,具体介绍了一种沉淀-自组装法制备壳核结构介孔量子氧化钛的方法。
背景技术
近几十年来,二氧化钛(TiO2)材料因其独特的电子光学特性,如强氧化能力、良好的带隙(3.2eV)、低成本、高化学惰性和光稳定性等受到了研究者的广泛关注。基于氧化钛已经开发针对多种环境用途的材料,例如太阳能电池、光催化,以及气体传感。人们在设计和制造TiO2的各种纳米结构以提高其性能方面付出了巨大的努力,包括氧化钛膜、纳米棒、空心微球、球形颗粒、纳米管等结构。在这些材料中,介孔钛被认为是一种理想和有前景的空气净化和水净化材料,氧化钛光催化材料其污染物降解性能高度依赖于纳米结构、晶体结构、表面状态、结晶度以及比表面积。这些优点不仅为分子在孔结构中的扩散提供了规律的排列路径,而且在孔壁上提供了大量与客体分子相互作用的活性位点。实际上分级多孔结构在自然界中广泛存在,例如人体的肺,硅藻、珊瑚等,这些结构都加快了气液在材料中的传输。制作多孔光催化材料常用的方法包括软模板、硬模板、聚合物/硅凝胶法,此类方法往往需要复杂的步骤,强酸腐蚀,高温碳化,以及过多的有机溶剂加入,严重阻碍介孔材料工程化。利用多孔骨架制作具有壳核结构的介孔光催化材料是一种简单高效的方法,一方面可以有效省去模板剂的使用,简化合成步骤,另一方面,多孔骨架往往具有更大的比表面积,可以充分发挥其在气体吸附、水体吸附、重金属吸附方面的优势。多孔骨架材料例如介孔硅、介孔碳、MOF材料、三维石墨烯、沸石粉、凹凸棒等,此类材料具有丰富的有序介孔结构,将钛源前驱体溶液与多孔骨架材料混合,钛源充分进入多孔材料,钛源水解并在孔道结构中原位生长,最终制备基于多孔骨架结构的介孔光催化材料。
此外,利用偏钛酸沉降法制备氧化钛光催化剂是最经济、环保、低能耗的方法,其副产物为硫酸可作为重要工业原料售卖。专利(申请号:201610829671.8)公开了一种二氧化钛的制备方法,具体涉及一种工业偏钛酸制备高纯超细二氧化钛的方法。本发明利用水解偏钛酸粒子中杂质离子赋存形式及偏钛酸本身的组成和结构特性,通过分散、洗涤、熟化和煅烧等,直接制备高纯超细二氧化钛,可增加二氧化钛新品种和实现产品应用的功能化,具有广阔的应用前景。专利(申请号:201410272084.4)公开了一种比表面高于350m2/g的脱硝钛白粉的制备方法,在搅拌偏钛酸浆料的状钛下加入碳酸氢铵,将浆料的pH值调为6.0~6.5;继续搅拌加入氨水将浆料的pH值调为7.0~7.5;将通过上述步骤得到的浆料压榨脱去吸附水,脱水处理至使物料中的固含量控制在60%以上;将通过上述步骤得到的物料进行烘干,烘干温度为105℃~150℃;以及将烘干后的物料冷却、粉碎后得到高比表面脱硝钛白粉成品。
综上,采用偏钛酸为钛源,多孔材料作为骨架制备介孔光催化材料具有成本低、方法简单,绿色环保等特点,产品适合在印染废水处理、空气净化、抗菌防臭、自清洁、防紫外等领域得到广泛地应用。
发明内容
本发明公开了一种沉淀-自组装法制备介孔量子氧化钛的方法,包括如下步骤:
(1)以偏钛酸为钛源,将硫酸与偏钛酸混合反应制得硫酸氧钛溶液:
H2TiO3+H2SO4→TiOSO4+2H2O
然后加入多孔材料制得混合液,利用多孔材料表面亲水性能,硫酸氧钛溶液快速扩散到多孔材料孔隙中,得到硫酸氧钛包覆的多孔材料:
TiOSO4+多孔材料→硫酸氧钛复合多孔材料;
(2)继续添加碱性物质并,多孔材料表面的硫酸氧钛与碱性物通过沉淀-自组装过程生成氢氧化钛壳-多孔材料核的沉淀产物:
TiOSO4+碱→TiO(OH)2↓+硫酸盐
TiO〖(OH)〗_2□(→┴Δ)TiO_2+H_2O;
(3)继续进行固液分离、洗、干燥,将沉淀产物进行高温煅烧得到多孔核-介孔量子氧化钛壳的壳核结构光催化粉体。
优选的,步骤(2)中沉淀-自组装过程具体内容为:碱性物质扩散至多孔材料孔隙中,与硫酸氧钛反应生成氢氧化钛,氢氧化钛受高温退火作用,由多孔材料内部自发向外蔓延生长,受孔内局部高压高温扩散气体影响,在孔隙中生长出介孔量子氧化钛,气体继续扩散至多孔材料表层,致使氢氧化钛自组装并生成介孔量子氧化钛壳,最终介孔量子氧化钛自内而外包裹多孔材料。
优选的,步骤(1)中,偏钛酸质量分数40%-50%,相对分子质量97.92,浓硫酸密度1.84g/mL,相对分子质量为98。根据权利要求1所述的一种沉淀-自组装法制备介孔量子氧化钛的方法,其特征在于,步骤(2)中偏钛酸与硫酸的摩尔质量比1:1-10;
优选的,步骤(1)中偏钛酸与硫酸混合时间为0.1-24小时。
优选的,步骤(1)中硫酸氧钛与多孔材料质量比1:1-1000。
优选的,步骤(1)中硫酸氧钛与多孔材料混合时间为0.1-24小时。
优选的,步骤(1)中硫酸氧钛扩散在孔隙深度的为1-2um。
优选的,步骤(1)中硫酸氧钛在多孔材料中扩散温度为80-400℃,硫酸氧钛在多孔材料中扩散时升温速度为2-10℃/min;硫酸氧钛在多孔材料中扩散过程压强为0-30bar。
优选的,步骤(2)中碱性材料与硫酸氧钛质量比1:1-1:10;硫酸氧钛与碱性材料混合时间为0.1-24小时;所述碱性物质包括:氨水、氢氧化钠、氢氧化钙、氢氧化铁、氢氧化钾、碳酸氢钠、碳酸钠、氢氧化锌、氢氧化铝、氢氧化铁、氢氧化亚铁、氢氧化镁、氢氧化钴、氢氧化金、氢氧化铝、氢氧化铜、氢氧化铍,以及以上至少两种的组合。
优选的,所述的多孔材料包括:沸石粉、分子筛、活性炭、多孔氧化铝、介孔氧化硅、介孔碳、介孔硅、炭黑、凹凸棒、膨润土、硅藻土、三维石墨烯、金属有机物框架材料、共价有机框架材料、二维的金属碳化物或氮化物,以及以上至少两种多孔材料组成的混合物;多孔材料孔径为2-20nm;多孔材料表面亲水性的接触角不大于30°;多孔材料比表面积不小于150m2/g,孔容不小于0.1cm3/g。
优选的,步骤(2)中沉淀-自组装过程生成介孔量子氧化钛温度为60-1200℃,升温速度2-20℃/min。
优选的,步骤(3)中所述介孔量子氧化钛是指尺寸1-10nm的氧化钛纳米颗粒,且具有孔状结构,其孔径在0.1-2nm,生成介孔量子氧化钛退火时间是0.5-48小时,尺寸3-5nm,孔径为0.3-2nm,比表面积为150-300m2/g,晶型包括:锐钛型、金红石型,以及金红石掺杂锐钛型氧化钛。
优选的,步骤(2)中所述多孔核-介孔量子氧化钛壳光催化材料比表面积在200-300m2/g,孔容0.1-2cm3/g。
本发明的增益效果:
本发明方法采用偏钛酸为钛源,将硫酸与偏钛酸混合溶解制得硫酸氧钛溶液,然后加入多孔材料制得混合液,继续添加碱性材料生成氢氧化钛沉淀,将沉淀分离、洗涤、干燥,再高温煅烧得到多孔结构核-氧化钛结构壳光催化粉体。通过控制反应过程的时间、温度,以及前驱体浓度,可以精确控制生成的多孔骨架核-氧化钛壳光催化材料,包括比表面积、孔容、结晶度等参数。尤其是针对具体应用可自主选择对应功能的多孔材料,如,针对甲醛吸附,可利用介孔碳作为多孔材料,加速甲醛吸附与分解;针对污水处理应用,采用凹凸棒为多孔核结构,可快速吸附黑臭水体中有机质,加快黑臭水体净化。该法操作简便易行,对设备、技术要求不高,产品成本低。壳核结构光催化材料充分发挥了多孔结构强吸附能力,因此有效提升氧化钛光催化活性,使其有望在印染废水处理、空气净化、抗菌防臭、自清洁、防紫外等领域得到广泛地应用。
附图说明
图1沸石粉核-氧化钛壳光催化材料扫描电子显微镜图
图2石墨烯核-氧化钛壳光催化材料扫描电子显微镜图
图3石墨烯核-氧化钛壳光催化材料可见光催化活性图
图4石墨烯核-氧化钛壳光催化材料可见光催化活性稳定性
图5壳核结构介孔量子氧化钛光催化材料制备方法示意图。
具体实施方式
实施例一:制备活性炭核-氧化钛壳光催化材料
1)取5g偏钛酸(TiO(OH)2),加入20ml浓硫酸,生成硫酸氧钛(TiOSO4),搅拌2小时使反应完全,然后加入20ml的蒸馏水,使其完全溶解。
2)继续搅拌30min,加入5g活性炭得到悬浊液,充分搅拌2小时,然后缓慢滴加20ml的氨水,至pH约等于4~5,充分搅拌4小时,生产灰色沉淀。
3)将灰色沉淀,水洗三次,然后将得到滤饼烘干,退火干燥温度为550℃,持续时间为2h。
4)将干燥后的沉淀磨粉,便得到活性炭核-氧化钛壳光催化材料。制得的材料各指标如下表1所示:
表1
项目 指标
比表面积(m<sup>2</sup>/g) 521
孔容(cm<sup>3</sup>/g) 0.32
孔径(nm) 2.3
晶型 锐钛型
实施例二:制备沸石粉核-氧化钛壳光催化材料
1)取5g偏钛酸(TiO(OH)2),加入20ml浓硫酸,生成硫酸氧钛(TiOSO4),搅拌2小时使反应完全,然后加入20ml的蒸馏水,使其完全溶解。
2)继续搅拌30min,加入5g沸石粉得到悬浊液,充分搅拌2小时,然后缓慢滴加20ml的氨水,至pH约等于4~5,充分搅拌4小时,生产白色沉淀。
3)将白色沉淀,水洗三次,然后将得到滤饼烘干,退火干燥温度为400℃,持续时间为4h。
4)将干燥后的沉淀磨粉,便得到沸石粉核-氧化钛壳光催化材料。制得的材料各指标如下表2所示,其扫描电子显微镜图片如图1所示。
表2
项目 指标
比表面积(m<sup>2</sup>/g) 253
孔容(cm<sup>3</sup>/g) 0.39
孔径(nm) 1.5
晶型 锐钛型
实施例三:制备凹凸棒核-氧化钛壳光催化材料
1)取5g偏钛酸(TiO(OH)2),加入20ml浓硫酸,生成硫酸氧钛(TiOSO4),搅拌2小时使反应完全,然后加入20ml的蒸馏水,使其完全溶解。
2)继续搅拌30min,加入5g凹凸棒得到悬浊液,充分搅拌2小时,然后缓慢滴加20ml的氨水,至pH约等于4~5,充分搅拌4小时,生产黄色沉淀。
3)将黄色沉淀,水洗三次,然后将得到滤饼烘干,退火干燥温度为400℃,持续时间为2h。
4)将干燥后的沉淀磨粉,便得到凹凸棒核-氧化钛壳光催化材料。制得的材料各指标如下表3所示:
表3
项目 指标
比表面积(m<sup>2</sup>/g) 178
孔容(cm<sup>3</sup>/g) 0.23
孔径(nm) 2.8
晶型 锐钛型
实施例四:制备介孔硅核-氧化钛壳光催化材料
1)取5g偏钛酸(TiO(OH)2),加入20ml浓硫酸,生成硫酸氧钛(TiOSO4),搅拌2小时使反应完全,然后加入20ml的蒸馏水,使其完全溶解。
2)继续搅拌30min,加入10g介孔硅得到悬浊液,充分搅拌2小时,然后缓慢滴加20ml的氢氧化钠,至pH约等于4~5,充分搅拌4小时,生产白色沉淀。
3)将白色沉淀,水洗三次,然后将得到滤饼烘干,退火干燥温度为600℃,持续时间为2h。
4)将干燥后的沉淀磨粉,便得到介孔硅核-氧化钛壳光催化材料。制得的材料各指标如下表4所示:
表4
项目 指标
比表面积(m<sup>2</sup>/g) 235
孔容(cm<sup>3</sup>/g) 0.22
孔径(nm) 1.6
晶型 锐钛型
实施例五:制备石墨烯核-氧化钛壳光催化材料
1)取5g偏钛酸(TiO(OH)2),加入20ml浓硫酸,生成硫酸氧钛(TiOSO4),搅拌2小时使反应完全,然后加入20ml的蒸馏水,使其完全溶解。
2)继续搅拌30min,加入5g石墨烯得到悬浊液,充分搅拌2小时,然后缓慢滴加20ml的氢氧化钠,至pH约等于4~5,充分搅拌4小时,生产黑色沉淀。
3)将黑色沉淀,水洗三次,然后将得到滤饼烘干,退火干燥温度为600℃,持续时间为2h。
4)将干燥后的沉淀磨粉,便得到石墨烯核-钛壳光催化材料(见图2)。制得的材料各指标如下表5所示:
表5
Figure BDA0003302822270000071
Figure BDA0003302822270000081
实施例七石墨烯核-氧化钛壳光催化材料可见光催化活性
1)配置20ppm罗丹明B溶液50ml,称取50mg石墨烯核-氧化钛壳光催化材料,将二者置于烧杯中并充分搅拌,先做60min吸附平衡处理。
2)然后打开300W氙灯并置于烧杯上方15cm处,氙灯带有420nm滤波片,可充当可见光源,间隔10min取样。
3)将所有取样离心处理得到上清液,并测试上清液的紫外可见光吸收光谱,最后得到可见光降解数据,光催化活性与稳定性如图3,图4所示。
本说明书未作详细描述的内容属于本领域专业技术人员公知的现有技术。最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (13)

1.一种沉淀-自组装法制备介孔量子氧化钛的方法,其特征在于,包括如下步骤:
(1)以偏钛酸为钛源,将硫酸与偏钛酸混合反应制得硫酸氧钛溶液:
H2TiO3+H2SO4→TiOSO4+2H2O
然后加入多孔材料制得混合液,利用多孔材料表面亲水性能,硫酸氧钛溶液快速扩散到多孔材料孔隙中,得到硫酸氧钛包覆的多孔材料:
TiOSO4+多孔材料→硫酸氧钛复合多孔材料;
(2)继续添加碱性物质并,多孔材料表面的硫酸氧钛与碱性物通过沉淀-自组装过程生成氢氧化钛壳-多孔材料核的沉淀产物:
TiOSO4+碱→TiO(OH)2↓+硫酸盐
Figure FDA0003302822260000011
(3)继续进行固液分离、洗、干燥,将沉淀产物进行高温煅烧得到多孔核-介孔量子氧化钛壳的壳核结构光催化粉体。
2.根据权利要求1所述的一种沉淀-自组装法制备介孔量子氧化钛的方法,其特征在于,步骤(2)中沉淀-自组装过程具体内容为:碱性物质扩散至多孔材料孔隙中,与硫酸氧钛反应生成氢氧化钛,氢氧化钛受高温退火作用,由多孔材料内部自发向外蔓延生长,受孔内局部高压高温扩散气体影响,在孔隙中生长出介孔量子氧化钛,气体继续扩散至多孔材料表层,致使氢氧化钛自组装并生成介孔量子氧化钛壳,最终介孔量子氧化钛自内而外包裹多孔材料。
3.根据权利要求1所述的一种沉淀-自组装法制备介孔量子氧化钛的方法,其特征在于,步骤(1)中,偏钛酸质量分数40%-50%,相对分子质量97.92,浓硫酸密度1.84g/mL,相对分子质量为98。根据权利要求1所述的一种沉淀-自组装法制备介孔量子氧化钛的方法,其特征在于,步骤(2)中偏钛酸与硫酸的摩尔质量比1:1-10。
4.根据权利要求1所述的一种沉淀-自组装法制备介孔量子氧化钛的方法,其特征在于,步骤(1)中偏钛酸与硫酸混合时间为0.1-24小时。
5.根据权利要求1所述的一种沉淀-自组装法制备介孔量子氧化钛的方法,其特征在于,步骤(1)中硫酸氧钛与多孔材料质量比1:1-1000。
6.根据权利要求1所述的一种沉淀-自组装法制备介孔量子氧化钛的方法,其特征在于,步骤(1)中硫酸氧钛与多孔材料混合时间为0.1-24小时。
7.根据权利要求1所述的一种沉淀-自组装法制备介孔量子氧化钛的方法,其特征在于,步骤(1)中硫酸氧钛扩散在孔隙深度的为1-2um。
8.根据权利要求1所述的一种沉淀-自组装法制备介孔量子氧化钛的方法,其特征在于,步骤(1)中硫酸氧钛在多孔材料中扩散温度为80-400℃,硫酸氧钛在多孔材料中扩散时升温速度为2-10℃/min;硫酸氧钛在多孔材料中扩散过程压强为0-30bar。
9.根据权利要求1所述的一种沉淀-自组装法制备介孔量子氧化钛的方法,其特征在于,步骤(2)中碱性材料与硫酸氧钛质量比1:1-1:10;硫酸氧钛与碱性材料混合时间为0.1-24小时;所述碱性物质包括:氨水、氢氧化钠、氢氧化钙、氢氧化铁、氢氧化钾、碳酸氢钠、碳酸钠、氢氧化锌、氢氧化铝、氢氧化铁、氢氧化亚铁、氢氧化镁、氢氧化钴、氢氧化金、氢氧化铝、氢氧化铜、氢氧化铍,以及以上至少两种的组合。
10.根据权利要求1所述的一种沉淀-自组装法制备介孔量子氧化钛的方法,其特征在于,所述的多孔材料包括:沸石粉、分子筛、活性炭、多孔氧化铝、介孔氧化硅、介孔碳、介孔硅、炭黑、凹凸棒、膨润土、硅藻土、三维石墨烯、金属有机物框架材料、共价有机框架材料、二维的金属碳化物或氮化物,以及以上至少两种多孔材料组成的混合物;多孔材料孔径为2-20nm;多孔材料表面亲水性的接触角不大于30°;多孔材料比表面积不小于150m2/g,孔容不小于0.1cm3/g。
11.根据权利要求1所述的一种沉淀-自组装法制备介孔量子氧化钛的方法,其特征在于,步骤(2)中沉淀-自组装过程生成介孔量子氧化钛温度为60-1200℃,升温速度2-20℃/min。
12.根据权利要求1所述的一种沉淀-自组装法制备介孔量子氧化钛的方法,其特征在于,步骤(3)中所述介孔量子氧化钛是指尺寸1-10nm的氧化钛纳米颗粒,且具有孔状结构,其孔径在0.1-2nm,生成介孔量子氧化钛退火时间是0.5-48小时,尺寸3-5nm,孔径为0.3-2nm,比表面积为150-300m2/g,晶型包括:锐钛型、金红石型,以及金红石掺杂锐钛型氧化钛。
13.根据权利要求1所述的一种沉淀-自组装法制备介孔量子氧化钛的方法,其特征在于,步骤(2)中所述多孔核-介孔量子氧化钛壳光催化材料比表面积在200-300m2/g,孔容0.1-2cm3/g。
CN202111195631.XA 2021-10-14 2021-10-14 一种沉淀-自组装法制备壳核结构介孔量子氧化钛的方法 Pending CN113830826A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111195631.XA CN113830826A (zh) 2021-10-14 2021-10-14 一种沉淀-自组装法制备壳核结构介孔量子氧化钛的方法
US18/046,185 US20230125338A1 (en) 2021-10-14 2022-10-13 Method for preparing core-shell structure photocatalytic material by precipitation and self-assembly process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111195631.XA CN113830826A (zh) 2021-10-14 2021-10-14 一种沉淀-自组装法制备壳核结构介孔量子氧化钛的方法

Publications (1)

Publication Number Publication Date
CN113830826A true CN113830826A (zh) 2021-12-24

Family

ID=78968763

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111195631.XA Pending CN113830826A (zh) 2021-10-14 2021-10-14 一种沉淀-自组装法制备壳核结构介孔量子氧化钛的方法

Country Status (2)

Country Link
US (1) US20230125338A1 (zh)
CN (1) CN113830826A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114289008A (zh) * 2022-01-11 2022-04-08 华东师范大学重庆研究院 一种适用于光催化持续释放型的除味净味液体及制备方法
CN114350198A (zh) * 2022-01-14 2022-04-15 华东师范大学重庆研究院 一种自清洁涂层及其制备方法和在洗衣机上的应用
CN114367276A (zh) * 2022-01-14 2022-04-19 华东师范大学重庆研究院 一种光催化剂及其制备方法和应用以及衣物洗涤方法
CN114773882A (zh) * 2022-05-24 2022-07-22 天泰(福建)新材料科技有限公司 一种锦纶化纤消光用钛白粉及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116864293B (zh) * 2023-08-02 2024-05-24 山东春光磁电科技有限公司 一种高频铁氧体材料制备工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘勋等: ""天然矿物负载纳米TiO2复合光催化材料的研究与应用"", 《矿产综合利用》 *
栾亚兰: ""海泡石、沸石负载TiO2的制备及光催化活性研究"", 《中国优秀硕士学位论文数据库的(电子期刊)工程科技I辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114289008A (zh) * 2022-01-11 2022-04-08 华东师范大学重庆研究院 一种适用于光催化持续释放型的除味净味液体及制备方法
CN114289008B (zh) * 2022-01-11 2024-04-02 华东师范大学重庆研究院 一种适用于光催化持续释放型的除味净味液体及制备方法
CN114350198A (zh) * 2022-01-14 2022-04-15 华东师范大学重庆研究院 一种自清洁涂层及其制备方法和在洗衣机上的应用
CN114367276A (zh) * 2022-01-14 2022-04-19 华东师范大学重庆研究院 一种光催化剂及其制备方法和应用以及衣物洗涤方法
CN114773882A (zh) * 2022-05-24 2022-07-22 天泰(福建)新材料科技有限公司 一种锦纶化纤消光用钛白粉及其制备方法

Also Published As

Publication number Publication date
US20230125338A1 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
CN113830826A (zh) 一种沉淀-自组装法制备壳核结构介孔量子氧化钛的方法
Hu et al. Synthesis, structures and applications of single component core-shell structured TiO2: a review
Zhou et al. Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method
Yu et al. Microstructures and photoactivity of mesoporous anatase hollow microspheres fabricated by fluoride-mediated self-transformation
Zhang et al. Preparation and performances of mesoporous TiO2 film photocatalyst supported on stainless steel
Gao et al. Preparation of nano-TiO 2/diatomite-based porous ceramics and their photocatalytic kinetics for formaldehyde degradation
Mamaghani et al. Systematic variation of preparation time, temperature, and pressure in hydrothermal synthesis of macro-/mesoporous TiO2 for photocatalytic air treatment
CN112299481B (zh) 一种Bi2S3的制备方法
CN105618050B (zh) 一种降解含盐废水中有机污染物的可见光响应复合催化剂及其制备方法
Yang et al. Preparation of TiO 2/SiO 2 composite oxide and its photocatalytic degradation of rhodamine B
CN109395763B (zh) 一种硫掺杂g-C3N4/C-dot多孔复合光催化剂及其制备方法与应用
CN111715188A (zh) 一种二氧化钛基纳米复合材料及其制备方法和用途
Yang et al. Degradation of formaldehyde and methylene blue using wood-templated biomimetic TiO2
CN107570194B (zh) 一种Fe/Co-Nx/TiO2光催化剂及其制备方法和应用
CN117046501A (zh) 一种聚多巴胺介导氮碳共掺杂二氧化钛中空微球的制备方法及其应用
Melo et al. Effect of non-ionic surfactant in the solvothermal synthesis of anatase TiO2 nanoplates with a high percentage of exposed {001} facets and its role in the photocatalytic degradation of methylene blue dye
WO2017068350A1 (en) Methods of making metal oxide catalysts
CN113877586A (zh) 一种可控形貌的分级结构铈铁双金属复合氧化物的制备方法及其应用
Ngo Photocatalytic degradation of phenol in aqueous solutions using TiO2/SiO2 composite
CN104923197A (zh) 具有高效光催化性能的复合物溶胶制备方法
CN111215139B (zh) 可漂浮型纳米复合可见光催化薄膜材料及其制法和应用
CN109999774B (zh) 纳米二氧化钛/γ-氧化铝复合材料粉末的制备方法
KR101811017B1 (ko) 광촉매용 중형기공 구형 이산화 티타늄/다중벽 탄소나노튜브 복합체의 제조방법
CN109078644B (zh) 石墨烯负载Bi-BiOCl-TiO2光催化剂及制法
Zhou et al. Enhanced photocatalytic activity of Fe-doped TiO2 coated on N-doped activated carbon composites for photocatalytic degradation of dyeing wastewater

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220909

Address after: 5-5A, Building A8, Kunming International Industrial Hemp Industrial Park, No. 38, Jingjing Road, Economic Development Zone, Kunming City, Yunnan Province, 650000 (Haohong Industrial Park)

Applicant after: Yunnan Huapu quantum Material Co.,Ltd.

Applicant after: Chongqing Research Institute of East China Normal University

Applicant after: EAST CHINA NORMAL University

Applicant after: SHANGHAI LANGYAN OPTOELECTRONICS TECHNOLOGY Co.,Ltd.

Applicant after: Chongqing Huapu Quantum Technology Co.,Ltd.

Applicant after: Chongqing Huapu Environmental Protection Technology Co.,Ltd.

Applicant after: Chongqing Menghe Biotechnology Co.,Ltd.

Address before: 650000 China (Yunnan) pilot Free Trade Zone Kunming Economic Development Zone 38 Jingjing Road (Haohong Industrial Park)

Applicant before: Yunnan Huapu quantum Material Co.,Ltd.

Applicant before: Chongqing Research Institute of East China Normal University

Applicant before: EAST CHINA NORMAL University

Applicant before: SHANGHAI LANGYAN OPTOELECTRONICS TECHNOLOGY Co.,Ltd.

TA01 Transfer of patent application right
RJ01 Rejection of invention patent application after publication

Application publication date: 20211224