CN114728946A - Sting (干扰素基因刺激剂)的多杂环调节剂 - Google Patents

Sting (干扰素基因刺激剂)的多杂环调节剂 Download PDF

Info

Publication number
CN114728946A
CN114728946A CN202080081716.2A CN202080081716A CN114728946A CN 114728946 A CN114728946 A CN 114728946A CN 202080081716 A CN202080081716 A CN 202080081716A CN 114728946 A CN114728946 A CN 114728946A
Authority
CN
China
Prior art keywords
methyl
pharmaceutically acceptable
cancer
acceptable salt
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080081716.2A
Other languages
English (en)
Inventor
A·芬索姆
E·L·费希尔
K·S·加吉瓦拉
许璨宇
M·贾拉伊
I·J·麦卡尔平
R·帕特曼
E·Y·芮
T·P·陈
M·J·怀瑟斯
张磊
周大卉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfizer Inc
Original Assignee
Pfizer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfizer Inc filed Critical Pfizer Inc
Publication of CN114728946A publication Critical patent/CN114728946A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41961,2,4-Triazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/424Oxazoles condensed with heterocyclic ring systems, e.g. clavulanic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/427Thiazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/454Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. pimozide, domperidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53861,4-Oxazines, e.g. morpholine spiro-condensed or forming part of bridged ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D451/00Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof
    • C07D451/02Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof containing not further condensed 8-azabicyclo [3.2.1] octane or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane; Cyclic acetals thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D455/00Heterocyclic compounds containing quinolizine ring systems, e.g. emetine alkaloids, protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine
    • C07D455/02Heterocyclic compounds containing quinolizine ring systems, e.g. emetine alkaloids, protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine containing not further condensed quinolizine ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems
    • C07D491/107Spiro-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/08Bridged systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Endocrinology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Saccharide Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

通式(I)的化合物或其药学上可接受的盐,制备这些化合物的方法,含有这些化合物的组合物,以及这些化合物的用途。

Description

STING (干扰素基因刺激剂)的多杂环调节剂
发明领域
本发明涉及另外的新的STING (干扰素基因刺激剂)的活化剂,其可用于治疗哺乳动物中的疾病和病症诸如炎性疾病、变应性和自身免疫性疾病、感染性疾病和异常细胞生长诸如癌症,和用作疫苗佐剂。本发明还涉及使用这样的化合物治疗哺乳动物、特别是人类中的异常细胞生长的方法,以及这样的化合物的药物组合物。
发明背景
先天免疫系统是第一道防线,其由模式识别受体(PRR)在检测到来自病原体的配体以及损伤有关的分子模式后引发。已经鉴定了越来越多的这些受体,它们包括双链DNA和被称作环状二核苷酸(CDN)的独特核酸的传感器。PRR的活化导致参与炎性应答的基因的上调,包括抑制病原体复制和促进适应性免疫的1型干扰素(IFN和INF)、促炎性细胞因子和趋化因子。
衔接蛋白STING(也称为TMEM 173)已被鉴定为响应于细胞溶质核酸的先天性免疫传感途径中的中心信号传递分子。STING的活化导致IRF3和NFκB途径的上调,从而导致干扰素β(INF-β)和其它细胞因子的诱导。STING对于对来自病原体或宿主来源的细胞溶质DNA的应答以及对CDN(有时称为第二信使)的应答是至关重要的。G.N. Barber, “Sting:infection, inflammation and cancer,”Nat. Rev. Immun., 2015, 15, 第760页。
CDN最初被鉴定为负责控制原核细胞中的众多应答的细菌信使。细菌CDN(诸如c-二-GMP)为对称分子,其特征在于两个3’,5’磷酸二酯键。最近已通过X-射线晶体学证实了细菌CDN对STING的直接活化(Burdette D. L. 和Vance R. E., Nature Immunology,2013: 14 19-26)。因此,细菌CDN作为潜在的疫苗佐剂引起了人们的兴趣(Libanova R. 等人, Microbial Biotechnology 2012: 5, 168-176)。最近,已证明对细胞溶质DNA的应答包括通过一种被称为环状鸟嘌呤腺嘌呤合酶(cGAS)的酶产生内源性CDN,从而产生一种新颖的哺乳动物CDN信号传递分子,该分子被鉴定为环状鸟嘌呤腺嘌呤单磷酸(cGAMP),其结合并活化STING。cGAMP与STING的相互作用也已通过X-射线晶体学进行了证实。与细菌CDN不同,cGAMP是一种不对称分子,其特征在于其混合的2’,5’和3’,5’磷酸二酯键。与细菌CDN一样,cGAMP活化STING,从而导致1型干扰素(1型INF)的诱导。1型INF响应于入侵病原体的作用得到了充分确立。重组干扰素α(IFNα)是第一种被批准的生物治疗剂并且已成为病毒感染和癌症的重要疗法。还已知INF是免疫应答的有效调节剂,作用于免疫系统的细胞。
与用于制备CDN的合成活动相比,下文举例说明的化合物在一般意义上更易于合成得到。此外,与CDN类的STING活化剂相比,这种类型的化合物造成细胞渗透性的显著改善。
鉴于其在调节各种生物过程中的作用,STING仍然是用小分子调节的有吸引力的靶标。尽管如此,迄今为止,几乎没有有效的STING活化剂被开发或进入临床。仍然需要鉴定结合STING的其它化合物。仍然需要鉴定活化STING的其它化合物。此外,仍然需要结合STING和/或活化STING并且可以用作治疗剂的化合物。
发明概述
可以刺激先天性免疫应答(包括1型INF和其它细胞因子的活化)的小分子化合物的施用,可以成为治疗和预防包括病毒感染和癌症在内的人类疾病的重要策略。这类免疫调节策略具有鉴定化合物的潜能,所述化合物可用于治疗哺乳动物中的疾病和病症诸如炎性疾病、变应性和自身免疫性疾病、感染性疾病和异常细胞生长诸如癌症,和用作疫苗佐剂。
已经证实本发明的某些化合物在与人树突细胞(DC)和/或外周血单核细胞(PBMC)温育后结合STING、活化STING和/或诱导1型INF和/或其它细胞因子和/或共刺激因子。诱导人INF的化合物可用于治疗各种障碍,例如治疗变应性疾病和其它炎性病症。本发明的某些化合物可以结合STING,但作为拮抗剂起作用,且这些可用于治疗各种自身免疫性疾病。
设想用活化剂或抑制剂靶向STING可能是一种有前途的方案,其用于治疗其中1型INF途径的调节具有益处的疾病和病症和用作疫苗佐剂,所述疾病和病症包括炎性疾病、变应性和自身免疫性疾病、感染性疾病、癌症。
下文所述的本发明的小分子化合物的每个实施方案可以与本文描述的本发明的化合物的任意其它实施方案组合,只要所述任意其它实施方案不与所组合的实施方案矛盾即可。此外,在下面描述本发明的每个实施方案在其范围内设想了本发明化合物的药学上可接受的盐。因此,在本文描述的所有化合物的描述中隐含短语“或其药学上可接受的盐”。
本发明包括实施方案,其中提供了式(I)的化合物或其药学上可接受的盐:
Figure 407757DEST_PATH_IMAGE001
其中
在环中的每个
Figure 793739DEST_PATH_IMAGE002
独立地代表5元杂芳族环中的两个共轭双键和6元芳族或杂芳族环中的三个共轭双键;
W1选自CR11和N;
X1选自CR1、C(R1)2、N、NR1、O和S;
X2选自CR2、C(R2)2、N、NR2、O和S;
X3选自CR3、C(R3)2、N、NR3、O和S;
其中X1、X2和X3中的两个或三个独立地选自N、NR1、NR2、NR3、O和S;且
其中X1、X2和X3中的至少一个选自N、NR1、NR2和NR3
Y1选自N、NR4、O、S、CR4和C(R4)2
Y2选自N、NR5、O、S、CR5和C(R5)2
Y3选自N、NR6、O、S、CR6和C(R6)2
Y4选自C和N;
Y5选自C和N;
其中Y1、Y2和Y3中的至少一个且不超过两个独立地选自N、NR4、NR5和NR6
其中当Y4或Y5中的一个是N时,Y4或Y5中的另一个是C;
Z1选自C和N;
Z2选自N、NR8和CR8
Z3选自N、NR9和CR9
Z4选自N、NR10和CR10
Z5选自N、NR7和CR7
其中Z1、Z2、Z3、Z4和Z5中的两个或三个独立地选自N、NR7、NR8、NR9和NR10
每个R1独立地选自H、C1-C8烷基、C1-C8亚烷基-NRR和C1-C8亚烷基-C(O)OR;
每个R2独立地选自H、C1-C8烷基、C1-C8亚烷基-NRR、C1-C8亚烷基-C(O)OR、C1-C8亚烷基-OR和C1-C8亚烷基-O-P(O)(OH)2
每个R3独立地选自H、C1-C8烷基、C1-C8亚烷基-NRR、C1-C8亚烷基-C(O)OR和C1-C8亚烷基-O-P(O)(OH)2
每个R4独立地选自H、-OR、-NRR、任选地被一个或两个-OR取代的C1-C8烷基、C1-C8亚烷基-NRR、-C(O)OR、C1-C8亚烷基-C(O)OR、3-10元杂环、任选地被一个3-10元杂环取代的C1-C8亚烷基-3-10元杂环、(C3-C10)-环烃基和C1-C8亚烷基-(C3-C10)-环烃基;
每个R5独立地选自H、OR、C1-C8烷基、-NRR、C1-C8亚烷基-NRR、-C(O)OR、C1-C8亚烷基-C(O)OR、3-10元杂环、任选地被一个3-10元杂环取代的C1-C8亚烷基-3-10元杂环和C1-C8亚烷基-OR;
每个R6是H;
R7选自H、卤素、羟基或NH2
R8选自H、任选地被一个或两个-NRR或-OR取代的C1-C8烷基、C1-C8亚烷基-C(O)OR和C1-C8亚烷基-SO2R;
R9是H;
R10选自H、任选地被一个或两个-OR取代的C1-C8烷基和卤素;
R11选自H、C1-C8烷基、-OR和卤素;
R12是-C(O)N(R)2或-C(O)NHR;
R13是H;
每个R独立地选自H或C1-C8烷基或C1-C8卤代烷基,或两个R与它们所结合的一个或多个原子一起连接形成-(C3-C10)环烃基或3-10元杂环,其中所述3-10元杂环含有一个、两个或三个选自N、O和S的原子;且
其中,当两个R与它们所结合的一个或多个原子一起连接形成-(C3-C10)环烃基或3-10元杂环时,所述-(C3-C10)环烃基或3-10元杂环任选地被一个或多个取代基取代,所述取代基各自独立地选自C1-C8烷基、羟基、C1-C8烷氧基、-(C3-C10)环烃基、3-10元杂环、卤素和氰基。
本发明包括实施方案,其中提供了式(II)的化合物或其药学上可接受的盐:
Figure 307897DEST_PATH_IMAGE003
其中
在环中的每个
Figure 421215DEST_PATH_IMAGE004
独立地代表5元杂芳族环中的两个共轭双键和6元芳族或杂芳族环中的三个共轭双键;且
其中W1、X1、X2、X3、Y1、Y2、Y3、Y4、Y5、R1、R2、R3、R4、R5、R6、R7、R8、R10、R11、R12、R13和R如关于式(I)所定义。
本发明包括实施方案,其中提供了式(III)的化合物或其药学上可接受的盐:
Figure 970008DEST_PATH_IMAGE005
其中
在环中的每个
Figure 526892DEST_PATH_IMAGE006
独立地代表5元杂芳族环中的两个共轭双键和6元芳族或杂芳族环中的三个共轭双键;且
其中X1、X2、X3、R1、R2、R3、R4、R7、R8、R10、R11、R12、R13和R如关于式(I)所定义。
本发明包括实施方案,其中提供了式(IIIA)的化合物或其药学上可接受的盐:
Figure 262766DEST_PATH_IMAGE007
其中R2、R4、R7、R8、R10、R11、R12、R13和R如关于式(I)所定义。
本发明包括实施方案,其中提供了式(IIIB)的化合物或其药学上可接受的盐:
Figure 930508DEST_PATH_IMAGE008
其中R3、R4、R7、R8、R10、R11、R12、R13和R如关于式(I)所定义。
本发明包括实施方案,其中提供了式(IIIC)的化合物或其药学上可接受的盐:
Figure 333808DEST_PATH_IMAGE009
其中R2、R3、R4、R7、R8、R10、R11、R12、R13和R如关于式(I)所定义。
本发明包括实施方案,其中提供了式(IIID)的化合物或其药学上可接受的盐:
Figure 45281DEST_PATH_IMAGE010
其中R3、R4、R7、R8、R10、R11、R12、R13和R如关于式(I)所定义。
本发明包括实施方案,其中提供了式(IV)的化合物或其药学上可接受的盐:
Figure 534031DEST_PATH_IMAGE011
其中
在环中的每个
Figure 5463DEST_PATH_IMAGE012
独立地代表5元杂芳族环中的两个共轭双键和6元芳族或杂芳族环中的三个共轭双键;且
其中X1、X2、X3、R1、R2、R3、R4、R5、R7、R8、R10、R11、R12、R13和R如关于式(I)所定义。
本发明包括实施方案,其中提供了式(IVA)的化合物或其药学上可接受的盐:
Figure 263269DEST_PATH_IMAGE013
其中R2、R4、R5、R7、R8、R10、R11、R12、R13和R如关于式(I)所定义。
本发明包括实施方案,其中提供了式(IVB)的化合物或其药学上可接受的盐:
Figure 161955DEST_PATH_IMAGE014
其中R3、R4、R5、R7、R8、R10、R11、R12、R13和R如关于式(I)所定义。
本发明包括实施方案,其中提供了式(V)的化合物或其药学上可接受的盐:
Figure 138002DEST_PATH_IMAGE015
其中
在环中的每个
Figure 396813DEST_PATH_IMAGE016
独立地代表5元杂芳族环中的两个共轭双键和6元芳族或杂芳族环中的三个共轭双键;且
其中X1、X2、X3、R1、R2、R3、R4、R7、R8、R10、R11、R12、R13和R如关于式(I)所定义。
本发明包括实施方案,其中提供了式(VA)的化合物或其药学上可接受的盐:
Figure 774705DEST_PATH_IMAGE017
其中R2、R4、R7、R8、R10、R11、R12、R13和R如关于式(I)所定义。
本发明包括实施方案,其中提供了式(VB)的化合物或其药学上可接受的盐:
Figure 578713DEST_PATH_IMAGE018
其中R3、R4、R7、R8、R10、R11、R12、R13和R如关于式(I)所定义。
本发明包括实施方案,其中提供了式(VI)的化合物或其药学上可接受的盐:
Figure 42055DEST_PATH_IMAGE019
其中
在环中的每个
Figure 589711DEST_PATH_IMAGE020
独立地代表5元杂芳族环中的两个共轭双键和6元芳族或杂芳族环中的三个共轭双键;且
其中X1、X2、X3、R1、R2、R3、R4、R7、R8、R10、R11、R12、R13和R如关于式(I)所定义。
本发明包括实施方案,其中提供了式(VIA)的化合物或其药学上可接受的盐:
Figure 822110DEST_PATH_IMAGE021
其中R2、R4、R7、R8、R10、R11、R12、R13和R如关于式(I)所定义。
本发明包括实施方案,其中提供了式(VIB)的化合物或其药学上可接受的盐:
Figure 577445DEST_PATH_IMAGE022
其中R3、R4、R7、R8、R10、R11、R12、R13和R如关于式(I)所定义。
本发明包括实施方案,其中提供了式(VII)的化合物或其药学上可接受的盐:
Figure 262504DEST_PATH_IMAGE023
其中
在环中的每个
Figure 879430DEST_PATH_IMAGE024
独立地代表5元杂芳族环中的两个共轭双键和6元芳族或杂芳族环中的三个共轭双键;且
其中X1、X2、X3、R1、R2、R3、R4、R7、R8、R10、R12、R13和R如关于式(I)所定义。
本发明包括实施方案,其中提供了式(VIIA)的化合物或其药学上可接受的盐:
Figure 700756DEST_PATH_IMAGE025
其中R2、R4、R7、R8、R10、R12、R13和R如关于式(I)所定义。
本发明包括实施方案,其中提供了式(VIIB)的化合物或其药学上可接受的盐:
Figure 377725DEST_PATH_IMAGE026
其中R3、R4、R7、R8、R10、R12、R13和R如关于式(I)所定义。
本发明包括实施方案,其中提供了式(VIIC)的化合物或其药学上可接受的盐:
Figure 550080DEST_PATH_IMAGE027
其中R2、R4、R7、R8、R10、R12、R13和R如关于式(I)所定义。
本发明包括实施方案,其中提供了式(VIID)的化合物或其药学上可接受的盐:
Figure 688806DEST_PATH_IMAGE028
其中R2、R4、R7、R8、R10、R12、R13和R如关于式(I)所定义。
在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R1独立地是H。
在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R2独立地选自H;C1-C8烷基,例如CH3;和C1-C8亚烷基-NRR。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R2独立地是C1-C8亚烷基-NRR且其中R选自H和C1-C8烷基,例如CH3,以形成,例如,CH2NH2、CH(NH2)CH3和CH2NH(CH3)。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R2独立地选自H、CH3、CH2NH2、CH(NH2)CH3和CH2NH(CH3)。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R2独立地是CH2NH2
在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R3独立地选自H;和C1-C8亚烷基-O-P(O)(OH)2,例如CH2OPO(OH)2。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R3独立地选自H和CH2OPO(OH)2。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R3独立地是H。
在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R4独立地选自C1-C8烷基,例如CH3、CH2CH3或CH2CH(CH3)2,所述C1-C8烷基任选地被一个或两个-OR取代;C1-C8亚烷基-NRR,例如(CH2)2NRR、(CH2)3-NRR和CH(CH3)CH2-NRR;C1-C8亚烷基-C(O)OR,例如CH2C(O)OR;和C1-C8亚烷基-3-10元杂环,例如CH2-3-10元杂环。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R4独立地是C1-C8烷基,任选地被一个或两个-OR取代。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R4独立地是C1-C8亚烷基-NRR,例如(CH2)2NRR,其中R选自C1-C8烷基和C1-C8卤代烷基。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R4独立地是C1-C8亚烷基-NRR,其中两个R与它们所结合的原子一起连接形成3-10元杂环,所述3-10元杂环是吗啉基以形成,例如,(CH2)2-(N-吗啉基)、(CH2)3-(N-吗啉基)和CH(CH3)CH2-(N-吗啉基),且所述吗啉基环可以任选地进一步被一个或两个C1-C8烷基取代。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R4独立地是C1-C8亚烷基-NRR,例如(CH2)2NRR,其中两个R与它们所结合的原子一起连接形成3-10元杂环,所述3-10元杂环是8-氧杂-3-氮杂双环[3.2.1]辛烷-3-基以形成,例如,(CH2)2-(N-8-氧杂-3-氮杂双环[3.2.1]辛烷-3-基)。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R4独立地是C1-C8亚烷基-NRR,例如(CH2)2NRR,其中两个R与它们所结合的原子一起连接形成3-10元杂环,所述3-10元杂环是哌啶基以形成,例如,(CH2)2-(N-哌啶基),且所述哌啶基环可以任选地进一步被一个或两个取代基取代,所述取代基选自氰基和卤素。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R4独立地是C1-C8亚烷基-3-10元杂环,例如CH2-3-10元杂环,所述3-10元杂环是氮杂环丁基以形成,例如,CH2-氮杂环丁基,所述氮杂环丁基可以任选地进一步被3-10元杂环(例如,四氢吡喃基)取代。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R4独立地是C1-C8亚烷基-C(O)OR,例如CH2C(O)OR,其中R是H以形成,例如,CH2C(O)OH。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R4独立地选自CH3、CH2CH3、(CH2)3OH、CH2CH(CH2OH)2、(CH2)2N(CH3)CH2CF3、(CH2)2-(N-吗啉基)、(CH2)3-(N-吗啉基)、CH(CH3)CH2-(N-吗啉基)、(CH2)2-(N-2,6-二甲基吗啉基)、(CH2)2-(N-2, 5-二甲基-吗啉基)、(CH2)2-(N-8-氧杂-3-氮杂双环[3.2.1]辛烷-3-基)、(CH2)2-(N-4-氰基哌啶基)、(CH2)2-(N-4,4-二氟-哌啶基)、(CH2)2-(N-2-氟氮杂环丁基)、CH2-(2-氮杂环丁基-N-四氢吡喃基)和CH2C(O)OH。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R4独立地是CH3
在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R5独立地选自H;C1-C8烷基,例如CH3或CH2CH3;C1-C8亚烷基-NRR,例如(CH2)2NRR和(CH2)3-NRR;和C1-C8亚烷基-3-10元杂环,例如CH2-3-10元杂环。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R5独立地是C1-C8烷基,例如CH3或CH2CH3。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R5独立地是C1-C8亚烷基-NRR,例如(CH2)2NRR,其中R选自C1-C8烷基和C1-C8卤代烷基以形成,例如(CH2)2N(CH3)(CH2CF3)。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R5独立地是C1-C8亚烷基-NRR,其中两个R与它们所结合的原子一起连接形成3-10元杂环,所述3-10元杂环是吗啉基以形成,例如,(CH2)2-(N-吗啉基)和(CH2)3-(N-吗啉基),且所述吗啉基环可以任选地进一步被一个或两个C1-C8烷基(例如CH3)取代。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R5独立地是C1-C8亚烷基-3-10元杂环,例如CH2-3-10元杂环,所述3-10元杂环是氮杂环丁基以形成,例如,CH2-氮杂环丁基,所述氮杂环丁基可以任选地进一步被3-10元杂环(例如,四氢吡喃基)取代。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R5独立地选自H、CH3、CH2CH3、(CH2)2N(CH3)(CH2CF3)、(CH2)2-(N-吗啉基)、(CH2)3-(N-吗啉基)、(CH2)2-(N-2,6-二甲基吗啉基)和CH2-(2-氮杂环丁基-N-四氢吡喃基)。
在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,R7是卤素,例如氟或氯。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,R7选自H、氟、氯、羟基和NH2。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,R7是羟基。
在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,R8是C1-C8烷基,例如CH3或CH2CH3,任选地被一个或两个-NRR或-OR取代。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,R8是C1-C8亚烷基-C(O)OR。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,R8选自CH3、CH2CH3、(CH2)3NH2、(CH2)2OH、(CH2)3OH和(CH2)2COOH。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,R8是CH2CH3
在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,R10是C1-C8烷基,例如CH3,所述C1-C8烷基任选地被一个或两个-OR取代。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,R10选自CH3和CH2OH。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,R10是CH3
在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,R11选自H和卤素,例如氟。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,R11选自H和氟。
在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,R12是-CONH2
在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R独立地选自H、C1-C8烷基和C1-C8卤代烷基。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,两个R与它们所结合的一个或多个原子一起连接形成3-10元杂环,其中所述3-10元杂环含有一个、两个或三个选自N、O和S的原子,例如吗啉基、哌啶基、氮杂环丁基或N-8-氧杂-3-氮杂双环[3.2.1]辛烷-3-基。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,两个R与它们所结合的一个或多个原子一起连接形成吗啉基,所述吗啉基任选地被一个或两个C1-C8烷基(例如CH3)取代。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,两个R与它们所结合的一个或多个原子一起连接形成哌啶基,所述哌啶基任选地被一个或两个取代基取代,所述取代基独立地选自氰基和卤素,例如氟。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,两个R与它们所结合的一个或多个原子一起连接形成氮杂环丁基,所述氮杂环丁基任选地被一个取代基取代,所述取代基选自卤素,例如氟。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,两个R与它们所结合的一个或多个原子一起连接形成N-8-氧杂-3-氮杂双环[3.2.1]辛烷-3-基。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R独立地选自H、CH3、CH2FCF3。在本发明的化合物的一个实施方案中,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,每个R独立地是H。
本发明还包括实施方案,其中提供了式(IA)的化合物或其药学上可接受的盐:
Figure 895797DEST_PATH_IMAGE029
其中
在环中的每个
Figure 743667DEST_PATH_IMAGE030
独立地代表5元杂芳族环中的两个共轭双键和6元芳族或杂芳族环中的三个共轭双键;
W1选自CR11和N;
X1选自CR1、C(R1)2、N、NR1、O和S;
X2选自CR2、C(R2)2、N、NR2、O和S;
X3选自CR3、C(R3)2、N、NR3、O和S;
其中X1、X2和X3中的两个或三个独立地选自NR1、NR2、NR3、O和S;且
其中X1、X2和X3中的至少一个选自NR1、NR2和NR3
Y1选自N、NR4、O、S、CR4和C(R4)2
Y2选自N、NR5、O、S、CR5和C(R5)2
Y3选自N、NR6、O、S、CR6和C(R6)2
Y4选自C和N;
Y5选自C和N;
其中Y1、Y2和Y3中的仅一个或仅两个独立地选自N、NR4、NR5和NR6
其中当Y4和Y5中的一个是N时,Y4和Y5中的另一个是C;
Z1选自C和N;
Z2选自N、NR8和CR8
Z3选自N、NR9和CR9
Z4选自N、NR10和CR10
Z5选自N、NR7和CR7
其中Z1、Z2、Z3、Z4和Z5中的两个或三个独立地选自N、NR7、NR8、NR9和NR10
R1选自H、C1-C8烷基、C1-C8亚烷基-NRR和C1-C8亚烷基-C(O)OR;
R2选自H、C1-C8烷基、C1-C8亚烷基-NRR、C1-C8亚烷基-C(O)OR、C1-C8亚烷基-OR和C1-C8亚烷基-O-P(O)(OH)2
R3选自H、C1-C8烷基、C1-C8亚烷基-NRR、C1-C8亚烷基-C(O)OR和C1-C8亚烷基-O-P(O)(OH)2
R4选自H、OR、任选地被一个或两个-OR取代的C1-C8烷基、C0-C8亚烷基-NRR、C0-C8亚烷基-C(O)OR、C0-C8亚烷基-3-10元杂环和C0-C8亚烷基-(C3-C10)-环烃基;
R5选自H、OR、C1-C8烷基、C0-C8亚烷基-NRR、C0-C8亚烷基-C(O)OR、C0-C8亚烷基-3-10元杂环和C0-C8亚烷基-OR;
R6是H;
R7是H或卤素;
R8选自H、任选地被一个或两个-OR取代的C1-C8烷基、C1-C8亚烷基-C(O)OR和C1-C8亚烷基-SO2R;
R9是H;
R10选自H、任选地被一个或两个-OR取代的C1-C8烷基和卤素;
R11选自H、C1-C8烷基、-OR和卤素;
R12是-C(O)N(R)2或-C(O)NHR;
R13是H;
每个R独立地是H或C1-C8烷基,或两个R与它们所结合的一个或多个原子一起连接形成-(C3-C10)环烃基或3-10元杂环,其中所述3-10元杂环含有一个、两个或三个选自N、O和S的原子;且
其中-(C3-C10)环烃基或3-10元杂环任选地被一个或多个取代基取代,所述取代基各自独立地选自C1-C8烷基、羟基、C1-C8烷氧基、-(C3-C10)环烃基、3-10元杂环、卤素和氰基。
本发明还包括式IA的实施方案,其中提供了式IA的化合物或盐,其中Y1、Y2、Y3、Y4和Y5中的不超过两个独立地选自N、NR4、NR5和NR6
本发明还包括式IA的实施方案,其中提供了式IA的化合物或盐,其中Y1、Y2和Y3中的至少一个是C,例如其中Y1、Y2和Y3中的至少一个选自CR4、C(R4)2、CR5、C(R5)2、CR6和C(R6)2
本发明还包括式IA的实施方案,其中提供了式IA的化合物或盐,其中Y4和Y5中的至少一个是C。
本发明还包括式IA的实施方案,其中提供了式IA的化合物或盐,其中Y1-R4不是C-OH,例如其中当Y1选自CR4或C(R4)2时,则R4不是OH。
本发明还包括式IA的实施方案,其中提供了式IA的化合物或盐,其中如果Y2是N或NR5,则Y1-R4不是C-OH,例如其中当Y2选自N或NR5和Y1选自CR4或C(R4)2时,则R4不是OH。本发明还包括式IA的实施方案,其中提供了式IA的化合物或盐,其中Y2-R5不是C-OH,例如其中当Y2选自CR5或C(R5)2时,则R5不是OH。
本发明还包括式IA的实施方案,其中提供了式IA的化合物或盐,其中如果Y1是N或NR4,或如果Y3是N或NR6,则Y2-R2不是C-OH,例如其中当Y1选自N或NR4和Y2选自CR5或C(R5)2时,则R5不是OH,或例如其中当Y3选自N或NR6和Y2选自CR5或C(R5)2时,则R5不是OH。本发明进一步包括式IA的实施方案,其中提供了式IA的化合物或盐,其中:X1选自N和NR1;X2选自N、NR2和S;X3选自CR3、NR3和S;Y1选自N和NR4;Y2选自N和NR5;Y3选自NR6和CR6;Y4选自C;Z1选自C;Z2选自NR8;Z3选自N;Z4选自CR10;Z5选自CR7;R2选自H、C1-C8烷基、C1-C8亚烷基-NRR和C1-C8亚烷基-O-P(O)(OH)2;R3选自H;R4选自H、C1-C8烷基和C0-C8亚烷基-NRR;R5选自H和C1-C8烷基;R10选自H和C1-C8烷基;且R11选自H和卤素。
本发明包括实施方案,其中提供了式(IB)的化合物或其药学上可接受的盐:
Figure 403318DEST_PATH_IMAGE031
其中
在环中的每个
Figure 96468DEST_PATH_IMAGE030
独立地代表5元杂芳族环中的两个共轭双键和6元芳族或杂芳族环中的三个共轭双键;
W1选自CR11和N;
X1选自CR1、C(R1)2、N、NR1、O和S;
X2选自CR2、C(R2)2、N、NR2、O和S;
X3选自CR3、C(R3)2、N、NR3、O和S;
其中X1、X2和X3中的两个或三个独立地选自NR1、NR2、NR3、O和S;且
其中X1、X2和X3中的至少一个选自NR1、NR2和NR3
Y1选自N、NR4、O、S、CR4和C(R4)2
Y2选自N、NR5、O、S、CR5和C(R5)2
Y3选自N、NR6、O、S、CR6和C(R6)2
Y4选自C和N;
Y5选自C和N;
其中Y1、Y2和Y3中的仅一个或仅两个独立地选自N、NR4、NR5和NR6
其中当Y4和Y5中的一个是N时,Y4和Y5中的另一个是C;
Z1选自C和N;
Z2选自N、NR8和CR8
Z3选自N、NR9和CR9
Z4选自N、NR10和CR10
Z5选自N、NR7和CR7
其中Z1、Z2、Z3、Z4和Z5中的两个或三个独立地选自N、NR7、NR8、NR9和NR10
R1选自H、C1-C8烷基、C1-C8亚烷基-NRR和C1-C8亚烷基-C(O)OR;
R2选自H、C1-C8烷基、C1-C8亚烷基-NRR、C1-C8亚烷基-C(O)OR、C1-C8亚烷基-OR和C1-C8亚烷基-O-P(O)(OH)2
R3选自H、C1-C8烷基、C1-C8亚烷基-NRR、C1-C8亚烷基-C(O)OR和C1-C8亚烷基-O-P(O)(OH)2
R4选自H、OR、C1-C8烷基、C0-C8亚烷基-NRR、C0-C8亚烷基-C(O)OR、C0-C8亚烷基-3-10元杂环、C0-C8亚烷基-(C3-C10)环烃基和C0-C8亚烷基-OR;
R5选自H、OR、C1-C8烷基、C0-C8亚烷基-NRR、C0-C8亚烷基-C(O)OR、C0-C8亚烷基-3-10元杂环和C0-C8亚烷基-OR;
R6是H;
R7是H或卤素;
R8选自H、任选地被一个或两个-OR取代的C1-C8烷基、C1-C8亚烷基-C(O)OR和C1-C8亚烷基-SO2R;
R9是H;
R10选自H、C1-C8烷基和卤素;
R11选自H、C1-C8烷基、-OR和卤素;
R12是-C(O)N(R)2或-C(O)NHR;
R13是H;
每个R独立地是H或C1-C8烷基,或两个R与它们所结合的一个或多个原子一起连接形成-(C3-C10)环烃基或3-10元杂环,其中所述3-10元杂环含有一个、两个或三个选自N、O和S的原子,且其中所述-(C3-C10)环烃基或3-10元杂环任选地被一个或多个取代基取代,所述取代基各自独立地选自C1-C8烷基、羟基、C1-C8烷氧基、-(C3-C10)环烃基、3-10元杂环、卤素和氰基。
本发明还包括式IB的实施方案,其中提供了式IB的化合物或盐,其中Y1、Y2、Y3、Y4和Y5中的不超过两个独立地选自N、NR4、NR5和NR6
本发明还包括式IB的实施方案,其中提供了式IB的化合物或盐,其中Y1、Y2和Y3中的至少一个是C,例如其中Y1、Y2和Y3中的至少一个选自CR4、C(R4)2、CR5、C(R5)2、CR6和C(R6)2
本发明还包括式IB的实施方案,其中提供了式IB的化合物或盐,其中Y4和Y5中的至少一个是C。
本发明还包括式IB的实施方案,其中提供了式IB的化合物或盐,其中Y1-R4不是C-OH,例如其中当Y1选自CR4或C(R4)2时,则R4不是OH。
本发明还包括式IB的实施方案,其中提供了式IB的化合物或盐,其中如果Y2是N或NR5,则Y1-R4不是C-OH,例如其中当Y2选自N或NR5和Y1选自CR4或C(R4)2时,则R4不是OH。
本发明还包括式IB的实施方案,其中提供了式IB的化合物或盐,其中Y2-R5不是C-OH,例如其中当Y2选自CR5或C(R5)2时,则R5不是OH。
本发明还包括式IB的实施方案,其中提供了式IB的化合物或盐,其中如果Y1是N或NR4,或如果Y3是N或NR6,则Y2-R2不是C-OH,例如其中当Y1选自N或NR4和Y2选自CR5或C(R5)2时,则R5不是OH,或例如其中当Y3选自N或NR6和Y2选自CR5或C(R5)2时,则R5不是OH。
本发明进一步包括式IB的实施方案,其中提供了式IB的化合物或盐,其中:X1选自N和NR1;X2选自N、NR2和S;X3选自CR3、NR3和S;Y1选自N和NR4;Y2选自N和NR5;Y3选自NR6和CR6;Y4选自C;Z1选自C;Z2选自NR8;Z3选自N;Z4选自CR10;Z5选自CR7;R2选自H、C1-C8烷基、C1-C8亚烷基-NRR和C1-C8亚烷基-O-P(O)(OH)2;R3选自H;R4选自H、C1-C8烷基和C0-C8亚烷基-NRR;R5选自H和C1-C8烷基;R10选自H和C1-C8烷基;且R11选自H和卤素。
本发明的其它实施方案包括化合物,其选自:
Figure 157965DEST_PATH_IMAGE032
Figure 911157DEST_PATH_IMAGE033
Figure 301513DEST_PATH_IMAGE034
Figure 63933DEST_PATH_IMAGE035
Figure 714357DEST_PATH_IMAGE036
Figure 638451DEST_PATH_IMAGE037
Figure 272694DEST_PATH_IMAGE038
或其药学上可接受的盐。
在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,结合STING。在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,竞争性地结合STING。在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,与天然配体相比竞争性地结合STING。在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,竞争性地结合STING,其体外Ki小于0.750 μM,优选地小于约0.500 μM,更优选地小于约0.250 μM,且甚至更优选地小于约0.100 μM。在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,竞争性地结合STING,其体外Ki小于0.750 μM,优选地小于约0.500 μM,更优选地小于约0.250 μM,且甚至更优选地小于约0.100 μM,所述体外Ki通过放射性配体结合测定法(诸如闪烁迫近测定法)来确定。在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,竞争性地结合STING,其体外Ki小于0.750 μM,优选地小于约0.500 μM,更优选地小于约0.250 μM,且甚至更优选地小于约0.100 μM,所述体外Ki通过闪烁迫近测定法来确定,所述测定法包括以下步骤:
(i)在合适的缓冲液中,将100nM STING蛋白固定化在合适的载体(例如20 μg链霉亲和素聚乙烯基甲苯(SA-PVT)珠子)上,所述缓冲液任选地包含150 mM NaCl、25 mM Hepes(pH 7.5)、0.1 mM EDTA、1 mM DTT、0.005% (v/v)吐温-20和1% (v/v) DMSO;
(ii)从100 μM起始浓度开始以3倍稀释系列加入本发明的化合物或其药学上可接受的盐,并使其在室温达到平衡,例如20分钟;
(iii)以100nM浓度加入3H-cGAMP;
(iv)相对于完全阻断3H-cGAMP结合的阳性对照化合物和阴性对照DMSO标准化;和
(v)使用Cheng-Prusoff方程式从IC50确定竞争性结合的KI
其中所述STING蛋白是由具有N-端和C-端截短的残基155-341组成的STING构建体,其中N-端跨膜结构域(1-154)以及C-端尾巴(342-379)已经被除去,且其已经例如用大肠杆菌生物素连接酶(BirA)酶促地高特异性地N-端生物素化(包含高亲和力生物素化肽(例如AviTagTM))。
在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,活化STING。在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,活化STING途径,包括STING途径成员诸如IRF3。在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,刺激先天性免疫应答。在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,诱导1型IFN,例如IFNβ。在一个实施方案中,本发明的化合物,或其药学上可接受的盐,诱导除1型IFN以外的细胞因子。在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,活化共刺激因子。在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,诱导1型IFN和其它细胞因子和活化共刺激因子。
在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,活化STING,其体外EC50为约100 μM或更小,优选约50 μm或更小,更优选约20 μM或更小,且最优选约10 μm或更小,所述体外EC50通过监测IRF3的磷酸化的测定法,诸如THP-1细胞ELISA测定法来确定。在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,活化STING,其体外EC50为约100 μM或更小,优选约50 μm或更小,更优选约20 μM或更小,且最优选约10 μm或更小,所述体外EC50通过使用THP-1细胞ELISA测定法监测IRF3的磷酸化来确定,所述测定法包括以下步骤:
(i)在添加了2 mM L-谷氨酰胺、10% 胎牛血清和0.5% Pen-Strep的RPMI培养基中培养THP-1细胞,并温育,例如在37℃、5% CO2温育过夜;
(ii)加入本发明的化合物或其药学上可接受的盐,所述化合物或其盐已经在RPMI培养基中稀释,并温育,例如3小时;
(iii)在RIPA缓冲液中裂解细胞,将裂解物的等分试样转移至用小鼠抗-人IRF-3捕获抗体包被的平板并温育,例如在4℃温育16小时;
(iv)加入兔抗-磷酸化IRF3检测抗体并进一步温育,例如1.5小时;
(v)加入HRP-连接的二抗并进一步温育,例如30分钟;
(vi)用发光试剂产生发光信号;和
(vii)用已知将磷酸化IRF3信号最大化的阳性对照STING激动剂和阴性对照DMSO,将所述信号标准化至“%作用”。
在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,活化STING,其体外EC50为约100 μM或更小,优选约50 μm或更小,更优选约20 μM或更小,且最优选约10 μm或更小,所述体外EC50通过监测干扰素-β诱导的测定法来确定,诸如THP-1 SG报道细胞系测定法。在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,活化STING,其体外EC50为约100 μM或更小,优选约50 μm或更小,更优选约20 μM或更小,且最优选约10 μm或更小,所述体外EC50通过使用THP-1 SG报道细胞系测定法监测干扰素-β诱导来确定,所述测定法包括以下步骤:
(i)在潮霉素B和博来霉素(zeocin)存在下在添加了2 mM L-谷氨酰胺、10% 胎牛血清和0.5% Pen-Strep的RPMI培养基中培养THP-1 ISG细胞;
(ii)加入本发明的化合物或其药学上可接受的盐,所述化合物或其盐已经在RPMI培养基中稀释,并温育,例如24小时;
(iii)将发光试剂加入离心细胞上清液的等分试样;和
(iv)测量发光信号,并用已知将萤光素酶信号最大化的阳性对照STING激动剂和阴性对照DMSO将其标准化至“%作用”。
在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,活化STING,其体外EC50为约15 μM或更小,优选约1 μm或更小,更优选约0.5 μM或更小,且最优选约0.1 μm或更小,所述体外EC50通过监测外周血单核细胞(PBMC)中的干扰素-β诱导的测定法确定,诸如HTRF IFNβ测定法。在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,活化STING,其体外EC50为约15 μM或更小,优选约1 μm或更小,更优选约0.5 μM或更小,且最优选约0.1 μm或更小,所述体外EC50通过使用HTRF IFNβ测定法监测PBMC中的干扰素-β诱导来确定,所述测定法包括:
(i)将PBMC接种在RPMI培养基中并温育,例如在37℃温育过夜;
(ii)加入本发明的化合物或其药学上可接受的盐,所述化合物或其盐已经在RPMI培养基中稀释,并温育,例如温育另外4小时;
(iii)收集例如在1500 x g离心5分钟后的培养基;
(iv)将所述培养基的等分试样与来自HTRF IFNβ测定法的抗体反应试剂混合,并与有关的测定抗体例如以2:1比率合并;
(v)测量FRET信号,例如使用BMG Pherastar微量培养板读数器(比率665 nm/620nm);和
(vi)用已知将萤光素酶信号最大化的阳性对照STING激动剂和阴性对照DMSO,将所述信号标准化至“%作用”;
其中使用等体积的磷酸盐缓冲盐水和2% 胎牛血清、密度梯度介质(例如LymphoprepTM)和离心,从新鲜人全血的leukopak制品分离PBMC;和
其中所述PBMC来自经验证为STING野生型的单个人供体。
在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,活化STING,其体外EC50为约5 μM或更小,优选约1 μm或更小,更优选约0.5 μM或更小,且最优选约0.1 μm或更小,所述体外EC50通过监测外周血单核细胞(PBMC)中IRF3的磷酸化的测定法来确定,诸如磷酸化IRF3测定法。在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,活化STING,其体外EC50为约5 μM或更小,优选约1 μm或更小,更优选约0.5 μM或更小,且最优选约0.1 μm或更小,所述体外EC50通过使用磷酸化IRF3测定法监测外周血单核细胞(PBMC)中IRF3的磷酸化来确定,所述测定法包括:
(i)将PBMC接种在RPMI培养基中并温育,例如在37℃在5% CO2下温育过夜;
(ii)加入本发明的化合物或其药学上可接受的盐,所述化合物或其盐已经在RPMI培养基中稀释,并温育,例如温育另外4小时;
(iii)在RIPA缓冲液中裂解细胞,将裂解物的等分试样转移至用小鼠抗-人IRF-3捕获抗体包被的平板并温育,例如在4℃温育16小时;
(iv)加入兔抗-磷酸化IRF3检测抗体并进一步温育,例如1.5小时;
(v)加入HRP-连接的二抗并进一步温育,例如30分钟;
(viii)用发光试剂产生发光信号;和
(vii)用已知将萤光素酶信号最大化的阳性对照STING激动剂和阴性对照DMSO,将所述信号标准化至“%作用”;
其中使用等体积的磷酸盐缓冲盐水和2% 胎牛血清、密度梯度介质(例如LymphoprepTM)和离心,从新鲜人全血的leukopak制品分离PBMC;和
其中所述PBMC来自经验证为STING野生型的单个人供体。
在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,竞争性地结合STING,其体外Ki小于0.750 μM,优选小于约0.500 μM,更优选小于约0.250 μM,且甚至更优选小于约0.100 μM,并活化STING,其体外EC50为约100 μM或更小,优选约50 μm或更小,更优选约20 μM或更小,且最优选约10 μm或更小,所述体外EC50通过监测IRF3的磷酸化的测定法来确定。
在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,竞争性地结合STING,其体外Ki小于0.750 μM,优选小于约0.500 μM,更优选小于约0.250 μM,且甚至更优选小于约0.100 μM,并活化STING,其体外EC50为约100 μM或更小,优选约50 μm或更小,更优选约20 μM或更小,且最优选约10 μm或更小,所述体外EC50通过监测干扰素-β诱导的测定法来确定。
在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,竞争性地结合STING,其体外Ki小于0.750 μM,优选地小于约0.500 μM,更优选地小于约0.250 μM,且甚至更优选地小于约0.100 μM,并活化STING,其体外EC50为约15 μM或更小,优选约1 μm或更小,更优选约0.5 μM或更小,且最优选约0.1 μm或更小,所述体外EC50通过监测外周血单核细胞中的干扰素-β诱导的测定法来确定。
在一个实施方案中,本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐,竞争性地结合STING,其体外Ki小于0.750 μM,优选地小于约0.500 μM,更优选地小于约0.250 μM,且甚至更优选地小于约0.100 μM,并活化STING,其体外EC50为约5 μM或更小,优选约1 μm或更小,更优选约0.5 μM或更小,且最优选约0.1 μm或更小,所述体外EC50通过监测外周血单核细胞中IRF3的磷酸化的测定法来确定。
本发明的其它实施方案包括药物组合物,其包含如本文中所述的化合物或盐,或其药学上可接受的盐,和药学上可接受的载体。任选地,这样的组合物可以包含如本文中所述的化合物或盐,其为抗体-药物缀合物的组分;和/或可以包含如本文中所述的化合物,其为基于颗粒的递送系统的组分。
本发明还包括治疗哺乳动物中的异常细胞生长的方法,所述方法包括给所述哺乳动物施用治疗有效量的如本文中所述的化合物或盐。该方法可以任选地采用如本文中所述的化合物或盐作为抗体-药物缀合物的组分或作为基于颗粒的递送系统的组分。在这样的实施方案中,异常细胞生长可以是癌症。如果异常细胞生长是癌症,要治疗的癌症可以是肺癌、骨癌、胰腺癌、皮肤癌、头或颈癌、皮肤或眼内黑素瘤、子宫癌、卵巢癌、直肠癌、肛门区域的癌症、胃癌、结肠癌、乳腺癌、子宫癌、输卵管癌、子宫内膜癌、子宫颈癌、阴道癌、外阴癌、霍奇金病、食管癌、小肠癌、内分泌系统的癌症、甲状腺癌、甲状旁腺癌、肾上腺癌、软组织肉瘤、尿道癌、阴茎癌、前列腺癌、慢性或急性白血病、淋巴细胞性淋巴瘤、膀胱癌、肾或输尿管的癌症、肾细胞癌、肾盂癌、中枢神经系统(CNS)的肿瘤、原发性CNS淋巴瘤、脊髓轴肿瘤、脑干神经胶质瘤或垂体腺瘤。在一个实施方案中,所述癌症是膀胱癌。在一个实施方案中,所述膀胱癌是尿路上皮癌。在一个实施方案中,所述膀胱癌是非肌肉侵袭性膀胱癌(NMIBC)。在一个实施方案中,所述膀胱癌是肌肉侵袭性膀胱癌(MIBC)。在一个实施方案中,所述膀胱癌是非转移性尿路上皮癌。在一个实施方案中,所述膀胱癌是转移性尿路上皮癌。在一个实施方案中,所述膀胱癌是非尿路上皮癌。在一个实施方案中,所述哺乳动物是人。
本发明还包括治疗哺乳动物中的炎性疾病、变应性疾病、自身免疫性疾病和感染性疾病的方法,所述方法包括给所述哺乳动物施用治疗有效量的如本文中所述的化合物或盐。该方法可以任选地采用如本文中所述的化合物或盐作为抗体-药物缀合物的组分或作为基于颗粒的递送系统的组分。本发明的一个实施方案是治疗哺乳动物中的炎性疾病的方法。本发明的一个实施方案是治疗变应性疾病的方法。本发明的一个实施方案是治疗自身免疫性疾病的方法。本发明的一个实施方案是治疗感染性疾病的方法。在一个实施方案中,所述哺乳动物是人。
本发明还包括如本文中所述的化合物或盐用于制备药物的用途,所述药物可用于治疗哺乳动物中的异常细胞生长。在这样的实施方案中,异常细胞生长可以是癌症。如果异常细胞生长是癌症,要治疗的癌症可以是肺癌、骨癌、胰腺癌、皮肤癌、头或颈癌、皮肤或眼内黑素瘤、子宫癌、卵巢癌、直肠癌、肛门区域的癌症、胃癌、结肠癌、乳腺癌、子宫癌、输卵管癌、子宫内膜癌、子宫颈癌、阴道癌、外阴癌、霍奇金病、食管癌、小肠癌、内分泌系统的癌症、甲状腺癌、甲状旁腺癌、肾上腺癌、软组织肉瘤、尿道癌、阴茎癌、前列腺癌、慢性或急性白血病、淋巴细胞性淋巴瘤、膀胱癌、肾或输尿管的癌症、肾细胞癌、肾盂癌、中枢神经系统(CNS)的肿瘤、原发性CNS淋巴瘤、脊髓轴肿瘤、脑干神经胶质瘤或垂体腺瘤。在一个实施方案中,所述癌症是膀胱癌。在一个实施方案中,所述膀胱癌是尿路上皮癌。在一个实施方案中,所述膀胱癌是非肌肉侵袭性膀胱癌(NMIBC)。在一个实施方案中,所述膀胱癌是肌肉侵袭性膀胱癌(MIBC)。在一个实施方案中,所述膀胱癌是非转移性尿路上皮癌。在一个实施方案中,所述膀胱癌是转移性尿路上皮癌。在一个实施方案中,所述膀胱癌是非尿路上皮癌。在一个实施方案中,所述哺乳动物是人。
本发明的再其它实施方案包括这样的实施方案,其中提供了上调哺乳动物中STING活性的方法,所述方法包括给所述哺乳动物施用有效量的如本文中所述的化合物或盐的步骤;和/或提高哺乳动物中干扰素-β水平的方法,所述方法包括给所述哺乳动物施用有效量的如本文中所述的化合物或盐的步骤。在一个实施方案中,所述哺乳动物是人。
本发明的其它实施方案包括这样的实施方案,其中提供了活化哺乳动物中STING的方法,所述方法包括给所述哺乳动物施用有效量的本文描述的化合物或盐的步骤。也提供了在哺乳动物中刺激先天性免疫应答的方法,所述方法包括给所述哺乳动物施用有效量的本文描述的化合物或盐的步骤。在一个实施方案中,所述哺乳动物是人。
定义
除非另有说明,否则在本说明书和权利要求书中使用的以下术语具有以下讨论的含义。在本部分中定义的变量,诸如R、X、n等,仅供在本部分内参考,并且无意具有与可以在本定义部分之外使用的相同的含义。此外,本文定义的许多基团可以任选地被取代。典型取代基在本定义部分中的清单是示例性的,并且无意限制在本说明书和权利要求书中在其它地方定义的取代基。
“烯基”表示如本文中定义的烷基,其由至少两个碳原子和至少一个碳-碳双键组成。代表性的例子包括、但不限于乙烯基、1-丙烯基、2-丙烯基、1-、2-或3-丁烯基等。“亚烯基”表示烯基的二价形式。
“烷氧基”表示-O-烷基,其中烷基优选地是C1-C8、C1-C7、C1-C6、C1-C5、C1-C4、C1-C3、C1-C2或C1烷基。
“烷基”表示饱和的脂族烃基,包括1-20个碳原子(“(C1-C20)烷基”)、优选地1-12个碳原子(“(C1-C12)烷基”)、更优选地1-8个碳原子(“(C1-C8)烷基”)或1-6个碳原子(“(C1-C6)烷基”)或1-4个碳原子(“(C1-C4)烷基”)的直链和支链基团。烷基的例子包括甲基、乙基、丙基、2-丙基、正丁基、异丁基、叔丁基、戊基、新戊基等。烷基可以是被取代的或未被取代的。典型取代基包括环烃基、芳基、杂芳基、杂脂环族基团、羟基、烷氧基、芳氧基、巯基、烷基硫基、芳基硫基、氰基、卤素、羰基、硫代羰基、O-氨基甲酰基、N-氨基甲酰基、O-硫代氨基甲酰基、N-硫代氨基甲酰基、C-酰氨基、N-酰氨基、C-羧基、O-羧基、硝基、甲硅烷基、氨基和-NRxRy,其中Rx和Ry是例如氢、烷基、环烃基、芳基、羰基、乙酰基、磺酰基、三氟甲磺酰基和合起来时的5或6元杂脂环族环。“卤代烷基”,例如(C1-C8)卤代烷基,表示具有一个或多个(优选地1、2、3、4、5或6个)卤素取代基的烷基。“亚烷基”表示烷基的二价形式。
“炔基”表示如本文中定义的烷基,其由至少两个碳原子和至少一个碳-碳三键组成。代表性的例子包括、但不限于乙炔基、1-丙炔基、2-丙炔基、1-、2-或3-丁炔基等。“亚炔基”表示炔基的二价形式。
“氨基”表示-NRxRy基团,其中Rx和Ry都是氢,即-NH2
“氰基”表示-C≡N基团。氰基可以表示为CN。
本文中使用的术语“环烃基”表示非芳族的、单环的、稠合的或桥连的二环或三环碳环基团,在某些实施方案中,其含有3-10个碳原子。本文中使用的环烃基可以任选地含有一个或两个双键。术语“环烃基”也包括螺环碳环基团,包括通过单个原子连接的多环系统。术语“C3-C10环烃基”、“C3-C7环烃基”、“C3-C6环烃基”、“C3-C5环烃基”、“C3-C4环烃基”和“C5-C7环烃基”分别含有3-10个、3-7个、3-6个、3-5个、3-4个和5-7个碳原子。环烃基包括、但不限于环丙基、环丁基、环戊基、环己基、环庚基、环戊烯基、环己烯基、八氢并环戊二烯基、八氢-1H-茚基、二环[2.2.1]庚烷基、二环[3.2.1]辛烷基、二环[5.2.0]壬烷基、金刚烷基、环己二烯基、金刚烷基、环庚烷基、环庚三烯基等。环烃基可以是被取代的或未被取代的。典型取代基包括烷基、芳基、杂芳基、杂脂环族基团、羟基、烷氧基、芳氧基、巯基、烷基硫基、芳基硫基、氰基、卤素、羰基、硫代羰基、C-羧基、O-羧基、O-氨基甲酰基、N-氨基甲酰基、C-酰氨基、N-酰氨基、硝基和氨基。
“卤素”或前缀“卤代”表示氟、氯、溴和碘。优选地,卤素或卤代表示氟或氯。
“杂原子”表示选自O、N、Si、S和P的原子,且其中氮和硫原子可以任选地被氧化。
本文中使用的术语“杂环”表示非芳族的、单环的、稠合的或桥连的二环或三环或螺环基团,在某些实施方案中,其含有共计3-10个环原子、3-7个环原子或4-6个环原子,其中1个、1-2个、1-3个或1-4个环原子是杂原子。所述杂原子独立地选自氮、氧和硫,且其中硫原子可以任选地被一个或两个氧原子氧化,其余环原子为碳,前提条件是,这样的环系统不可以含有两个邻近的氧原子或两个邻近的硫原子。杂环的环也可以在任何可利用的碳原子处被氧代(=O)基团取代。所述环也可以具有一个或多个双键。此外,这样的基团可以通过碳原子或杂原子(如果可能的话)键合至本文中公开的实施方案的化合物的其余部分。杂环基团的例子包括、但不限于:
Figure DEST_PATH_IMAGE039
所述杂环基团任选地被取代。典型取代基包括烷基、芳基、杂芳基、杂脂环族基团、羟基、烷氧基、芳氧基、巯基、烷基硫基、芳基硫基、氰基、卤素、羰基、硫代羰基、C-羧基、O-羧基、O-氨基甲酰基、N-氨基甲酰基、C-酰氨基、N-酰氨基、硝基和氨基。
“羟基”表示-OH基团。
“芳基”或“芳族”表示具有众所周知的芳香性特征的任选地被取代的单环的、联芳基或稠合的二环或多环环系,其中至少一个环含有完全共轭的π-电子系统。通常芳基含有6-20个碳原子(“C6-C20芳基”)作为环成员,优选6-14个碳原子(“C6-C14芳基”)或更优选6-12个碳原子(“C6-C12芳基”)。稠合的芳基可以包括与另一个芳基环稠合的芳基环(例如,苯基环),或与饱和的或部分不饱和的碳环或杂环稠合的芳基环(例如,苯基环)。与这样的稠合的芳基环系统上的基础分子的连接点可以是环系统的芳族部分的C原子或非芳族部分的C或N原子。芳基的例子包括、但不限于苯基、联苯、萘基、蒽基、菲基、茚满基、茚基和四氢萘基。芳基可以是未被取代的或被取代的,如在本文中进一步描述的。
类似地,“杂芳基”或“杂芳族”表示具有众所周知的芳香性特征的单环的、杂联芳基或稠合的二环或多环环系,其含有指定数目的环原子并且包括至少一个选自N、O和S的杂原子作为芳环中的环成员。杂原子的包含允许5元环以及6元环的芳香性。通常,杂芳基含有5-20个环原子(“5-20元杂芳基”),优选5-14个环原子(“5-14元杂芳基”),和更优选5-12个环原子(“5-12元杂芳基”)。杂芳基环通过杂芳环的环原子连接至基础分子,从而保持芳香性。因此,6元杂芳基环可以通过环C原子连接至基础分子,而5元杂芳基环可以通过环C或N原子连接至基础分子。未被取代的杂芳基的例子经常包括、但不限于吡咯、呋喃、噻吩、吡唑、咪唑、异噁唑、噁唑、异噻唑、噻唑、三唑、噁二唑、噻二唑、四唑、吡啶、哒嗪、嘧啶、吡嗪、苯并呋喃、苯并噻吩、吲哚、苯并咪唑、吲唑、喹啉、异喹啉、嘌呤、三嗪、萘啶和咔唑。在常见的优选实施方案中,5或6元杂芳基选自吡咯基、呋喃基、噻吩基、吡唑基、咪唑基、异噁唑基、噁唑基、异噻唑基、噻唑基、三唑基、吡啶基、嘧啶基、吡嗪基和哒嗪基环。杂芳基可以是未被取代的或被取代的,如在本文中进一步描述的。
单环杂芳基的示例性例子包括、但不限于:
Figure 291335DEST_PATH_IMAGE040
Figure 593003DEST_PATH_IMAGE041
稠合环杂芳基的示例性例子包括、但不限于:
Figure 687998DEST_PATH_IMAGE042
Figure 809538DEST_PATH_IMAGE043
Figure 913760DEST_PATH_IMAGE044
Figure 538776DEST_PATH_IMAGE045
本文描述为任选地被取代的芳基和杂芳基部分可以被一个或多个取代基取代,所述取代基独立地进行选择,除非另外指出。在这样的取代具有化学意义且在芳基和杂芳基环的情况下保持芳香性的程度上,取代基的总数可以等于芳基、杂芳基或杂环基部分上的氢原子的总数。任选地被取代的芳基、杂芳基或杂环基通常含有1-5个任选取代基,有时1-4个任选取代基,优选地1-3个任选取代基,或更优选地1-2个任选取代基。典型取代基包括烷基、芳基、杂芳基、杂脂环族基团、羟基、烷氧基、芳氧基、巯基、烷基硫基、芳基硫基、氰基、卤素、羰基、硫代羰基、C-羧基、O-羧基、O-氨基甲酰基、N-氨基甲酰基、C-酰氨基、N-酰氨基、硝基和氨基。
“体外”表示在人工环境中(例如,但不限于在试管或培养基中)进行的操作。
“体内”表示在活生物体(例如,但不限于小鼠、大鼠、兔和/或人)内进行的操作。
“任选的”或“任选地”意指随后所描述的事件或情况可以但不必须发生,并且该描述包括其中事件或情况发生的情形,以及其中事件或情况不发生的情形。例如,“任选地被烷基取代的杂环基团”表示,烷基可以但不必须存在,并且该描述包括其中杂环基团被烷基取代的情形以及其中杂环基团未被烷基取代的情形。
“生物体”表示由至少一个细胞构成的任何活实体。活生物体可以像例如单个真核细胞一样简单,或可以像哺乳动物(包括人类)一样复杂。
“药学上可接受的赋形剂”表示添加到药物组合物中以进一步促进化合物的施用的惰性物质。赋形剂的例子包括、但不限于碳酸钙、磷酸钙、各种糖和各种类型的淀粉、纤维素衍生物、明胶、植物油和聚乙二醇。
本文中使用的术语“药学上可接受的盐”表示这样的盐:其保留母体化合物的生物有效性和性质。这样的盐包括:
(i)酸加成盐,其可以通过母体化合物的游离碱与无机酸或与有机酸反应得到,所述无机酸是例如盐酸、氢溴酸、硝酸、磷酸、硫酸和高氯酸等,所述有机酸是例如乙酸、草酸、(D)或(L)苹果酸、马来酸、甲磺酸、乙磺酸、对甲苯磺酸、水杨酸、酒石酸、柠檬酸、琥珀酸或丙二酸等;或
(ii)当在母体化合物中存在的酸性质子被金属离子(例如,碱金属离子、碱土金属离子或铝离子)替代时形成的盐;或者与有机碱(诸如乙醇胺、二乙醇胺、三乙醇胺、氨丁三醇、N-甲基还原葡糖胺、三烷基铵等)配位时形成的盐。
“药物组合物”表示本文所述化合物或其生理学上/药学上可接受的盐、溶剂化物、水合物或前药中的一种或多种与其它化学组分(诸如生理学上/药学上可接受的载体和赋形剂)的混合物。药物组合物的目的是便于将化合物施用给生物体。
本文中使用的“生理学上/药学上可接受的载体”表示不会对生物体造成明显刺激并且不会消除所施用的化合物的生物活性和性质的载体或稀释剂。
“治疗有效量”表示所施用的化合物的量,该量将在一定程度上缓解正在治疗的障碍的一种或多种症状。关于癌症的治疗,治疗有效量表示具有以下作用中的至少一种的量:
(1)减小肿瘤的大小;
(2)抑制(即,在一定程度上减慢,优选停止)肿瘤转移;
(3)在一定程度上抑制(即,在一定程度上减慢,优选停止)肿瘤生长;和
(4)在一定程度上缓解(或优选消除)与癌症相关的一种或多种症状。
“治疗”表示减轻或消除细胞障碍和/或其附随症状的方法。特别是对于癌症,这些术语简单地是指受癌症影响的个体的预期寿命将增加,或疾病的一种或多种症状将减轻。
干扰素基因刺激剂(STING)蛋白在1型干扰素信号传递中作为细胞溶质DNA传感器和衔接蛋白起作用。术语“STING”和“干扰素基因刺激剂”表示STING蛋白的任何形式,以及至少保留STING的部分活性的变体、同种型和物种同系物。除非另外指出,诸如通过特别提及人STING,否则STING包括天然序列STING的所有哺乳动物物种,例如人、猴和小鼠。
本文中使用的术语“STING活化剂”或“STING激动剂”表示这样的化合物,其在结合后,(1)刺激或活化STING,并诱导以与STING功能相关的分子的活化为特征的下游信号转导;(2)增强、增加、促进、诱导或延长STING的活性、功能或存在,或(3)增强、增加、促进或诱导STING的表达。这样的作用包括、但不限于STING、IRF3和/或NF-κB的直接磷酸化,并且还可以包括STAT6。STING途径活化导致例如1型干扰素(主要是IFN-α和IFN-β)的生成增加以及干扰素刺激的基因的表达(Chen H, 等人. “Activation of STAT6 by STING isCritical for Antiviral Innate Immunity”. Cell, 2011, 第14卷: 433-446;和Liu S-Y., 等人. “Systematic identification of type I and type II interferon-inducedantiviral factors”. Proc. Natl. Acad. Sci. 2012: 第109卷4239-4244)。
本文中使用的术语“STING-调节的”表示受STING直接影响或通过STING途径受影响的病症,包括、但不限于炎性疾病、变应性和自身免疫性疾病、感染性疾病、癌症,和作为疫苗佐剂。
详细描述
用于合成本发明化合物的通用方案可见于本文实施例部分。
除非另外指出,否则本文对本发明化合物的所有提及包括提及其盐、溶剂化物、水合物和复合物,以及其盐的溶剂化物、水合物和复合物,包括其互变异构体、多晶型物、立体异构体和同位素标记的形式。
药学上可接受的盐包括酸加成盐和碱盐(包括二盐)。
合适的酸加成盐由形成无毒盐的酸形成。例子包括乙酸盐、天冬氨酸盐、苯甲酸盐、苯磺酸盐、碳酸氢盐/碳酸盐、硫酸氢盐/硫酸盐、硼酸盐、樟脑磺酸盐、柠檬酸盐、乙二磺酸盐、乙磺酸盐、甲酸盐、富马酸盐、葡庚糖酸盐、葡萄糖酸盐、葡糖醛酸盐、六氟磷酸盐、羟苯酰苯酸盐、盐酸盐/氯化物、氢溴酸盐/溴化物、氢碘酸盐/碘化物、羟乙基磺酸盐、乳酸盐、苹果酸盐、马来酸盐、丙二酸盐、甲磺酸盐、甲基硫酸盐、萘酸盐、2-萘磺酸盐、烟酸盐、硝酸盐、乳清酸盐、草酸盐、棕榈酸盐、扑酸盐、磷酸盐/磷酸氢盐/磷酸二氢盐、蔗糖酸盐、硬脂酸盐、琥珀酸盐、酒石酸盐、甲苯磺酸盐和三氟乙酸盐。
合适的碱盐由形成无毒盐的碱形成。例子包括铝、精氨酸、苄星(benzathine)、钙、胆碱、二乙胺、二乙醇胺、甘氨酸、赖氨酸、镁、葡甲胺、乙醇胺、钾、钠、氨丁三醇和锌盐。关于合适的盐的综述,参见Stahl和Wermuth的“Handbook of Pharmaceutical Salts:Properties, Selection, and Use”(Wiley-VCH, Weinheim, 德国, 2002),其公开内容通过引用整体并入本文。
通过将化合物和视情况所需的酸或碱的溶液混合在一起,可以容易地制备本发明的化合物的药学上可接受的盐。盐可以从溶液中沉淀并可以通过过滤收集或可以通过溶剂的蒸发来回收。该盐中的离子化程度可以在完全离子化到几乎未离子化之间变化。
本发明的化合物可以以未溶剂化和溶剂化的形式存在。术语‘溶剂化物’在本文中用于描述包含本发明的化合物和一种或多种药学上可接受的溶剂分子(例如,乙醇)的分子复合物。当溶剂是水时,采用术语‘水合物’。根据本发明的药学上可接受的溶剂化物包括水合物和溶剂化物,其中结晶的溶剂可以被同位素替代,例如D2O、d6-丙酮、d6-DMSO。
在本发明范围内还包括复合物,诸如笼形包合物、药物-宿主包合复合物,其中,与上述溶剂化物相反,药物和宿主以化学计量的或非化学计量的量存在。还包括含有可为化学计量的或非化学计量的量的两种或更多种有机和/或无机组分的药物的复合物。所得复合物可以是离子化的、部分离子化的或非离子化的。关于这样的复合物的综述,参见Haleblian, J Pharm Sci, 64 (8), 1269-1288 (1975年8月),其公开内容通过引用整体并入本文。
本发明化合物的多晶型物、前药和异构体(包括光学异构体、几何异构体和互变异构体)也在本发明的范围内。
本发明化合物的衍生物本身可能几乎没有或没有药理学活性,但是当施用给患者时,可以转化为本发明化合物,例如,通过水解裂解。这类衍生物称作为‘前药’。关于前药的应用的进一步信息,可以参见:‘Pro-drugs as Novel Delivery Systems, 第14卷, ACSSymposium Series (T Higuchi和W Stella)以及‘Bioreversible Carriers in DrugDesign’, Pergamon Press, 1987 (E B Roche编, American PharmaceuticalAssociation),其公开内容通过引用整体并入本文。
例如,可以如下生产根据本发明的前药:用本领域技术人员已知作为‘前部分(pro-moieties)’的某些部分替换在本发明的化合物中存在的适当官能团,如例如在HBundgaard的“Design of Prodrugs”(Elsevier, 1985)中描述,其公开内容通过引用整体并入本文。
根据本发明的前药的一些例子包括:
(i)在化合物含有羧酸官能团-(COOH)的情况下,为其酯,例如,用(C1-C8)烷基替代氢;
(ii)在化合物含有醇官能团(-OH)的情况下,为其醚,例如,用(C1-C6)烷酰氧基甲基替代氢;和
(iii)在化合物含有伯或仲氨基官能团(-NH2或-NHR,其中R≠H)的情况下,为其酰胺,例如,用(C1-C10)烷酰基替代一个或两个氢。
可以在前述参考文献中找到根据前述实施例的替代基团的其它例子和其它前药类型的例子。
最后,某些本发明的化合物本身可以充当其它本发明的化合物的前药。
含有一个或多个不对称碳和/或磷原子的本发明化合物可以作为两种或更多种立体异构体存在。在根据本发明的化合物具有至少一个手性中心的情况下,它们可以相应地作为对映异构体存在。在化合物具有两个或更多个手性中心的情况下,它们可另外作为非对映异构体存在。类似地,在本发明的化合物含有环丙基或其中存在手性的其它环状基团以及烯基或亚烯基的情况下,几何顺/反(或Z/E)异构体是可能的。在化合物含有例如酮或肟基团或芳族部分时,可能出现互变异构的异构现象(‘互变异构现象’)。单一化合物可以表现出超过一种类型的异构现象。
在本发明的范围内包括本发明的化合物的所有立体异构体、几何异构体和互变异构形式,包括表现出超过一种类型的异构现象的化合物,及其一种或多种的混合物。还包括酸加成盐或碱盐,其中抗衡离子是光学活性的,例如,D-乳酸盐或L-赖氨酸,或外消旋的,例如,DL-酒石酸盐或DL-精氨酸。
通过本领域技术人员众所周知的常规技术,例如,色谱法和分步结晶,可以分离顺式/反式异构体。
用于制备/分离各对映异构体的常规技术包括从合适的光学纯的前体手性合成,或使用例如手性高压液相色谱法(HPLC)或超临界流体色谱法(SFC)拆分外消旋体(或盐或衍生物的外消旋体)。
可替换地,外消旋体(或外消旋的前体)可以与合适的光学活性化合物例如醇反应,或在化合物含有酸性或碱性部分的情况下与酸或碱诸如酒石酸或1-苯基乙胺反应。得到的非对映异构体混合物可以通过色谱法和/或分步结晶分离,并且非对映异构体之一或两者通过本领域技术人员众所周知的方式转化成对应的纯的对映异构体。
通过本领域技术人员已知的常规技术,可以分离立体异构体混合体;参见,例如,EL Eliel的“Stereochemistry of Organic Compounds”(Wiley, New York, 1994),其公开内容通过引用整体并入本文。
本发明还包括同位素标记的本发明的化合物,其中一个或多个原子被具有相同原子数但原子质量或质量数不同于在自然界中通常发现的原子质量或质量数的原子替代。适用于包含在本发明化合物中的同位素的例子包括以下元素的同位素:氢,诸如2H和3H,碳,诸如11C、13C和14C,氯,诸如36Cl,氟,诸如18F,碘,诸如123I和125I,氮,诸如13N和15N,氧,诸如15O、17O和18O,磷,诸如32P,和硫,诸如35S。某些同位素标记的本发明的化合物,例如,掺入放射性同位素的那些,可用于药物和/或底物组织分布研究。考虑到它们易于掺入和检测手段方便,放射性同位素氚(3H)和碳-14(14C)对于该目的是特别有用的。用较重同位素诸如氘(2H)取代可能提供某些由更大代谢稳定性带来的治疗优点,例如,增加的体内半衰期或减小的剂量需求,并因此在某些情况下可能是优选的。用发射正电子的同位素(诸如11C、18F、15O和13N)取代可以用于正电子发射断层摄影术(PET)研究以检查底物受体占有率。
通过本领域技术人员已知的常规技术,或通过类似于本文描述的那些的方法,使用适当的同位素标记的试剂代替否则会采用的未标记的试剂,通常可以制备同位素标记的本发明的化合物。
意图用于药物用途的本发明的化合物可以作为结晶或无定形产物或其混合物施用。它们可以例如通过诸如沉淀、结晶、冷冻干燥、喷雾干燥或蒸发干燥的方法,以固体栓(solid plugs)、粉末或薄膜的形式获得。微波或射频干燥可以用于该目的。
所述化合物可以单独施用或与本发明的一种或多种其它化合物联合施用。通常,它们与一种或多种药学上可接受的赋形剂结合地作为制剂施用。术语“赋形剂”在本文中用于描述除本发明的化合物以外的任何成分。赋形剂的选择在较大程度上取决于诸如特定施用模式、赋形剂对溶解度和稳定性的影响、和剂型的性质等因素。
本文描述的组合物可以单独地或与药学上可接受的赋形剂联合地以足以诱导、改变或刺激适当免疫应答的量施用给宿主。免疫应答可以包括,但不限于特异性免疫应答、非特异性免疫应答、特异性和非特异性应答、先天性应答、初级免疫应答、适应性免疫、继发性免疫应答、记忆免疫应答、免疫细胞活化、免疫细胞增殖、免疫细胞分化和细胞因子表达。在某些实施方案中,将所述组合物与一种或多种另外的组合物联合施用,所述另外的组合物包括旨在刺激对一种或多种预定抗原的免疫应答的疫苗;佐剂;CTLA-4和PD-1途径拮抗剂、脂质、脂质体、化学治疗剂、免疫调节性细胞系等。
在本发明的某些方面,本文所述的方法进一步包括用另外的疗法形式治疗对象的步骤。在某些方面,所述另外的疗法形式是另外的抗癌疗法,包括、但不限于化学疗法、辐射、外科手术、激素疗法和/或另外的免疫疗法。
所公开的STING调节性化合物可以作为初次治疗施用,或为了治疗对常规疗法无应答的癌症而施用。另外,所公开的STING调节性化合物可以与其它疗法(例如,外科手术切除、辐射、另外的抗癌药物等)联合使用,由此引起累加的或增强的治疗效果和/或降低某些抗癌剂的细胞毒性。本发明的STING调节性化合物可以与另外的药剂共同施用或共同配制,或者配制用于与另外的药剂一起以任何顺序连续施用。
本发明的STING调节性化合物可以与其它治疗剂联合使用,所述其它治疗剂包括、但不限于治疗性抗体、ADC、免疫调节剂、细胞毒性剂和细胞生长抑制剂。细胞毒性效应表示靶细胞(即,肿瘤细胞)的消耗、消除和/或杀死。细胞毒性剂表示对细胞具有细胞毒性和/或细胞生长抑制性的作用的药剂。细胞生长抑制性作用表示细胞增殖的抑制。细胞生长抑制剂表示对细胞具有细胞生长抑制性作用、由此抑制细胞的特定子集(即,肿瘤细胞)的生长和/或扩增的药剂。免疫调节剂表示通过细胞因子和/或抗体的产生和/或调节T细胞功能来刺激免疫应答、由此直接地或间接地(通过使另一种药剂更有效)抑制或减少细胞的子集(即,肿瘤细胞)的生长的药剂。本发明的化合物和一种或多种其它治疗剂可以根据本领域普通技术人员已知的标准药物实践作为相同或分开剂型的一部分、通过相同或不同的施用途径和按照相同或不同的施用计划施用。
在一个实施方案中,所述其它治疗剂是干扰素。术语“干扰素”或“IFN”或“INF”(它们每个可以互换使用)表示抑制病毒复制和细胞增殖并调节免疫应答的高度同源的物种-物种蛋白家族的任何成员。例如,人干扰素被分为三类:I型,其包括干扰素-α、干扰素-β和干扰素-ω;II型,其包括干扰素-γ;和III型,其包括干扰素-λ。本文中使用的术语“干扰素”涵盖已开发且商购可得的干扰素的重组形式。干扰素的亚型,诸如化学修饰的或突变的干扰素,也被涵盖在本文所用的术语“干扰素”中。化学修饰的干扰素可以包括聚乙二醇化的干扰素和糖基化的干扰素。干扰素的例子还包括、但不限于干扰素-α-2a、干扰素-α-2b、干扰素-α-n1、干扰素-β-1a、干扰素-β-1b、干扰素-λ-1、干扰素-λ-2和干扰素-λ-3。聚乙二醇化的干扰素的例子包括聚乙二醇化的干扰素-α-2a和聚乙二醇化的干扰素-α-2b。
在一个实施方案中,所述其它治疗剂是CTLA-4途径拮抗剂。在一个实施方案中,所述其它治疗剂是抗-4-1BB抗体。
本文中使用的术语“4-1BB抗体”是指如本文所定义的能够结合人4-1BB受体的抗体(在本文中也被称作“抗-4-1BB抗体”)。术语“4-1BB”和“4-1BB受体”在本申请中互换使用,并表示4-1BB受体的任何形式,以及保留4-1BB受体活性的至少一部分的其变体、同种型和物种同系物。因此,如本文所定义和公开的结合分子也可以结合来自除人以外的物种的4-1BB。在其它情况下,结合分子可能对人4-1BB具有完全特异性,并且可能不显示物种或其它类型的交叉反应性。除非另外指出,诸如通过具体提及人4-1BB,否则4-1BB包括天然序列4-1BB的所有哺乳动物物种,例如人、犬、猫、马和牛。一种示例性的人4-1BB是255氨基酸蛋白(登记号NM_001561;NP_001552)。4-1BB包含一个信号序列(氨基酸残基1-17),随后是一个细胞外结构域(169个氨基酸)、一个跨膜区域(27个氨基酸)和一个细胞内结构域(42个氨基酸)(Cheuk ATC等人. 2004 Cancer Gene Therapy 11: 215-226)。该受体以单体和二聚体形式在细胞表面上表达,并可能与4-1BB配体三聚化以发出信号。本文中使用的“4-1BB激动剂”是指如本文中定义的任何化合物或生物分子,其在结合4-1BB后,(1)刺激或活化4-1BB,(2)增强、增加、促进、诱导或延长4-1BB的活性、功能或存在,或(3)增强、增加、促进或诱导4-1BB的表达。可用于本发明的治疗方法、药物和用途中的任一种的4-1BB激动剂包括特异性地结合4-1BB的单克隆抗体(mAb)或其抗原结合片段。4-1BB的替代名称或同义词包括CD137和TNFRSF9。在其中治疗人类个体的本发明的治疗方法、药物和用途中的任一种中,4-1BB激动剂增加4-1BB介导的应答。在本发明的治疗方法、药物和用途的某些实施方案中,4-1BB激动剂显著增强细胞毒性的T-细胞应答,在几种模型中产生抗肿瘤活性。人4-1BB包含一个信号序列(氨基酸残基1-17),随后是一个细胞外结构域(169个氨基酸)、一个跨膜区域(27个氨基酸)和一个细胞内结构域(42个氨基酸) (Cheuk ATC等人. 2004 Cancer GeneTherapy 11: 215-226)。该受体以单体和二聚体形式在细胞表面上表达,并可能与4-1BB配体三聚化以发出信号。结合人4-1BB并且可用于本发明的治疗方法、药物和用途的mAb的例子描述于US 8,337,850和US20130078240。在某些实施方案中,所述抗-4-1BB抗体具有如在WO2017/130076的SEQ ID NO: 17中所示的VH和如在SEQ ID NO: 18中所示的VL。
在一个实施方案中,所述其它治疗剂是PD-1途径拮抗剂。在一个实施方案中,所述其它治疗剂是抗-PD-1抗体。在一个实施方案中,所述其它治疗剂是抗-PD-L1抗体。
程序性死亡1 (PD-1)受体和PD-1配体1和2 (分别是PD-L1和PD-L2)在免疫调节中发挥着不可或缺的作用。在活化的T细胞上表达的PD-1被在间质细胞、肿瘤细胞或两者上表达的PD-L1 (也被称作B7-H1)和PD-L2活化,从而引发T细胞死亡和局部免疫抑制(Dong等人, Nat Med 1999;5:1365-69;Freeman等人. J Exp Med 2000;192:1027-34),可能为肿瘤发展和生长提供免疫耐受环境。相反,这种相互作用的抑制可以在非临床动物模型中增强局部T细胞应答并介导抗肿瘤活性(Iwai Y等人. Proc Natl Acad Sci USA 2002;99:12293-97)。可用于本发明的治疗方法、药物和用途的抗-PD-1抗体的例子包括BCD-100、卡瑞利珠单抗、西米普利单抗、杰诺单抗(CBT-501)、MEDI0680、纳武单抗、派姆单抗、RN888(参见WO2016/092419)、信迪利单抗、斯巴达珠单抗(spartalizumab)、STI-A1110、替雷利珠单抗和TSR-042。在某些实施方案中,所述抗-PD-1抗体具有如在US10155037的SEQ ID NO:4中所示的VH和如在SEQ ID NO: 8中所示的VL。可用于本发明的治疗方法、药物和用途的抗-PD-L1抗体的例子包括阿特珠单抗、德瓦鲁单抗、BMS-936559 (MDX-1105)和LY3300054。
对于联合疗法,在适合进行预期疗法的任何时间范围内施用STING调节性化合物。因此,可以基本上同时(即,作为单一制剂或在数分钟或数小时内)或以任何顺序连续施用单一药剂。例如,可以在彼此的约一年内,诸如在约10、8、6、4或2个月内,或在4、3、2或1周内,或在约5、4、3、2或1天内施用单一药剂治疗。
所公开的联合疗法可以引起协同治疗效果,即大于其各自效果或治疗结果之和的效果。例如,协同治疗效果可以是单一药剂引起的治疗效果或给定组合的单一药剂引起的治疗效果的总和的至少约两倍的效果,或至少约五倍,或至少约十倍,或至少约二十倍,或至少约五十倍,或至少约一百倍。协同治疗效果也可观察为,与单一药剂引起的治疗效果或给定组合的单一药剂引起的治疗效果的总和相比治疗效果增加至少10%,或至少20%,或至少30%,或至少40%,或至少50%,或至少60%,或至少70%,或至少80%,或至少90%,或至少100%,或更多。协同效果还是允许在联合使用治疗剂时减少所述治疗剂的剂量的效果。
所述组合物可以在另外的治疗性或预防性组合物或模态之前、之后施用和/或与之一起施用。这些包括、但不限于B7共刺激分子、白介素-2、干扰素-7、GM-CSF、CTLA-4拮抗剂、OX-40/OX-40配体、CD40/CD40配体、沙格司亭、左旋咪唑、痘苗病毒、卡介苗(BCG)、脂质体、明矾、弗氏完全或不完全佐剂、脱毒的内毒素、矿物油、表面活性物质诸如脂卵磷脂(lipolecithin)、聚醚多元醇(pluronic polyol)、聚阴离子、肽和油或烃乳剂。用于诱导T细胞免疫应答的载体(其相对于抗体应答优先刺激细胞裂解性T细胞应答)是优选的,尽管也可以使用刺激两种类型应答的载体。在药剂为多肽的情况下,可以施用多肽本身或编码所述多肽的多核苷酸。所述载体可以是细胞,诸如抗原呈递细胞(APC)或树突细胞。抗原呈递细胞包括诸如巨噬细胞、树突细胞和B细胞等细胞类型。其它专业的抗原呈递细胞包括单核细胞、边缘区库普弗细胞、小胶质细胞、朗格汉斯细胞、交错树突细胞、滤泡树突细胞和T细胞。也可以使用兼性抗原呈递细胞。兼性抗原呈递细胞的例子包括星形胶质细胞、滤泡细胞、内皮和成纤维细胞。所述载体可以是细菌细胞,其被转化以表达多肽或递送多核苷酸,所述多核苷酸随后在接种的个体的细胞中表达。可以添加佐剂,诸如氢氧化铝或磷酸铝,以增加疫苗触发、增强或延长免疫应答的能力。其它物质也是潜在的佐剂,诸如细胞因子、趋化因子和细菌核酸序列,如CpG、toll-样受体(TLR) 9激动剂,以及TLR 2、TLR 4、TLR 5、TLR7、TLR 8、TLR9的其它激动剂,包括脂蛋白、LPS、单磷酰脂质A、脂磷壁酸、咪喹莫特、瑞喹莫德和此外视黄酸诱导型基因I (RIG-I)激动剂诸如聚I:C,它们单独使用或与所描述的组合物联合使用。佐剂的其它代表性例子包括合成的佐剂QS-21,其包含从皂树(Quillajasaponaria)皮和短小棒状杆菌(CoIynebacterium parvum)纯化的均质皂苷(McCune等人,Cancer, 1979;43:1619)。应该理解,将所述佐剂进行优化。换而言之,熟练的技术人员可以进行例行实验以确定要使用的最佳佐剂。
适用于递送本发明的化合物的药物组合物及其制备方法对于本领域技术人员而言是显而易见的。这样的组合物及其制备方法可以参见例如‘Remington’sPharmaceutical Sciences’, 第19版(Mack Publishing Company, 1995),其公开内容通过引用整体并入本文。
在一个实施方案中,可以口服施用本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐。
本发明的化合物可以直接施用进血流、肌肉或内脏器官。用于胃肠外施用的合适方式包括静脉内、动脉内、腹膜内、鞘内、心室内、尿道内、胸骨内、颅内、肌肉内、膀胱内(例如,膀胱)、皮下和肿瘤内。胃肠外施用的合适装置包括针(包括微针)注射器、无针注射器和输注技术。在一个实施方案中,静脉内地施用本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐。在一个实施方案中,膀胱内地施用本发明的化合物,包括式(I)、(IA)、(IB)、(II)、(III)、(IIIA)、(IIIB)、(IIIC)、(IIID)、(IV)、(IVA)、(IVB)、(V)、(VA)、(VB)、(VI)、(VIA)、(VIB)、(VII)、(VIIA)、(VIIB)、(VIIC)或(VIID)的那些,或其药学上可接受的盐。
胃肠外制剂通常是可能含有赋形剂诸如盐、碳水化合物和缓冲剂(优选调至3-9的pH)的水溶液,但是,对于一些应用,它们可以更适当地配制为无菌的非水性溶液或配制为要与合适的媒介物(诸如无菌的、无热原的水)结合使用的干燥形式。
使用本领域技术人员众所周知的标准制药技术可以容易地完成胃肠外制剂在无菌条件下的制备,例如,通过冻干法。
通过使用适当的制剂技术,诸如增溶剂的掺入,可以增加用于制备胃肠外溶液的本发明的化合物的溶解度。可以将用于胃肠外施用的制剂配制成立即和/或调节释放。调释制剂包括延迟、持续、脉冲、受控、靶向及程序化的释放。因此,本发明的化合物可以配制成固体、半固体或触变液体以用于作为植入的贮库施用,所述贮库提供活性化合物的调释。这样的制剂的例子包括药物涂覆的支架和PLGA微球。
纳米颗粒也代表适用于大多数施用途径的药物递送系统。多年来,已经探索了多种天然的和合成的聚合物来制备纳米颗粒,其中聚(乳酸) (PLA)、聚(羟乙酸) (PGA)和它们的共聚物(PLGA)因为它们的生物相容性和生物可降解性已被广泛研究。纳米颗粒和其它纳米载体充当几类药物诸如抗癌剂、抗高血压剂、免疫调节剂和激素以及大分子诸如核酸、蛋白、肽和抗体的潜在载体。参见,例如,Crit. Rev. Ther. Drug Carrier Syst. 21:387-422, 2004; Nanomedicine: Nanotechnology, Biology and Medicine I:22-30, 2005。
本发明的组合物可以包含以下物质或与其一起施用:一种或多种另外的药学活性组分诸如佐剂、脂质、双层间交联的多层囊泡、可生物降解的基于聚(D, L-乳酸-共聚-羟乙酸) [PLGA]的或基于聚酸酐的纳米颗粒或微米颗粒,以及纳米多孔颗粒支持的脂质双层诸如脂质体,CTLA-4和PD-1途径拮抗剂,PD-1途径阻滞剂,诱导先天性免疫的灭活细菌(例如,灭活的或减毒的单核细胞增生李斯特菌),通过Toll-样受体(TLR)、(NOD)-样受体(NLR)、基于视黄酸诱导型基因的(RIG) -I-样受体(RLR)、C-型凝集素受体(CLR)、病原体相关的分子模式(“PAMP”)而介导先天性免疫活化的组合物,化学治疗剂等。
本发明的化合物和组合物可以作为抗体-药物缀合物或其它靶向递送模态的组分施用。
局部施用
本发明的化合物可以与可溶性大分子实体(诸如环糊精及其合适的衍生物或含有聚乙二醇的聚合物)组合,以便改进其溶解度、溶出速率、味道掩蔽性、生物利用度和/或稳定性以用于前述施用模式中的任一种。
例如,发现药物-环糊精复合物通常可用于大多数剂型和施用途径。可以使用包合和非包合复合物。作为与药物直接复合的替代方案,环糊精可以用作辅助添加剂,即作为载体、稀释剂或增溶剂。最常用于这些目的的是α-、β-和γ-环糊精,其例子可以参见PCT公开号WO 91/11172、WO 94/02518和WO 98/55148,其公开内容通过引用整体并入本文。
剂量:所施用的活性化合物的量将取决于所治疗的对象、障碍或病症的严重程度、施用速率、化合物的处置和处方医师的判断。一种可能的剂量是在约0.001至约100 mg /千克体重的范围内,每天、每隔一天、每三天、每四天、每五天、每六天、每周、每隔一周、每三周、每月或按其它给药计划施用。在某些情况下,在上述范围的下限之下的剂量水平可能是绰绰有余的,而在其它情况下,可能使用再更大的剂量而不引起任何有害的副作用,其中这样的更大的剂量通常分成数个用于在一天中施用的更小剂量。
成套试剂盒:由于可能需要施用活性化合物的组合,例如,为了治疗特定疾病或病症的目的,在本发明的范围内包括:两种或更多种药物组合物(其中至少一种含有根据本发明的化合物)可以方便地以适合于组合物共同施用的试剂盒形式组合。因此,本发明的试剂盒包括两种或更多种单独的药物组合物(其中至少一种含有本发明的化合物),和用于分别保留所述组合物的装置,诸如容器、分开的瓶子或分开的箔包。这样的试剂盒的一个例子是用于包装片剂、胶囊等的熟悉的泡罩包。
本发明的试剂盒特别适用于施用不同的剂型,例如口服和胃肠外剂型,适用于以不同的剂量间隔施用单独的组合物,或适用于将单独的组合物相互滴定。为了有助于顺应性,该试剂盒通常包括施用指导并且可以提供有记忆辅助器。
实施例
一般方法
合成实验程序:
通常在惰性气氛(氮或氩)下进行实验,特别是在采用对氧或水分敏感的试剂或中间体的情况下。市售的溶剂和试剂通常不经进一步纯化地使用,并在分子筛(通常是来自Aldrich Chemical Company, Milwaukee, Wisconsin的Sure-Seal™产品)上干燥。由液相色谱法-质谱法(LC-MS)、大气压化学电离(APCI)、电喷雾电离(ESI)或液相色谱法-飞行时间(LC-TOF)方法报告质谱数据。以参考来自所用氘代溶剂的残留峰的百万份数(ppm)表示核磁共振(NMR)数据的化学位移。
对于参考其它实施例或方法中的程序的合成,反应方案(反应时间长度和温度)可能变化。一般而言,反应之后是薄层色谱法、LC-MS或HPLC,并在适当时进行后处理。纯化可能因实验而异:一般而言,对用于洗脱液/梯度的溶剂和溶剂比率进行选择以提供适当的保留时间。除非另外指出,否则反相HPLC级分通过冻干/冷冻干燥进行浓缩。将中间体和最终化合物在(0℃)或室温在氮气下储存在密闭的小瓶或烧瓶中。使用Chemdraw或ACD Labs软件生成化合物名称。
溶剂和/或试剂的缩写是基于美国化学学会指南,并在下面突出显示:
Ac = 乙酰基;AcOH = 乙酸;Ad = 金刚烷基;B2Pin2 = 双(频哪醇合)二硼;Bn =苄基;Boc = N-叔丁氧基羰基;CataCXium A = 二-(1-金刚烷基)-正丁基膦;CDI = N,N'-羰基二咪唑;CF3 = 三氟甲基;CMBP = (氰基亚甲基)三丁基正膦= (三丁基亚正膦基)乙腈= Tsunoda试剂;CO = 一氧化碳;18-冠醚-6 = 1,4,7,10,13,16-六氧杂环十八烷;DCC =1,3-二环己基碳二亚胺;DCE = 二氯乙烷;DCM = 二氯甲烷;戴斯-马丁氧化剂= DMP = 1,1,1-三(乙酰氧基)-1,1-二氢-1,2-苯碘酰-3-(1H)-酮;DIAD = 偶氮二甲酸二异丙酯;DIPEA = N,N-二异丙基乙胺;DIBAL = 二异丁基氢化铝;DMA = 二甲基乙酰胺;DMAP = 4-二甲基氨基吡啶;DMB = 2,4-二甲氧基苄基;DME = 二甲氧基乙烷;DMF = N,N-二甲基甲酰胺;DMF·DMA = N,N-二甲基甲酰胺缩二甲醇;DMSO = 二甲亚砜;dppf = 1,1′-二茂铁二基-双(二苯基膦);dtbpf = 1,1′-双(二叔丁基膦基)二茂铁;EDCI = 1-乙基-3-(3-二甲基氨基丙基)碳二亚胺;Et = 乙基;EtOAc =乙酸乙酯;h = 小时;HATU = o-(7-氮杂苯并三唑-1-基)-N,N,N′,N′-四甲基脲鎓六氟磷酸盐;HBTU = N,N,N,N′-四甲基-O-(1H-苯并三唑-1-基)脲鎓六氟磷酸盐;HFIP = 1,1,1,3,3,3-六氟-2-丙醇;HOAc = 乙酸;HOAt = 1-羟基-7-氮杂苯并三唑;HOBt = 1-羟基苯并三唑水合物;HPLC = 高效液相色谱法;Lawesson试剂= 2,4-双(4-甲氧基苯基)-2,4-二硫代-1,3,2,4-二硫杂二磷杂环丁烷;LC = 液相色谱法;LCMS = 液相色谱法-质谱法;LDA = 二异丙基氨基锂;LAH = LiAlH4 = 氢化铝锂;mCPBA = 3-氯过苯甲酸;Me = 甲基;MEK = 甲基乙基酮= 2-丁酮;MeOH = 甲醇;MeCN = 乙腈;Ms = 甲磺酰基;MSA或MsOH = 甲磺酸;MTBE = 甲基叔丁基醚;NaHMDS = 双(三甲基甲硅烷基)氨基钠;Boc = 叔丁氧基羰基;n-Bu = 正丁基;n-BuLi = 正丁基锂;n-BuOH = 1-丁醇;NBS = N-溴琥珀酰亚胺;NCS = N-氯琥珀酰亚胺;NMI = N-甲基咪唑;NMM = N-甲基吗啉;NMO = N-甲基吗啉N-氧化物;NMP = 1-甲基-2-吡咯烷酮;P(fur)3 = 三(2-呋喃基)膦;Pd(OAc)2 = 乙酸钯(II);Pd-G3 = 第三代(G3)Buchwald钯环预催化剂;Pd-G4 = 第四代(G4)Buchwald钯环预催化剂;PE = 石油醚;Pd(dppf)Cl2 = [1,1′-双(二苯基膦基)二茂铁]-二氯钯(II);Ph = 苯基;PhMe = 甲苯;PivOH = 新戊酸;PivCl = 新戊酰氯;PMB = 对甲氧基苄基;PPTS = 吡啶鎓对甲苯磺酸盐;p-TsOH = 对甲苯磺酸;PyBOP = 苯并三唑-1-基-氧基-三-吡咯烷子基(pyrrolidino)-鏻六氟磷酸盐;rt = 室温;Selectfluor = 1-氯甲基-4-氟-1,4-二氮杂鎓(diazonia)二环[2.2.2]辛烷双(四氟硼酸盐);SFC = 超临界流体色谱法;T3P = 2,4,6-三丙基-1,3,5,2,4,6-三氧杂三磷杂环己烷(phosphorinane)-2,4,6-三氧化物;TEAB = 四乙基溴化铵;TBAI = 四丁基碘化铵;叔戊醇= 2-甲基-2-丁醇;t-Bu = 叔丁基;TBS = 叔丁基二甲基甲硅烷基;TBSCl = 叔丁基二甲基甲硅烷基氯;TCFH =氯-N,N,N′,N′-四甲基甲脒鎓六氟磷酸盐;TEA = 三乙胺;Tf = 三氟甲磺酸盐;TFA = 三氟乙酸;TFE = 2,2,2-三氟乙醇;THF = 四氢呋喃;THP = 四氢吡喃基;TMP = 2,2,6,6-四甲基哌啶基;TMS = 三甲基甲硅烷基;TPTU = O-(2-氧代-1(2H)吡啶基)-N,N,N,N’-四甲基脲鎓四氟硼酸盐;Tr = 三苯基甲基;XPhos-Pd-G2 = 氯(2-二环己基膦基-2′,4′,6′-三异丙基-1,1′-联苯)[2-(2′-氨基-1,1′-联苯)]钯(II);Xantphos = 4,5-双(二苯基膦基)-9,9-二甲基呫吨。
一般方案
一般方案I:
Figure 70252DEST_PATH_IMAGE046
如在一般方案I中示例的,可以在室温至150℃的温度下,在适当的溶剂(诸如PhMe、二氧杂环己烷、MeCN、TFE、叔戊醇或类似的溶剂)中在合适的催化剂系统(诸如Pd(dppf)Cl2或Pd(OAc)2 + cataCXium A)和合适的碱(诸如CsOPiv、CsOAc、K2CO3 + PivOH、TMPMgCl·LiCl或TMPZnCl·LiCl)存在下经由C-H活化(J. Org. Chem. 2013, 78, 738−743)将Ia型化合物交叉偶联至Ib型化合物以提供化合物诸如Ic,其中Ib型化合物通过在酸性条件下用DMF·DMA和对甲氧基苄基胺处理适当的酰基酰肼来制备(Org. Lett. 2004,6, 2969-2971)。可以在合适的溶剂(诸如THF、MeOH、水或类似的溶剂)中使用适当的碱(MOH,其中M = Li、Na、K或Cs)在碱性条件下水解化合物诸如Ic,以提供化合物诸如Id。可以在适当的溶剂(诸如DMF、MeCN或类似的溶剂)中在采用合适活化剂(诸如HATU、TPTU、EDCI +HOAt、PyBOP、TCFH、T3P或类似的试剂)和合适的碱(诸如TEA、DIPEA、NMI、吡啶或DMAP)的酰胺偶联条件下用适当的胺或其盐(诸如NH4Cl或DMBNH2)处理化合物诸如Id,以提供化合物诸如Ie。可替换地,在合适的溶剂(诸如MeOH、正丁醇、叔戊醇或类似的溶剂)中使用适当的胺(诸如NH3或DMBNH2)和在某些情况下用路易斯酸(Tet. Lett. 2010, 51, 3879-3882) (诸如CaCl2、CeCl3、Mg(OMe)2或MgCl2)在升高的温度(通常范围为50-120℃)下进行的化合物诸如Ic的直接氨解也可以生成化合物诸如Ie。化合物诸如Ie可以含有酸不稳定的保护基,其可以在该阶段使用本领域已知的条件(诸如TFA/DCM或MsOH/HFIP)除去(Protective Groups in Organic Synthesis, A. Wiley-Interscience Publication, 1981或Protecting Groups, 10 Georg Thieme Verlag, 1994),以提供化合物诸如If或其互变异构体。在每个步骤的化合物可以通过标准技术诸如柱色谱法、结晶或反相SFC或HPLC进行纯化。如果必要的话,在本领域已知的标准方法诸如手性SFC或HPLC下,可以进行在合成顺序中的任何产物的位置异构体或立体异构体的分离,以提供单一位置异构体或立体异构体。变量诸如X、A和Ra-Rd如在本文公开的实施方案、方案、实施例和权利要求的式和化合物内的类似位置所定义和/或描绘。
一般方案II:
Figure 413508DEST_PATH_IMAGE047
如在一般方案II中示例的,可以在室温至150℃的温度下,在适当的溶剂(诸如PhMe、二氧杂环己烷、MeCN、TFE、叔戊醇或类似的溶剂)中在合适的催化剂系统(诸如Pd(dppf)Cl2或Pd(OAc)2 + cataCXium A)和合适的碱(诸如CsOPiv、CsOAc、K2CO3 + PivOH、TMPMgCl·LiCl或TMPZnCl·LiCl)存在下经由C-H活化将IIa型化合物交叉偶联至IIb型化合物(J. Org. Chem. 2013, 78, 738−743)以提供化合物诸如IIc。可以在MeOH溶剂中在合适的催化剂系统(诸如Pd(dppf)Cl2、G3-Pd-Xanthphos、G4-Pd-Xanthphos或类似的催化剂)和合适的碱(诸如TEA或DIPEA)存在下用一氧化碳或其它合适的一氧化碳前体(诸如N-甲酰基糖精、Mo(CO)6、Ph2MeSiCO2H或类似的试剂)将化合物诸如IIc羰基化,以提供化合物诸如IId。可以在合适的溶剂(诸如THF、MeOH、水或类似的溶剂)中使用适当的碱(MOH,其中M =Li、Na、K或Cs)在碱性条件下水解化合物诸如IId,随后在适当的溶剂(诸如DMF、MeCN或类似的溶剂)中在采用合适活化剂(诸如HATU、TPTU、EDCI + HOAt、PyBOP、TCFH、T3P或类似的试剂)和合适碱(诸如TEA、DIPEA、NMI、吡啶或DMAP)的酰胺偶联条件下用适当的胺或其盐(诸如NH4Cl或DMBNH2)处理,以提供化合物诸如IIe。可替换地,化合物诸如IId可以经历在合适的溶剂(诸如MeOH、正丁醇、叔戊醇或类似的溶剂)中使用适当的胺(诸如NH3或DMBNH2)和在某些情况下用路易斯酸(Tet. Lett. 2010, 51, 3879-3882) (诸如CaCl2、CeCl3、Mg(OMe)2或MgCl2)在升高的温度(通常范围为50-120℃)下的直接氨解,以生成化合物诸如IIe。另外,在升高的温度(通常范围为50-120℃)下在合适的溶剂(诸如DMF、DMA、MeOH、正丁醇、叔戊醇或类似的溶剂)中使用适当的胺(诸如NH3或DMBNH2)的化合物诸如IIc的钯催化的羰基化,也生成化合物诸如IIe。化合物诸如IIe可以含有酸不稳定的保护基,其可以在该阶段使用本领域已知的条件(诸如TFA/DCM或MsOH/HFIP)除去(Protective Groups in Organic Synthesis, A. Wiley-Interscience Publication, 1981或Protecting Groups, 10Georg Thieme Verlag, 1994),以提供化合物诸如IIf或其互变异构体。在每个步骤的化合物可以通过标准技术诸如柱色谱法、结晶或反相SFC或HPLC进行纯化。如果必要的话,在本领域已知的标准方法诸如手性SFC或HPLC下,可以进行在合成顺序中的任何产物的位置异构体或立体异构体的分离,以提供单一位置异构体或立体异构体。变量诸如X、A和Ra-Re如在本文公开的实施方案、方案、实施例和权利要求的式和化合物内的类似位置所定义和/或描绘。
尾基(TG)中间体的制备
根据方案TG-1制备3-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-01)。
Figure 587001DEST_PATH_IMAGE048
方案TG-1:
Figure 332103DEST_PATH_IMAGE049
步骤1:合成1-乙基-3-甲基-1H-吡唑-5-甲酸乙酯(TG-1b)。
向1-乙基-3-甲基-1H-吡唑-5-甲酸(TG-1a) (32.6 g, 212 mmol)在无水DCM(620 mL)和DMF (0.18 mL)中的悬浮液中逐滴加入草酰氯(80.5 g, 634 mmol),将反应温度维持在16-21℃(内部温度)。将得到的混合物在室温搅拌1 h以提供澄清反应溶液。用MeOH淬灭的反应等分试样的TLC分析(1:20 MeOH/DCM)表明起始原料的完全消耗。将混合物浓缩至干燥。将残余物从DCM (2x200 mL)中共蒸发。将残余物溶解于无水DCM (465 mL)中并加入EtOH (155 mL)。将混合物搅拌30 min。TLC分析(1:20 MeOH/DCM)表明起始原料的消耗。在减压下除去溶剂。通过加入饱和NaHCO3水溶液,将残余物调至pH约7-8。将混合物用EtOAc (2x300 mL)萃取。将合并的有机相经无水Na2SO4干燥,过滤,并浓缩以提供为浅黄色油的1-乙基-3-甲基-1H-吡唑-5-甲酸乙酯(TG-1b) (38.2 g, 99%收率)。1H NMR (400MHz, CDCl3) δ 6.58 (s, 1H), 4.51 (q, J = 7.2 Hz, 2H), 4.30 (q, J = 7.1 Hz,2H), 2.25 (s, 3H), 1.39 (t, J = 7.2 Hz, 3H), 1.35 (t, J = 7.2 Hz, 3H)。
步骤2:合成1-乙基-3-甲基-1H-吡唑-5-碳酰肼(TG-1c)。
向1-乙基-3-甲基-1H-吡唑-5-甲酸乙酯(TG-1b) (38.2 g, 209 mmol)在EtOH(500 mL)中的溶液中加入肼一水合物(107 g, 2.09 mol)。将混合物在100℃搅拌16 h。LCMS分析表明起始原料的消耗和期望产物质量的形成。将混合物浓缩至干燥。将残余物与EtOH (3x200 mL)和甲苯(2x300 mL)共蒸发以提供为白色固体的1-乙基-3-甲基-1H-吡唑-5-碳酰肼(TG-1c) (35.1 g, >99%收率)。1H NMR (400 MHz, DMSO-d 6) δ 9.70 (br s,1H), 6.58 (s, 1H), 4.52 (br s, 2H), 4.45 (q, J = 7.1 Hz, 2H), 2.19 (s, 3H),1.31 (t, J = 7.1 Hz, 3H);(C7H12N4O)的m/z (ESI+), 168.9 (M+H)+
步骤3:合成3-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-01)。
向1-乙基-3-甲基-1H-吡唑-5-碳酰肼(TG-1c) (28.5 g, 170 mmol)在MeCN (152mL)中的悬浮液中加入N,N-二甲基二甲氧基甲基胺(DMF•DMA) (20.8 g, 174 mmol)。将混合物在60℃(内部温度)搅拌40 min。LCMS分析表明起始原料的消耗。将反应冷却至22℃(内部温度)并加入4-甲氧基苄胺(21.8 g, 159 mmol)在MeCN (66 mL)中的溶液。逐滴加入乙酸(218 mL),维持反应温度在约24-30℃(内部温度)。将反应在90℃(内部温度)搅拌4 h。LCMS分析表明中间体的消耗和期望产物质量的形成。将反应冷却至室温并与用5.0 g 1-乙基-3-甲基-1H-吡唑-5-碳酰肼(TG-1c)以相同方式运行的平行反应合并。将混合物浓缩至干燥。将残余物用H2O (200 mL)稀释和用饱和Na2CO3水溶液碱化至pH约7-8。将混合物用EtOAc (2x300 mL)萃取。将合并的有机层经Na2SO4干燥,过滤,并浓缩。将残余物在三个平行批次中通过快速色谱法(330 g SiO2, 0-1% MeOH/DCM)纯化。将混合级分通过快速色谱法(120 g SiO2, 0-1% MeOH/DCM)再纯化。将含有产物的级分合并以提供为灰白色固体的3-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-01)(22.0 g, 37%收率)。1H NMR (400 MHz, CDCl3) δ 8.21 (s, 1H), 7.00 (d, J = 8.6 Hz,2H), 6.90 (d, J = 8.6 Hz, 2H), 6.19 (s, 1H), 5.14 (s, 2H), 4.32 (q, J = 7.2Hz, 2H), 3.82 (s, 3H), 2.33 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H);(C16H19N5O)的m/z (ESI+), 298.1 (M+H)+
根据方案TG-2制备3-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-02)。
Figure 283747DEST_PATH_IMAGE050
方案TG-2:
Figure 114300DEST_PATH_IMAGE051
向3-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-01) (15.0 g, 50.5 mmol)在MeCN (250 mL)中的溶液中逐份加入Selectfluor(44.7 g, 126 mmol)。将混合物在45℃搅拌16 h。LCMS分析表明期望产物质量的形成和一些剩余的起始原料。将黄色悬浮液冷却至室温和过滤。将滤液浓缩至干燥。将残余物用EtOAc (27℃, 10 min)制浆和过滤。将滤液浓缩至干燥。将物质溶解在DCM (200 mL)中并与饱和Na2CO3水溶液(80 mL)一起在室温搅拌10 min。将混合物分离。将水层用DCM (2x100mL)萃取。将合并的有机层经无水Na2SO4干燥,过滤,并浓缩。将粗制物质用YMC Triart C-18柱(250x50 mm, 7 μm粒径)通过制备型HPLC纯化,将柱用20-50% MeCN/H2O (+0.04% NH4OH,+10 mM NH4HCO3)以120 mL/min的流速洗脱以提供为黄色胶质的3-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-02) (5.41 g, 34%收率)。1H NMR (400 MHz, CDCl3) δ 8.18 (s, 1H), 6.99 (d, J = 8.6 Hz, 2H), 6.82 (d,J = 8.6 Hz, 2H), 5.06 (s, 2H), 4.10 (q, J = 7.2 Hz, 2H), 3.76 (s, 3H), 2.28(s, 3H), 1.21 (t, J = 7.2 Hz, 3H);19F NMR (377 MHz, CDCl3) δ -133.00;(C16H18FN5O)的m/z (ESI+), 316.0 (M+H)+
根据方案TG-3制备3-(4-氯-1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-03)。
Figure 560325DEST_PATH_IMAGE052
方案TG-3:
Figure 159934DEST_PATH_IMAGE053
在0℃向3-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-01) (1.02 g, 3.43 mmol)在无水DMF (3.0 mL)中的搅拌溶液中逐份加入N-氯琥珀酰亚胺(609 mg, 4.56 mmol)。将混合物在25℃搅拌2 h。LCMS分析表明期望产物质量的形成和剩余的起始原料。将混合物在80℃搅拌2 h。LCMS分析表明起始原料的消耗。将反应冷却至室温,用H2O (20 mL)稀释,并用EtOAc (2x20 mL)萃取。将合并的有机层用盐水(3x15 mL)洗涤,经无水Na2SO4干燥,过滤,并浓缩。将残余物通过快速色谱法(40 g SiO2,0-5% MeOH/EtOAc)纯化。将含有产物的级分通过快速色谱法(40 g SiO2, 0-3% MeOH/EtOAc)再纯化以提供为黄色胶质的3-(4-氯-1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-03) (330 mg, 29%收率)。1H NMR (400 MHz,CDCl3) δ 8.26 (s, 1H), 6.94 (d, J = 8.7 Hz, 2H), 6.82 (d, J = 8.7 Hz, 2H),5.06 (s, 2H), 3.92 (q, J = 7.3 Hz, 2H), 3.77 (s, 3H), 2.32 (s, 3H), 1.19 (t,J = 7.2 Hz, 3H);(C16H18ClN5O)的m/z (ESI+), 331.8 (M+H)+
根据方案TG-4制备3-(1-乙基-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑(Int-TG-04)。
Figure 298791DEST_PATH_IMAGE054
方案TG-4:
Figure 616640DEST_PATH_IMAGE055
步骤1:合成3-(1-乙基-3-甲基-1H-吡唑-5-基)-4H-1,2,4-三唑乙酸盐(TG-4a)。
将3-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-01) (505 mg, 1.70 mmol)在TFA (4.5 mL)中的溶液在25℃搅拌3 h。LCMS分析表明起始原料的消耗和期望产物质量的形成。将反应浓缩至干燥。将粗残余物从DCM (5x10mL)中共蒸发。将物质溶解于NH3溶液(7 N在MeOH中,10 ml)并浓缩至干燥以提供3-(1-乙基-3-甲基-1H-吡唑-5-基)-4H-1,2,4-三唑乙酸盐(TG-4a) (301 mg, >99%收率),将其不经纯化使用。(C8H11N5)的m/z (ESI+), 177.8 (M+H)+
步骤2:合成3-(1-乙基-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑(Int-TG-04)。
向3-(1-乙基-3-甲基-1H-吡唑-5-基)-4H-1,2,4-三唑乙酸盐(TG-4a) (301 mg,1.70 mmol)在THF (3.0 mL)和DMF (3.0 ML)中的溶液中加入NaH (60%的在矿物油中的分散体, 89.6 mg, 2.2 mmol)。将混合物搅拌20 min以提供淡黄色悬浮液。加入碘甲烷(128μL, 2.06 mmol)。将混合物在25℃搅拌1.5 h。LCMS分析表明起始原料的消耗和期望产物质量的形成。将反应通过加入H2O (0.04 mL)淬灭并穿过硅藻土过滤。将滤液用H2O稀释并将混合物穿过硅藻土再次过滤。将滤液用EtOAc (4x10 mL)萃取。将合并的有机层经MgSO4干燥,过滤,并浓缩。NMR分析指示位置异构体的2.5:1混合物。将残余物通过制备型TLC (1:20MeOH/DCM)纯化以提供为浅黄色油的3-(1-乙基-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑(55.6 mg, 21%收率),为主要和第二洗脱位置异构体。1H NMR (400 MHz, DMSO-d 6)δ 8.15 (s, 1H), 6.67 (s, 1H), 4.36 (q, J = 7.1 Hz, 2H), 3.98 (s, 3H), 2.29(s, 3H), 1.34 (t, J = 7.2 Hz, 3H);(C9H13N5)的m/z (ESI+), 191.8 (M+H)+
根据用于合成3-(1-乙基-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑(Int-TG-04)的方法制备中间体Int-TG-05,本领域技术人员能够认识到对所示例的程序的非关键变化或置换。
Figure 600776DEST_PATH_IMAGE056
根据方案TG-5制备1-乙基-4-氟-3-甲基-1H-吡唑-5-甲酸(Int-TG-06)。
Figure 320471DEST_PATH_IMAGE057
方案TG-5:
Figure 364650DEST_PATH_IMAGE058
步骤1:合成1-乙基-4-氟-3-甲基-1H-吡唑-5-甲酸乙酯(TG-5a)。
向1-乙基-3-甲基-1H-吡唑-5-甲酸乙酯(TG-1b) (1.16 g, 6.36 mmol)在MeCN(15 mL)中的悬浮液中加入Selectfluor (6.77 g, 19.1 mmol)。将混合物在90℃搅拌14h。LCMS分析表明期望质量的形成和一些剩余的起始原料。将混合物过滤,并将滤液浓缩至干燥。将残余物通过快速色谱法(0-5% EtOAc/石油醚)纯化以提供为无色油的1-乙基-4-氟-3-甲基-1H-吡唑-5-甲酸乙酯(TG-5a) (250 mg, 20%收率)。1H NMR (400 MHz, CDCl3)δ 4.44 (q, J = 7.2 Hz, 2H), 4.37 (q, J = 7.1 Hz, 2H), 2.23 (s, 3H), 1.44 -1.34 (m, 6H);(C9H13FN2O2)的m/z (ESI+), 200.8 (M+H)+
步骤2:合成1-乙基-4-氟-3-甲基-1H-吡唑-5-甲酸(Int-TG-06)。
向1-乙基-4-氟-3-甲基-1H-吡唑-5-甲酸乙酯(TG-5a) (198 mg, 0.989 mmol)在MeOH/THF (1:5, 1.2 mL)中的溶液中加入LiOH水溶液(1.0 N, 0.95 mL, 0.95 mmol)。将混合物在25℃搅拌16 h。LCMS分析表明起始原料的消耗。将反应与用92 mg 1-乙基-4-氟-3-甲基-1H-吡唑-5-甲酸乙酯以相同方式运行的平行反应合并。将混合物用1 N HCl酸化至pH约3,并用EtOAc (3x10 mL)萃取。将合并的有机层经Na2SO4干燥,过滤,并浓缩以提供为白色固体的1-乙基-4-氟-3-甲基-1H-吡唑-5-甲酸(Int-TG-06) (129 mg, 60%收率)。1H NMR(400 MHz, CD3OD) δ 4.40 (q, J = 7.4 Hz, 2H), 2.16 (d, J = 0.8 Hz, 3H), 1.31(t, J = 7.1 Hz, 3H);(C7H9FN2O2)的m/z (ESI+), 172.7 (M+H)+
根据方案TG-6制备2-溴-1-(1-乙基-3-甲基-1H-吡唑-5-基)乙烷-1-酮(Int-TG-07)。
Figure 419062DEST_PATH_IMAGE059
方案TG-6:
Figure 206890DEST_PATH_IMAGE060
向1-乙基-3-甲基-1H-吡唑-5-甲酸(TG-1a, 300 mg, 1.95 mmol)在DCM (6.0mL)中的溶液中加入DMF (2.0 μL)和COCl2 (272 mg, 2.14 mmol)。观察到气体产生。将混合物在12℃搅拌1 h,然后浓缩至干燥。将残余物从DCM (2x5 mL)中共蒸发。将粗制物质溶解在MeCN (8.0 mL)中并加入TMSCHN2 (2.14 mL, 489 mg, 4.28mmol, 2M在正己烷中的溶液)。将反应在室温搅拌2小时。LCMS分析表明剩余起始原料。加入TMSCHN2的另一个等分试样(1.07 mL, 244 mg, 2.14 mmol, 2M在正己烷中的溶液)并将反应在室温搅拌1h。在该阶段,逐滴加入HBr (704 μL, 1.05 g, 4.28 mmol)。观察到气体产生。将混合物在12℃搅拌16 h以提供黄色悬浮液。LCMS分析表明起始原料的消耗和期望质量的形成。将混合物用EtOAc (10 mL)稀释,并用H2O洗涤。将有机层经Na2SO4干燥,过滤,并浓缩。将残余物通过快速色谱法(20 g SiO2, 90-100% EtOAc/石油醚)纯化以提供2-溴-1-(1-乙基-3-甲基-1H-吡唑-5-基)乙烷-1-酮(Int-TG-07) (301 mg, 67%收率)。1H NMR (400 MHz, CDCl3) δ6.67 (d, J = 0.7 Hz, 1H), 4.51 (q, J = 7.2 Hz, 2H), 4.28 (s, 2H), 2.31 (d, J= 0.5 Hz, 3H), 1.38 (t, J = 7.2 Hz, 3H);(C8H11BrN2O)的m/z (ESI+), 232.6 (M+H)+
根据用于合成2-溴-1-(1-乙基-3-甲基-1H-吡唑-5-基)乙烷-1-酮(Int-TG-07)的方法制备下表中的中间体Int-TG-08,本领域技术人员能够认识到对所示例的程序的非关键变化或置换。
Figure 46670DEST_PATH_IMAGE061
根据方案TG-7制备2-(甲氧基亚氨基)-4-氧代戊酸乙酯(Int-TG-09)。
Figure 261751DEST_PATH_IMAGE062
方案TG-7:
Figure 288612DEST_PATH_IMAGE063
向2,4-二氧代戊酸乙酯(TG-7a) (15.0 g, 94.9 mmol)在EtOH (150 mL)和H2O(75 mL)中的溶液中加入O-甲基羟胺盐酸盐(7.92 g, 94.8 mmol)在H2O (75 mL)中的溶液。将混合物在25℃搅拌2 h。TLC分析(1:3 EtOAc/石油醚)指示起始原料的完全消耗。将反应浓缩至干燥以提供为黄色油的2-(甲氧基亚氨基)-4-氧代戊酸乙酯(Int-TG-09) (15.8g, 89%收率),将其不经进一步纯化使用。1H NMR (400 MHz, CDCl3) δ 4.32 (q, J = 7.1Hz, 2H), 4.05 (s, 3H), 3.70 (s, 2H), 2.20 (s, 3H), 1.34 (t, J = 7.1 Hz, 3H)。
根据方案TG-8制备3-(5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基)丙酸叔丁酯(Int-TG-10)。
Figure 880131DEST_PATH_IMAGE064
方案TG-8:
Figure 308838DEST_PATH_IMAGE065
步骤1:合成3-肼基丙酸叔丁酯(TG-8b)
将肼一水合物(12.1 g, 236 mmol)在EtOH (150 mL)中的溶液加热至回流并逐滴加入丙烯酸叔丁酯(15.0 g, 117 mmol)。将混合物回流搅拌10 min。TLC分析(1:5 EtOAc/石油醚)表明起始原料的消耗。将反应浓缩至干燥以提供为无色油的3-肼基丙酸叔丁酯(TG-8b) (17.7 g, 94%收率)。1H NMR (400 MHz, CDCl3) δ 3.11 (br s, 3H), 2.93 (t,J = 6.5 Hz, 2H), 2.38 (t, J = 6.4 Hz, 2H), 1.38 (s, 9H)。
步骤2:合成1-(3-叔丁氧基-3-氧代丙基)-3-甲基-1H-吡唑-5-甲酸乙酯(TG-8c)
将2-(甲氧基亚氨基)-4-氧代戊酸乙酯(Int-TG-09) (13.8 g, 73.7 mmol)和3-肼基丙酸叔丁酯(TG-8b) (17.7 g, 110 mmol)在EtOH (200 mL)中的溶液回流搅拌4 h。TLC分析表明起始原料的消耗。将混合物浓缩至干燥。将残余物通过快速色谱法(330 gSiO2, 0-25% EtOAc/石油醚)纯化以提供为无色油的1-(3-叔丁氧基-3-氧代丙基)-3-甲基-1H-吡唑-5-甲酸乙酯(TG-8c) (14.9 g, 72%收率)。1H NMR (400 MHz, CDCl3) δ 6.59(s, 1H), 4.73 (t, J = 7.4 Hz, 2H), 4.32 (q, J = 7.2 Hz, 2H), 2.76 (t, J = 7.4Hz, 2H), 2.25 (s, 3H), 1.41 (s, 9H), 1.36 (t, J = 7.1 Hz, 3H);(C14H22N2O4)的m/z (ESI+), 283.2 (M+H)+
步骤3:合成3-[5-(肼羰基)-3-甲基-1H-吡唑-1-基]丙酸叔丁酯(TG-8d)
向1-(3-叔丁氧基-3-氧代丙基)-3-甲基-1H-吡唑-5-甲酸乙酯(TG-8c) (14.9 g,52.8 mmol)在EtOH (150 mL)中的溶液中加入肼一水合物(27.0 g, 528 mmol)。将混合物在90℃搅拌16 h。LCMS分析表明起始原料的消耗和期望产物质量的形成。将反应浓缩至干燥以提供为无色油的3-[5-(肼羰基)-3-甲基-1H-吡唑-1-基]丙酸叔丁酯(TG-8d) (14.2g, >99%收率),将其不经进一步纯化使用。1H NMR (400 MHz, DMSO-d 6) δ 9.75 (br s,1H), 6.61 (s, 1H), 4.64 (t, J = 7.1 Hz, 2H), 4.51 (br s, 2H), 2.71 (t, J =7.1 Hz, 2H), 2.17 (s, 3H), 1.40 (s, 9H);(C12H20N4O3)的m/z (ESI+), 212.9 (M- t Bu+H)+
步骤4:合成3-(5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基)丙酸叔丁酯(Int-TG-10)
向3-[5-(肼羰基)-3-甲基-1H-吡唑-1-基]丙酸叔丁酯(TG-8d) (14.2 g, 52.8mmol)在MeCN (90 mL)中的溶液中加入N,N-二甲基二甲氧基甲基胺(DMF•DMA) (6.59 g,55.3 mmol)。将混合物在50℃搅拌40 min。LCMS分析表明起始原料的消耗。依次加入4-甲氧基苄胺(6.90 g, 50.3 mmol)在MeCN (10 mL)中的溶液和乙酸(100 mL)。将混合物在120℃搅拌3 h。LCMS分析表明期望产物质量的形成。将反应冷却至室温,并浓缩至干燥。将残余物溶解在H2O (250 mL)中,并用EtOAc (250 mL)萃取。将有机层经Na2SO4干燥,过滤,并浓缩。将残余物通过快速色谱法(220 g SiO2, 0-5% MeOH/DCM)纯化以提供为黄色油的3-(5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基)丙酸叔丁酯(Int-TG-10) (1.08 g, 5%收率)。1H NMR (400 MHz, CDCl3) δ 8.14 (s, 1H), 7.06 (d, J =8.7 Hz, 2H), 6.90 (d, J = 8.6 Hz, 2H), 6.13 (s, 1H), 5.10 (s, 2H), 4.51 (t, J= 7.1 Hz, 2H), 3.81 (s, 3H), 2.79 (t, J = 7.1 Hz, 2H), 2.28 (s, 3H), 1.39 (s,9H);(C21H27N5O3)的m/z (ESI+), 398.3 (M+H)+
根据方案TG-9制备乙酸3-(4-氟-5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基)丙酯(Int-TG-11)。
Figure 694820DEST_PATH_IMAGE066
方案TG-9:
Figure 474557DEST_PATH_IMAGE067
步骤1:合成3-肼基丙烷-1-醇(TG-9b)
在98℃在N2下向NaOH (6.35 g, 159 mmol)在N2H4·H2O (46.7 g, 793 mmol)中的溶液中逐滴加入3-氯丙烷-1-醇TG-9a (15.0 g 158.66 mmol)。将混合物在98℃搅拌1h。TLC (PE/EA=1:1, KMnO4)分析显示TG-9a的消耗。将混合物浓缩,过滤,并用EtOH洗涤。将滤液浓缩以产生无色油。将油在高真空下进一步浓缩以产生白色胶质(24 g)。将白色胶质与DCM/MeOH (100 mL)一起研磨,过滤并浓缩以产生为无色胶质的3-肼基丙烷-1-醇(TG-9b) (15 g, >99%收率),将其不经进一步纯化地用于下一步。1H NMR (400 MHz, DMSO-d6)δ 4.49 -4.23 (m, 4H), 3.45 -3.42 (m, 2H), 2.74 -2.63 (m, 2H), 1.59 -1.50 (m,2H)。
步骤2:合成1-(3-羟基丙基)-3-甲基-1H-吡唑-5-甲酸乙酯(TG-9c)
向2-(甲氧基亚氨基)-4-氧代戊酸乙酯(Int-TG-09) (2.30 g, 12.29 mmol)在3-肼基丙烷-1-醇(TG-9b) (1.33 g, 14.7 mmol)中的溶液中加入EtOH (13 mL)。将混合物在80℃搅拌2 h。TLC (PE/EA=1:1, UV)分析显示起始原料的消耗。将混合物与平行地进行的更小批次合并,并在真空下浓缩,随后快速色谱法(EtOAc/石油醚,从0%至50%)以提供为黄色油的标题化合物1-(3-羟基丙基)-3-甲基-1H-吡唑-5-甲酸乙酯(TG-9c) (1.64 g, 51%收率)。(C10H16N2O3)的m/z (ESI+), 213.1 (M+H)+
步骤3:合成1-(3-羟基丙基)-3-甲基-1H-吡唑-5-碳酰肼(TG-9d)
向1-(3-羟基丙基)-3-甲基-1H-吡唑-5-甲酸乙酯(TG-9c) (1.44 g, 6.785mmol)在EtOH (7 mL)中的溶液中加入N2H4·H2O (1.20 g, 20.4 mmol)。将混合物在100℃搅拌16 h。LCMS分析表明起始原料的消耗。将混合物在真空下浓缩以提供为白色固体的标题化合物1-(3-羟基丙基)-3-甲基-1H-吡唑-5-碳酰肼(TG-9d) (1.34 g, >99%收率),将其不经进一步纯化地用于下一步。(C8H14N4O2)的m/z (ESI+), 199.1 (M+H)+
步骤4:合成3-(5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基)丙烷-1-醇(TG-9e)
在室温向1-(3-羟基丙基)-3-甲基-1H-吡唑-5-碳酰肼(TG-9d) (1.245 g, 6.281mmol)在MeCN (30 mL)中的溶液中加入DMF·DMA (816 mg, 6.85 mmol)。加入以后,将反应混合物在50℃搅拌40 min。LC-MS分析显示起始原料的消耗。在该阶段,将4-甲氧基苄胺(2.58 g, 18.8 mmol)、随后将AcOH (10mL)和AcONa (1.55 g, 18.8 mmol)加入反应混合物。将反应在95℃搅拌另外16 h。将溶液在真空下浓缩。将粗残余物用饱和NaHCO3中和,用EtOAc (2x10 mL)萃取。将合并的有机萃取物干燥(Na2SO4),过滤,并在真空下浓缩。将粗残余物通过快速色谱法(4 g SiO2, MeOH/DCM,0%至10%)纯化以提供为黄色胶质的标题化合物3-(5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基)丙烷-1-醇(TG-9e) (1.02 g, 49%收率)。1H NMR (400MHz, DMSO-d6) δ 8.77 (s, 1H), 7.03 -6.97 (m, 2H), 6.92 -6.86 (m, 2H), 6.39 (s, 1H), 5.23 (s, 2H), 4.60 (t, J =5.4 Hz, 1H), 4.17 -4.08 (m, 2H), 3.72 (s, 3H), 3.28 -3.23 (m, 2H), 2.21 (s,3H), 1.72 (quin, J = 6.6 Hz, 2H);(C17H21N5O2)的m/z (ESI+), 328.1 (M+H)+
步骤5:合成乙酸3-(5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基)丙酯(TG-9f)
在室温下向3-(5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基)丙烷-1-醇(TG-9e) (1.02 g, 3.116 mmol)在DCM (10 mL)中的溶液中加入吡啶(1.48 g, 18.7 mmol)和乙酸酐(1.27 g, 12.5 mmol)。将反应在室温搅拌16 h。LCMS分析表明起始原料的几乎完全消耗。将溶液用水(15 mL)稀释,并用DCM (2x20 mL)萃取。将合并的有机萃取物通过快速色谱法(MeOH/DCM,从0%至10%)纯化以提供为黄色油的标题化合物乙酸3-(5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基)丙酯(TG-9f) (1.00 g, 86%收率)。(C19H23N5O3)的m/z(ESI+), 370.2 (M+H)+
步骤6:合成乙酸3-(4-氟-5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基)丙酯(Int-TG-11)
向乙酸3-(5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基)丙酯(TG-9f) (500 mg, 1.35 mmol)在MeCN (5 mL)中的溶液中加入Selectfluor(959 mg, 2.71 mmol)。将得到的混合物加热至40℃和搅拌14 h。LCMS分析表明明显起始原料剩余。将反应在该阶段用水淬灭,并用EtOAc (3x10 mL)萃取。将合并的有机萃取物干燥(Na2SO4),过滤,并在真空下浓缩。将粗残余物通过快速色谱法(MeOH/DCM,从0%至6%)纯化以提供为黄色胶质的标题化合物(146 mg, 27%收率)。1H NMR (400MHz, 氯仿-d) δ 8.13(s, 1H), 7.07 (d, J = 8.5 Hz, 2H), 6.90 -6.84 (m, 2H), 5.08 (s, 2H), 4.32 -4.23 (m, 2H), 3.90 (d, J = 6.8 Hz, 2H), 3.80 (s, 3H), 2.30 (s, 3H), 2.02 -1.99 (m, 1H), 2.01 -1.95 (m, 5H);(C19H22FN5O3)的m/z (ESI+), 388.2 (M+H)+
根据方案TG-10制备3-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑(Int-TG-12)。
方案TG-10:
Figure 869766DEST_PATH_IMAGE068
步骤1:合成1-乙基-3-甲基-5-(1-甲基-1H-1,2,4-三唑-3-基)-1H-吡唑-4-甲醛(TG-10a)。
将含有DMF (9.11 mL, 118 mmol)的烧瓶在冰浴中冷却至0℃,随后逐滴加入三氯氧磷(V) (0.877 mL, 9.41 mmol)。使反应历时15 min温热至室温并搅拌另外45 min。在该阶段,将3-(1-乙基-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑(Int-TG-04) (300mg, 1.57 mmol)作为在DMF (2.25 mL)中的溶液加入。将反应在100℃加热40 min。LCMS分析表明起始原料的完全消耗。将溶液倒入冰中,并用3份DCM萃取。将合并的有机萃取物在真空中浓缩。将粗产物通过快速色谱法(12 g SiO2, Isco, 0-100% EtOAc/庚烷)纯化以提供为白色固体的标题化合物1-乙基-3-甲基-5-(1-甲基-1H-1,2,4-三唑-3-基)-1H-吡唑-4-甲醛(TG-10a) (57 mg, 90%收率)。1H NMR (400 MHz, DMSO-d6) δ = 10.27 (s, 1H),8.78 (s, 1H), 4.49 (q, J = 7.3 Hz, 2H), 4.00 (s, 3H), 2.39 (s, 3H), 1.36 (t,J = 7.2 Hz, 3H)。
步骤2:合成1-乙基-3-甲基-5-(1-甲基-1H-1,2,4-三唑-3-基)-1H-吡唑-4-醇(TG-10b)。
向1-乙基-3-甲基-5-(1-甲基-1H-1,2,4-三唑-3-基)-1H-吡唑-4-甲醛(TG-10a)(274 mg, 1.30 mmol)在CHCl3 (2 mL)中的溶液中加入mCPBA (678 mg, 2.75 mmol)。将反应在室温搅拌6.5 h。在真空中浓缩溶液。将粗制物质溶解在MeOH (8 mL)中并将Na2CO3(437 mg, 4.13 mmol)作为在H2O (2 mL)中的溶液加入。将反应在室温搅拌2 h。将溶液转移至分液漏斗,并用3份DCM萃取。将合并的有机萃取物在真空中浓缩。将粗残余物通过快速色谱法(40 g SiO2, Isco, 0-100% EtOAc/庚烷)纯化以提供为白色固体的标题化合物1-乙基-3-甲基-5-(1-甲基-1H-1,2,4-三唑-3-基)-1H-吡唑-4-醇(TG-10b) (150 mg, 56%收率)。1H NMR (400 MHz, DMSO-d6) δ = 8.65 (s, 1H), 7.95 (s, 1H), 4.32 (q, J =7.2 Hz, 2H), 3.94 (s, 3H), 2.08 (s, 3H), 1.25 (t, J = 7.2 Hz, 3H);(C9H13N5O)的m/z (ESI+), 208.5 (M+H)+ 观测值。
步骤3:合成3-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑(Int-TG-12)。
向1-乙基-3-甲基-5-(1-甲基-1H-1,2,4-三唑-3-基)-1H-吡唑-4-醇(TG-10b)(150 mg, 0.724 mmol)和K2CO3 (400 mg, 2.90 mmol)在DMF (1.5 mL)中的冷溶液中以逐滴方式加入苄基溴(248 mg, 1.45 mmol, 172 μL)在DMF (0.5 mL)中的溶液。将反应在0-10℃搅拌2h和在50℃搅拌过夜。将溶液用H2O (20 mL)稀释,并用3份DCM萃取。将合并的有机萃取物在真空中浓缩。将粗残余物通过快速色谱法(12 g SiO2, Isco, 0-100% EtOAc/庚烷)纯化以提供标题化合物3-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑(Int-TG-12) (187 mg, 87%收率)。1H NMR (400 MHz, DMSO-d6) δ = 8.65(s, 1H), 7.47 -7.40 (m, 2H), 7.39 -7.27 (m, 3H), 4.93 (s, 2H), 4.33 (q, J =7.3 Hz, 2H), 3.97 (s, 3H), 2.01 (s, 3H), 1.26 (t, J = 7.0 Hz, 3H)。
根据方案TG-11制备1-乙基-3-甲基-1H-吡唑-5-硫代甲酰胺(Int-TG-13)。
方案TG-11:
Figure 402248DEST_PATH_IMAGE069
步骤1:合成1-乙基-3-甲基-1H-吡唑-5-甲酰胺(TG-11a)。
向含有1-乙基-3-甲基-1H-吡唑-5-甲酸(TG-1a) (258 mg, 1.69 mmol)的烧瓶中加入SOCl2 (1 mL)。将反应在65℃加热2.5 h。在真空中浓缩溶液并将残余物与PhMe (3mL)一起共沸。将粗残余物溶解在二氧杂环己烷(2 mL)中并在冰浴中冷却至0℃。向溶液中加入在MeOH中的饱和NH3溶液(2.41 mL, 7M)。将反应在室温搅拌1 h,导致白色固体的沉淀。将固体通过过滤进行收集,用EtOAc洗涤,并在高真空下干燥过夜以提供为白色固体的标题化合物1-乙基-3-甲基-1H-吡唑-5-甲酰胺(TG-11a) (300 mg, >95%收率)。1H NMR(400 MHz, DMSO-d6) δ = 7.80 (br s, 1H), 7.39 (br s, 1H), 6.60 (s, 1H), 4.42(q, J = 7.3 Hz, 2H), 2.15 (s, 3H), 1.26 (t, J = 7.0 Hz, 3H)。
步骤2:合成1-乙基-3-甲基-1H-吡唑-5-硫代甲酰胺(Int-TG-13)。
向1-乙基-3-甲基-1H-吡唑-5-甲酰胺(TG-11a) (30.0 mg, 0.20 mmol)在THF中的溶液中加入劳森试剂(79.2 mg, 0.196 mmol)。将反应在70℃搅拌4 h。将反应用H2O (10mL)淬灭并转移至含有EtOAc的分液漏斗。分离各相,并将水相用3份EtOAc萃取。将合并的有机萃取物干燥(Na2SO4),过滤,并在真空中浓缩。将粗残余物通过快速色谱法(12 g SiO2,Isco, 0-100% EtOAc/庚烷)纯化以提供为黄色固体的标题化合物1-乙基-3-甲基-1H-吡唑-5-硫代甲酰胺(Int-TG-13) (20 mg, 61%收率)。1H NMR (400 MHz, DMSO-d6) δ =9.86 (br s, 1H), 9.40 (br s, 1H), 6.30 (s, 1H), 4.48 (q, J = 7.0 Hz, 2H),2.14 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H)。
根据方案TG-12制备2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-5-甲酸甲酯(Int-TG-14)
方案TG-12
Figure 224710DEST_PATH_IMAGE070
在-30℃向1-乙基-3-甲基-1h-吡唑(300.0 mg, 2.72 mmol)在THF (12 mL)中的溶液中逐滴加入n-BuLi (436 mg, 6.81 mmol, 2.72 mL, 2.5 M),将反应在-30℃搅拌10min。然后在-30℃引入氯化锌(928 mg, 6.81 mmol, 3.58 mL, 1.9 M),在-30℃搅拌30min,然后温热至室温和搅拌1h。将锌酸盐溶液(c = 0.148 M)用在下一步中。给瓶中装入在二氧杂环己烷(5 mL)中的2-溴-1,3-噁唑-5-甲酸甲酯(250 mg, 1.21 mmol)和Pd(dppf)Cl2 (178 mg, 0.243 mmol),脱气5 min。在室温引入锌酸盐溶液(12.3 mL, 1.82 mmol,0.148 M),并在80℃加热和通过LCMS监测。将反应穿过硅藻土垫过滤并在真空中浓缩。将粗产物通过ISCO (硅胶, 40 g, 0-40% EtOAc/庚烷)纯化以提供为浅橙色固体的2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-5-甲酸甲酯(Int-TG-14) (62 mg, 22%收率)。1H NMR(400 MHz, DMSO-d6) δ = 8.20 (s, 1H), 6.79 (s, 1H), 4.57 (q, J = 7.2 Hz, 2H),3.33 (s, 3H), 2.24 (s, 3H), 1.36 (t, J = 7.0 Hz, 3H)。(C11H13N3O3)的m/z (ESI+),236.2 (M+H)+ 观测值。
根据方案TG-13制备2-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-1,3-噁唑-5-甲酸乙酯(Int-TG-15)
方案TG-13
Figure 226164DEST_PATH_IMAGE071
步骤1:合成4-(苄氧基)-1-乙基-3-甲基-1H-吡唑(TG-13a)
向含有1-乙基-3-甲基-1H-吡唑-4-甲醛(1.0 g, 7.24 mmol)的100 mL烧瓶中加入DCM和间氯过氧苯甲酸(mCPBA) (3.24 g, 77% 纯度, 14.5 mmol)。将溶液在40℃加热1h。将反应冷却至室温,用DCM稀释,用饱和Na2SO3和饱和Na2CO3的混合物洗涤2次,然后用盐水洗涤,经Na2SO4干燥,过滤并浓缩以提供1 g粗制甲酸1-乙基-3-甲基-1H-吡唑-4-基酯,将其不经进一步纯化地使用。向含有甲酸1-乙基-3-甲基-1H-吡唑-4-基酯(1 g, 6.49 mmol)的100 mL烧瓶中加入MeOH和Et3N (0.9 mL, 6.48 mmol)。将溶液在室温搅拌30 min。在真空中浓缩溶液以产生为粉红色油的粗制1-乙基-3-甲基-1H-吡唑-4-醇,将其不经进一步纯化地使用。向含有1-乙基-3-甲基-1H-吡唑-4-醇(848 mg, 6.48 mmol)/CH3CN (32.4 mL)的100 mL烧瓶中加入Cs2CO3 (4.23 g, 13 mmol)和苄基溴(1.16 mL, 9.73 mmol)。将溶液在室温搅拌40 min。将反应穿过硅藻土用EtOAc过滤,然后浓缩。将粗产物吸附在硅藻土上,通过ISCO (0-35% EtOAc/庚烷)纯化以提供为无色油的4-(苄氧基)-1-乙基-3-甲基-1H-吡唑(TG-13a) (1.1 g, 78%收率)。1H NMR (400 MHz, DMSO-d6) δ = 7.55 -7.26 (m, 5H),4.87 (s, 2H), 3.92 (q, J = 7.4 Hz, 2H), 2.03 (s, 3H), 1.29 (t, J = 7.2 Hz,3H)。(C13H16N2O)的m/z (ESI+), 217.2 (M+H)+ 观测值。
步骤2:合成2-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-1,3-噁唑-5-甲酸乙酯(Int-TG-15)
在-63℃向4-(苄氧基)-1-乙基-3-甲基-1H-吡唑(TG-13a) (308.0 mg, 1.42mmol)在THF (9.0 mL)中的溶液中逐滴加入n-BuLi (0.490 mL, 1.22 mmol, 2.5 M),将反应在-63至-60℃搅拌10 min。然后在-60℃引入ZnCl2 (0.645 mL, 1.22 mmol, 1.9 M),在-60至-55℃搅拌30 min,然后温热至室温和搅拌1h。将锌酸盐溶液(c = 0.13 M)用在下一步中。给小瓶装入在二氧杂环己烷(10 mL)中的2-溴噁唑-5-甲酸乙酯(200 mg, 0.909mmol)和XPhos-Pd-G2 (64.4 mg, 0.0818 mmol)并脱气5 min。在室温引入锌酸盐(10.5mL, 1.36 mmol, 0.13M)的溶液并将反应在80℃加热90 min。将反应混合物反萃取进含有1.25 mL 1M HCl的冰水中。将混合物用EtOAc萃取3次。将合并的有机萃取物在真空中浓缩。将粗产物通过ISCO (二氧化硅, 24 g, 0-30% EtOAc/庚烷)纯化以提供为澄清油的2-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-1,3-噁唑-5-甲酸乙酯(Int-TG-15) (141 mg,58%收率) 1H NMR (400 MHz, DMSO-d6) δ = 8.20 (s, 1H), 7.50 (dd, J = 1.8, 7.6Hz, 2H), 7.36 (d, J = 7.0 Hz, 3H), 4.99 (s, 2H), 4.54 -4.44 (m, 2H), 4.38 (q,J = 7.0 Hz, 2H), 2.12 (s, 3H), 1.32 (t, J = 7.2 Hz, 6H)。(C19H21N3O4)的m/z (ESI+), 356.3 (M+H)+ 观测值。
根据方案TG-14制备乙酸2-[4-(苄氧基)-5-溴-3-甲基-1H-吡唑-1-基]乙酯(Int-TG-16)
方案TG-14
Figure 159485DEST_PATH_IMAGE072
步骤1:合成乙酸2-(3-甲基-1H-吡唑-1-基)乙酯(TG-14a)
在室温向50 mL烧瓶中加入在DCM (20.0 mL)中的2-(3-甲基-1h-吡唑-1-基)乙烷-1-醇(239 mg, 1.47 mmol)、乙酸乙酰酯(180 mg, 1.76 mmol, 167 μL)、三乙胺(446mg, 4.41 mmol, 0.615 mL)和DMAP (35.9 mg, 0.294 mmol)保持2.5 h。反应混合物保持为悬浮液。将固体滤出,将滤液用DCM稀释,并用水洗涤,经Na2SO4干燥,并在真空中浓缩。将粗制物质通过ISCO (二氧化硅, 12 g 0-40% EtOAc/石油醚)纯化以提供为澄清油的乙酸2-(3-甲基-1H-吡唑-1-基)乙酯(TG-14a) (278, 86%收率)。1H NMR (400 MHz, DMSO-d6)δ ppm 7.59 (d, J = 1.95 Hz, 1H), 6.00 (d, J = 1.95 Hz, 1H), 4.28 -4.33 (m,2H), 4.21 -4.27 (m, 2H), 2.15 (s, 3 H), 1.98 (s, 3 H)。
步骤2:合成乙酸2-(4-甲酰基-3-甲基-1H-吡唑-1-基)乙酯(TG-14b)
在室温向乙酸2-(3-甲基-1H-吡唑-1-基)乙酯(TG-14a) (254 mg, 1.51 mmol)在DMF (993 mg, 13.6 mmol, 1.05 mL)中的混合物中加入三氯氧磷(695 mg, 4.53 mmol,0.422 mL),为放热反应,2 min后,将反应在100℃加热2.5 h。将反应冷却至室温,用DCM稀释并倒入冰中,搅拌5 min,将水层小心地用饱和Na2CO3中和至pH 8。将反应产物用DCM萃取3次。将有机层用水洗涤1次并在真空中浓缩。将粗制混合物通过ISCO (二氧化硅, 12 g, 0-100% EtOAc/石油醚)纯化以提供348 mg为浅黄色油的乙酸2-(4-甲酰基-3-甲基-1H-吡唑-1-基)乙酯(TG-14b)。1H NMR (400 MHz, DMSO-d6) δ = 9.82 (s, 1H), 8.40 (s, 1H),4.48 -4.22 (m, 4H), 2.36 (s, 3H), 1.98 (s, 3H)。
步骤3:合成乙酸2-[4-(苄氧基)-3-甲基-1H-吡唑-1-基]乙酯(TG-14c)
向含有乙酸2-(4-甲酰基-3-甲基-1H-吡唑-1-基)乙酯(TG-14b) (220 mg, 1.31mmol)的25 mL烧瓶中加入氯仿和m-CPBA (526 mg, 77% 纯度, 2.35 mmol)。将反应在40℃加热35 min。将反应冷却至室温,用二氯甲烷稀释,用饱和Na2SO3和饱和Na2CO3的混合物洗涤1次,调节pH = 8,用DCM萃取3次,然后将有机层用水洗涤,经Na2SO4干燥,过滤并在真空中浓缩以提供粗制乙酸2-[4-(甲酰氧基)-3-甲基-1H-吡唑-1-基]乙酯,将其不经纯化用在下一步中。向含有乙酸2-[4-(甲酰氧基)-3-甲基-1H-吡唑-1-基]乙酯(260 mg, 1.23 mmol)的50 mL烧瓶中加入MeOH和三乙胺(161 mg, 1.59 mmol, 0.222 mL)。将溶液在室温搅拌35min。在真空中浓缩溶液以产生为黄色油的乙酸2-(4-羟基-3-甲基-1H-吡唑-1-基)-乙酯,将其直接用在下一步中。在室温向含有乙酸2-(4-羟基-3-甲基-1H-吡唑-1-基)乙酯(226mg, 1.23 mmol)的50 mL烧瓶中加入MeCN (8 mL)、碳酸铯(480 mg, 1.47 mmol)和苄基溴(0.219 mL, 1.84 mmol)。将反应在室温搅拌30 min。将反应穿过硅藻土过滤,将固体用EtOAc洗涤,并将滤液在真空中浓缩。将粗产物吸附在二氧化硅上,通过ISCO (12 g, 0-50%EtOAc/庚烷)纯化以提供为澄清油的标题化合物(205 mg, 在3步中58%)乙酸2-[4-(苄氧基)-3-甲基-1H-吡唑-1-基]乙酯(TG-14c)。1H NMR (400 MHz, DMSO-d6) δ = 7.50 -7.24(m, 6H), 4.88 (s, 2H), 4.28 -4.23 (m, 2H), 4.14 (d, J = 5.5 Hz, 2H), 2.04 (s,3H), 1.97 (s, 3H)。
步骤4:合成乙酸2-[4-(苄氧基)-5-溴-3-甲基-1H-吡唑-1-基]乙酯(Int-TG-16)
在-9℃向乙酸2-[4-(苄氧基)-3-甲基-1H-吡唑-1-基]乙酯(TG-14c) (156.0 mg,0.569 mmol)和碳酸钠(181 mg, 1.71 mmol)在二氯甲烷(2.0 mL)中的搅拌溶液中加入溴(273 mg, 1.71 mmol, 87.4 uL)。将反应在-10℃搅拌3.5 h。将反应通过在0℃加入饱和Na2S2O3淬灭,用DCM萃取2次,在真空中除去溶剂。将粗产物通过ISCO (二氧化硅, 12 g, 0-70% EtOAc/庚烷)纯化以提供为澄清油的标题化合物(180 mg, 90%)乙酸2-[4-(苄氧基)-5-溴-3-甲基-1H-吡唑-1-基]乙酯(Int-TG-16)。1H NMR (400 MHz, DMSO-d6) δ ppm 7.31-7.45 (m, 5H), 4.90 (s, 2H), 4.29 (t, J = 4.88 Hz, 2H), 4.22 (t, J = 4.88 Hz,2H), 2.00 (s, 3H), 1.97 (s, 3H)。(C15H17BrN2O3)的m/z (ESI+), 355.3 (M+H)+观测值。
根据方案TG-15制备3-[1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-5-基]-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-17)
方案TG-15
Figure 297206DEST_PATH_IMAGE073
步骤1:合成3-[1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-5-基]-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-17)。
向3-(5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基)丙烷-1-醇(TG-9e) (600.0 mg, 1.44 mmol)在DMF (6.0 mL)中的溶液中加入咪唑(490mg, 7.20 mmol)和TBSCl (651 mg, 4.32 mmol)。将得到的淡黄色反应溶液在25℃搅拌16h。将反应用H2O (20 mL)淬灭以产生浅棕色溶液,将其用EtOAc (50 mL*3)萃取。将合并的有机萃取物用盐水(50 mL)洗涤,干燥(无水Na2SO4),过滤并浓缩以产生浅黄色油。将粗残余物通过combi flash (MeOH/DCM,0-10%,在12 g硅胶上)进一步纯化以得到为浅黄色油的标题化合物3-[1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-5-基]-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-17) (550 mg, 86.5%)。(C23H36N5O2Si)的m/z(ESI+), 442.3 (M+H)+观测值。
根据方案TG-16制备3-[3-甲基-5-(1-甲基-1H-1,2,4-三唑-3-基)-1H-吡唑-1-基]-丙酸叔丁酯(Int-TG-18)
方案TG-16
Figure 290569DEST_PATH_IMAGE074
步骤1:合成3-[3-甲基-5-(1H-1,2,4-三唑-3-基)-1H-吡唑-1-基]-丙酸叔丁酯(TG-16a)。
向3-(5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基)丙酸叔丁酯(Int-TG-10) (448.2 mg, 1.128 mmol)在MeCN (10 mL)中的溶液中加入在H2O (3 mL)中的硝酸铈铵(CAN) (1830 mg, 3.34 mmol)。将得到的混合物在25℃搅拌2.5小时。该反应为黄色溶液。将反应用水(40 mL)淬灭并转移至分液漏斗。将溶液用EtOAc (50mL *3)萃取。将合并的有机萃取物干燥(Na2SO4)并在真空下浓缩。将粗残余物与在类似条件下制备批次的粗残余物合并。将合并批次通过Prep-TLC (DCM: MeOH= 10: 1)纯化以提供为黄色固体的标题化合物3-[3-甲基-5-(1H-1,2,4-三唑-3-基)-1H-吡唑-1-基]-丙酸叔丁酯(TG-16a) (263 mg, 54%)。(C13H20N5O2)的m/z(ESI+), 278.1 (M+H)+观测值。
步骤2:合成3-[3-甲基-5-(1-甲基-1H-1,2,4-三唑-3-基)-1H-吡唑-1-基]-丙酸叔丁酯(Int-TG-18)。
向3-[3-甲基-5-(1H-1,2,4-三唑-3-基)-1H-吡唑-1-基]-丙酸叔丁酯(TG-16a)(263 mg, 0.95 mmol)和Cs2CO3 (775 mg, 2.38 mmol, 2.4当量)在DMF (5.0 mL, 0.2 M)中的溶液中加入MeI (1.0 mmol, 63 μL, 1.05当量)。将得到的混合物在25℃搅拌20小时,在这段时间中混合物变成黄色悬浮液。LCMS分析表明起始原料被消耗,且TLC (石油醚:EtOAc= 1: 1, UV)显示三个新斑点。然后将反应用水淬灭,并用三份(各5 mL) EtOAc萃取。将合并的有机萃取物在真空下浓缩。将粗残余物通过Prep-TLC (石油醚: EtOAc, 2:1.5)纯化以提供为无色胶质的标题化合物3-[3-甲基-5-(1-甲基-1H-1,2,4-三唑-3-基)-1H-吡唑-1-基]-丙酸叔丁酯(Int-TG-18) (170 mg, 61%)。1H NMR (400 MHz, 氯仿-d) δ 8.04(s, 1H), 6.55 (s, 1H), 4.84 -4.78 (m, 2H), 3.96 (s, 3H), 2.86 -2.74 (m, 2H),2.28 (s, 3H), 1.57 (s, 9H)。(C14H22N5O2)的m/z (ESI+), 292.0 (M+H)+观测值。
根据方案TG-17制备2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-甲酸乙酯(Int-TG-19)
方案TG-17
Figure 779320DEST_PATH_IMAGE075
步骤1:合成2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-甲酸乙酯(Int-TG-19)
在氮气惰性气氛下向经干燥的200 mL烧瓶中加入1-乙基-3-甲基吡唑(1g, 9.1mmol, 1.8当量)和THF (45 mL, 0.2 M)。将该混合物冷却至-30 C,然后加入n-BuLi (2.5M在己烷类中,4 mL, 10 mmol, 2.2当量),产生黄色溶液,以及少量沉淀物。20 min以后,取出等分试样并用CD3OD淬灭。该等分试样的GCMS分析显示仅30% 氘化,所以向反应混合物中加入另外的1 mL n-BuLi。另外45 min以后,以前述方式的GCMS分析显示完全锂化。在该阶段,将ZnCl2 (1.9 M在THF中,7 mL, 13.2 mmol, 2.8当量)加入反应混合物,维持-30℃的温度。加入结束以后,将烧瓶从冷却浴取出并将其历时1小时温热至室温。然后给烧瓶装入新鲜脱气的二氧杂环己烷(22.7 mL),这导致另外沉淀物的形成,随后加入2-溴-1,3-噻唑-5-甲酸乙酯(1.19g, 5.05 mmol, 1当量)和Pd(dppf)Cl2 (555 mg, 0.15当量)。加入所有试剂以后,将反应混合物加热至80℃。1小时以后,LCMS分析表明产物质量的存在,所以将烧瓶冷却至室温,然后用饱和NH4Cl水溶液淬灭。将两相溶液在真空下浓缩以除去挥发性有机物,并将剩余的水层转移至分液漏斗。将溶液用两份EtOAc萃取。将合并的有机萃取物用一份盐水洗涤,干燥(Na2SO4),过滤,并在真空下浓缩。将粗残余物吸附在硅藻土上并进行通过柱色谱法(ISCO自动化柱, 0-100% EtOAc/庚烷;0-5% MeOH/DCM)的纯化。TLC分析揭示两种化合物已经洗脱,其中第一种被证实是nBuLi与噻唑偶联的产物(Rf = 0.5, 4:1庚烷/EtOAc, UV活性),且其中第二种被鉴定为产物(Rf = 0.4, 4:1庚烷/EtOAc)。收集含有纯产物的级分(通过TLC确定)以提供为红色油的标题化合物2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-甲酸乙酯(Int-TG-19) (660 mg, 23%)。1H NMR (400 MHz, 氯仿-d) δ8.38 (s, 1H), 6.50 (s, 1H), 4.63 (q, J = 7.2 Hz, 2H), 4.39 (q, J = 7.1 Hz,2H), 2.30 (s, 3H), 1.43 (t, J = 7.2 Hz, 3H), 1.40 (t, J = 7.2 Hz, 3H)。
根据方案TG-18制备3-{3-[(苄氧基)甲基]-1-乙基-1H-吡唑-5-基}-1-甲基-1H-1,2,4-三唑(Int-TG-20)
方案TG-18
Figure 250752DEST_PATH_IMAGE076
步骤1:合成1-乙基-1H-吡唑-3,5-二甲酸二甲酯(TG-18a)
向1H-吡唑-3,5-二甲酸二甲酯(3.0 g, 16 mmol)和碳酸钾(4.5 g, 33 mmol)在丁烷-2-酮(MEK) (75 mL)中的混合物中加入碘乙烷(1.6 mL, 20 mL)。在75℃加热1小时以后,将反应冷却,然后用乙酸乙酯稀释。将有机物用水和盐水洗涤,干燥(Na2SO4),过滤,并在真空下浓缩。将粗残余物通过快速色谱法(80 g SiO2, Isco, 0-50% EtOAc/庚烷类)纯化以提供为澄清胶质的标题化合物1-乙基-1H-吡唑-3,5-二甲酸二甲酯(TG-18a) (3.4 g,98%),其过夜固化。LCMS [M+H] = 213观测值;1H NMR (400 MHz, DMSO-d6) δ ppm 7.26(s, 1 H) 4.57 (q, J = 7.17 Hz, 2 H) 3.86 (s, 3 H) 3.82 (s, 3 H) 1.37 (t, J =7.21 Hz, 3 H)。
步骤2:合成1-乙基-3-(羟基甲基)-1H-吡唑-5-甲酸甲酯(TG-18b)
向1-乙基-1H-吡唑-3,5-二甲酸二甲酯(TG-18a) (3.7 g, 17 mmol)的冷却(冰浴)溶液中历时30 min通过注射泵逐滴加入二异丁基氢化铝(DIBAL) (1 M在DCM中,38 mL,38 mmol)。将反应温热至室温并在1小时后用饱和酒石酸钾钠淬灭。将溶液转移至分液漏斗并进行相分离。将水相用乙酸乙酯萃取。将合并的有机萃取物用盐水洗涤,干燥(Na2SO4),过滤,并在真空下浓缩。将粗残余物通过快速色谱法(80 g SiO2, Isco, 0-60% EtOAc/庚烷)纯化以提供为澄清胶质的标题化合物1-乙基-3-(羟基甲基)-1H-吡唑-5-甲酸甲酯(TG-18b) (2.7 g, 85%),其过夜固化。LCMS [M+H] = 185观测值;1H NMR (400 MHz, DMSO-d6)δ ppm 6.77 (s, 1 H) 5.10 (t, J = 5.81 Hz, 1 H) 4.45 (q, J = 7.17 Hz, 2 H)4.41 (d, J = 5.75 Hz, 2 H) 3.83 (s, 3 H) 1.32 (t, J = 7.21 Hz, 3 H)。
步骤3:合成1-乙基-3-(羟基甲基)-1H-吡唑-5-碳酰肼(TG-18c)
向1-乙基-3-(羟基甲基)-1H-吡唑-5-甲酸甲酯(TG-18b) (2.7 g, 15 mmol)在乙醇(50 mL)中的溶液中加入水合肼(7.2 mL, 150 mmol)。将反应在80℃加热2小时,然后冷却至室温。将溶液在真空下浓缩以提供为白色固体的标题化合物1-乙基-3-(羟基甲基)-1H-吡唑-5-碳酰肼(TG-18c) (2.7 g, >95%),将其不经进一步纯化地用于下一步。1H NMR(400 MHz, DMSO-d6) δ ppm 9.71 (br s, 1 H) 6.72 (s, 1 H) 5.06 (t, J = 5.69 Hz,1 H) 4.45 (q, J = 7.05 Hz, 4 H) 4.39 (d, J = 5.62 Hz, 2 H) 1.29 (t, J = 7.09Hz, 3 H)。
步骤4:合成(1-乙基-5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1H-吡唑-3-基)甲醇(TG-18d)
向1-乙基-3-(羟基甲基)-1H-吡唑-5-碳酰肼(TG-18c) (2.7 g, 15 mmol)在乙腈(50 mL)中的混合物中加入N,N-二甲基甲酰胺缩二甲醇(DMF-DMA) (2.2 mL, 16 mmol)。将反应在50℃加热,产生黄色溶液。30 min以后,加入4-甲氧基苄胺(PMB-NH2) (1.5 mL, 16mmol),随后加入乙酸(50 mL)。将反应在120℃加热(蒸发MeCN) 1.5小时,然后冷却。将溶液浓缩并通过快速色谱法(80 g SiO2, Isco, 0-10% MeOH/DCM)纯化以提供为胶质的标题化合物(1-乙基-5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1H-吡唑-3-基)甲醇(TG-18d) (880 mg, 19%)。LCMS [M+H] = 185观测值;1H NMR (400 MHz, DMSO-d6) δ ppm8.79 (s, 1 H) 6.94 -7.01 (m, 2 H) 6.85 -6.90 (m, 2 H) 6.56 (s, 1 H) 5.23 (s,2 H) 5.03 -5.14 (m, 1 H) 4.44 (s, 2 H) 4.11 (q, J = 7.17 Hz, 2 H) 3.71 (s, 3H) 1.14 (t, J = 7.15 Hz, 3 H)。
步骤5:合成3-{3-[(苄氧基)甲基]-1-乙基-1H-吡唑-5-基}-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(TG-18e)
向(1-乙基-5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1H-吡唑-3-基)甲醇(TG-18d) (805 mg, 2.6 mmol)在N,N-二甲基甲酰胺(17 mL)中的溶液中加入氢化钠(60%的在矿物油中的分散体, 308 mg, 7.7 mmol)。10 min.以后,加入苄基溴(915 μL,7.7 mmol)。2小时以后,将反应用水淬灭并在真空下浓缩。将残余物溶解在乙酸乙酯中并转移至分液漏斗。将有机相用1份水、1份盐水洗涤,干燥(Na2SO4),过滤,并在真空下浓缩以提供标题化合物3-{3-[(苄氧基)甲基]-1-乙基-1H-吡唑-5-基}-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(TG-18e),将其不经进一步纯化地用于下一步。LCMS [M+H] = 404观测值。
步骤6:合成3-{3-[(苄氧基)甲基]-1-乙基-1H-吡唑-5-基}-1H-1,2,4-三唑(TG-18f)
向3-{3-[(苄氧基)甲基]-1-乙基-1H-吡唑-5-基}-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(TG-18e) (来自前一步的粗制物)在六氟异丙醇(17 mL)中的溶液中加入三氟乙酸(1.9 mL, 25 mmol)。将得到的橙色溶液在50℃加热3小时,然后逐渐冷却至室温。将溶液在真空下浓缩并将粗残余物通过快速色谱法(24 g SiO2, Isco, 0-10% MeOH/DCM)纯化以提供为琥珀色胶质的标题化合物3-{3-[(苄氧基)甲基]-1-乙基-1H-吡唑-5-基}-1H-1,2,4-三唑(TG-18f) (0.880 g),其被微量杂质污染。LCMS [M+H] = 284观测值;1H NMR(400 MHz, DMSO-d6) δ ppm 8.58 (br s, 1 H) 7.33 -7.38 (m, 5 H) 6.74 (s, 1 H)4.55 -4.62 (m, 2 H) 4.53 (s, 2 H) 4.49 (s, 2 H) 1.34 (t, J = 7.15 Hz, 3 H)。
步骤7:合成3-{3-[(苄氧基)甲基]-1-乙基-1H-吡唑-5-基}-1-甲基-1H-1,2,4-三唑(Int-TG-20)
向3-{3-[(苄氧基)甲基]-1-乙基-1H-吡唑-5-基}-1H-1,2,4-三唑(TG-18f) (702mg, 2.5 mmol)和碳酸钾(1.0 g, 7.4 mmol)在DMF (17 mL)中的混合物中加入碘代甲烷(460 μL, 7.4 mmol)。1小时以后,将反应在真空下浓缩。将残余物在二氯甲烷中制浆并穿过硅藻土过滤。将滤液浓缩并通过快速色谱法(24 g SiO2, Isco, 0-10% MeOH/DCM)纯化以提供标题化合物3-{3-[(苄氧基)甲基]-1-乙基-1H-吡唑-5-基}-1-甲基-1H-1,2,4-三唑(Int-TG-20) (314 mg, 43%)。LCMS [M+H] = 298观测值;1H NMR (400 MHz, DMSO-d6) δppm 8.60 (s, 1 H) 7.33 -7.37 (m, 4 H) 7.25 -7.31 (m, 1 H) 6.67 (s, 1 H) 4.53-4.59 (m, 2 H) 4.53 (s, 2 H) 4.48 (s, 2 H) 3.94 (s, 3 H) 1.34 (t, J = 7.15Hz, 3 H)。
根据方案TG-19制备3-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-21)
方案19
Figure 757826DEST_PATH_IMAGE077
步骤1:合成4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-甲酸(TG-19a)
将4-(苄氧基)-1-乙基-3-甲基-1H-吡唑(TG-13a) (2600 mg, 12.02 mmol)在无水THF (39 mL)中的浅黄色溶液用干冰浴冷却,然后以维持>-60℃的内部温度的速率在-65℃加入n-BuLi (7.26 mL, 18.2 mmol)。加入结束以后,将得到的黄色溶液在-65℃搅拌1h。形成黄绿色悬浮液。将混合物的等分试样用MeOH-d4淬灭,NMR分析证实已经发生成功锂化。然后一次性加入过量固体二氧化碳(干冰)。将混合物在-65℃搅拌15 min,然后从冷却浴取出并将其在搅拌下历时45分钟逐渐温热至室温。将溶液用浓HCl酸化至pH约1并在真空下浓缩以除去THF。将残余物与甲苯(100 mL*2)共沸并干燥以提供为灰白色固体的标题化合物4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-甲酸(TG-19a) (4700 mg),将其不经进一步纯化地用于下一步。1H NMR (400 MHz, DMSO-d6) δ = 13.23 (br s, 1H), 7.66 -6.98 (m,5H), 4.91 (s, 2H), 4.34 (q, J = 7.1 Hz, 2H), 1.96 (s, 3H), 1.25 (t, J = 7.1Hz, 3H)。
步骤2:合成碳酸4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-羰基酯2-甲基丙基酯(TG-19b)
向4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-甲酸(TG-19a) (4700 mg,18.06mmol)在DCM (90 mL)中的白色悬浮液中加入DIPEA (9.44 mL, 54.2 mmol)和i-BuOCOCl (4.68 mL, 36.1 mmol)。将得到的混合物在室温(20℃)搅拌2h。LCMS分析表明起始原料的消耗和具有期望产物质量的新峰的形成。将黄色溶液在真空下浓缩以提供为黄色固体的标题化合物碳酸4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-羰基酯2-甲基丙基酯(TG-19b) (12.5 g),将其不经进一步纯化地用于下一步。(C19H25N2O5)的m/z(ESI+), 361.1 (M+H)+ 观测值。
步骤3:合成4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-碳酰肼(TG-19c)
在0℃向水合肼(3.45 mL, 69.4mmol)在THF (30 mL)中的无色溶液中逐滴加入碳酸4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-羰基酯2-甲基丙基酯(TG-19b) (12.5 g,45.60 mmol)在THF (60 mL)中的悬浮液。加入以后,将冰水浴除去,并将混合物在搅拌下逐渐温热至室温(20℃)另外15 min。TLC (石油醚: EtOAc= 2:1, UV和I2)显示起始原料的消耗和新产物的形成。将黄色悬浮液在真空下浓缩。将残余物溶解在水(50 mL)中并转移至分液漏斗。将水相用EtOAc (50 mLx2)萃取。将合并的有机萃取物用饱和NH4Cl (20 mLx3)、饱和NaHCO3 (20 mLx3)洗涤,干燥(Na2SO4),过滤,并在真空下浓缩。在该阶段将粗制物质(4.2g)和来自平行批次的粗制物质(9.3 g)合并。将合并批次通过快速柱色谱法(80 g SiO2,15% EtOAc/石油醚至100% EtOAc/石油醚)纯化。将含有产物的级分收集并在真空下浓缩以提供为含有杂质的黄色油的标题化合物4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-碳酰肼(TG-19c) (7.2 g)。将所得到的物质不经进一步纯化地用于下一步。(C14H19N4O2)的m/z(ESI+), 275.0 (M+H)+ 观测值。
步骤4:合成2-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-羰基]-N-[(4-甲氧基苯基)甲基]肼-1-硫代甲酰胺(TG-19d)
向4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-碳酰肼(TG-19c) (6.1 g 22.24mmol)在无水THF (44 mL)中的黄色溶液中加入DIPEA (5750 mg, 44.5 mmol),随后逐滴加入在无水THF (11 mL)中的1-(异硫氰酸根合甲基)-4-甲氧基苯(PMBNCS) (5.98 g, 33.4mmol)。将黄色溶液在室温(15℃)搅拌16h。LCMS分析表明起始原料的消耗和具有期望产物质量的新峰的形成。将该批次与较小的平行批次合并用于进一步处理。将合并批次在真空下浓缩,转移至含有EtOAc的分液漏斗,并用水(100 mL)稀释。分离各相,并将水相用EtOAc(100mLx5)萃取。将合并的有机萃取物用NH4Cl (50 mLx3)洗涤,干燥(Na2SO4),过滤,并在真空下浓缩。将粗残余物与EtOAc (150 mL)一起研磨30 min并过滤以提供为白色固体的标题化合物2-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-羰基]-N-[(4-甲氧基苯基)甲基]肼-1-硫代甲酰胺(TG-19d) (6.0 g)。(C23H28N5O3S)的m/z(ESI+), 454.1 (M+H)+ 观测值;1H NMR(400 MHz, DMSO-d6) δ = 9.46 (br s, 2H), 8.52 (br s, 1H), 7.52 -7.32 (m, 5H),7.24 (br d, J = 8.1 Hz, 2H), 6.85 (br d, J = 8.1 Hz, 2H), 5.03 (br s, 2H),4.64 (br d, J = 5.0 Hz, 2H), 4.42 -4.15 (m, 2H), 3.72 (s, 3H), 2.11 (s, 3H),1.26 (br t, J = 7.0 Hz, 3H)。
步骤5:合成5-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-硫醇(TG-19e)
向2-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-羰基]-N-[(4-甲氧基苯基)甲基]肼-1-硫代甲酰胺(TG-19d) (6.0 g, 13.23 mmol)在H2O (26.4 mL)中的悬浮液中加入NaOH (13.2 mL, 39.7 mmol, 3M在H2O中)。将反应在搅拌下在100℃加热18h。LCMS分析表明起始原料的消耗和具有期望产物质量的新峰的形成。将溶液用1N HCl中和并转移至含有EtOAc的分液漏斗。分离各相,并将水相用EtOAc (50 mL*3)萃取。将合并的有机萃取物干燥(Na2SO4),过滤,并在真空下浓缩以提供为白色固体的标题化合物5-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-硫醇(TG-19e)(5.74 g),将其不经进一步纯化地用于下一步。1H NMR (400 MHz, 氯仿-d) δ = 11.66(br s, 1H), 7.38 -7.29 (m, 3H), 7.20 (br d, J = 1.7 Hz, 2H), 6.99 (d, J = 8.7Hz, 2H), 6.69 (d, J = 8.7 Hz, 2H), 5.27 (s, 2H), 4.81 (s, 2H), 3.71 (s, 3H),3.70 -3.62 (m, 2H), 2.27 (s, 3H), 0.88 (t, J = 7.2 Hz, 3H)。
步骤6:合成3-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-21)
在10℃向5-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-硫醇(TG-19e) (5.74 g, 13.18 mmol)在AcOH (26.4mL)中的黄色溶液中逐滴加入H2O2 (52.8 mL, 520 mmol)。观察到反应放热,因而在加入即将结束之前将反应烧瓶转移至冰水浴。加入结束以后,将混合物逐渐温热至室温(20℃)并搅拌另外1h。LCMS分析表明起始原料的消耗和具有期望产物质量的新峰的形成。将溶液用水(200 mL)稀释并转移至含有EtOAc的分液漏斗。分离各相,并将水相用EtOAc (100 mLx4)萃取。将合并的有机萃取物用饱和Na2CO3 (100 mLx4)、饱和Na2SO3 (100 mLx3)洗涤,干燥(Na2SO4),过滤,并在真空下浓缩。将粗残余物通过快速柱色谱法(120g SiO2, 1.5% MeOH/EtOAc至7.5%MeOH/EtOAc)纯化以提供为白色固体的标题化合物3-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-21) (4.1 g, 77%)。(C23H25N5O2)的m/z(ESI+), 404.3 (M+H)+ 观测值;1H NMR (400 MHz, 氯仿-d) δ = 8.12(s, 1H), 7.38 -7.29 (m, 3H), 7.20 (dd, J = 2.9, 6.4 Hz, 2H), 6.89 (d, J = 8.7Hz, 2H), 6.76 (d, J = 8.7 Hz, 2H), 5.01 (s, 2H), 4.76 (s, 2H), 4.04 (q, J =7.2 Hz, 2H), 3.76 (s, 3H), 2.24 (s, 3H), 1.16 (t, J = 7.2 Hz, 3H)。
根据方案TG-20制备乙酸3-[3-甲基-5-(1-甲基-1H-1,2,4-三唑-3-基)-1H-吡唑-1-基]丙酯(Int-TG-22)。
方案TG-20
Figure 922091DEST_PATH_IMAGE078
步骤1:合成乙酸3-[3-甲基-5-(1H-1,2,4-三唑-3-基)-1H-吡唑-1-基]丙酯(TG-20a)
在室温向含有乙酸3-(5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基)丙酯(1.0 g, 2.7 mmol)的圆底烧瓶中加入TFA (10 mL, 0.3 M)。将反应在室温搅拌16 h,在此时反应溶液已经从澄清变成红色。TLC分析(DCM/MeOH=10/1, UV可视化)表明起始原料已经消耗。将反应混合物在真空中浓缩以提供为红色胶质的产物。将该粗产物用MeOH (10 mL)稀释并在室温搅拌30 min。然后将混合物过滤并将滤液随后在真空下浓缩以提供为黄色油的标题化合物乙酸3-[3-甲基-5-(1H-1,2,4-三唑-3-基)-1H-吡唑-1-基]丙酯(TG-20a) (1.057 g, >99%)。1H NMR (400 MHz, DMSO-d 6) δ 8.57 (s, 1H),6.52 (s, 1H), 4.60 (t, J = 6.8 Hz, 2H), 3.94 (t, J = 6.3 Hz, 2H), 2.18 (s,3H), 2.06 (p, J = 6.6 Hz, 2H), 1.93 (s, 3H)。
步骤2:合成乙酸3-[3-甲基-5-(1-甲基-1H-1,2,4-三唑-3-基)-1H-吡唑-1-基]丙酯(Int-TG-22)。
在室温(20℃)向乙酸3-[3-甲基-5-(1H-1,2,4-三唑-3-基)-1H-吡唑-1-基]丙酯(TG-20a) (757 mg, 1.94 mmol)在DMF (8mL)中的溶液中加入K2CO3 (803 mg, 5.81mmol)。加入以后,将反应混合物冷却至0℃并历时2分钟缓慢地加入MeI (358mg, 2.52mmol)在DMF (2mL)中的溶液。然后,将反应混合物在22℃搅拌16小时。形成浅黄色悬浮液。LCMS分析表明起始原料被完全消耗和形成期望产物。将反应混合物用水(5 mL)稀释,并用2个10mL份的EtOAc/石油醚(V/V=2/1)萃取。将合并的有机萃取物干燥(Na2SO4),过滤,并在真空中浓缩。将粗残余物通过快速柱色谱法(25 g SiO2, Isco, 0-3% MeOH/EtOAc)纯化以提供为含有少量残余DMF的黄色油的标题化合物乙酸3-[3-甲基-5-(1-甲基-1H-1,2,4-三唑-3-基)-1H-吡唑-1-基]丙酯(Int-TG-22) (341.8 mg, 67%)。1H NMR (400 MHz, 氯仿-d) δ= 8.05 (s, 1H), 6.57 (s, 1H), 4.67 (t, J = 7.2 Hz, 2H), 4.11 (t, J = 6.4 Hz,2H), 3.97 (s, 3H), 2.29 (s, 3H), 2.20 (quin, J = 6.7 Hz, 2H), 2.01 (s, 3H)。
根据方案TG-21制备5-溴-1-乙基-4-[(4-甲氧基苯基)甲氧基]-3-甲基-1H-吡唑(Int-TG-23)。
方案TG-21
Figure 632558DEST_PATH_IMAGE079
步骤1:合成1-乙基-2-(丙烷-2-亚基)肼(TG-21b)
在25℃向乙基肼盐酸盐(TG-21a) (200 g, 1.50 mol)在DCM (3 L)中的混合物中加入丙酮(127.12 mL, 1.73 mol)和K2CO3 (519.51 g, 3.76 mol),并将反应混合物搅拌16小时。LCMS分析表明反应结束。将反应混合物过滤并将滤饼用DCM (500 mL x 3)洗涤,将滤液在真空中浓缩以提供为无色油的标题化合物1-乙基-2-(丙烷-2-亚基)肼(TG-21b) (280g, 2.66 mol, 88%收率)。1H NMR (400 MHz, 氯仿-d) δ = 4.26 (br s, 1H), 3.11 (q,J = 7.1 Hz, 2H), 1.85 (s, 3H), 1.67 (s, 3H), 1.08 (t, J = 7.2 Hz, 3H)。
步骤2:合成1-乙基-3-甲基-1H-吡唑-4-甲醛(TG-21c)
在0℃将POCl3 (317.52 mL, 3.42 mol)逐滴加入DMF (800 mL)中并搅拌1 h。将混合物冷却至-20℃,并在-20℃逐滴加入1-乙基-2-(丙烷-2-亚基)-肼(TG-21b) (140 g,1.40 mol)在DMF (400 mL)中的溶液。将混合物在-20℃搅拌3 h,在此时除去冰浴并将反应逐渐温热至25℃。接着,将混合物在80℃搅拌2 h。LCMS分析表明反应结束。将反应混合物冷却至环境温度并缓慢地倒入冰(3 kg)中。用30% NaOH水溶液(pH = 9-10)使混合物呈碱性,随后用DCM (2 L x 3)萃取。将合并的有机萃取物干燥(Na2SO4),过滤,并在真空下浓缩。将粗残余物通过快速柱色谱法(SiO2, 0 -50% EtOAc/石油醚)纯化以提供为黄色油的标题化合物1-乙基-3-甲基-1H-吡唑-4-甲醛(TG-21c) (130 g, 940.89 mmol, 67%收率)。1H NMR(400 MHz, DMSO-d6) δ = 9.79 (s, 1H), 8.34 (s, 1H), 4.10 (q, J = 7.3 Hz, 2H),2.34 (s, 3H), 1.36 (t, J = 7.3 Hz, 3H)。
步骤3:合成甲酸1-乙基-3-甲基-1H-吡唑-4-基酯(TG-21d)
在3个平行批次中进行反应。在15℃向1-乙基-3-甲基-1H-吡唑-4-甲醛(TG-21c)(50 g, 361.88 mmol)在CHCl3 (1 L)中的混合物中逐份加入mCPBA (94.04 g, 463.21mmol) 30分钟。将反应混合物在15℃搅拌16 h。将反应混合物过滤并将滤饼用DCM (200 mLx 2)洗涤。在15℃向滤液中加入K2CO3 (250.07 g, 1.81 mol)并将混合物搅拌1 h。LCMS分析指示起始原料被消耗和已经形成期望产物。将反应混合物过滤并将滤饼用DCM (200 mLx 2)洗涤。将滤液在真空下浓缩以提供粗残余物,将其通过快速柱色谱法(SiO2, 0-10%EtOAc/石油醚)纯化以提供为黑色油的标题化合物甲酸1-乙基-3-甲基-1H-吡唑-4-基酯(TG-21d) (约140g)。将该物质不经进一步纯化地用于下一步。LCMS [M+H] = 155观测值。
步骤4:合成1-乙基-3-甲基-1H-吡唑-4-醇(TG-21e)
在10℃向甲酸1-乙基-3-甲基-1H-吡唑-4-基酯(TG-21d) (140 g, 粗产物)在MeOH (50 mL)中的混合物中加入NaHCO3水溶液(150 mL),并将混合物在10℃搅拌1 h。TLC(石油醚: EtOAc = 1: 1, UV可视化, 起始原料: Rf = 0.55)指示起始原料被消耗。将混合物过滤并将滤饼用MeOH (50 mL x 3)洗涤。将滤液在真空下浓缩以提供粗残余物,将其通过快速柱色谱法(SiO2, 30-85% EtOAc/石油醚)纯化以提供为白色固体的标题化合物1-乙基-3-甲基-1H-吡唑-4-醇(TG-21e) (90 g, 713.40 mmol, 78%收率)。(C6H11N2O)的m/z(ESI+), 127.0 (M+H)+ 观测值。
步骤5:合成1-乙基-4-[(4-甲氧基苯基)甲氧基]-3-甲基-1H-吡唑(TG-21f)
在反应容器中,在17℃将PMBCl (12.9 mL, 95.1 mmol)逐滴加入1-乙基-3-甲基-1H-吡唑-4-醇(TG-21e) (10.0 g 79.3 mmol)和K2CO3 (16.4 g, 119 mmol)在DMF (130mL)中的浅棕色悬浮液中。将反应混合物在17℃搅拌16 h。LCMS分析表明起始原料的几乎耗尽和具有期望产物质量的新峰的形成。将反应混合物用水(200 mL)稀释,并用EtOAc/石油醚(V/V=2/1, 300 mLx2)萃取。将合并的有机萃取物用盐水(100 mL)洗涤,干燥(Na2SO4),过滤,并在真空中浓缩。将粗残余物通过快速柱色谱法(120 g SiO2, Isco, 0-25% EtOAc/石油醚)纯化以提供为黄色油的标题化合物1-乙基-4-[(4-甲氧基苯基)甲氧基]-3-甲基-1H-吡唑(TG-21f) (17.5 g, 89%)。1H NMR (400 MHz, 氯仿-d) δ = 7.39 -7.28 (m, 2H),6.96 (s, 1H), 6.94 -6.87 (m, 2H), 4.81 (s, 2H), 3.99 (q, J = 7.3 Hz, 2H),3.83 (s, 3H), 2.19 (s, 3H), 1.41 (t, J = 7.3 Hz, 3H)。(C14H19N2O2)的m/z (ESI+),247.0 (M+H)+ 观测值。
步骤6:合成5-溴-1-乙基-4-[(4-甲氧基苯基)甲氧基]-3-甲基-1H-吡唑(Int-TG-23)
向1-乙基-4-[(4-甲氧基苯基)甲氧基]-3-甲基-1H-吡唑(TG-21f) (18.1 g,73.6 mmol)在CHCl3 (500 mL)中的黄色溶液中加入NBS (15.7 g, 88.4 mmol)。将反应在25℃搅拌3 h。TLC (50% EtOAc/石油醚,UV可视化)表明起始原料被消耗和已经形成新产物。将反应混合物与来自2个更小批次的粗制反应混合物合并。将合并的溶液用水(100 mL)稀释,并用DCM (200 mL*2)萃取。将合并的有机萃取物用盐水(100 mL)洗涤,干燥(Na2SO4),过滤,并在真空中浓缩。将粗残余物通过快速柱色谱法(120 g SiO2, Isco, 13-25%EtOAc/石油醚)纯化以提供为黄色油的标题化合物5-溴-1-乙基-4-[(4-甲氧基苯基)甲氧基]-3-甲基-1H-吡唑(Int-TG-23) (17.43 g, 70%)。1H NMR (400 MHz, 氯仿-d) δ =7.31 (d, J = 8.5 Hz, 2H), 6.89 (d, J = 8.5 Hz, 2H), 4.85 (s, 2H), 4.08 (q, J= 7.2 Hz, 2H), 3.82 (s, 3H), 2.07 (s, 3H), 1.37 (t, J = 7.3 Hz, 3H)。
根据方案TG-22制备3-甲基-1-{3-[(氧杂环己烷-2-基)氧基]丙基}-1H-吡唑(Int-TG-24)。
方案TG-22
Figure 907681DEST_PATH_IMAGE080
步骤1:合成3-甲基-1-{3-[(氧杂环己烷-2-基)氧基]丙基}-1H-吡唑(Int-TG-24)
在密闭试管中,将5-甲基-1H-吡唑(TG-22a) (980 μL, 12 mmol)、2-(3-溴丙氧基)四氢-2H-吡喃(TG-22b) (4.1 mL, 24 mmol)、碳酸钾(3.4 g, 24 mmol)和碘化钾(4.0g, 24 mmol)在2-丁酮(MEK) (49 mL)中的混合物在70℃加热过夜。将反应冷却至室温并将固体滤出。将滤液浓缩并通过快速色谱法(80 g SiO2, Isco, 0-50% EtOAc/庚烷)纯化以提供为油的标题化合物(Int-TG-24) (704 mg, 26%),为位置异构体的3:1混合物。LCMS [M+H]+ = 225观测值;1H NMR (400 MHz, DMSO-d 6) δ ppm (主要位置异构体) 7.53 (d, J=2.08 Hz, 1 H) 5.97 (dd, J=2.08, 0.37 Hz, 1 H) 4.50 -4.52 (m, 1 H) 4.06 (t, J=6.91 Hz, 2 H) 3.72 (ddd, J=11.07, 7.82, 3.12 Hz, 1 H) 3.55 -3.62 (m, 1 H)3.37 -3.44 (m, 1 H) 3.24 -3.29 (m, 1 H) 2.14 (s, 3 H) 1.93 -2.01 (m, 2 H)1.66 -1.77 (m, 1H) 1.57 -1.66 (m, 1 H) 1.40 -1.52 (m, 4 H)。
根据方案TG-23制备5-溴-1-乙基-4-[(4-甲氧基苯基)甲氧基]-1H-吡唑(Int-TG-25)。
方案TG-23
Figure 285573DEST_PATH_IMAGE081
步骤1:合成1-乙基-4-[(4-甲氧基苯基)甲氧基]-1H-吡唑(TG-23b)
向1-乙基-1H-吡唑-4-醇(TG-23a) (300 mg, 2.68 mmol)在无水DMF (4.5mL)中的溶液中加入K2CO3 (407 mg, 2.94 mmol)和PMBCl (461 mg, 2.94 mmol)。将得到的浅红色反应悬浮液在25℃搅拌16 h。TLC (石油醚: EtOAc=2:1, UV)分析表明起始原料已经消耗。将得到的白色悬浮液用水(20 mL)稀释,并用EtOAc (3x30 mL)萃取。将有机相用盐水(3x30 mL)洗涤,经无水Na2SO4干燥,过滤,并浓缩至干燥。将粗残余物通过快速柱色谱法(12g SiO2, Combi-flash, EtOAc/石油醚= 12.5%至75%)纯化以提供为无色油的标题化合物1-乙基-4-[(4-甲氧基苯基)甲氧基]-1H-吡唑(TG-23b) (520 mg, 83%)。1H NMR (400MHz, 氯仿-d) δ = 7.33 (d, J = 8.5 Hz, 2H), 7.25 (s, 1H), 7.08 (s, 1H), 6.95 -6.88 (m, 2H), 4.86 (s, 2H), 4.07 (q, J = 7.3 Hz, 2H), 3.82 (s, 3H), 1.65 (s,1H), 1.44 (t, J = 7.4 Hz, 3H)。
步骤2:合成5-溴-1-乙基-4-[(4-甲氧基苯基)甲氧基]-1H-吡唑(Int-TG-25)
在室温(25℃)向1-乙基-4-[(4-甲氧基苯基)甲氧基]-1H-吡唑(TG-23b) (520mg, 2.24 mmol)在CHCl3 (16 mL)中的无色溶液中逐份加入NBS (598 mg, 3.36 mmol)。将得到的浅红色混合物在该温度搅拌3h。LCMS分析表明反应结束。将得到的混合物用水(10mL)稀释。分离各相,并将水层用DCM (2x20 mL)萃取。将合并的有机萃取物经无水Na2SO4干燥,过滤并浓缩至干燥。将粗残余物通过快速柱色谱法(40g SiO2, Combi-flash, EtOAc/石油醚= 5%至30%)纯化以提供为白色固体的标题化合物5-溴-1-乙基-4-[(4-甲氧基苯基)甲氧基]-1H-吡唑(Int-TG-25) (410 mg, 58.9%)。1H NMR (400 MHz, 氯仿-d) δ = 7.34(d, J = 8.5 Hz, 2H), 7.24 (s, 1H), 6.95 -6.86 (m, 2H), 4.93 (s, 2H), 4.14 (q,J = 7.3 Hz, 2H), 3.82 (s, 3H), 1.40 (t, J = 7.3 Hz, 3H)。(C13H16BrN2O2)的m/z(ESI+), 311.8 (M+H)+ 观测值。
根据方案TG-24制备3-[4-(苄氧基)-1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-5-基]-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-26)
方案TG-24
Figure 355160DEST_PATH_IMAGE082
步骤1:合成(2E)-2-[2-(2-乙氧基-2-氧代乙基)亚肼基]丙酸甲酯(TG-24c)
向丙酮酸甲酯(4000 mg, 39.18 mmol)在MeOH (100mL)中的溶液中加入醋酸钠(3210 mg, 39.18 mmol)和肼基乙酸乙酯(6060 mg, 39.2 mmol)。将得到的淡黄色反应溶液在25℃搅拌16 h。LCMS分析表明起始原料的消耗和具有期望产物质量的新峰。将反应用H2O (100 mL)淬灭,将其加入淡黄色溶液中。将溶液用EtOAc (3x50 mL)萃取。将合并的有机萃取物用盐水(200 mL)洗涤,通过无水Na2SO4干燥,过滤并浓缩以提供为浅黄色固体的标题化合物(2E)-2-[2-(2-乙氧基-2-氧代乙基)亚肼基]丙酸甲酯(TG-24c) (7000 mg,88%)。1H NMR (400 MHz, 氯仿-d) δ = 5.97 (br s, 1H), 4.28 -4.16 (m, 4H), 3.82(s, 3H), 2.02 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H)。(C8H15N2O4)的m/z (ESI+), 202.9(M+H)+ 观测值。
步骤2:合成4-羟基-3-甲基-1H-吡唑-5-甲酸甲酯(TG-24d)
向(2E)-2-[2-(2-乙氧基-2-氧代乙基)亚肼基]丙酸甲酯(TG-24c) (5200 mg,25.72 mmol)在MeOH (50.0 mL)中的溶液中加入NaOAc (4170 mg, 77.1 mmol, 5M, 15.4mL)。将得到的浅黄色反应溶液在70℃搅拌16 h。LCMS分析表明起始原料的消耗和具有期望产物质量的新峰。将反应在0℃用5% HCl淬灭,用EtOAc (3x100 mL)萃取。将合并的有机萃取物用盐水(150 mL)洗涤,通过无水Na2SO4干燥,过滤并浓缩以产生黄色固体。将粗残余物通过快速柱色谱法(40g SiO2, combi flash, 0-50%的EtOAc/石油醚)纯化以提供为浅黄色固体的标题化合物4-羟基-3-甲基-1H-吡唑-5-甲酸甲酯(TG-24d) (2900 mg, 72%)。1HNMR (400 MHz, DMSO-d6) δ = 12.76 (br s, 1H), 8.40 (br s, 1H), 3.76 (s, 3H),2.08 (s, 3H)。(C6H9N2O3)的m/z (ESI+), 156.8 (M+H)+ 观测值。
步骤3:合成4-(苄氧基)-3-甲基-1H-吡唑-5-甲酸甲酯(TG-24e)
向4-羟基-3-甲基-1H-吡唑-5-甲酸甲酯(TG-24d) (2700mg, 17.29mmol)在MeCN(30.0mL)和水(30.0 mL)中的溶液中加入苄基溴(3250mg, 19.0mmol)和Na2CO3 (2200 mg,20.8 mmol)。将得到的黄色悬浮液在25℃搅拌16 h。将反应用水(120 mL)淬灭,将其加入浅棕色反应溶液中。然后将水相用EtOAc (3×100 mL)萃取。将合并的有机萃取物经Na2SO4干燥,过滤,并在真空下浓缩。将粗残余物通过快速柱色谱法(40g SiO2, CombiFlash,EtOAc/石油醚)纯化以提供为浅黄色油的标题化合物4-(苄氧基)-3-甲基-1H-吡唑-5-甲酸甲酯(TG-24e) (3640 mg, 85%)。1H NMR (400 MHz, 氯仿-d) δ = 10.59 (br s, 1H),7.48 -7.30 (m, 5H), 5.14 -5.01 (m, 2H), 4.00 -3.89 (m, 3H), 2.08 (s, 3H)。(C13H15N2O3)的m/z (ESI+), 246.9 (M+H)+ 观测值。
步骤4:合成4-(苄氧基)-1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-5-甲酸甲酯(TG-24g)
向4-(苄氧基)-3-甲基-1H-吡唑-5-甲酸甲酯(TG-24e) (3640 mg, 14.78 mmol)和碳酸钾(4090 mg, 29.6mmol)在DMF (40.0mL)中的溶液中加入(3-溴丙氧基)-叔丁基二甲基甲硅烷(TG-24f) (4490 mg, 17.7 mmol)。将得到的黄色悬浮液在25℃搅拌16 h。将反应用水(150 mL)淬灭,将其加入黄色反应悬浮液。将水相用EtOAc (4x100 mL)萃取。将合并的有机萃取物用盐水(2x150 mL)洗涤,经无水硫酸钠干燥,过滤,并在真空中浓缩。将粗残余物通过快速柱色谱法(80g SiO2, CombiFlash, 0-25%的EtOAc/石油醚)纯化以提供为浅黄色油的标题化合物4-(苄氧基)-1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-5-甲酸甲酯(TG-24g) (3500 mg, 56%)。1H NMR (400 MHz, 氯仿-d) δ = 7.46 -7.30 (m, 5H), 4.94 (s, 2H), 4.54 -4.44 (m, 2H), 3.88 (s, 3H), 3.64 (t, J =6.2 Hz, 2H), 2.09 (s, 3H), 2.05 -1.95 (m, 2H), 0.96 -0.86 (m, 9H), 0.09 -0.01(m, 6H)。(C22H35N2O4Si)的m/z (ESI+), 419.2 (M+H)+ 观测值。
步骤5:合成4-(苄氧基)-1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-5-碳酰肼(TG-24h)
向4-(苄氧基)-1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-5-甲酸甲酯(TG-24g) (3500mg, 8.361mmol)在EtOH (40.0mL)中的溶液中加入肼一水合物(4270mg, 83.6mmol)。将得到的浅黄色反应溶液在90℃搅拌16 h。将浅黄色反应溶液在真空中浓缩以提供为浅黄色油的标题化合物4-(苄氧基)-1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-5-碳酰肼(TG-24h) (3500 mg, 100%)。1H NMR (400 MHz,氯仿-d) δ = 8.13 (br s, 1H), 7.48 -7.31 (m, 5H), 4.97 (s, 2H), 4.54 (t, J =7.2 Hz, 2H), 3.83 (br s, 2H), 3.64 (t, J = 6.3 Hz, 2H), 2.25 (s, 3H), 2.00(quin, J = 6.8 Hz, 2H), 0.89 (s, 9H), 0.04 (s, 6H)。
步骤6:合成2-[4-(苄氧基)-1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-5-羰基]-N-[(4-甲氧基苯基)甲基]肼-1-硫代甲酰胺(TG-24j)
向4-(苄氧基)-1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-5-碳酰肼(TG-24h) (3500mg, 8.361mmol)在THF (40.0mL)中的溶液中加入DIEPA(1620mg, 12.5mmol)和1-(异硫氰酸根合甲基)-4-甲氧基苯(TG-24i) (2100mg,11.7mmol)。将得到的浅黄色反应溶液在25℃搅拌16 h。将黄色溶液浓缩以提供标题化合物2-[4-(苄氧基)-1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-5-羰基]-N-[(4-甲氧基苯基)甲基]肼-1-硫代甲酰胺(TG-24j) (5000mg)。将粗制物质不经进一步纯化地用于下一步。(C30H44N5O4SSi)的m/z(ESI+), 598.1 (M+H)+ 观测值。
步骤7:合成3-[4-(苄氧基)-5-{4-[(4-甲氧基苯基)甲基]-5-硫基-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基]丙烷-1-醇(TG-24k)
向粗制2-[4-(苄氧基)-1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-5-羰基]-N-[(4-甲氧基苯基)甲基]肼-1-硫代甲酰胺(TG-24j) (5000 mg,8.363mmol)在水(65mL)中的溶液中加入NaOH (1050 mg, 26.25mmol)。将得到的黄色反应溶液在115℃(油浴)搅拌16小时。向反应中加入DCM (100 mL),并将溶液用1 M HCl酸化至pH约6,并进行相分离。将水相用DCM (1x50 mL)萃取。将合并的有机萃取物经Na2SO4干燥,过滤,并将滤液在真空下浓缩。将粗残余物通过快速柱色谱法(80g SiO2, CombiFlash, DCM:MeOH = 100%至95%)纯化以提供为浅黄色油的标题化合物3-[4-(苄氧基)-5-{4-[(4-甲氧基苯基)甲基]-5-硫基-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基]丙烷-1-醇(TG-24k)(2900 mg, 74%)。1H NMR (400 MHz, 氯仿-d) δ = 12.18 (br s, 1H), 7.35 -7.27 (m,3H), 7.18 -7.11 (m, 2H), 6.96 (d, J = 8.8 Hz, 2H), 6.68 (d, J = 8.8 Hz, 2H),5.31 (s, 2H), 4.83 (s, 2H), 3.87 -3.77 (m, 1H), 3.76 -3.69 (m, 5H), 3.39 -3.27 (m, 2H), 2.27 (s, 3H), 1.77 (td, J = 5.7, 11.4 Hz, 2H)。
步骤8:合成3-[4-(苄氧基)-5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基]丙烷-1-醇(TG-24l)
向3-[4-(苄氧基)-5-{4-[(4-甲氧基苯基)甲基]-5-硫基-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基]丙烷-1-醇(TG-24k) (2.9g, 6.2mmol)在乙酸(12mL)中的溶液中。将反应在冰水浴中冷却,随后缓慢加入H2O2 (24mL)。除去冰浴并将得到的淡黄色反应溶液在25℃搅拌2h。将反应用冰水(100 mL)和Na2SO3淬灭。将溶液转移至分液漏斗并进行相分离。将水相用EtOAc (3x50 mL)萃取。将合并的有机萃取物用盐水(50 mL)洗涤,用无水Na2SO4干燥,过滤并在真空下浓缩。将粗残余物通过快速柱色谱法(80g SiO2, CombiFlash,EtOAc:MeOH = 100%至95%)纯化以提供为浅黄色胶质的标题化合物3-[4-(苄氧基)-5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基]丙烷-1-醇(TG-24l) (2160 mg, 80%)。1H NMR (400 MHz, 氯仿-d) δ = 8.03 (s, 1H), 7.37 -7.28 (m,3H), 7.13 (d, J = 6.6 Hz, 2H), 6.92 (d, J = 8.6 Hz, 2H), 6.80 (d, J = 8.6 Hz,2H), 5.06 (s, 2H), 4.78 (s, 2H), 4.09 -4.00 (m, 2H), 3.78 (s, 3H), 3.48 -3.39(m, 2H), 2.25 (s, 3H), 2.00 (td, J = 5.4, 10.6 Hz, 2H)。(C24H28N5O3)的m/z (ESI+), 434.3 (M+H)+ 观测值。
步骤9:合成3-[4-(苄氧基)-1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-5-基]-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-26)
向3-[4-(苄氧基)-5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基]丙烷-1-醇(TG-24l) (499mg, 1.15mmol)在DMF (12mL)中的溶液中加入咪唑(414mg, 6.08mmol)和TBSCl (520mg, 3.45mmol)。将得到的淡黄色反应溶液在50℃(油浴)搅拌16小时。将反应用水淬灭,并用EtOAc (3x30 mL)萃取。将合并的有机萃取物用NaCl水溶液洗涤并在真空中浓缩。将粗残余物通过快速柱色谱法(20g SiO2, CombiFlash,DCM: MeOH= 100%至95%)纯化以提供为无色胶质的标题化合物3-[4-(苄氧基)-1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-5-基]-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-26) (526.5 mg, 83%)。1H NMR (400 MHz, 氯仿-d) δ = 8.08(s, 1H), 7.35 -7.29 (m, 3H), 7.19 (dd, J = 2.9, 6.7 Hz, 2H), 6.91 (d, J = 8.8Hz, 2H), 6.82 -6.71 (m, 2H), 4.99 (s, 2H), 4.75 (s, 2H), 4.15 -4.04 (m, 2H),3.77 (s, 3H), 3.50 (t, J = 6.1 Hz, 2H), 2.22 (s, 3H), 1.84 -1.70 (m, 2H),0.85 (s, 10H), 0.04 --0.04 (m, 6H)。(C30H42N5O3Si)的m/z (ESI+), 548.4 (M+H)+ 观测值。
根据方案TG-25制备乙酸3-[4-(苄氧基)-3-甲基-5-(1-甲基-1H-1,2,4-三唑-3-基)-1H-吡唑-1-基]丙酯(Int-TG-27)。
方案TG-25
Figure 818503DEST_PATH_IMAGE083
步骤1:合成乙酸3-[4-(苄氧基)-5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基]丙酯(TG-25a)。
将Ac2O (0.22 mL, 2.3 mmol)加入3-[4-(苄氧基)-5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基]丙烷-1-醇(TG-24l) (498.9 mg,1.151 mmol)和DMAP (141.5 mg, 1.158 mmol)在DCM (5.0 mL)中的溶液中。将得到的无色溶液在25℃搅拌16 h。将反应用水(10 mL)淬灭,并用DCM(10 mL)萃取。将有机萃取物用盐水(25 mL)洗涤,经MgSO4干燥,过滤并在真空下浓缩以提供为无色油的标题化合物乙酸3-[4-(苄氧基)-5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基]丙酯(TG-25a) (535.9 mg, 97%收率),将其不经进一步纯化地用于下一步。1H NMR(400 MHz, 氯仿-d) δ = 8.09 (s, 1H), 7.38 -7.31 (m, 3H), 7.25 -7.16 (m, 2H),6.99 -6.89 (m, 2H), 6.83 -6.75 (m, 2H), 5.04 (s, 2H), 4.78 (s, 2H), 4.16 (t,J = 6.9 Hz, 2H), 3.88 (t, J = 6.1 Hz, 2H), 3.79 (s, 3H), 2.24 (s, 3H), 2.00(s, 3H), 1.90 (quin, J = 6.5 Hz, 2H)。(C26H30N5O4)的m/z (ESI+), 476.2 (M+H)+ 观测值。
步骤2:合成乙酸3-[4-(苄氧基)-3-甲基-5-(1H-1,2,4-三唑-3-基)-1H-吡唑-1-基]丙酯(TG-25b)。
将乙酸3-[4-(苄氧基)-5-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基]丙酯(TG-25a) (535.9 mg, 1.127 mmol)在TFA (3.0 mL)中的无色溶液在25℃搅拌3 h。将反应在真空下浓缩,随后与DCM (3x5 mL)一起共沸除去残余TFA,以提供为粉红色胶质的标题化合物乙酸3-[4-(苄氧基)-3-甲基-5-(1H-1,2,4-三唑-3-基)-1H-吡唑-1-基]丙酯(TG-25b) (729.5 mg),将其不经进一步纯化地用于下一步。(C18H21N5O3)的m/z(ESI+), 356.0 (M+H)+ 观测值。
步骤3:合成乙酸3-[4-(苄氧基)-3-甲基-5-(1-甲基-1H-1,2,4-三唑-3-基)-1H-吡唑-1-基]丙酯(Int-TG-27)。
将MeI (192 mg, 84.2 uL, 1.35 mmol)加入乙酸3-[4-(苄氧基)-3-甲基-5-(1H-1,2,4-三唑-3-基)-1H-吡唑-1-基]丙酯(TG-25b) (729.5 mg, 1.13 mmol)和Cs2CO3 (1100mg, 3.38 mmol)在DMF (6.0 mL)中的白色悬浮液中。将得到的灰白色浆液在25℃搅拌2小时。将反应用水(30 mL)和EtOAc (25 mL)稀释并转移至分液漏斗。分离各相,并将水相用EtOAc (3x25 mL)萃取。将合并的有机萃取物经Na2SO4干燥,过滤,并在真空下浓缩。将粗残余物通过快速柱色谱法(12g SiO2, Isco, EtOAc/石油醚: 0-66%)纯化以提供为白色固体的标题化合物乙酸3-[4-(苄氧基)-3-甲基-5-(1-甲基-1H-1,2,4-三唑-3-基)-1H-吡唑-1-基]丙酯(Int-TG-27) (233.6 mg, 56%收率)。1H NMR (400 MHz, 氯仿-d) δ = 8.10 (s,1H), 7.46 -7.40 (m, 2H), 7.38 -7.29 (m, 3H), 4.99 (s, 2H), 4.55 (t, J = 7.1Hz, 2H), 4.08 (t, J = 6.4 Hz, 2H), 3.99 (s, 3H), 2.20 -2.11 (m, 2H), 2.09 (s,3H), 2.02 (s, 3H)。(C19H24N5O3)的m/z (ESI+), 370.0 (M+H)+ 观测值。
根据方案TG-26制备4-(苄氧基)-1-[3-(苄氧基)丙基]-3-甲基-1H-吡唑(Int-TG-28)。
方案TG-26
Figure 631738DEST_PATH_IMAGE084
步骤1:合成1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-4-甲醛(TG-26c)。
向3-甲基-1H-吡唑-4-甲醛(TG-26a) (6800mg, 61.75mmol)在DMF (100mL)中的溶液中加入Cs2CO3 (22100mg, 67.9mmol)。搅拌10 min以后,加入(3-溴丙氧基)-叔丁基二甲基甲硅烷(TG-26b) (16400mg, 64.8mmol)。将得到的黄色悬浮液在40℃搅拌16h。将该反应过滤并用EtOAc (250 mL)稀释。将有机溶液用水(350 mL)洗涤。将有机相在真空中浓缩并将粗残余物通过快速柱色谱法(120g SiO2, Combi-flash, 100% 石油醚至15% EtOAc/石油醚)纯化以提供为浅黄色油的标题化合物1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-4-甲醛(TG-26c) (16405 mg, 94.1%,TG-26c为主的位置异构体的约1.5:1混合物)。1H NMR (400 MHz, 氯仿-d) δ = 9.88 (s, 1H), 7.89 (s, 1H, 次要位置异构体), 7.83 (s, 1H, 主要位置异构体), 4.20 (q, J = 6.8 Hz, 2H), 3.58 (dt, J= 1.9, 5.7 Hz, 2H), 2.58 (s, 3H, 次要位置异构体), 2.49 (s, 3H, 主要位置异构体), 2.11 -2.00 (m, 2H), 0.95 -0.88 (m, 9H), 0.09 -0.03 (m, 6H)。
步骤2:合成甲酸1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-4-基酯(TG-26d)。
向1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-4-甲醛(TG-26c) (12.2g, 43.2mmol)在CHCl3 (150mL)中的溶液中加入m-CPBA (14.9g, 86.4mmol)。将得到的白色反应悬浮液在25℃(油浴)搅拌18小时。TLC分析表明起始原料已经被消耗。将该含有标题化合物甲酸1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-4-基酯(TG-26d)的溶液不经进一步纯化地用于下一步。(C14H27N2O3Si)的m/z(ESI+), 299.0(M+H)+ 观测值。
步骤3:合成1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-4-醇(TG-26e)。
向用MeOH (100mL)稀释的甲酸1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-4-基酯(TG-26d) (12900mg, 43.223mmol在150 mL CHCl3中)的溶液中,以使得内部温度不超过25℃的速率加入Et3N (38 mL, 300mmol)。将得到的浅黄色反应溶液在25℃(油浴)搅拌4小时。将反应用水(350 mL)淬灭并转移至分液漏斗。将水性混合物用DCM (100 mL)萃取并进行相分离。将合并的有机萃取物经Na2SO4干燥,过滤,并在真空下浓缩。将粗残余物与相同物质的另一个粗制批次合并,并通过快速柱色谱法(SiO2, 100%石油醚至20% EtOAc/石油醚)纯化以提供为黄色固体的标题化合物1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-4-醇(TG-26e) (5410 mg, 42%,单一位置异构体)。1H NMR (400 MHz, 氯仿-d) δ = 7.03 (s, 1H), 4.23 (br s, 1H), 4.04 (t, J = 6.9Hz, 2H), 3.58 (t, J = 5.9 Hz, 2H), 2.19 (s, 3H), 1.98 (quin, J = 6.4 Hz, 2H),0.90 (s, 9H), 0.05 (s, 6H)。(C13H27N2O2Si)的m/z (ESI+), 271.0 (M+H)+ 观测值。
步骤4:合成4-(苄氧基)-1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑(TG-26f)。
向1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-4-醇(TG-26e) (7400mg, 27.36mmol)在DMF (120mL)中的溶液中加入K2CO3 (5810mg, 42.0mmol)和苄基溴(4 mL, 6000mg, 30mmol)。将得到的黄色悬浮液在15℃搅拌16小时。将反应用水(250 mL)淬灭,并用EtOAc (2x250 mL)萃取。将有机相用盐水洗涤并在真空中浓缩。将粗残余物通过快速柱色谱法(80g SiO2, Combi-Flash,100%石油醚至15% EtOAc/Pet.)纯化以提供为黄色油的标题化合物4-(苄氧基)-1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑(TG-26f) (9370 mg, 80%)。1H NMR (400 MHz, 氯仿-d) δ = 7.45 -7.29(m, 5H), 6.96 (s, 1H), 4.88 (s, 2H), 4.04 (t, J = 6.8 Hz, 2H), 3.56 (t, J =5.9 Hz, 2H), 2.20 (s, 3H), 1.98 (quin, J = 6.4 Hz, 2H), 0.90 (s, 9H), 0.04(s, 6H)。(C20H33N2O2Si)的m/z (ESI+), 261.4 (M+H)+ 观测值。
步骤5:合成3-[4-(苄氧基)-3-甲基-1H-吡唑-1-基]丙烷-1-醇(TG-26g)。
向4-(苄氧基)-1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑(TG-26f) (1500mg, 4.160mmol)在THF (15mL)中的溶液中加入TBAF (1000mg, 4mmol, 1M THF 4.2 mL)。将得到的黄色溶液在25℃搅拌4小时。TLC分析表明起始原料已经消耗。将该反应溶液在真空中浓缩。将粗残余物通过快速柱色谱法(20g SiO2, Combi-Flash,EtOAc:DCM=10:1/MeOH=100%至95%)纯化以提供为无色油的标题化合物3-[4-(苄氧基)-3-甲基-1H-吡唑-1-基]丙烷-1-醇(TG-26g) (1010 mg, 98%)。1H NMR (400 MHz, 氯仿-d) δ= 7.46 -7.30 (m, 5H), 6.96 (s, 1H), 4.89 (s, 2H), 4.10 (t, J = 6.3 Hz, 2H),3.60 (q, J = 5.6 Hz, 2H), 2.88 (t, J = 5.8 Hz, 1H), 2.19 (s, 3H), 1.97 (quin,J = 5.9 Hz, 2H)。
步骤6:合成4-(苄氧基)-1-[3-(苄氧基)丙基]-3-甲基-1H-吡唑(Int-TG-28)。
在冰水浴中向3-[4-(苄氧基)-3-甲基-1H-吡唑-1-基]丙烷-1-醇(TG-26g)(1010mg, 4.101mmol)在无水THF (10mL)中的溶液中加入NaH (197mg, 4.92mmol)。将得到的混合物搅拌15 min,然后逐滴加入苄基溴(536 μL, 771mg, 4.51mmol)在无水THF (5mL)中的溶液。加入结束后,除去冰浴并将反应逐渐温热至室温和搅拌16h。将反应用水淬灭,并用EtOAc (3x30 mL)萃取。将合并的有机萃取物在真空中浓缩。将粗残余物通过快速柱色谱法(20g SiO2, Combi-Flash, 100%石油醚至80%EtOAc/石油醚)纯化以提供为无色胶质的标题化合物4-(苄氧基)-1-[3-(苄氧基)丙基]-3-甲基-1H-吡唑(Int-TG-28) (1210 mg,87%)。1H NMR (400 MHz, 氯仿-d) δ = 7.47 -7.28 (m, 10H), 6.88 (s, 1H), 4.85 (s,2H), 4.45 (s, 2H), 4.06 (t, J = 6.7 Hz, 2H), 3.40 (t, J = 5.8 Hz, 2H), 2.20(s, 3H), 2.07 (quin, J = 6.3 Hz, 2H)。(C21H25N2O2)的m/z (ESI+), 337.2 (M+H)+ 观测值。
根据方案TG-27制备4-(苄氧基)-1-[3-(苄氧基)丙基]-5-溴-3-甲基-1H-吡唑(Int-TG-29)。
方案TG-27
Figure 113404DEST_PATH_IMAGE085
步骤1:合成4-(苄氧基)-1-[3-(苄氧基)丙基]-5-溴-3-甲基-1H-吡唑(Int-TG-29)
向在冰浴中冷却至-10℃的4-(苄氧基)-1-[3-(苄氧基)丙基]-3-甲基-1H-吡唑(Int-TG-28) (350mg 1.04mmol)在DCM (15mL)中的搅拌溶液中加入Na2CO3 (386mg,3.64mmol),随后加入Br2 (600 μL, 250mg, 1.56mmol)。将得到的混合物在-10℃至-20℃之间搅拌1.5小时。将该反应用饱和Na2S2O3水溶液淬灭,并用DCM (2x45 mL)萃取。将合并的有机萃取物在真空中浓缩。将粗残余物通过快速柱色谱法(40g SiO2, CombiFlash, 100%石油醚至20% EtOAc/石油醚)纯化以提供为浅黄色油的标题化合物4-(苄氧基)-1-[3-(苄氧基)丙基]-5-溴-3-甲基-1H-吡唑(Int-TG-29) (384 mg, 88%)。1H NMR (400 MHz, 氯仿-d) δ = 7.45 -7.28 (m, 9H), 4.92 (s, 2H), 4.50 (s, 2H), 4.17 (t, J = 6.9Hz, 2H), 3.45 (t, J = 6.0 Hz, 2H), 2.15 -2.06 (m, 5H)。(C21H24BrN2O2)的m/z (ESI+), 415.1 (M+H)+ 观测值。
根据方案TG-28制备1-[3-(苄氧基)丙基]-5-溴-3-甲基-1H-吡唑(Int-TG-30)。
Figure 353892DEST_PATH_IMAGE086
步骤1:合成5-溴-3-甲基-1H-吡唑(TG-28b)
将在HBr.AcOH (150mL)中的3-甲基-1H-吡唑-5-胺(TG-28a) (10g, 100mmol)加入CuBr (14.8g, 103mmol)。将深色溶液加热至70℃。使用恒定压力加料漏斗将在H2O(40.0mL)中的NaNO2 (7.81g 113mmol)缓慢地加入溶液中。加入结束后,将反应在70℃搅拌另外30分钟。将反应从加热取下并将其冷却至室温。将反应用100mL THF稀释并用100mL水淬灭。将溶液转移至分液漏斗,并用EtOAc萃取。将有机萃取物用Na2S2O3洗涤,经Na2SO4干燥并在真空中浓缩。将粗残余物用水稀释,并用DCM萃取。将有机萃取物经Na2SO4干燥并在真空中浓缩以提供为棕色油的标题化合物5-溴-3-甲基-1H-吡唑(TG-28b) (1900 mg, 11%),将其不经进一步纯化地用于下一步。(C4H6BrN2)的m/z(ESI+), 161.8 (M+H)+ 观测值。
步骤2:合成1-[3-(苄氧基)丙基]-5-溴-3-甲基-1H-吡唑(Int-TG-30)
在室温向[(3-溴丙氧基)甲基]苯(TG-28c) (1500mg, 4.7mmol)在DMF (45mL)中的淡黄色溶液中加入5-溴-3-甲基-1H-吡唑(TG-28b) (470mg, 2.05mmol)和K2CO3(3100mg, 22.4mmol)。加入以后,然后将反应混合物在80℃搅拌16小时。将反应溶液与相同物质的另一个粗制批次合并并用水淬灭。将溶液转移至分液漏斗,并用EtOAc (3x100mL)萃取。将合并的有机萃取物在真空中浓缩。将粗残余物通过快速色谱法(80g SiO2, Combi-Flash, 100% 石油醚至20% EtOAc/石油醚)纯化以提供为位置异构体混合物的标题化合物(Int-TG-30) (1800 mg)。将该物质通过制备型HPLC (Boston Prime C18 150x25mmx5um柱, 水/含有0.05% NH4OH的MeCN,30mL/min流速, 25次进样)进一步纯化。将含有产物的级分收集并冻干以提供为无色油的标题化合物1-[3-(苄氧基)丙基]-5-溴-3-甲基-1H-吡唑(Int-TG-30) (399 mg, 20%, 次要位置异构体)。1H NMR (400 MHz, 氯仿-d) δ = 7.40 -7.28 (m, 4H), 6.05 (s, 1H), 4.51 (s, 2H), 4.23 (t, J = 7.0 Hz, 2H), 3.48 (t,J = 6.0 Hz, 2H), 2.25 (s, 3H), 2.13 (quin, J = 6.5 Hz, 2H)。
根据方案29制备{3-[4-(苄氧基)-5-溴-3-甲基-1H-吡唑-1-基]丙基}氨基甲酸叔丁酯(Int-TG-31)。
方案29
Figure 304531DEST_PATH_IMAGE087
步骤1:合成2-{3-[4-(苄氧基)-3-甲基-1H-吡唑-1-基]丙基}-1H-异吲哚-1,3(2H)-二酮(TG-29b)。
将3-[4-(苄氧基)-3-甲基-1H-吡唑-1-基]丙烷-1-醇(TG-26g) (255mg,1.04mmol)和DIAD (230mg, 1.14mmol)在THF (3.5mL)中的溶液通过插管缓慢地加入到邻苯二甲酰亚胺(TG-29a) (168mg, 1.14mmol)和PPh3 (285mg, 1.09mmol)在THF (3mL)中的溶液中。将烧瓶和插管冲洗并与干燥THF的另一部分一起转移至反应混合物以确保完全加入。将反应在25℃搅拌20小时。将反应在真空中浓缩以产生粗制化合物。将粗残余物通过快速柱色谱法(25g SiO2, Combiflash, 100%石油醚至30% EtOAc/石油醚)纯化以提供为黄色胶质的标题化合物2-{3-[4-(苄氧基)-3-甲基-1H-吡唑-1-基]丙基}-1H-异吲哚-1,3(2H)-二酮(TG-29b) (330 mg, 84%)。1H NMR (400 MHz, 氯仿-d) δ = 7.91 -7.80 (m,2H), 7.73 (dd, J = 3.1, 5.4 Hz, 2H), 7.48 -7.29 (m, 5H), 7.09 (s, 1H), 4.88(s, 2H), 4.00 (t, J = 6.8 Hz, 2H), 3.72 (t, J = 6.6 Hz, 2H), 2.21 (quin, J =6.7 Hz, 2H), 2.12 (s, 3H)。(C22H22N3O3)的m/z (ESI+), 376.1 (M+H)+ 观测值。
步骤2:合成3-[4-(苄氧基)-3-甲基-1H-吡唑-1-基]丙-1-胺(TG-29c)。
向2-{3-[4-(苄氧基)-3-甲基-1H-吡唑-1-基]丙基}-1H-异吲哚-1,3(2H)-二酮(TG-29b) (330mg, 0.879mmol)在EtOH (5mL)中的混合物中加入水合肼(426 μL, 440mg,8.79mmol)。将反应混合物在80℃搅拌2.5小时。将反应在冰水浴中冷却并将沉淀物滤出。将滤液在真空下浓缩以提供为黄色胶质的标题化合物3-[4-(苄氧基)-3-甲基-1H-吡唑-1-基]丙-1-胺(TG-29c) (210 mg, 97%)。将该物质不经进一步纯化地用于下一步。(C14H20N3O)的m/z(ESI+), 246.1 (M+H)+ 观测值。
步骤3:合成{3-[4-(苄氧基)-3-甲基-1H-吡唑-1-基]丙基}氨基甲酸叔丁酯(TG-29d)。
向3-[4-(苄氧基)-3-甲基-1H-吡唑-1-基]丙-1-胺(TG-29c) (210mg,0.856mmol)在THF (6.0mL)和H2O (2mL)中的溶液中加入(Boc)2O (280mg, 1.28mmol)。将反应混合物在15℃搅拌20小时。将反应用水稀释,并用EtOAc (2x20 mL)萃取。将合并的有机萃取物经Na2SO4干燥并在真空中浓缩。将粗残余物通过快速柱色谱法(10g SiO2, Combi-Flash, 100%石油醚至40%EtOAc/石油醚)纯化以提供为无色胶质的标题化合物{3-[4-(苄氧基)-3-甲基-1H-吡唑-1-基]丙基}氨基甲酸叔丁酯(TG-29d) (220 mg, 74%)。1H NMR(400 MHz, 氯仿-d) δ = 7.46 -7.30 (m, 5H), 6.96 (s, 1H), 4.89 (s, 2H), 4.76(br s, 1H), 3.99 (t, J = 6.7 Hz, 2H), 3.08 (q, J = 5.9 Hz, 2H), 2.20 (s, 3H),1.94 (quin, J = 6.6 Hz, 2H), 1.45 (s, 9H)。(C19H28N3O3)的m/z (ESI+), 346.1 (M+H)+观测值。
步骤4:合成{3-[4-(苄氧基)-5-溴-3-甲基-1H-吡唑-1-基]丙基}氨基甲酸叔丁酯(Int-TG-31)。
将{3-[4-(苄氧基)-3-甲基-1H-吡唑-1-基]丙基}氨基甲酸叔丁酯(TG-29d)(220.0mg, 0.637mmol)在DCM (15.0mL)中的搅拌溶液在冰浴中冷却至-20℃。向溶液中加入Na2CO3 (236mg, 2.23mmol),随后加入Br2 (68 μL, 1.3mmol)。将得到的混合物在-15℃搅拌2.5小时。以维持内部温度低于10℃的速率用饱和Na2S2O3淬灭反应。将溶液转移至分液漏斗,并用DCM (2x45 mL)萃取。将合并的有机萃取物在真空中浓缩。将粗残余物通过快速柱色谱法(10g SiO2, Combi-Flash, 100%石油醚至50%EtOAc/石油醚)纯化以提供为无色油的标题化合物{3-[4-(苄氧基)-5-溴-3-甲基-1H-吡唑-1-基]丙基}氨基甲酸叔丁酯(Int-TG-31) (262.5 mg, 97%)。1H NMR (400 MHz, 氯仿-d) δ = 7.46 -7.31 (m, 5H),4.93 (s, 2H), 4.80 (br s, 1H), 4.10 (t, J = 6.7 Hz, 2H), 3.14 -2.98 (m, 2H),2.08 (s, 3H), 1.95 (quin, J = 6.5 Hz, 2H), 1.45 (s, 9H)。
制备首基(HG)中间体
根据方案HG-1制备4-溴-1-甲基-1H-吲唑-6-甲酸甲酯(Int-HG-01)。
Figure 921457DEST_PATH_IMAGE088
根据方案HG-1制备4-溴-2-甲基-2H-吲唑-6-甲酸甲酯(Int-HG-02)。
Figure 8362DEST_PATH_IMAGE089
方案HG-1:
Figure 685331DEST_PATH_IMAGE090
向4-溴-1H-吲唑-6-甲酸甲酯(HG-1a) (2.00 g, 7.84 mmol)和Cs2CO3 (5.11 g,15.7 mmol)在DMF (20.0 mL)中的混合物中加入碘甲烷(1.42 g, 10.0 mmol)。将混合物在16℃搅拌16 h,得到棕色悬浮液。LCMS分析表明起始原料的消耗和产物质量的形成。将混合物过滤。将滤液用饱和NH4Cl水溶液(30 mL)稀释。将混合物用EtOAc (2x30 mL)萃取。将合并的有机层用盐水洗涤,经无水Na2SO4干燥,过滤,并浓缩。将残余物通过快速色谱法(20 gSiO2, 0-100% EtOAc/石油醚)纯化以提供为浅黄色固体的4-溴-1-甲基-1H-吲唑-6-甲酸甲酯(Int-HG-01) (1.36 g, 64%收率),为首先洗脱的位置异构体。1H NMR (400 MHz,CDCl3) δ 8.12 (s, 1H), 8.03 (d, J = 1.1 Hz, 1H), 7.97 (d, J = 1.1 Hz, 1H),4.14 (s, 3H), 3.98 (s, 3H)。得到为黄色固体的4-溴-2-甲基-2H-吲唑-6-甲酸甲酯(Int-HG-02) (751 mg, 36%收率),为第二洗脱的位置异构体。1H NMR (400 MHz, CDCl3) δ8.42 (t, J = 1.0 Hz, 1H), 7.96 (s, 1H), 7.89 (d, J = 1.1 Hz, 1H), 4.27 (s,3H), 3.95 (s, 3H)。
根据用于合成4-溴-1-甲基-1H-吲唑-6-甲酸甲酯(Int-HG-01)和4-溴-2-甲基-2H-吲唑-6-甲酸甲酯(Int-HG-02)的方法制备中间体Int-HG-03、Int-HG-04和Int-HG-05,本领域技术人员能够认识到对所示例的程序的非关键变化或置换。如果必要的话,在本领域已知的标准方法下进行位置异构的混合物的分离。
Figure 857686DEST_PATH_IMAGE091
根据方案HG-2制备4-溴-1-[3-(吗啉-4-基)丙基]-1H-吲唑-6-甲酸甲酯(Int-HG-06)。
Figure 12724DEST_PATH_IMAGE092
方案HG-2:
Figure 468982DEST_PATH_IMAGE093
向4-溴-1H-吲唑-6-甲酸甲酯(HG-1a) (502 mg, 1.97 mmol)在THF (10 mL)中的溶液中加入4-(3-氯丙基)吗啉盐酸盐(409 mg, 2.5 mmol)、18-冠醚-6 (51.8 mg, 0.196mmol)和NaHMDS溶液(1.0 M在THF中,2.2 mL, 2.2 mmol)。将混合物回流搅拌16 h。LCMS分析表明起始原料的消耗和期望产物质量的形成。将反应浓缩至干燥。将残余物通过快速色谱法(SiO2, 80% EtOAc/石油醚,然后10% MeOH/EtOAc)纯化以提供为黄色油的4-溴-1-[3-(吗啉-4-基)丙基]-1H-吲唑-6-甲酸甲酯(327 mg, 43%收率)。1H NMR (400 MHz, CDCl3) δ8.22 (d, J = 1.2 Hz, 1H), 8.05 (d, J = 1.0 Hz, 1H), 7.95 (d, J = 1.2 Hz, 1H),4.53 (t, J = 6.4 Hz, 2H), 3.97 (s, 3H), 3.71 (t, J = 4.6 Hz, 4H), 2.35 (t, J= 4.7 Hz, 4H), 2.23 (t, J = 6.6 Hz, 2H), 2.11 (p, J = 6.4 Hz, 2H);(C16H20BrN3O3)的m/z (ESI+), 383.9 (M+H)+
根据方案HG-3制备甲基4,6-二氯-1-甲基-1H-吡唑并[4,3-c]吡啶(Int-HG-08)。
Figure 51273DEST_PATH_IMAGE094
方案HG-3:
Figure 710924DEST_PATH_IMAGE095
步骤1:合成2,4,6-三氯吡啶-3-甲醛(HG-3b)。
在N2气氛下将2,4,6-三氯吡啶(HG-3a) (9.00 g, 49.3 mmol)在无水THF中的溶液冷却至-68℃(内部温度)并逐滴加入n-BuLi (2.5 M在己烷中,20.7 mL, 51.8 mmol),维持反应温度低于-63℃(内部温度)。将混合物在-68℃(内部温度)搅拌30 min。逐滴加入甲酸乙酯(4.75 g, 64.1 mmol),维持反应温度低于-63℃(内部温度)。将混合物在-68℃(内部温度)搅拌1 h。TLC分析表明起始原料的消耗。将混合物倒入冰和饱和NH4Cl水溶液的1:1混合物(100 mL)中。将混合物搅拌10 min,然后用EtOAc (2x200 mL)萃取。将合并的有机层用盐水(2x100 mL)洗涤,经无水Na2SO4干燥,过滤,并浓缩至干燥。将残余物通过快速色谱法(80 g SiO2, 0-5% EtOAc/石油醚)纯化。将混合级分通过快速色谱法(20 g SiO2, 0-5%EtOAc/石油醚)再纯化。将产物批次合并以提供为白色固体的2,4,6-三氯吡啶-3-甲醛(HG-3b) (8.62 g, 83%收率)。1H NMR (400 MHz, CDCl3) δ 10.42 (s, 1H), 7.46 (s, 1H)。
步骤2:合成4,6-二氯-1H-吡唑并[4,3-c]吡啶(HG-3c)。
在N2气氛下将2,4,6-三氯吡啶-3-甲醛(HG-3b) (4.00 g, 19.0 mmol)和DIPEA(7.62 g, 58.9 mmol)在EtOH (100 mL)中的溶液冷却至-20℃并逐滴加入肼一水合物(3.81 g, 76.0 mmol)。将混合物在-20℃搅拌24 h,然后在30℃搅拌16 h。LCMS分析表明期望产物质量的形成。将溶液浓缩至干燥。将得到的固体用1:2 EtOAc/石油醚(300 mL)制浆30 min。将固体通过过滤进行收集。将滤饼通过快速色谱法(40 g SiO2, 8-50% EtOAc/石油醚)纯化以提供为白色固体的4,6-二氯-1H-吡唑并[4,3-c]吡啶(HG-3c) (1.6 g, 45%收率)。1H NMR (400 MHz, DMSO-d 6) δ 14.06 (br s, 1H), 8.41 (s, 1H), 7.78 (d, J =1.0 Hz, 1H)。
步骤3:合成4,6-二氯-1-甲基-1H-吡唑并[4,3-c]吡啶(Int-HG-08)。
在0℃向4,6-二氯-1H-吡唑并[4,3-c]吡啶(HG-3c) (1.25 g, 6.65 mmol)在无水THF中的溶液中加入NaH (60%的在矿物油中的分散体, 500 mg, 12.5 mmol)。将混合物在0℃搅拌10 min,然后在相同温度逐滴加入碘甲烷(1.89 g, 13.3 mmol)。将混合物在0℃搅拌1 h,然后在25℃搅拌16 h。TLC分析(2:1 EtOAc/石油醚)表明起始原料的完全消耗。将反应通过加入饱和NH4Cl水溶液(20 mL)淬灭,然后浓缩以除去THF。将水性混合物用EtOAc(3x20 mL)萃取。将合并的有机层经Na2SO4干燥,过滤,并浓缩至干燥。将残余物通过快速色谱法(40 g SiO2, 5-30% EtOAc/石油醚)纯化以提供为灰白色固体的4,6-二氯-1-甲基-1H-吡唑并[4,3-c]吡啶(Int-HG-08) (510 mg, 38%收率)。1H NMR (400 MHz, DMSO-d 6) δ8.42 (d, J = 1.0 Hz, 1H), 8.05 (d, J = 0.9 Hz, 1H), 4.12 (s, 3H)。
根据方案HG-4制备1-[2-(4,6-二氯-1H-吡唑并[4,3-c]吡啶-1-基)乙基]哌啶-4-甲腈(Int-HG-09)。
Figure 669653DEST_PATH_IMAGE096
方案HG-4:
Figure 731150DEST_PATH_IMAGE098
步骤1:合成1-(2-羟基乙基)哌啶-4-甲酰胺(HG-4b)。
向哌啶-4-甲酰胺(HG-4a) (1.00 g, 7.80 mmol)在EtOH (15.0 mL)中的溶液中依次加入2-溴乙醇(1.17 g, 9.36 mmol)、K2CO3 (2.32 g, 16.8 mmol)和NaI (117 mg,0.780 mmol)。将混合物回流搅拌20 h。TLC分析(1:15 MeOH/DCM)表明起始原料的消耗。将混合物穿过硅藻土过滤并将滤液浓缩至干燥以提供1-(2-羟基乙基)哌啶-4-甲酰胺(HG-4b) (1.25 g, 93%收率),将其不经进一步纯化使用。1H NMR (400 MHz, DMSO-d 6) δ 7.24(br s, 1H), 6.74 (br s, 1H), 4.82 -4.28 (m, 1H), 3.51 (t, J = 6.4 Hz, 2H),2.89 (d, J = 11.7 Hz, 2H), 2.38 (t, J = 6.4 Hz, 2H), 2.05 (tt, J = 11.6, 4.0Hz, 1H), 1.94 (td, J = 11.7, 2.6 Hz, 2H), 1.71 -1.62 (m, 2H), 1.62 -1.50 (m,2H)。
步骤2:合成1-(2-氯乙基)哌啶-4-甲腈盐酸盐(HG-4c)。
向1-(2-羟基乙基)哌啶-4-甲酰胺(HG-4b) (1.25 g, 7.26 mmol)在MeCN (15.0mL)中的悬浮液中加入SOCl2 (4.32 g, 36.3 mmol),维持反应温度低于5℃(内部温度)。将混合物回流搅拌4 h,然后浓缩至干燥以提供为棕色固体的1-(2-氯乙基)哌啶-4-甲腈盐酸盐(HG-4c) (1.45 g, 95%收率),将其不经进一步纯化使用。1H NMR (400 MHz, DMSO-d 6) δ11.51 (br s, 1H), 4.10 (q, J = 6.8 Hz, 2H), 3.70 -3.35 (m, 4H), 3.21 -2.92(m, 3H), 2.38 -1.98 (m, 4H)。
步骤3:合成1-[2-(4,6-二氯-1H-吡唑并[4,3-c]吡啶-1-基)乙基]哌啶-4-甲腈(Int-HG-09)。
向4,6-二氯-1H-吡唑并[4,3-c]吡啶(HG-3c) (500 mg, 2.66 mmol)和1-(2-氯乙基)哌啶-4-甲腈盐酸盐(HG-4c) (834 mg, 3.99 mmol)在MeCN (10.0 mL)中的溶液中加入K2CO3 (1.10 g, 7.98 mmol)和KI (44.1 mg, 0.266 mmol)。将混合物在60℃搅拌16 h。TLC分析(1:1 EtOAc/石油醚)表明起始原料的消耗。将混合物穿过硅藻土过滤并将滤液浓缩至干燥。将残余物通过快速色谱法(12 g SiO2, 0-50% EtOAc/石油醚)纯化以提供为棕色油的1-[2-(4,6-二氯-1H-吡唑并[4,3-c]吡啶-1-基)乙基]哌啶-4-甲腈(Int-HG-09) (750mg, 87%收率)。1H NMR (400 MHz, CDCl3) δ 8.11 (d, J = 0.9 Hz, 1H), 7.29 (d, J =1.0 Hz, 1H), 4.40 (t, J = 6.3 Hz, 2H), 2.85 (t, J = 6.3 Hz, 2H), 2.73 -2.54(m, 3H), 2.45 -2.27 (m, 2H), 1.90 -1.68 (m, 4H)。
根据方案HG-5制备5-溴-3-甲基-1H-吲唑-7-甲腈(Int-HG-10)。
Figure DEST_PATH_IMAGE099
方案HG-5:
Figure 484342DEST_PATH_IMAGE100
步骤1:合成4-溴-2-乙基-6-碘苯胺(HG-5b)。
向4-溴-2-乙基苯胺(HG-5a) (1.00 g, 5.00 mmol)在EtOH (20.0 mL)中的溶液中加入I2 (1.27 g, 5.00 mmol)和Ag2SO4 (1.56 g, 5.00 mmol)。将混合物在室温搅拌3h。TLC分析(1:3 EtOAc/石油醚)表明起始原料的消耗。将混合物过滤并将滤液浓缩至干燥。将残余物溶解在EtOAc (100 mL)中,并用饱和Na2S2O3水溶液(100 mL)洗涤。将有机层经Na2SO4干燥,过滤,并浓缩。将残余物通过快速色谱法(20 g SiO2, 0-5% EtOAc/石油醚)纯化以提供为暗红色油的4-溴-2-乙基-6-碘苯胺(HG-5b) (1.32 g, 81%收率)。1H NMR (400MHz, CDCl3) δ 7.63 (d, J = 2.3 Hz, 1H), 7.14 (d, J = 2.2 Hz, 1H), 4.12 (br s,2H), 2.51 (q, J = 7.5 Hz, 2H), 1.24 (t, J = 7.5 Hz, 3H)。
步骤2:合成5-溴-7-碘-3-甲基-1H-吲唑(HG-5c)。
在室温向4-溴-2-乙基-6-碘苯胺(HG-5b) (1.32 g, 4.05 mmol)在HOAc (20.0mL)中的溶液中加入NaNO2 (279 mg, 4.05 mmol)。将混合物在室温搅拌16 h。TLC分析(1:10 EtOAc/石油醚)表明起始原料的消耗和期望产物质量的形成。将混合物浓缩至干燥。将残余物通过快速色谱法(20 g SiO2, 0-50% EtOAc/石油醚)纯化以提供为粉红色固体的5-溴-7-碘-3-甲基-1H-吲唑(HG-5c) (810 mg, 59%收率)。1H NMR (400 MHz, CDCl3) δ 9.86(s, 1H), 7.85 (d, J = 1.5 Hz, 1H), 7.82 (d, J = 1.6 Hz, 1H), 2.57 (s, 3H);(C8H6BrIN2)的m/z (ESI+), 338.8 (M+H)+
步骤3:合成5-溴-3-甲基-1H-吲唑-7-甲腈(Int-HG-10)。
在N2气氛下向5-溴-7-碘-3-甲基-1H-吲唑(HG-5c) (500 mg, 1.48 mmol)在NMP(5.0 mL)中的溶液中加入Zn(CN)2 (105 mg, 0.890 mmol)和Pd(PPh3)4 (171 mg, 0.148mmol)。将混合物在100℃搅拌4 h。TLC分析(1:1 EtOAc/石油醚)表明起始原料的消耗。将混合物用EtOAc (50 mL)稀释,并用饱和NH4Cl水溶液(3x50 mL)洗涤。将合并的有机层经Na2SO4干燥,过滤,并浓缩。将残余物通过快速色谱法(4 g SiO2, 0-25% EtOAc/石油醚)纯化以提供为浅黄色固体的5-溴-3-甲基-1H-吲唑-7-甲腈(Int-HG-10) (260 mg, 74%收率)。1H NMR (400 MHz, CDCl3) δ 8.07 (d, J = 1.6 Hz, 1H), 7.81 (d, J = 1.7 Hz,1H), 2.60 (s, 3H)。
根据方案HG-6制备4-溴-N-[(2,4-二甲氧基苯基)甲基]-5-氟-1-甲基-1H-吲唑-6-甲酰胺(Int-HG-11)。
Figure DEST_PATH_IMAGE101
方案HG-6:
Figure 620838DEST_PATH_IMAGE102
步骤1:合成4-溴-5-氟-1-甲基-1H-吲唑(HG-6b)。
将2-溴-3,6-二氟苯甲醛(HG-6a) (900 mg, 4.18 mmol)和甲基肼(1.35 g, 29.3mmol)的混合物在100℃搅拌24 h。LCMS分析表明起始原料的消耗和期望产物质量的形成。将混合物浓缩。将残余物用H2O稀释,并用EtOAc萃取。将合并的有机层经Na2SO4干燥,过滤,并浓缩。将残余物通过快速色谱法(24 g SiO2, 20% EtOAc/庚烷)纯化以提供为白色固体的4-溴-5-氟-1-甲基-1H-吲唑(HG-6b) (532 mg, 56%收率)。1H NMR (400 MHz, CDCl3) δ7.99 (d, J = 0.61 Hz, 1H), 7.28 -7.33 (m, 1H), 7.18 -7.24 (m, 1H), 4.09 (s,3H);19F NMR (376 MHz, CDCl3) δ -120.6 (br s, 1F);(C8H6BrFN2)的m/z (ESI+), 229.0(M+H)+
步骤2:合成4-溴-5-氟-1-甲基-1H-吲唑-6-甲酸(HG-6c)。
在N2气氛下将4-溴-5-氟-1-甲基-1H-吲唑(HG-6b) (100 mg, 0.437 mmol)在THF(4.37 mL)中的溶液冷却至-70℃,逐滴加入LDA溶液(1.0 M在THF中,0.611 mL, 0.611mmol)。将混合物搅拌1 h,维持反应温度低于-60℃以提供橙色反应混合物。用CO2(g)在反应中鼓泡10 min以提供澄清反应溶液。将混合物温热至室温,用H2O稀释,并用饱和NaHCO3水溶液(5 mL)碱化。将混合物用庚烷(2x)洗涤。将水层用1 N HCl酸化至pH约2,然后用EtOAc(3x)萃取。将合并的有机萃取物经Na2SO4干燥,过滤,并浓缩以提供为黄色固体的4-溴-5-氟-1-甲基-1H-吲唑-6-甲酸(HG-6c) (48 mg, 40%收率)。1H NMR (400 MHz, CDCl3) δ13.57 (br s, 1H), 8.25 (dd, J = 5.32, 0.79 Hz, 1H), 8.13 (d, J = 0.86 Hz,1H), 4.14 (s, 3H);19F NMR (376 MHz, CDCl3) δ -119.85 (s, 1F);(C9H6BrFN2O2)的m/z(ESI+), 273.0 (M+H)+
步骤3:合成4-溴-N-[(2,4-二甲氧基苯基)甲基]-5-氟-1-甲基-1H-吲唑-6-甲酰胺(Int-HG-11)。
向4-溴-5-氟-1-甲基-1H-吲唑-6-甲酸(HG-6c) (47 mg, 0.170 mmol)在DMF(1.72 mL)中的溶液中加入1-(2,4-二甲氧基苯基)甲胺(34.5 mg, 0.207 mmol)、TEA(34.8 mg, 0.344 mmol)和HATU (98.2 mg, 0.258 mmol)。将混合物在室温搅拌5 min。LCMS分析表明起始原料的消耗和期望产物质量的形成。将反应浓缩至干燥。将残余物溶解在H2O中,并用EtOAc (3x)萃取。将合并的有机层经Na2SO4干燥,过滤,并浓缩。将残余物通过快速色谱法(4 g SiO2, 60% EtOAc/庚烷)纯化以提供为白色固体的4-溴-N-[(2,4-二甲氧基苯基)甲基]-5-氟-1-甲基-1H-吲唑-6-甲酰胺(Int-HG-11) (49 mg, 67%收率)。1H NMR(400 MHz, CDCl3) δ 8.21 (dd, J = 5.38, 0.86 Hz, 1H), 8.00 (d, J = 0.86 Hz,1H), 7.33 -7.46 (m, 1H), 6.51 (d, J = 2.32 Hz, 1H), 6.47 (dd, J = 8.19, 2.32Hz, 1H), 4.61 -4.67 (m, 2H), 4.12 (s, 3H), 3.90 (s, 3H), 3.82 (s, 3H);19F NMR(376 MHz, CDCl3) δ -121.51 (s, 1F);(C18H17BrFN3O3)的m/z (ESI+), 422.0 (M+H)+
根据方案HG-7制备8-溴-3-甲基咪唑并[1,5-a]吡啶-6-甲酸甲酯(Int-HG-12)。
Figure 117678DEST_PATH_IMAGE103
方案HG-7:
Figure 33681DEST_PATH_IMAGE104
步骤1:合成6-(乙酰胺基甲基)-5-溴吡啶-3-甲酸甲酯(HG-7b)。
给圆底烧瓶中装入5-溴吡啶-3-甲酸甲酯(HG-7a) (1.00 g, 4.63 mmol)、N-乙酰基甘氨酸(916 mg, 7.82 mmol)和AgNO3 (78.6 mg, 0.463 mmol)。将烧瓶用Ar净化,然后加入H2O (8.25 mL)和TFA (106 mg, 0.926 mmol)。将混合物加热至70℃,并历时30 min逐滴加入(NH4)2S2O8 (1.90 g, 8.33 mmol)在H2O (2.75 ml)中的溶液。将反应在70℃搅拌30min。LCMS分析表明起始原料的消耗和期望产物质量的形成。将混合物冷却至室温,并用EtOAc萃取。将水层通过加入NH4OH碱化至pH约9,然后用EtOAc萃取。将合并的有机萃取物用NaHCO3水溶液(1 M, 10 mL)洗涤,经MgSO4干燥,过滤,并浓缩至干燥。将残余物通过快速色谱法(40 g SiO2, 100% 庚烷,然后100% EtOAc,然后10% MeOH/EtOAc)纯化以提供为白色固体的6-(乙酰胺基甲基)-5-溴吡啶-3-甲酸甲酯(HG-7b) (619 mg, 47%收率)。1H NMR(400 MHz, CDCl3) δ 9.07 (d, J = 1.7 Hz, 1H), 8.46 (d, J = 1.8 Hz, 1H), 7.08(br s, 1H), 4.68 (d, J = 4.3 Hz, 2H), 3.98 (s, 3H), 2.14 (s, 3H)。
步骤2:合成8-溴-3-甲基咪唑并[1,5-a]吡啶-6-甲酸甲酯(Int-HG-12)。
将6-(乙酰胺基甲基)-5-溴吡啶-3-甲酸甲酯(HG-7b) (300 mg, 1.04 mmol)和POCl3 (7.05 g, 46.0 mmol)的混合物在90℃搅拌。1 h以后,LCMS分析表明起始原料的消耗和期望产物质量的形成。将混合物用H2O稀释,用K2CO3水溶液(1 M, 50 mL)碱化,并用DCM(3x)萃取。将合并的有机层经MgSO4干燥,过滤,并浓缩。将残余物通过快速色谱法(12 gSiO2, 100%庚烷,然后10%MeOH/EtOAc)纯化以提供为黄色固体的8-溴-3-甲基咪唑并[1,5-a]吡啶-6-甲酸甲酯(Int-HG-12) (200 mg, 71%收率)。1H NMR (400 MHz, CDCl3) δ 8.76(br s, 1H), 7.82 (s, 1H), 7.77 (br s, 1H), 4.02 (s, 3H), 3.13 (br s, 3H)。
根据方案HG-8制备6-溴-1-甲基-1H-吲唑-4-甲酸(Int-HG-13)。
Figure 223354DEST_PATH_IMAGE105
方案HG-8:
Figure 857598DEST_PATH_IMAGE106
步骤1:合成6-溴-1-甲基-1H-吲唑-4-甲酸乙酯(HG-8b)。
向6-溴-1H-吲唑-4-甲酸乙酯(HG-8a) (1.05 g, 4.12 mmol)和Cs2CO3 (2.68 g,8.23 mmol)在DMF (20.0 mL)中的溶液中加入碘甲烷(744 mg, 5.24 mmol)。将混合物在室温搅拌3 h。TLC分析(1:4 EtOAc/石油醚)表明起始原料的消耗。将反应用H2O (30 mL)淬灭,并用EtOAc (2x50 mL)萃取。将合并的有机层经Na2SO4干燥,过滤,并浓缩。将残余物通过快速色谱法(12 g SiO2, 0-50% EtOAc/石油醚)纯化以提供为粉红色固体的6-溴-1-甲基-1H-吲唑-4-甲酸乙酯(HG-8b) (680 mg, 65%收率)。1H NMR (400 MHz, CDCl3) δ 8.43 (s,1H), 8.01 (d, J = 1.2 Hz, 1H), 7.78 (d, J = 1.1 Hz, 1H), 4.08 (s, 3H), 4.02(s, 3H)。
步骤2:合成6-溴-1-甲基-1H-吲唑-4-甲酸(Int-HG-13)。
向6-溴-1-甲基-1H-吲唑-4-甲酸乙酯(HG-8b) (680 mg, 2.53 mmol)在THF(10.0 mL)中的溶液中加入LiOH•H2O (848 mg, 20.2 mmol)和H2O (4.0 mL)。将反应在室温搅拌16 h。TLC分析(1:4 EtOAc/石油醚)表明起始原料的消耗。将混合物浓缩至干燥。将残余物用1 N HCl酸化至pH约3。将混合物用EtOAc (3x25 mL)萃取。将合并的有机层经Na2SO4干燥,过滤,并浓缩以提供为浅黄色固体的6-溴-1-甲基-1H-吲唑-4-甲酸(Int-HG-13)(580 mg, 90%收率)。1H NMR (400 MHz, CD3OD) δ 8.39 (s, 1H), 8.07 (s, 1H), 7.94(d, J = 1.6 Hz, 1H), 4.08 (s, 3H)。
根据方案HG-9制备6-溴-1-甲基-1H-吲唑-4-硫代甲酰胺(Int-HG-14)。
Figure 423708DEST_PATH_IMAGE107
方案HG-9:
Figure 194218DEST_PATH_IMAGE108
步骤1:合成6-溴-1-甲基-1H-吲唑-4-甲酰胺(HG-9a)。
将6-溴-1-甲基-1H-吲唑-4-甲酸乙酯(HG-8b) (148 mg, 0.550 mmol)在NH3甲醇溶液(7 N在MeOH中,2.5 mL)中的悬浮液在80℃搅拌36 h。LCMS分析表明起始原料的消耗。将混合物浓缩至干燥以提供为白色固体的6-溴-1-甲基-1H-吲唑-4-甲酰胺(HG-9a) (138mg, 99%收率)。1H NMR (400 MHz, DMSO-d 6) δ 8.40 (d, J = 1.0 Hz, 1H), 8.23 (s,1H), 8.18 (br s, 1H), 7.82 (d, J = 1.5 Hz, 1H), 7.64 (br s, 1H), 4.11 (s,3H);(C9H8BrN3O)的m/z (ESI+), 253.7 (M+H)+
步骤2:合成6-溴-1-甲基-1H-吲唑-4-硫代甲酰胺(Int-HG-14)。
向6-溴-1-甲基-1H-吲唑-4-甲酰胺(HG-9a) (135 mg, 0.531 mmol)在无水PhMe(3.0 mL)中的悬浮液中加入劳森试剂(215 mg, 0.531 mmol)。将混合物在80℃搅拌2 h。LCMS分析表明起始原料的消耗。将混合物用H2O (5 mL)稀释,并用EtOAc (5x15 mL)萃取。将合并的有机层用饱和NaHCO3水溶液(2x5 mL)洗涤,经Na2SO4干燥,过滤,并浓缩。将残余物与DCM一起研磨以提供为黄色固体的6-溴-1-甲基-1H-吲唑-4-硫代甲酰胺(Int-HG-14)(93.5 mg, 65%收率)。1H NMR (400 MHz, DMSO-d 6) δ 10.20 (br s, 1H), 9.73 (br s,1H), 8.33 (d, J = 1.0 Hz, 1H), 8.18 (t, J = 1.2 Hz, 1H), 7.51 (d, J = 1.5 Hz,1H), 4.11 (s, 3H);(C9H8BrN3O)的m/z (ESI+), 269.6 (M+H)+
根据方案HG-10制备4-溴-1-(三苯基甲基)-1H-吲唑-6-甲酸甲酯(Int-HG-15)。
方案HG-10:
Figure 554793DEST_PATH_IMAGE109
将4-溴-1H-吲唑-6-甲酸甲酯(HG-1a) (10.0 g, 39.2 mmol)在THF (200 mL)中的溶液冷却至0℃并加入NaH (60%的在矿物油中的分散体, 1.88 g, 47.0 mmol)。将混合物在15℃搅拌,然后加入三苯基甲基氯(13.1 g, 47.0 mmol)。将反应在15℃搅拌2 h。TLC分析表明起始原料的消耗。将混合物用H2O (200 mL)稀释,并用EtOAc (2x200 mL)萃取。将合并的有机层用盐水(100 mL)洗涤,经无水Na2SO4干燥,过滤,并浓缩。将残余物通过快速色谱法(120 g SiO2, 0-15% EtOAc/石油醚)纯化以提供为N-1和N-2位置异构体的3:1混合物的4-溴-1-(三苯基甲基)-1H-吲唑-6-甲酸甲酯(Int-HG-15) (19.1 g, 98%收率),将其不经进一步纯化使用。1H NMR (400 MHz, CDCl3) δ 8.67 -8.12 (m, 1H), 8.06 -7.80 (m,1H), 7.51 -7.03 (m, 16H), 4.21 -3.45 (m, 3H)。
根据方案HG-11制备2-溴-3-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-3-氧代丙酸甲酯(Int-HG-16)。
方案HG-11:
Figure 676332DEST_PATH_IMAGE110
步骤1:合成6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-甲酸甲酯(HG-11a)
向4,6-二氯-1-甲基-1H-吡唑并[4,3-c]吡啶(Int-HG-08) (50.0 mg, 0.25mmol)在MeOH (20 mL)中的溶液中加入Pd(dppf)Cl2 (36.2 mg, 0.0495 mmol)和TEA(0.103 mL, 0.742 mmol)。将反应混合物在CO气体(45 psi)下在45℃加热6 h。将反应混合物逐渐冷却至室温,随后穿过硅藻土垫过滤。将滤液在真空中浓缩。将粗残余物通过快速色谱法(12 g SiO2, 0-30% EtOAc/庚烷)纯化以提供为白色固体的标题化合物6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-甲酸甲酯(HG-11a) (34 mg, 61%收率)。1H NMR (400 MHz,DMSO-d6) δ = 8.55 (s, 1H), 8.22 (s, 1H), 4.11 (s, 3H), 3.99 (s, 3H)。
步骤2:合成6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-甲酸(HG-11b)
向6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-甲酸甲酯(HG-11a) (345 mg, 1.53mmol)在THF (4 mL)和MeOH (4 mL)中的悬浮液中加入1M NaOH (3.32 mL)。将反应在室温搅拌1.5 h。将溶液浓缩以提供白色固体,将其在高真空下进一步干燥。将固体溶解在1NHCl (2 mL)中并进一步用H2O稀释。在搅拌后,形成固体沉淀物,将其通过过滤进行收集。然后将过滤的固体在高真空下干燥以提供为浅黄色固体的标题化合物6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-甲酸(HG-11b) (132 mg, 41%收率)。1H NMR (400 MHz, DMSO-d6) δ =13.88 (br s, 1H), 8.50 (d, J = 0.8 Hz, 1H), 8.18 (d, J = 0.8 Hz, 1H), 4.10(s, 3H)。
步骤3:合成3-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-3-氧代丙酸甲酯(HG-11c)
给烧瓶(烧瓶A)装入在THF (5 mL)中的丙二酸单甲酯钾盐(104 mg, 0.665mmol)、氯化镁水合物(54.9 mg, 0.576 mmol)和DIPEA (0.193 mL, 1.11 mmol)。将反应在室温搅拌2 h。
在单独烧瓶(烧瓶B)中加入6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-甲酸(HG-11b) (100 mg, 0.443 mmol)和亚硫酰氯(3.0 mL)。将反应在65℃加热2 h。将溶液浓缩以除去过量的亚硫酰氯。将残余物在冰浴中冷却至0℃。在该阶段,将来自烧瓶A的混合物加入烧瓶B并将混合物在0℃搅拌2 min。然后将反应加热至70℃保持2 h。将溶液从加热取下并将其冷却至室温。向溶液中加入1N HCl并将混合物转移至分液漏斗。将溶液用3份DCM萃取并将合并的萃取物在真空中浓缩。将粗残余物通过快速色谱法(24 g SiO2, Isco, 0-100%EtOAc)纯化以提供为白色固体的标题化合物3-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-3-氧代丙酸甲酯(HG-11c) (120 mg, 53%收率)。1H NMR (400 MHz, DMSO-d6) δ =8.61 (s, 1H), 8.29 (s, 1H), 4.25 (s, 2H), 4.12 (s, 3H), 3.65 (s, 3H)。
步骤4:合成2-溴-3-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-3-氧代丙酸甲酯(Int-HG-16)
向3-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-3-氧代丙酸甲酯(HG-11c)(118 mg, 0.441 mmol)在THF中的溶液中加入三甲基苯基三溴化铵(182 mg, 0.485mmol)。将反应在室温搅拌过夜,在这期间发生沉淀。将固体过滤并将滤液转移至含有DCM的分液漏斗,随后用10% Na2S2O8稀释。分离各相,并将水相用3份DCM萃取。将合并的有机萃取物在真空中浓缩。将粗残余物通过快速色谱法(24 g SiO2, Isco, 0-30% EtOAc/DCM)纯化以提供含有显著杂质的期望产物。将物质重新进行通过快速色谱法(24 g SiO2, Isco,100% DCM至50% EtOAc/DCM)的纯化以提供为澄清油的标题化合物2-溴-3-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-3-氧代丙酸甲酯(Int-HG-16) (55 mg, 36%收率)。1H NMR(400 MHz, DMSO-d6) δ = 8.65 (d, J = 0.8 Hz, 1H), 8.33 (d, J = 1.2 Hz, 1H),6.44 (s, 1H), 4.13 (s, 3H), 3.73 (s, 3H);(C11H9BrN3O3)的m/z (APCI+), 346.0 (M+H)+ 观测值。
根据方案HG-12制备2-溴-3-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-3-氧代丙酸甲酯(Int-HG-17)。
方案HG-12
Figure 764243DEST_PATH_IMAGE111
步骤1:合成1-甲基-5-{[(4Z)-2-甲基-5-氧代-1,3-噁唑-4-亚基]甲基}吡唑-4-甲酸乙酯(HG-12a)
在室温向5-甲酰基-1-甲基-1H-吡唑-4-甲酸乙酯(10.7 g, 58.6 mmol)和N-乙酰基甘氨酸(10.3 g, 88.0 mmol, 1.5当量)在乙酸酐(15 mL, 4 M)中的溶液中加入乙酸钾(9.09 g, 88.0 mmol, 1.5当量),并向该浆液中加入另外5 mL Ac2O以重新诱导搅拌。然后给其配上Findenser并加热至100℃。在加热过程中,白色浑浊悬浮液变成澄清黄色溶液,且在10分钟以后,已经变成棕色溶液。1小时以后,将反应冷却至室温。TLC分析(2:1庚烷/EtOAc, KMnO4染料)显示起始原料的消耗(Rf = 0.61)并伴随产物的形成(Rf = 0.29)。然后将反应转移至100 mL烧杯,用DCM冲洗反应瓶,并在磁力搅拌下逐滴加入饱和碳酸氢钠水溶液直到停止冒泡。此后,将该烧杯的内容物转移至分液漏斗,在其中将有机层分离。随后,将水层用4x 100mL 3:1 DCM/iPrOH和2x 150 mL DCM萃取。将合并的有机层经MgSO4干燥,过滤,并将溶剂在减压下除去。将得到的深棕色残余物溶解在约5 mL DCM中。向其中逐滴加入MTBE (约5 mL),并将该混合物随后倒入含有200 mL庚烷的烧瓶中。在声处理后,黄色固体从溶液中沉淀出来并在减压下滤出。然后将母液在0℃静置2 h,此后另一批产物沉淀出来并再次在减压下过滤。将这两批合并以得到为无定形浅黄色固体的标题化合物1-甲基-5-{[(4Z)-2-甲基-5-氧代-1,3-噁唑-4-亚基]甲基}吡唑-4-甲酸乙酯(HG-12a) (15.2 g,98%)。1H NMR (400 MHz, 氯仿-d) δ 7.93 (s, 1H), 7.53 (s, 1H), 4.29 (q, J = 7.1Hz, 2H), 3.98 (s, 3H), 1.34 (t, J = 7.1 Hz, 3H)。
步骤2:合成1-甲基-4-氧代-4,5-二氢-1H-吡唑并[4,3-c]吡啶-6-甲酸(HG-12b)
向在甲醇(57.8 mL, 1 M)中的1-甲基-5-{[(4Z)-2-甲基-5-氧代-1,3-噁唑-4-亚基]甲基}吡唑-4-甲酸乙酯(HG-12a) (15.2 g, 57.8 mmol)中加入碳酸钾(16.8 g, 116mmol, 2当量),随后给容器盖帽和加热至70℃。搅拌16 h以后,先前的深棕色浑浊溶液变亮至黄褐色-棕色。基于LCMS,所有起始原料被消耗,所以将冷却的混合物在减压下过滤并将滤饼用MeOH和MTBE洗涤。将MTBE加入得到的滤液,导致另外固体的沉淀,将其使用相同装置重新过滤。然后将固体滤饼悬浮于H2O中并将浓HCl加入以酸化至pH 1。黄褐色固体沉淀出来,将其在减压下滤出,此后将滤液用1:1 MeOH/MTBE稀释,并再次在减压下过滤。将这两批合并以提供为黄褐色无定形固体的标题化合物1-甲基-4-氧代-4,5-二氢-1H-吡唑并[4,3-c]吡啶-6-甲酸(HG-12b) (10.46 g, 94%收率)。1H NMR (400 MHz, DMSO-d6) δ 10.56(s, 1H), 8.11 (d, J = 0.9 Hz, 1H), 7.40 (d, J = 0.9 Hz, 1H), 4.03 (s, 3H)。
步骤3:合成1-甲基-4-氧代-4,5-二氢-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(HG-12c)
向在甲醇(40 mL, 1.4 M)中的1-甲基-4-氧代-4,5-二氢-1H-吡唑并[4,3-c]吡啶-6-甲酸(HG-12b) (10.46 g, 54.17 mmol)中逐滴加入浓硫酸(90 mmol, 5 mL, 2当量)。这导致每一滴加入后的放热。将得到的黄色浆液加热至70℃。17 h以后,将反应冷却至室温,在此时起始原料似乎已经消耗,且白色微晶固体开始从溶液中沉淀。将反应混合物在减压下过滤并将滤饼用水洗涤。收集该第一批次,此后将滤液用5 mL ACN、5 mL MTBE和10mL EtOH稀释,然后将其在0℃静置。2 h以后,将从溶液沉淀出的白色微晶体通过真空过滤进行收集,并与前一批次合并以提供作为白色结晶固体的标题化合物1-甲基-4-氧代-4,5-二氢-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(HG-12c) (11.1 g, 99.0%)。1H NMR (400 MHz,甲醇-d4) δ 8.20 (d, J = 0.9 Hz, 1H), 7.56 (d, J = 0.9 Hz, 1H), 4.12 (s, 3H),4.04 (s, 3H)。
步骤4:合成4-溴-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(HG-12d)
向在乙腈(53.9 mL, 1.0 M)中的1-甲基-4-氧代-4,5-二氢-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(HG-12c) (11.1 g)中一次性加入吡啶(6.51 mL, 80.8 mmol, 1.5当量),随后以每份大约1 mL逐份加入三氟甲磺酸酐(13.6 mL, 80.8 mmol, 1.5当量)。加入6 mL以后,溶液从黄色变成红色(尽管仍然浑浊),且在加入剩余的三氟甲磺酸酐以后,反应再次变成黄色且开始澄清。45 min以后,LCMS显示起始原料的消耗以及三氟甲磺酸酯的明显形成。然后向反应混合物中加入溴化锂(23.4 g, 269 mmol, 5当量)和三氟乙酸(5.23 mL,59.3 mmol, 1.1当量)以产生橙色悬浮液。从该时刻1小时以后,LCM分析表明三氟甲磺酸酯的消失和向溴化物的转化。然后将反应混合物在磁力搅拌下缓慢地倒入含有200 mL饱和NaHCO3的锥形烧瓶中,并在停止后,将两相混合物转移至含有800 mL EtOAc的分液漏斗,摇晃,并抛弃水层。然后将有机层用硫代硫酸钠洗涤一次以脱色,并分离两层。将有机层经MgSO4干燥,过滤并在减压下除去溶剂。将得到的棕色油溶解在10 mL DCM中,并向其中加入10 mL MeCN和10 mL丙酮。将该混浊的溶液在0℃放置过夜,此后产物已经沉淀并通过真空过滤进行收集以提供为黄褐色固体的标题化合物4-溴-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(HG-12d) (11.77 g, 81%)。1H NMR (400 MHz, 氯仿-d) δ 8.23 (1H, d, J = 1Hz), 8.14 (1H, d, J = 1.0 Hz), 4.16 (3H, s), 4.05 (3H, s)。
步骤5:合成4-溴-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸(HG-12e)
将4-溴-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(HG-12d) (1333 mg, 4.935mmol)加入含有5 mL四氢呋喃和2 mL H2O的烧瓶中。在室温向该溶液中加入氢氧化锂(177mg, 7.40 mmol, 1.5当量)并将其搅拌。2 h以后,LCMS分析表明起始原料的消耗并伴随产物形成。将反应混合物用浓HCl酸化至pH 1,在此时它变混浊。将得到的酸性悬浮液在0℃放置1小时,此后观察到产物已经沉淀。将该固体使用真空过滤进行收集以提供为白色半结晶固体的标题化合物4-溴-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸(HG-12e) (1.15 g,90%)。1H NMR (400 MHz, DMSO-d6) δ 13.43 (1H, br s), 8.49 (1H, d, J = 0.8 Hz),8.32 (1H, d, J = 0.8 Hz), 4.18 (3H, s)
步骤6:合成4-溴-N-(2,4-二甲氧基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Int-HG-17)
向4-溴-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸(HG-12e) (1.90 g, 9.79 mmol)在DMF (2 mL)中的悬浮液中首先加入三乙胺(4.13 mL, 29.4 mmol),然后加入二甲氧基苄胺(1.64 g, 9.79 mmol),其中后者导致澄清溶液。向溶液中加入T3P (8.60 mL, 50%在EtOAc中,14.7 mmol),此后溶液变成黄色并明显升温。30 min以后,浑浊黄色悬浮液的LCMS分析显示起始原料的消耗和产物的形成。将其在磁力搅拌下用5 mL EtOAc稀释,然后在减压下过滤。将固体用EtOAc洗涤和干燥以提供为白色结晶固体的标题化合物4-溴-N-(2,4-二甲氧基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Int-HG-17) (3.18 g, 81%)。1H NMR (400 MHz, 氯仿-d) δ 8.53-8.38 (1H, m), 8.26 (1H, d, J = 1 Hz), 8.09(1H, d, J = 1.0 Hz), 7.28 (1H, s), 6.50 (2H, dd, J = 8.2, 2.4 Hz), 6.45 (2H,dd, J = 8.2, 2.4 Hz), 4.63 (2H, d, J = 6.1 Hz), 4.13 (3H, s), 3.90 (3H, s),3.80 (3H, s)。
根据方案HG-13制备N-[(2,4-二甲氧基苯基)甲基]-4-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Int-HG-18)
Figure 920418DEST_PATH_IMAGE112
方案HG-13:
Figure 451893DEST_PATH_IMAGE113
步骤1:合成6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-甲酸甲酯(HG-13a)
在50℃将4-溴-N-[(2,4-二甲氧基苯基)甲基]-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Int-HG-17) (1.5 g, 3.7 mmol)、Pd(dppf)Cl2 (0.406 g, 0.555 mmol)和三乙胺(1.12g, 11.1 mmol, 1.55 mL)在20 mL MeOH和5 mL DMA中的悬浮液在75 psi的CO下羰基化2天。将反应从热源取下并将其逐渐冷却至室温。将悬浮液穿过硅藻土垫过滤并将固体用DCM洗涤。将滤液浓缩并将粗残余物通过ISCO (二氧化硅, 40 g, 0-60%乙酸乙酯/庚烷,然后10% DCM/(10% MeOH/EtOAc))纯化以提供为黄色固体的标题化合物6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-甲酸甲酯(HG-13a) (1074 mg,77%)。1H NMR (400 MHz, DMSO-d6) δ ppm 8.84 (t, J=6.05 Hz, 1H), 8.61 (s, 2H),7.16 (d, J=8.20 Hz, 1H), 6.62 (d, J=2.34 Hz, 1H), 6.49 (dd, J=8.59, 2.34 Hz,1H), 4.51 (d, J=6.24 Hz, 2H), 4.22 (s, 3H), 4.03 (s, 3H), 3.88 (s, 3H), 3.75(s, 3H)。(C19H20N4O5)的m/z (ESI+), 385.2 (M+H)+ 观测值。
步骤2:合成N-[(2,4-二甲氧基苯基)甲基]-4-(肼羰基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(HG-13b)
将6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-甲酸甲酯(HG-13a) (286 mg, 0.744 mmol)和肼二水合物(119 mg, 3.72 mmol, 117 μL)在20 mL异丙醇中的悬浮液在80℃加热2.5天。将固体收集,并用MeOH洗涤,干燥以提供为灰色固体的标题化合物6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-甲酸甲酯(HG-13b) (267 mg, 93%收率)。(C18H20N6O4)的m/z(ESI+), 383.2(M+H)+ 观测值。
步骤3: N-[(2,4-二甲氧基苯基)甲基]-4-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Int-HG-18)
将6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-甲酸甲酯(HG-13b) (267 mg, 0.695 mmol)和DMF-DMA (91.0 mg, 0.764 mmol, 0.102mL)在15 mL乙腈中的悬浮液在50℃加热70 min。除去挥发物,将粗产物与甲苯x 3一起研磨以提供为灰色固体的325 mg N-[(2,4-二甲氧基苯基)甲基]-4-{(2E)-2-[(二甲基氨基)亚甲基]肼羰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺。向N-[(2,4-二甲氧基苯基)甲基]-4-{(2E)-2-[(二甲基氨基)亚甲基]肼羰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(283 mg, 0.644 mmol)在甲苯中的悬浮液(将其脱气5 min)中,加入对甲氧基苄胺(PMB-NH2) (0.168 mL, 1.29 mmol)和乙酸(92.1 μL, 1.61 mmol)。将反应在99℃加热过夜。将反应混合物穿过硅藻土垫过滤并将滤液在真空中浓缩。将粗产物通过ISCO (硅胶, 24 g,0-100% EtOAc/庚烷,然后接着1:1:8= DCM:MeOH:EtOAc)纯化以提供为灰白色固体的标题化合物N-[(2,4-二甲氧基苯基)甲基]-4-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Int-HG-18) (227 mg, 68%收率)。1H NMR(400 MHz, DMSO-d 6 ) δ ppm 8.90 (s, 1H), 8.71 (d, J = 1.17 Hz, 1H) 8.37 -8.47(m, 2H), 6.94 -7.03 (m, 3H), 6.68 -6.76 (m, 2H), 6.55 (d, J = 2.34 Hz, 1H),6.40 (dd, J = 8.20, 2.34 Hz, 1H), 5.90 (s, 2H), 4.42 (d, J = 6.24 Hz, 2H),4.20 (s, 3H), 3.80 (s, 3H), 3.73 (s, 3H), 3.60 (s, 3H)。(C27H27N7O4)的m/z (ESI+), 514.4 (M-H)。
根据方案HG-14制备4,6-二氯-1-[(2,2-二甲基-1,3-二氧杂环己烷-5-基)甲基]-1H-吡唑并[4,3-c]吡啶(Int-HG-19)
方案HG-14
Figure 795150DEST_PATH_IMAGE114
向4,6-二氯-1H-吡唑并[4,3-c]吡啶(1.40 g, 7.45 mmol)在DMF (14 mL)中的溶液中加入甲磺酸(2,2-二甲基-1,3-二氧杂环己烷-5-基)甲酯(1.75 g, 7.82mmol, 1.05当量)和Cs2CO3 (4.85 g, 14.9 mmol, 2当量)。将得到的黄色反应溶液在50℃搅拌16小时。在此时,LCMS分析表明起始原料被完全消耗,并检测到期望产物。然后将混合物过滤并将滤饼用50 mL EtOAc洗涤。将滤液用50 mL盐水洗涤2次,经无水硫酸钠干燥,过滤,并在真空中浓缩以产生黄色油,将其通过Prep-TLC (石油醚:EtOAc=2:1)纯化以提供为黄色油的标题化合物4,6-二氯-1-[(2,2-二甲基-1,3-二氧杂环己烷-5-基)甲基]-1H-吡唑并[4,3-c]吡啶(Int-HG-19) (650 mg, 27.6%)。1H NMR (400 MHz, 氯仿-d) δ 8.14 (d, J = 1.0 Hz,1H), 7.39 (d, J = 1.0 Hz, 1H), 4.60 (d, J = 7.8 Hz, 2H), 4.08 (dd, J = 12.6,3.0 Hz, 1H), 3.50 (ddd, J = 11.3, 2.8, 1.5 Hz, 2H), 2.20 (tq, J = 7.7, 2.9Hz, 1H), 2.04 (s, 1H), 1.50 (s, 3H), 1.48 (s, 3H)。
根据方案HG-15制备4-氯-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Int-HG-20)
Figure 703063DEST_PATH_IMAGE115
方案HG-15
Figure 448165DEST_PATH_IMAGE116
步骤1:合成4-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-6-碳酰氯(HG-15a)
向4-羟基-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸(HG-12b) (1.25 g, 6.471mmol)在无水甲苯(32 mL)中的黄色悬浮液中加入POCl3 (3.97 g, 25.9mmol)。将得到的混合物在100℃加热和搅拌41 h。将得到的黄色悬浮液在真空下浓缩以产生黄色固体(1.90g)。NMR分析揭示显著起始原料剩余。将固体再溶解在POCl3 (5.0 mL)中并加热至120℃。将混合物搅拌另外18小时。将得到的棕色混合物在真空下浓缩以提供为深棕色胶质的标题化合物4-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-6-碳酰氯(HG-15a),将其不经进一步纯化地用于下一步。(C9H9ClN3O2)的m/z(ESI+), 225.9 (M-HCl+MeOH)+ 观测值。
步骤2:合成4-氯-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Int-HG-20)
向4-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-6-碳酰氯(HG-15a) (1.94 g, 3.23mmol)在DCM (10 mL)中的深棕色悬浮液中加入三乙胺(1.96 g, 19.4 mmol)。将得到的混合物在室温(20℃)搅拌5 min,然后加入1-(2,4-二甲氧基苯基)-甲胺(DMB-NH2) (648 mg,3.88 mmol)。将得到的混合物在该温度搅拌1小时。将混合物用水(20 mL)和DCM (20 mL)稀释。将得到的悬浮液过滤以除去固体沉淀物。分离各相,并将水相用DCM (15 mLx2)萃取。将合并的有机萃取物干燥(Na2SO4),过滤,并在真空下浓缩。将粗残余物通过柱色谱法(35 gSiO2, 12.5% EtOAc/石油醚至75% EtOAc/石油醚)纯化以提供为浅黄色固体的标题化合物4-氯-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Int-HG-20) (586 mg, 50%)。1H NMR (400 MHz, 氯仿-d) δ = 8.42 (br t, J = 5.3 Hz, 1H),8.25 (d, J = 1.0 Hz, 1H), 8.16 (d, J = 0.9 Hz, 1H), 7.28 (d, J = 8.1 Hz, 1H),6.50 (d, J = 2.4 Hz, 1H), 6.46 (dd, J = 2.4, 8.3 Hz, 1H), 4.63 (d, J = 6.0Hz, 2H), 4.15 (s, 3H), 3.90 (s, 3H), 3.81 (s, 3H)。
根据方案HG-16制备4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-1,3-噁唑-5-甲酸乙酯(Int-HG-21)
方案HG-16
Figure 150542DEST_PATH_IMAGE117
步骤1:合成4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-1,3-噁唑-5-甲酸乙酯(Int-HG-21)
在20℃向化合物4-溴-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Int-HG-17) (19 g, 46.89 mmol, 1当量)在甲苯(380 mL)和H2O (95 mL)中的搅拌混合物中加入化合物4-溴-1,3-噁唑-5-甲酸乙酯(HG-16a) (11.35 g, 51.57mmol, 1.1当量)、B2Pin2 (23.81 g, 93.77 mmol, 2当量)和K3PO4 (29.86 g, 140.66mmol, 3当量)。将混合物脱气并用N2净化3次。在20℃加入PdCl2(dtbpf) (3.06 g, 4.69mmol, 0.1当量)。将混合物脱气并用N2净化另外3次。将反应混合物加热至72℃(内部温度)和在72℃(内部温度)搅拌4小时。LCMS分析表明起始原料(Int-HG-17)被消耗,并检测到具有期望产物质量的新峰。将反应混合物从加热取下并将其冷却至20℃。将混合物穿过硅藻土垫过滤。将滤液的有机层分离。将滤饼用DCM (300 mL x 3)冲洗。将合并的有机相经Na2SO4干燥,并过滤。将滤液在真空下浓缩以产生粗产物。将粗产物通过硅胶上的柱色谱法(用0%至80%的THF/石油醚洗脱)纯化以提供为棕色固体的标题化合物4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-1,3-噁唑-5-甲酸乙酯(Int-HG-21) (8 g, 17.19 mmol 36%收率)。1H NMR (400 MHz, 氯仿-d) δ = 9.01 (brt, J = 5.4 Hz, 1H), 8.68 (d, J = 0.9 Hz, 1H), 8.33 (d, J = 0.9 Hz, 1H), 8.11(s, 1H), 7.33 (d, J = 8.3 Hz, 1H), 6.48 (d, J = 2.3 Hz, 1H), 6.45 (dd, J =2.3, 8.4 Hz, 1H), 4.67 (d, J = 5.9 Hz, 2H), 4.26 -4.16 (m, 5H), 3.85 (s, 3H),3.80 (s, 3H), 1.24 (t, J = 7.2 Hz, 3H)。
根据方案HG-17制备4-溴-1-甲基-1H-吲哚-6-甲酸甲酯(Int-HG-07)。
Figure 981095DEST_PATH_IMAGE118
方案HG-17:
Figure 161540DEST_PATH_IMAGE119
在0℃向4-溴-1H-吲哚-6-甲酸甲酯(HG-17a) (200 mg, 0.787 mmol)在无水THF(2.0 mL)中的溶液中逐份加入NaH (60%的在矿物油中的分散体, 63 mg, 1.57 mmol)。将混合物搅拌15 min,然后加入碘甲烷(223 mg, 1.57 mmol)。将混合物在25℃搅拌2 h。TLC分析(1:5 EtOAc/石油醚)表明起始原料的消耗。将得到的悬浮液通过加入饱和NH4Cl水溶液(2 mL)淬灭并用H2O (3 mL)稀释。将混合物用EtOAc (3x10 mL)萃取。将合并的有机层经无水Na2SO4干燥,过滤,并浓缩以提供4-溴-1-甲基-1H-吲哚-6-甲酸甲酯(Int-HG-07) (217mg, >99%收率),将其不经进一步纯化使用。1H NMR (400 MHz, CDCl3) δ 8.05 (s, 1H),7.98 (d, J = 1.2 Hz, 1H), 7.28 -7.21 (m, 1H), 6.57 (dd, J = 3.1, 0.9 Hz, 1H),3.95 (s, 3H), 3.87 (s, 3H)。
制备实施例
根据方案A制备4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-1-甲基-1H-吲唑-6-甲酰胺(实施例A01)。
Figure 275996DEST_PATH_IMAGE120
方案A:
Figure 149274DEST_PATH_IMAGE121
步骤1:合成4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-甲基-1H-吲唑-6-甲酸甲酯(A-1)。
向3-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-01) (1.40 g, 4.71 mmol)在PhMe (9.0 mL)中的悬浮液中加入K2CO3 (1.95 g,14.1 mmol)、Pd(OAc)2 (106 mg, 0.471 mmol)、4-溴-1-甲基-1H-吲唑-6-甲酸甲酯(1.88g, 6.98 mmol) (Int-HG-01)、PivOH (144 mg, 1.41 mmol)和cataCXium A (338 mg,0.942 mmol)。将混合物用N2鼓泡2 min,然后在120℃搅拌16 h。LCMS分析表明起始原料的消耗和期望产物质量的形成。将混合物过滤并将滤液浓缩至干燥。将残余物通过快速色谱法(40 g SiO2, 100% EtOAc)纯化以提供为黄色固体的4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-甲基-1H-吲唑-6-甲酸甲酯(A-1)(1.59 g, 65%收率)。1H NMR (400 MHz, CDCl3) δ 8.46 (d, J = 1.0 Hz, 1H), 8.30 (s,1H), 7.91 (d, J = 1.1 Hz, 1H), 6.81 (d, J = 8.9 Hz, 2H), 6.77 (d, J = 8.9 Hz,2H), 6.20 (s, 1H), 5.35 (s, 2H), 4.39 (q, J = 7.2 Hz, 2H), 4.22 (s, 3H), 3.91(s, 3H), 3.78 (s, 3H), 2.32 (s, 3H), 1.46 (t, J = 7.2 Hz, 3H);(C26H27N7O3)的m/z(ESI+), 486.2 (M+H)+
步骤2:合成4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-甲基-1H-吲唑-6-甲酸(A-2)。
向4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-甲基-1H-吲唑-6-甲酸甲酯(A-1) (1.59 g, 3.27)在MeOH (30 mL)中的悬浮液中加入NaOH水溶液(2.0 N, 16.3 mL, 32.7 mmol)。将混合物在45℃搅拌16 h。LCMS表明起始原料的消耗和期望产物质量的形成。将反应冷却至室温并通过加入HCl (1.0 N)酸化至pH约3-4。将混合物用EtOAc (2x50 mL)萃取。将合并的有机层经Na2SO4干燥,过滤,并浓缩以提供为黄色固体的4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-甲基-1H-吲唑-6-甲酸(A-2) (1.57 g, >99%收率),将其不经进一步纯化使用。1H NMR (400 MHz, CDCl3) δ 8.35 (s, 1H), 8.29 (s, 1H), 7.95 (s,1H), 6.68 (d, J = 8.7 Hz, 2H), 6.63 (d, J = 8.7 Hz, 2H), 6.15 (s, 1H), 5.27(s, 2H), 4.28 (q, J = 7.2 Hz, 2H), 4.15 (s, 3H), 3.66 (s, 3H), 2.26 (s, 3H),1.35 (t, J = 7.1 Hz, 3H)。(C25H25N7O3)的m/z (ESI+), 472.2 (M+H)+
步骤3:合成4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-甲基-1H-吲唑-6-甲酰胺(A-3)。
将4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-甲基-1H-吲唑-6-甲酸(A-2) (1.57 g, 3.33 mmol)和HATU (4.42 g, 11.6mmol)在DMF (30.0 mL)中的溶液搅拌30 min。加入固体NH4Cl (1.78 g, 33.3 mmol)和DIPEA (4.30 g, 33.3 mmol)。将混合物搅拌另外16 h。LCMS分析表明起始原料的消耗和期望产物质量的形成。将反应浓缩至干燥。将残余物用H2O (100 mL)稀释,并用EtOAc/石油醚(2:1 v/v, 4x20 mL)萃取。将合并的有机层经Na2SO4干燥,过滤,并浓缩以提供为黄色胶质的4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-甲基-1H-吲唑-6-甲酰胺(A-3) (1.57 g, >99%收率),将其不经进一步纯化使用。(C25H26N8O2)的m/z(ESI+), 471.2 (M+H)+
步骤4:合成4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-1-甲基-1H-吲唑-6-甲酰胺(实施例A01)。
将4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-甲基-1H-吲唑-6-甲酰胺(A-3) (1.57 g, 3.34 mmol)在TFA (30 mL)中的溶液搅拌16 h。LCMS分析表明起始原料的消耗和产物质量的形成。将反应浓缩至干燥。将残余物用MeOH (50 mL)制浆1 h。将固体通过过滤进行收集并在真空下干燥。将物质用MeOH/DMF (20:1 v/v, 20 mL)制浆1 h并将固体通过过滤进行收集。将滤饼用MeOH/DMF (10:1v/v, 20 ml)制浆1 h并将固体通过过滤进行收集。将滤饼用MeOH (1x10 mL)洗涤,然后在真空下干燥以提供为浅黄色固体的4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-1-甲基-1H-吲唑-6-甲酰胺(实施例A01) (801 mg, 在3步中69%收率)。1H NMR(400 MHz, DMSO-d 6) δ 8.71 (s, 1H), 8.46 -8.45 (m, 1H), 8.39 (s, 1H), 8.24 (brs, 1H), 7.63 (br s, 1H), 6.74 (s, 1H), 4.74 (q, J = 7.1 Hz, 2H), 4.21 (s,3H), 2.29 (s, 3H), 1.48 (t, J = 7.1 Hz, 3H)。(C17H18N8O)的m/z (ESI+), 351.1 (M+H)+
根据用于合成4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-1-甲基-1H-吲唑-6-甲酰胺(实施例A01)的方法制备实施例A02,本领域技术人员能够认识到对所示例的程序的非关键变化或置换。
Figure 732702DEST_PATH_IMAGE122
以高通量方式根据用于合成4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-1-甲基-1H-吲唑-6-甲酰胺(实施例A01)的方法制备实施例B01和B02,本领域技术人员能够认识到对所示例的程序的非关键变化或置换。
Figure 716838DEST_PATH_IMAGE123
根据方案C制备4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-2-甲基-2H-吲唑-6-甲酰胺(实施例C01)。
Figure 436533DEST_PATH_IMAGE124
方案C:
Figure 480712DEST_PATH_IMAGE125
步骤1:合成4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-2-甲基-2H-吲唑-6-甲酸甲酯(C-1)。
向3-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-HG-02) (133 mg, 0.446 mmol)在PhMe (2.0 mL)中的悬浮液中加入K2CO3 (185 mg,1.34 mmol)、Pd(OAc)2 (23.0 mg, 0.100 mmol)、4-溴-2-甲基-2H-吲唑-6-甲酸甲酯(Int-TG-01) (180 mg, 0.669 mmol)、PivOH (13.7 mg, 0.134 mmol)和cataCXium A (19.2mg, 0.0535 mmol)。将混合物用N2鼓泡2 min,然后在120℃搅拌16 h。LCMS分析表明起始原料的消耗和期望产物质量的形成。将反应与用70 mg 3-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-HG-02)以相同方式运行的平行反应合并。将混合物过滤并将滤饼用MeOH (2x5 mL)洗涤。将合并的滤液浓缩至干燥。将残余物通过快速色谱法(12 g SiO2, 100% EtOAc)纯化以提供为黄色油的4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-2-甲基-2H-吲唑-6-甲酸甲酯(C-1) (160 mg, 48%收率)。1H NMR (400 MHz, CDCl3) δ 8.59 (s, 1H), 8.56 (s, 1H),7.83 (d, J = 1.2 Hz, 1H), 6.91 -6.73 (m, 4H), 6.15 (s, 1H), 5.41 (s, 2H),4.39 (q, J = 7.2 Hz, 2H), 4.29 (s, 3H), 3.85 (s, 3H), 3.78 (s, 3H), 2.29 (s,3H), 1.45 (t, J = 7.2 Hz, 3H);(C26H27N7O3)的m/z (ESI+), 486.2 (M+H)+
步骤2:合成4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-2-甲基-2H-吲唑-6-甲酰胺(C-2)。
向4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-2-甲基-2H-吲唑-6-甲酸甲酯(C-1) (160 mg, 0.330 mmol)中加入NH3在MeOH中的溶液(7 N, 5.0 mL, 新鲜制备),并将混合物在80℃搅拌16 h。LCMS分析表明起始原料的约50% 消耗。加入NH3在MeOH中的溶液的另一个等分试样(7 N, 3.0 mL)。将混合物在80℃搅拌24 h,然后浓缩至干燥。加入NH3在MeOH中的溶液(7 N, 5.0 mL, 新鲜制备)并将混合物在80℃搅拌48 h。将混合物浓缩至干燥以提供4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-2-甲基-2H-吲唑-6-甲酰胺(C-2) (155mg, >99%收率),将其不经进一步纯化使用。(C25H26N8O2)的m/z(ESI+), 471.2 (M+H)+
步骤3:合成4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-2-甲基-2H-吲唑-6-甲酰胺(实施例C01)。
将4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-2-甲基-2H-吲唑-6-甲酰胺(C-2) (155 mg, 0.329 mmol)在TFA (3.0 mL)中的溶液在25℃搅拌16 h。LCMS分析表明起始原料的消耗和期望产物质量的形成。将反应浓缩至干燥。将残余物用H2O (10 mL)稀释,通过加入NaOH水溶液(2 N)进行中和,然后浓缩至干燥。将残余物通过使用Boston Prime C18柱(150x30 mm, 5 μm粒径)的制备型HPLC纯化,将柱用15-40% MeCN/H2O (+0.05% NH4OH)以25 mL/min的流速洗脱,以提供为浅黄色固体的4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-2-甲基-2H-吲唑-6-甲酰胺(实施例C01) (20.6 mg, 18%收率)。1H NMR (400 MHz, DMSO-d 6) δ 8.85 (s, 1H), 8.35(d, J = 1.3 Hz, 1H), 8.33 (s, 1H), 8.17 (br s, 1H), 7.47 (br s, 1H), 6.69 (s,1H), 4.67 (q, J = 7.1 Hz, 2H), 4.30 (s, 3H), 2.24 (s, 3H), 1.42 (t, J = 7.1Hz, 3H);(C17H18N8O)的m/z (ESI+), 351.1 (M+H)+
根据用于合成4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-2-甲基-2H-吲唑-6-甲酰胺(实施例C01)的方法制备实施例C02-C09,本领域技术人员能够认识到对所示例的程序的非关键变化或置换。
Figure 285857DEST_PATH_IMAGE126
Figure 73684DEST_PATH_IMAGE127
Figure 647885DEST_PATH_IMAGE128
根据方案D制备4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-1-[3-(吗啉-4-基)丙基]-1H-吲唑-6-甲酰胺甲酸盐(实施例D01)。
Figure 112234DEST_PATH_IMAGE129
步骤1:合成4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-(三苯基甲基)-1H-吲唑-6-甲酸甲酯(D-1)。
向配备磁力搅拌棒的500 mL圆底烧瓶中依次加入PivOH (1.03 g, 10.1 mmol)、K2CO3 (13.9 g, 101 mmol)、3-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-01) (10.0 g, 33.6 mmol)、4-溴-1-(三苯基甲基)-1H-吲唑-6-甲酸甲酯(Int-HG-15) (25.0 g, 50.3 mmol, N-1和N-2位置异构体的3: 1混合物)和PhMe (100 mL)。将烧瓶用N2净化,然后加入Pd(OAc)2 (755 mg, 3.36 mmol)和cataCXium A(2.41 mg, 6.73 mmol)。将混合物在120℃搅拌16 h。LCMS分析表明起始原料的消耗和期望产物质量的形成。将混合物穿过硅藻土过滤并将滤液浓缩至干燥。将残余物以两个平行批次通过快速色谱法(220 g SiO2, 0-0.5% MeOH/DCM)纯化以提供4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-(三苯基甲基)-1H-吲唑-6-甲酸甲酯(D-1) (17.7 g, 74%收率, N-1和N-2异构体的3.5: 1混合物)。1H NMR(400 MHz, CDCl3) δ 8.74 -8.20 (m, 1H), 7.80 (dd, J = 20.4, 1.2 Hz, 1H), 7.37-7.30 (m, 9H), 7.27 -7.13 (m, 7H), 6.84 -6.55 (m, 4H), 6.28 -6.03 (m, 1H),5.30 (d, J = 18.3 Hz, 2H), 4.49 -4.16 (m, 2H), 3.95 -3.56 (m, 6H), 2.36 -2.24(m, 3H), 1.50 -1.37 (m, 3H);(C44H39N7O3)的m/z (ESI+), 714.2 (M+H)+
步骤2:合成4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1H-吲唑-6-甲酸甲酯(D-2)。
向4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-(三苯基甲基)-1H-吲唑-6-甲酸甲酯(D-1) (15.3 g, 21.4 mmol, N-1和N-2异构体的3.5: 1混合物)在DCM (1.5 L)中的溶液中加入TFA (15.3 mL, 200 mmol)。将反应在环境温度搅拌1 h,然后通过加入饱和NaHCO3水溶液(1 L)淬灭。将混合物用DCM (2x1L)萃取。将合并的有机层经Na2SO4干燥,过滤,并浓缩至干燥。将残余物通过快速色谱法(220g SiO2, 0-2% MeOH/DCM)纯化以提供为黄色固体的4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1H-吲唑-6-甲酸甲酯(D-2) (3.7g, 37%收率)。1H NMR (400 MHz, CDCl3) δ 11.03 (br s, 1H), 8.52 (d, J = 1.1 Hz,1H), 8.35 (d, J = 1.2 Hz, 1H), 7.91 (d, J = 1.1 Hz, 1H), 6.96 -6.56 (m, 4H),6.19 (s, 1H), 5.33 (s, 2H), 4.38 (q, J = 7.2 Hz, 2H), 3.87 (s, 3H), 3.75 (s,3H), 2.30 (s, 3H), 1.44 (t, J = 7.2 Hz, 3H);(C25H25N7O3)的m/z (ESI+), 472.2 (M+H)+
步骤3:使用高通量文库方案合成4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-1-[3-(吗啉-4-基)丙基]-1H-吲唑-6-甲酰胺甲酸盐(实施例D01)和4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-2-[3-(吗啉-4-基)丙基]-2H-吲唑-6-甲酰胺甲酸盐(实施例D01’)。
向小瓶中分配3-(吗啉-4-基)丙-1-醇(26.1 mg, 180 μmol)在PhMe (625 μL)中的溶液、4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1H-吲唑-6-甲酸甲酯(D-2) (70.7 mg, 180 μmol)在PhMe (750 μL)中的溶液和氰基亚甲基三丁基膦(CMBP) (36.2 mg,180 μmol)在PhMe (750 μL)中的溶液。给瓶盖帽并将混合物在摇晃下在110℃保持16 h。LCMS分析指示起始原料的消耗。将溶剂用Speedvac浓缩器除去并将残余物通过制备型TLC纯化。向瓶内分离的中间体中加入NH3在MeOH中的溶液(7.0 M, 2.0 mL)。给瓶盖帽并将混合物在摇晃下在80℃保持48 h,分别在16和32 h加入NH3在MeOH中的溶液的另一个等分试样(7.0 M, 2.0 mL)。LCMS分析指示中间体的消耗。将溶剂用Speedvac浓缩器除去。向含有残余物的瓶加入4:1 DCM/TFA (1.0 mL)。给瓶盖帽并将混合物在摇晃下在30℃保持16 h。LCMS分析指示中间体的消耗。将溶剂用Speedvac浓缩器除去。将残余物用YMC-Actus Triart C18柱(150x30 mm, 5 μm粒径)通过制备型HPLC纯化,将柱用13-53% MeCN/H2O (+0.225% 甲酸)以35 mL/min的流速洗脱以提供为位置异构体的2.5: 1混合物(位置异构体未指定)的4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-1-[3-(吗啉-4-基)丙基]-1H-吲唑-6-甲酰胺甲酸盐(实施例D01)和4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-2-[3-(吗啉-4-基)丙基]-2H-吲唑-6-甲酰胺甲酸盐(实施例D01’) (8.4 mg, 12%收率)。(C23H29N9O2)的m/z (ESI+), 474(M+H)+
根据用于合成实施例D01的方法制备实施例D02-D05、D02’-D05’和D06,本领域技术人员能够认识到对举例说明的程序的非关键变化或置换。
Figure 139095DEST_PATH_IMAGE130
Figure 730614DEST_PATH_IMAGE131
Figure 159321DEST_PATH_IMAGE132
根据方案E制备4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-5-氟-1-甲基-1H-吲唑-6-甲酰胺(实施例E01)。
Figure 279724DEST_PATH_IMAGE133
方案E:
Figure 59461DEST_PATH_IMAGE134
步骤1:合成N-[(2,4-二甲氧基苯基)甲基]-4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-5-氟-1-甲基-1H-吲唑-6-甲酰胺(E-1)。
将4-溴-N-[(2,4-二甲氧基苯基)甲基]-5-氟-1-甲基-1H-吲唑-6-甲酰胺(Int-HG-11) (49.0 mg, 0.120 mmol)、3-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-01) (52.6 mg, 0.174 mmol)、PivOH (3.56 mg, 0.0348mmol)、K2CO3 (48.1 mg, 0.348 mmol)、cataCXium A (8.32 mg, 0.232 mmol)和Pd(OAc)2(2.61 mg, 0.0116 mmol)在PhMe (2.3 mL)中的混合物用N2鼓泡,然后在120℃搅拌16 h。加入另外的Pd(OAc)2 (2.61 mg, 0.0116 mmol)和cataCXium A (8.32 mg, 0.232 mmol)。将混合物用N2鼓泡,然后在120℃搅拌24 h。LCMS分析表明起始原料的消耗和期望产物质量的形成。将反应浓缩至干燥。将残余物通过快速色谱法(4 g SiO2, 5-10% MeOH/EtOAc)纯化以提供为黄色固体的N-[(2,4-二甲氧基苯基)甲基]-4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-5-氟-1-甲基-1H-吲唑-6-甲酰胺(E-1) (30 mg, 40%收率)。1H NMR (400 MHz, CDCl3) δ 8.34 (d, J = 5.14 Hz, 1H),7.88 (d, J = 0.61 Hz, 1H), 7.25 -7.29 (m, 1H), 6.52 -6.57 (m, 2H), 6.43 -6.50(m, 4H), 6.25 (s, 1H), 5.08 (s, 2H), 4.62 (d, J = 5.38 Hz, 2H), 4.24 -4.33(m, 2H), 4.14 (s, 3H), 3.84 (s, 3H), 3.80 (s, 3H), 3.64 (s, 3H), 2.33 (s,3H), 1.37 (q, J = 7.13 Hz, 3H);(C34H35FN8O4)的m/z (ESI+), 639.3 (M+H)+
步骤2:合成4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-5-氟-1-甲基-1H-吲唑-6-甲酰胺(实施例E01)。
N-[(2,4-二甲氧基苯基)甲基]-4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-5-氟-1-甲基-1H-吲唑-6-甲酰胺(E-1) (30mg, 0.047 mmol)在TFA (3.0 mL)中的溶液搅拌16 h。LCMS分析表明起始原料的消耗和期望产物质量的形成。将反应浓缩至干燥。将残余物用Phenemonex Gemini NX C18柱(150x21.2 mmol, 5 μmol粒径)通过制备型HPLC纯化,将柱用25-35% MeCN/H2O (+10 mMNH4OAc)以40mL/min的流速洗脱以提供为固体的4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-5-氟-1-甲基-1H-吲唑-6-甲酰胺(实施例E01) (2.61 mg, 15%收率)。1H NMR (600 MHz, DMSO-d 6) δ 8.70 (s, 1H), 7.80 (br s, 1H), 7.70 (d, J =4.6 Hz, 1H), 7.59 (br s, 1H), 6.87 (br s, 1H), 6.34 (s, 1H), 4.71 (q, J = 7.1Hz, 2H), 4.08 (s, 3H), 2.17 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H);19F NMR (565MHz, DMSO-d 6) δ -125.44;(C17H17FN8O)的m/z (ESI+), 369.0 (M+H)+
根据方案F制备8-[5-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-3-基]-3-甲基咪唑并[1,5-a]吡啶-6-甲酰胺(实施例F01)。
Figure 189091DEST_PATH_IMAGE135
方案F:
Figure 455993DEST_PATH_IMAGE136
步骤1:合成8-{5-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基咪唑并[1,5-a]吡啶-6-甲酸甲酯(F-1)。
给配备磁力搅拌棒的瓶装入8-溴-3-甲基咪唑并[1,5-a]吡啶-6-甲酸甲酯(Int-HG-12)、K2CO3 (281 mg, 2.04 mml)、Pd(OAc)2 (15.2 mg, 0.0679 mmol)、cataCXium A(48.7 mg, 0.136 mmol)和PivOH (20.8 mg, 0.204 mmol)。将瓶用Ar净化,然后加入3-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-02) (214 mg, 0.679 mmol)在PhMe (3.4 mL)中的溶液。将混合物在110℃搅拌16 h。LCMS表明剩余原料。将反应冷却至室温并加入Pd(OAc)2 (15.2 mg, 0.678)、cataCXium A(48.7, 0.136 mmol)和CsOPiv (47.6 mg, 0.204 mmol)。将混合物用Ar净化,然后在110℃搅拌24 h。将混合物冷却至室温并穿过硅藻土过滤。将滤饼接连地用DCM、MeOH和EtOAc洗涤。将合并的滤液浓缩至干燥。将残余物用Phenomenex Luna Omega Polar C18柱(250x30mm, 5 μm粒径)通过制备型HPLC纯化,将柱用25-65% MeCN/H2O (+0.1% AcOH)以35 mL/min的流速洗脱以提供为黄色固体的8-{5-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基咪唑并[1,5-a]吡啶-6-甲酸甲酯(F-1)(61.6 mg, 18%收率)。1H NMR (400 MHz, CDCl3) δ 8.63 (s, 1H), 7.64 (br s, 1H),7.46 (s, 1H), 6.66 (d, J = 8.8 Hz, 2H), 6.60 (d, J = 8.8 Hz, 2H), 5.24 (d, J= 2.9 Hz, 2H), 4.11 (q, J = 7.2 Hz, 2H), 3.99 (s, 3H), 3.71 (s, 3H), 2.80 (s,3H), 2.34 (s, 3H), 1.22 (t, J = 7.2 Hz, 3H);(C26H26FN7O3)的m/z (ESI+), 504.2 (M+H)+
步骤2:合成8-{5-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基咪唑并[1,5-a]吡啶-6-甲酰胺(F-2)。
将8-{5-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基咪唑并[1,5-a]吡啶-6-甲酸甲酯(F-1) (59.9 mg, 0.119 mmol)在饱和NH4OH水溶液(约28%, 3.0 mL)中的溶液在50℃搅拌7 h。LCMS分析表明起始原料的消耗和期望产物质量的形成。将反应用MeOH稀释,然后浓缩至干燥。将固体从MeOH (2 mL)和H2O (5 mL)的混合物通过冻干法干燥以提供为黄色固体的8-{5-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基咪唑并[1,5-a]吡啶-6-甲酰胺(F-2) (51.3 mg, 88%收率)。1H NMR (400 MHz, CD3OD) δ 8.81 (s, 1H),7.64 (s, 1H), 7.51 (d, J = 1.2 Hz, 1H), 7.37 (s, 1H), 7.32 (s, 1H), 6.65 (s,4H), 5.27 (s, 2H), 3.98 (q, J = 7.5 Hz, 2H), 3.66 (s, 3H), 2.76 (s, 3H), 2.29(s, 3H), 1.24 -1.20 (m, 3H);19F NMR (376 MHz, CD3OD) δ -173.38;(C25H25FN8O2)的m/ z (ESI+), 490.2 (M+H)+
步骤3:合成8-[5-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-3-基]-3-甲基咪唑并[1,5-a]吡啶-6-甲酰胺(实施例F01)。
向8-{5-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基咪唑并[1,5-a]吡啶-6-甲酰胺(F-2) (50.4 mg, 0.103 mmol)在DCM (2.0 mL)中的溶液中加入TFA (1.0 mL)。将混合物搅拌16 h。LCMS分析表明起始原料的消耗和期望产物质量的形成。将反应用MeOH稀释并浓缩至干燥。将残余物用PhenemonexGemini NX C18柱(21.2x150 mm, 5 μm粒径)通过制备型HPLC纯化,将柱用18-60% MeCN/H2O (+10 mM NH4OAc)以40 mL/min的流速洗脱以提供为固体的8-[5-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-3-基]-3-甲基咪唑并[1,5-a]吡啶-6-甲酰胺(实施例F01) (3.97 mg, 10%收率)。1H NMR (600 MHz, DMSO-d 6) δ 8.70 (s, 1H), 8.10 (br s,1H), 8.03 (s, 1H), 7.93 (s, 1H), 7.44 (br s, 1H), 6.52 (br s, 1H), 4.54 (q, J= 7.2 Hz, 2H), 2.69 (s, 3H), 2.20 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H);(C17H17FN8O)的m/z (ESI+), 369.0 (M+H)+
实施例G01: 根据方案G制备4-[4-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-咪唑-2-基]-1-甲基-1H-吲唑-6-甲酰胺。
方案G:
Figure 278456DEST_PATH_IMAGE137
步骤1:合成6-溴-1-甲基-1H-吲唑-4-甲酸2-(1-乙基-3-甲基-1H-吡唑-5-基)-2-氧代乙酯(G-1)。
在氮气下向6-溴-1-甲基-1H-吲唑-4-甲酸(Int-HG-13) (280 mg, 1.10 mmol)和2-溴-1-(1-乙基-3-甲基-1H-吡唑-5-基)乙烷-1-酮(Int-TG-07) (279 mg, 1.21 mmol)的悬浮液中加入DIPEA (0.50 mL, 3.00 mmol)。将黄色溶液在25℃搅拌17小时。LCMS分析表明起始原料的完全消耗。将溶液在真空下浓缩以提供标题化合物(G-1),将其不经进一步纯化地用于下一步。1H NMR (400 MHz, 甲醇-d4) δ = 8.48 (s, 1H), 8.18 (s, 1H), 8.05(d, J = 1.5 Hz, 1H), 6.98 (s, 1H), 5.57 (s, 2H), 4.50 (q, J = 6.9 Hz, 2H),4.11 (s, 3H), 2.31 (s, 3H), 1.35 -1.33 (m, 3H)。
步骤2:合成6-溴-4-[4-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-咪唑-2-基]-1-甲基-1H-吲唑(G-2)。
向6-溴-1-甲基-1H-吲唑-4-甲酸2-(1-乙基-3-甲基-1H-吡唑-5-基)-2-氧代乙酯(G-1)的黄色悬浮液中加入甲苯(10 mL)和乙酸铵(1.69 g, 22.0 mmol)。将反应加热至回流并在95℃搅拌16h。深绿色溶液的LCMS分析表明起始原料的完全消耗。将反应用水淬灭并转移至含有EtOAc的分液漏斗。分离各相,并将水相用EtOAc (3x15 mL)萃取。将合并的有机萃取物在真空下浓缩。将粗残余物通过制备型薄层色谱法(DCM/MeOH 15:1)纯化以得到为绿色胶质的标题化合物(G-2) (130 mg, 30%收率)。该物质的LCMS分析表明显著杂质仍然存在。将分离的物质进一步通过制备型薄层色谱法(DCM/MeOH 17:1)纯化4次以提供为绿色固体的标题化合物(G-2) (41 mg, 9%收率),将其不经进一步纯化地用于下一步。(C17H17BrN6)的m/z(ESI+), 385.1 (M+H)+ 观测值。
步骤3:合成4-[4-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-咪唑-2-基]-1-甲基-1H-吲唑-6-甲酸甲酯(G-3)。
向6-溴-4-[4-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-咪唑-2-基]-1-甲基-1H-吲唑(G-2) (41 mg, 0.11 mmol)在MeOH (6.0 mL)中的溶液中加入PdCl2(dppf)2 (23.4 mg,0.032 mmol)和Et3N (0.1 mL, 0.700 mmol)。将橙色溶液在高压釜中在一氧化碳气氛(50psi)下在80℃搅拌30 h。将棕色异质混合物过滤并将滤液在真空下浓缩以提供为橙色胶质的标题化合物(G-3) (110 mg)。将粗制物质不经进一步纯化地用于下一步。(C19H20N6O2)的m/z(ESI+), 364.8 (M+H)+ 观测值。
步骤4:合成4-[4-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-咪唑-2-基]-1-甲基-1H-吲唑-6-甲酰胺(实施例G01)。
向含有4-[4-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-咪唑-2-基]-1-甲基-1H-吲唑-6-甲酸甲酯(G-3) (110 mg, 0.210 mmol)的烧瓶中加入氨(0.14M在MeOH中,1.5 mL)。将反应在80℃搅拌16 h。LCMS分析表明反应已经达到结束。将反应在真空下浓缩,在DMF (2.5mL)中稀释,并用Boston Prime C18柱(150x30 mm, 5 μm粒径)通过制备型HPLC纯化。用25-50% MeCN/H2O (0.05% NH4OH)以25 mL/min的流速洗脱,提供为浅黄色固体的标题化合物(实施例G01) (16.5 mg, 29%收率)。1H NMR (400 MHz, DMSO-d6) δ = 13.10 (br s, 1H),8.71 (s, 1H), 8.22 (d, J = 2.4 Hz, 2H), 8.05 (br s, 1H), 7.67 (d, J = 1.8 Hz,1H), 7.57 (br s, 1H), 6.31 (s, 1H), 4.59 (q, J = 7.1 Hz, 2H), 4.14 (s, 3H),2.17 (s, 3H), 1.41 (t, J = 7.1 Hz, 3H);(C18H19N7O)的m/z (ESI+), 350.1 (M+H)+ 观测值。
根据用于合成4-[4-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-咪唑-2-基]-1-甲基-1H-吲唑-6-甲酰胺(实施例G01)的方法(方案G)合成实施例G02,本领域技术人员能够认识到对说啥了的程序的非关键变化或置换。
Figure 279910DEST_PATH_IMAGE138
实施例H01: 根据方案H制备4-[4-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-2-基]-1-甲基-1H-吲唑-6-甲酰胺.
方案H:
Figure 947651DEST_PATH_IMAGE139
步骤1:合成6-溴-4-[4-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-2-基]-1-甲基-1H-吲唑(H-1)。
向6-溴-1-甲基-1H-吲唑-4-硫代甲酰胺(Int-HG-14) (93.5 mg, 0.346 mmol)在MeOH (3.0 mL)中的悬浮液中加入2-溴-1-(1-乙基-3-甲基-1H-吡唑-5-基)乙烷-1-酮(Int-TG-07) (105 mg, 0.454 mmol)。将反应在80℃加热14h。LCMS分析表明起始原料的消耗和产物质量的形成。将反应在真空下浓缩以提供白色固体。将固体与DCM (5.0 mL)一起研磨,随后在真空下干燥以提供为白色固体的标题化合物(H-1) (65 mg, 47%收率)。1HNMR (400 MHz, DMSO-d6) δ = 8.57 (s, 1H), 8.22 (s, 1H), 8.19 (s, 1H), 7.87 (d,J = 1.3 Hz, 1H), 6.55 (s, 1H), 4.53 (q, J = 7.1 Hz, 2H), 4.12 (s, 3H), 2.21(s, 3H), 1.39 (t, J = 7.2 Hz, 3H);(C17H16BrN5S)的m/z (ESI+), 401.7 (M+H)+ 观测值。
步骤2:合成4-[4-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-2-基]-1-甲基-1H-吲唑-6-甲酸甲酯(H-2)。
向6-溴-4-[4-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-2-基]-1-甲基-1H-吲唑(H-1) (65 mg, 0.160 mmol)在MeOH (6.0 mL)中的悬浮液中加入Pd(dppf)Cl2和Et3N(0.10 mL, 0.700 mmol)。将橙色溶液在高压釜中在一氧化碳气氛(50 psi)下在80℃搅拌16 h。LMCS分析表明起始原料被消耗。将溶液在真空下浓缩以提供为粗制橙色胶质的标题化合物(H-2),将其不经进一步纯化地用于下一步。(C19H19N5O2S)的m/z(ESI+), 381.7 (M+H)+ 观测值。
步骤3:合成4-[4-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-2-基]-1-甲基-1H-吲唑-6-甲酰胺(实施例H01)。
向含有4-[4-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-2-基]-1-甲基-1H-吲唑-6-甲酸甲酯(H-2) (135 mg, 0.119 mmol)的烧瓶中加入氨(0.08M在MeOH中,1.5 mL)。将反应在80℃搅拌36 h。将反应在真空下浓缩并用YMC-Triart Prep C18柱(250x50 mm,10 μm粒径)通过制备型HPLC纯化。用31-61% MeCN/H2O (0.05% NH4OH)以30 mL/min的流速洗脱,提供为白色固体的标题化合物4-[4-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-2-基]-1-甲基-1H-吲唑-6-甲酰胺(实施例H01) (21.5 mg, 36%收率)。1H NMR (400 MHz,DMSO-d6) δ = 8.62 (s, 1H), 8.40 (s, 1H), 8.31 (s, 1H), 8.23 (d, J = 1.0 Hz,1H), 8.14 (s, 1H), 7.65 (s, 1H), 6.55 (s, 1H), 4.55 (q, J = 7.2 Hz, 2H), 4.17(s, 3H), 2.21 (s, 3H), 1.40 (t, J = 7.2 Hz, 3H);(C18H18N6OS)的m/z (ESI+), 367.0(M+H)+ 观测值。
实施例J01: 根据方案J制备4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺。
方案J:
Figure 350951DEST_PATH_IMAGE140
步骤1:合成6-氯-4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1-甲基-1H-吡唑并[4,3-c]吡啶(J-1)
向3-(1-乙基-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑(Int-TG-04)(55.6 mg, 0.291 mmol)在甲苯(1.5 mL)中的悬浮液中加入4,6-二氯-1-甲基-1H-吡唑并[4,3-c]吡啶(Int-HG-08) (88.7 mg, 0.439 mmol)、Pd(OAc)2 (6.5 mg, 0.029 mmol)、P(n-Bu)Ad2 (21.8 mg, 0.061 mmol)、PivOH (8.9 mg, 0.087 mmol)和K2CO3 (129.8 mg,0.939 mmol)。将溶液用氮气鼓泡2分钟,然后密封。将反应在120℃加热16 h。LCMS分析表明大部分起始原料三唑已经被消耗且可以检测到期望质量的形成。将溶液穿过硅藻土垫过滤并将滤液在真空下浓缩。将粗残余物通过制备型薄层色谱法(DCM/MeOH 20:1)纯化以提供为黄色油的标题化合物(J-1) (89.5 mg, 86%)。(C16H17ClN8)的m/z(ESI+), 356.7 (M+H)+观测值。
步骤2:合成4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(J-2)
向6-氯-4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1-甲基-1H-吡唑并[4,3-c]吡啶(J-1) (89.5 mg, 86%收率)在MeOH (10 mL)中的悬浮液中加入Pd(dppf)Cl2 (64.8 mg, 0.089 mmol)和Et3N (0.20 mL, 1.40 mmol)。将反应在高压釜中在一氧化碳气氛(50 psi)下在80℃搅拌47 h。将溶液过滤并在真空下浓缩。将粗残余物通过制备型薄层色谱法(EtOAc)纯化以提供为浅棕色固体的标题化合物(J-2) (23.2mg, 35%收率)。1H NMR (400 MHz, DMSO-d6) δ = 8.78 (s, 1H), 8.58 (s, 1H), 6.66(s, 1H), 4.62 (q, J = 7.0 Hz, 2H), 4.53 (s, 3H), 4.22 (s, 3H), 3.98 (s, 3H),2.22 (s, 3H), 1.42 (br t, J = 7.0 Hz, 3H);(C18H20N8O2)的m/z (ESI+), 381.0 (M+H)+观测值。
步骤3:合成4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例J01)
向含有4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(J-2) (23.2 mg, 0.061 mmol)的烧瓶中加入氨(在MeOH中的溶液, 3.0 mL)。将反应在80℃搅拌15 h。LCMS分析表明起始原料的消耗。将溶液在真空下浓缩,然后溶解在DMF (2 mL)和DMSO (0.5 mL)中。将悬浮液过滤并将滤液用Boston Prime C18柱(150x30 mm, 5 μm粒径)通过制备型HPLC纯化。用35-55% MeCN/H2O(0.225% HCO2H)以25 mL/min的流速洗脱,提供为白色固体的标题化合物(实施例J01)(10.1 mg, 45%收率)。1H NMR (400 MHz, DMSO-d6) δ = 8.75 (s, 1H), 8.51 (s, 1H),8.04 (br s, 1H), 7.94 (br s, 1H), 6.67 (s, 1H), 4.62 (q, J = 7.1 Hz, 2H),4.46 (s, 3H), 4.23 (s, 3H), 2.23 (s, 3H), 1.41 (t, J = 7.1 Hz, 3H);(C17H19N9O)的m/z (ESI+), 366.1 (M+H)+ 观测值。
根据用于合成4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例J01)的方法(方案J)合成实施例J02和J03,本领域技术人员能够认识到对所示例的程序的非关键变化或置换。
Figure 78735DEST_PATH_IMAGE141
实施例K01: 根据方案K制备4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺。
方案K:
Figure 551174DEST_PATH_IMAGE142
步骤1:合成4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例K01)。
向含有4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(K-1) (58 mg, 0.120 mmol)(其与实施例J01类似地制备,根据对于方案J中的步骤1-3示例的程序,从Int-HG-08和Int-TG-01开始)的烧瓶中加入TFA (1.0 mL)。将反应在室温搅拌4 h。LCMS分析表明起始原料的消耗和期望产物质量。将溶液浓缩并将粗残余物用YMC-Actus Triart C18柱(150x30, 5 μm粒径)通过制备型HPLC纯化。用17-57% MeCN/H2O (0.1% TFA)以30 mL/min的流速洗脱,提供为白色固体的标题化合物(实施例K01) (25 mg, 58%)。1H NMR (400 MHz, DMSO-d6) δ =15.34 (br s, 1H), 8.84 (br s, 1H), 8.80 (s, 1H), 8.47 (s, 1H), 7.88 (br s,1H), 6.71 (s, 1H), 4.65 (q, J = 7.1 Hz, 2H), 4.22 (s, 3H), 2.23 (s, 3H), 1.43(t, J = 7.1 Hz, 3H);(C16H17N9O)的m/z (ESI+), 351.8 (M+H)+ 观测值。
根据用于合成(实施例J01)的步骤1-3中示例的程序(方案J),随后用于合成(实施例K01)的步骤1中的程序(方案K),合成实施例K02,本领域技术人员能够认识到对所示例的程序的非关键变化或置换。
Figure 288186DEST_PATH_IMAGE143
实施例L01: 根据方案L制备7-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-3-甲基-1H-吲唑-5-甲酰胺。
方案L:
Figure 545992DEST_PATH_IMAGE144
步骤1:合成5-溴-7-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-3-甲基-1H-吲唑(L-1)
向微波瓶中加入5-溴-3-甲基-1H-吲唑-7-甲腈(Int-HG-10) (260 mg, 1.10mmol)、1-乙基-3-甲基-1H-吡唑-5-碳酰肼(TG-1c) (185 mg, 1.10 mmol)、K2CO3 (457 mg,3.30 mmol)和n-BuOH (5.0 mL)。将反应在微波反应器中在150℃加热1.5 h。LCMS分析表明期望产物的质量为主要组分。将溶液在真空下浓缩以提供为粗制黄色固体的标题化合物(L-1) (900 mg),将其不经进一步纯化地用于下一步。(C16H16BrN7)的m/z(ESI+), 386.1 (M+H)+ 观测值。
步骤2:合成(L-2)
向含有5-溴-7-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-3-甲基-1H-吲唑(L-1)的烧瓶中加入K2CO3 (227 mg, 1.64 mmol)、DMF (5.0 mL)和4-甲氧基苄基氯(206 mg, 1.31 mmol)。将反应在60℃加热1 h。LCMS分析表明期望产物质量为主要组分。将溶液在真空下浓缩以提供为粗残余物的标题化合物(L-2) (550 mg),将其不经进一步纯化地用于下一步。(C24H24BrN7O)的m/z(ESI+), 505.9 (M+H)+ 观测值。
步骤3:合成(L-3)
向含有(L-2) (550 mg, 1.09 mmol)的烧瓶中加入MeOH (10.0 mL)、Pd(dppf)Cl2(238 mg, 0.326 mmol)和Et3N (0.45 mL, 3.26 mmol)。将反应在高压釜中在一氧化碳气氛(50 psi)下在80℃搅拌16 h。LCMS分析表明具有期望产物质量的峰为主要组分。将溶液穿过硅藻土过滤并将滤液在真空下浓缩。将粗残余物通过快速柱色谱法(12 g SiO2柱, 0-2% MeOH/DCM)纯化以提供为棕色固体的标题化合物(500 mg, 94%收率)。1H NMR (400MHz, 氯仿-d) δ = 11.33 (s, 1H), 8.88 (s, 1H), 8.54 (s, 1H), 7.14 (br d, J =8.4 Hz, 2H), 6.88 (br d, J = 8.4 Hz, 2H), 6.28 (s, 1H), 5.46 (s, 2H), 4.36(q, J = 7.1 Hz, 2H), 3.99 (s, 3H), 3.79 (s, 3H), 2.67 (s, 3H), 2.35 (s, 3H),1.40 (t, J = 7.2 Hz, 3H);(C26H27N7O3)的m/z (ESI+), 486.2 (M+H)+ 观测值。
步骤4:合成(L-4)
向含有(L-3) (250 mg, 0.410 mmol)的烧瓶中加入氨在MeOH中的溶液(10 mL)。将反应在80℃加热16 h。LCMS分析表明期望产物质量和显著的起始原料剩余。将溶液在真空下浓缩并将粗残余物溶解在氨在MeOH中的溶液(10 mL)中。将反应在80℃加热16 h。LCMS分析表明增加的向期望产物质量的转化。将异质混合物过滤以提供为白色固体的标题化合物(L-4) (80 mg, 41%收率)。1H NMR (400 MHz, DMSO-d6) δ = 8.61 (d, J = 1.4 Hz,1H), 8.47 (d, J = 1.4 Hz, 1H), 8.12 (br s, 1H), 7.35 (br s, 1H), 7.19 (d, J =8.6 Hz, 2H), 6.90 (d, J = 8.6 Hz, 2H), 6.57 (s, 1H), 6.03 (br s, 1H), 5.57(s, 2H), 4.31 (q, J = 7.2 Hz, 2H), 3.71 (s, 3H), 2.60 (s, 3H), 2.26 (s, 3H),1.18 (t, J = 7.1 Hz, 3H);(C25H26N8O2)的m/z (ESI+), 471.2 (M+H)+ 观测值。
步骤5:合成7-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-3-甲基-1H-吲唑-5-甲酰胺(实施例L01)
向含有(L-4) (80 mg, 0.170 mmol)的烧瓶中加入TFA (2.0 mL)。将反应在15℃搅拌16 h。LCMS分析表明显著起始原料剩余。将反应在60℃加热16 h。LCMS分析表明具有期望产物质量的峰为主要组分。将溶液在真空下浓缩。将粗残余物用YMC-Actus Triart C18柱(150x30, 7 μm粒径)通过制备型HPLC纯化。用15-35% MeCN/H2O (0.05% NH4OH)以35 mL/min的流速洗脱,提供为白色固体的标题化合物(实施例L01) (24 mg, 41%收率)。1H NMR(400 MHz, DMSO-d6) δ = 14.65 (br s, 1H), 12.29 (br s, 1H), 8.63 (s, 1H), 8.46(br s, 1H), 7.49 (br s, 1H), 6.82 (br s, 1H), 4.79 -4.54 (m, 2H), 2.61 (s,3H), 2.26 (s, 3H), 1.41 (t, J = 7.2 Hz, 3H);(C17H18N8O)的m/z (ESI+), 351.1 (M+H)+ 观测值。
实施例M01: 根据方案M制备4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-1-[2-(3-氟氮杂环丁烷-1-基)乙基]-1H-吲唑-6-甲酰胺三氟乙酸盐。
方案M:
Figure 179098DEST_PATH_IMAGE145
步骤1:合成4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-(三苯基甲基)-1H-吲唑-6-甲酸甲酯(M-1)
向配备磁力搅拌棒的250 mL圆底烧瓶中加入4-溴-1-(三苯基甲基)-1H-吲唑-6-甲酸甲酯(Int-HG-15) (4.0 g, 8.00 mmol)、3-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-01) (2.63 g, 8.85 mmol)、Pd(OAc)2 (361mg, 1.61 mmol)、CataXCium A (1.15 g, 3.22 mmol)、新戊酸(246 mg, 2.41 mmol)和K2CO3 (3.33 g, 24.1 mmol)。将烧瓶在真空下抽真空并用N2气体回填。给烧瓶装入无水甲苯(在使用前用N2鼓泡)并将反应在N2气氛下回流18 h。将溶液逐渐冷却至室温,用乙腈稀释,并经硅藻土垫过滤。将滤液在真空下浓缩。将粗残余物通过快速色谱法(SiO2塞, 30-100% EtOAc/庚烷, 500 mL级分)纯化。将合并的含有期望产物的级分在真空下浓缩以提供为棕色固体的标题化合物4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-(三苯基甲基)-1H-吲唑-6-甲酸甲酯(M-1) (4.65 g, 81%收率, N-1和N-2位置异构体的混合物)。(C44H39N7O3)的m/z(ESI+), 714.5 (M+H)+ 观测值。
步骤2:合成4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1H-吲唑-6-甲酸甲酯(M-2)
向含有4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-(三苯基甲基)-1H-吲唑-6-甲酸甲酯(M-1) (4.65 g, 6.51 mmol)的烧瓶中加入DCM (465 mL)和TFA (4.65 mL)。将反应搅拌1 h,然后用饱和NaHCO3水溶液淬灭并转移至含有DCM的分液漏斗。分离各相,并将水相用1份DCM萃取。将合并的有机萃取物干燥(MgSO4),过滤,并在真空下浓缩。将粗残余物通过快速色谱法(80 g SiO2, Isco, 100%EtOAc至5% MeOH/EtOAc)纯化以提供为固体的标题化合物4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1H-吲唑-6-甲酸甲酯(M-2) (1.5g, 49%收率)。1H NMR (400 MHz, 氯仿-d) δ = 8.42 (s, 1H), 8.31 (s, 1H), 7.85 (s,1H), 6.79 -6.64 (m, 4H), 6.22 (s, 1H), 5.31 (s, 2H), 4.33 (q, J = 7.0 Hz,2H), 3.79 (s, 3H), 3.69 (s, 3H), 2.28 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H);(C25H25N7O3)的m/z (ESI+), 472.4 (M+H)+ 观测值。
步骤3:合成4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-(丙-2-烯-1-基)-1H-吲唑-6-甲酸甲酯(M-3)
向100 mL圆底烧瓶中加入4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1H-吲唑-6-甲酸甲酯(M-2) (870 mg, 1.85 mmol)、K2CO3 (382 mg, 2.77 mmol)和无水DMF (18.5 mL)。向溶液中加入烯丙基溴(239 μL, 2.77mmol)并将反应在室温搅拌3 h。LCMS分析表明起始原料的完全消耗和具有期望产物质量的新峰。将溶液用H2O淬灭并进一步用DCM稀释。分离各相,并将有机相用1份饱和盐水溶液洗涤,干燥(MgSO4),过滤,并在真空下浓缩。将粗残余物通过色谱法(OZ柱)纯化以提供为粘稠油的标题化合物4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-(丙-2-烯-1-基)-1H-吲唑-6-甲酸甲酯(M-3) (478 mg, 50%收率)。1HNMR (400 MHz, 氯仿-d) δ = 8.41 (d, J = 0.8 Hz, 1H), 8.23 -8.20 (m, 1H), 7.84(d, J = 1.2 Hz, 1H), 6.78 -6.73 (m, 2H), 6.73 -6.68 (m, 2H), 6.16 (s, 1H),6.08 -5.95 (m, 1H), 5.29 (s, 2H), 5.25 -5.18 (m, 1H), 5.14 -5.04 (m, 3H),4.33 (q, J = 7.3 Hz, 2H), 3.83 (s, 3H), 3.71 (s, 3H), 2.25 (s, 3H), 1.39 (t,J = 7.2 Hz, 3H);13C NMR (101 MHz, 氯仿-d) δ = 166.30, 159.39, 153.19, 147.93,147.91, 139.43, 133.95, 132.17, 128.27, 127.91, 127.24, 127.13, 125.56,121.18, 119.81, 118.29, 114.48, 113.63, 106.69, 55.27, 52.44, 52.06, 48.36,45.69, 15.94, 13.50;(C28H29N7O3)的m/z (API+), 512.3 (M+H)+ 观测值。
步骤4:合成N-[(2,4-二甲氧基苯基)甲基]-4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-(丙-2-烯-1-基)-1H-吲唑-6-甲酰胺(M-4)
向圆底烧瓶中加入4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-(丙-2-烯-1-基)-1H-吲唑-6-甲酸甲酯(M-3) (390 mg,0.762 mmol)、1-(2,4-二甲氧基苯基)甲胺(1.15 mL, 7.62 mmol)、CaCl2 (84.6 mg,0.762 mmol)和MeOH (7.6 mL)。将反应在58℃加热过夜,然后使反应逐渐冷却至室温。将溶液用EtOAc (200 mL)稀释,并用1份稀NaHCO3洗涤,干燥(MgSO4),过滤,并在真空下浓缩。将粗残余物通过快速色谱法(50 g SiO2, Biotage, 100% EtOAc)纯化以提供为胶质的标题化合物N-[(2,4-二甲氧基苯基)甲基]-4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-(丙-2-烯-1-基)-1H-吲唑-6-甲酰胺(M-4) (258mg, 52%收率),其随时间固化。1H NMR (400 MHz, 氯仿-d) δ = 8.31 (s, 1H), 8.12 (s,1H), 7.70 (s, 1H), 7.46 (t, J = 5.7 Hz, 1H), 6.73 -6.68 (m, 2H), 6.68 -6.63(m, 2H), 6.48 -6.38 (m, 3H), 6.20 (s, 1H), 6.05 -5.92 (m, 1H), 5.32 (s, 2H),5.19 (dd, J = 0.8, 10.1 Hz, 1H), 5.06 (dd, J = 1.2, 17.2 Hz, 1H), 5.01 (br d,J = 5.5 Hz, 2H), 4.52 (d, J = 5.9 Hz, 2H), 4.31 (q, J = 7.3 Hz, 2H), 3.78 (s,3H), 3.77 (s, 3H), 3.68 (s, 3H), 2.31 (s, 3H), 1.39 (t, J = 7.0 Hz, 3H);(C36H38N8O4)的m/z (ESI+), 647.5 (M+H)+ 观测值。
步骤5:合成N-[(2,4-二甲氧基苯基)甲基]-4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-(2-氧代乙基)-1H-吲唑-6-甲酰胺(M-5)
向含有N-[(2,4-二甲氧基苯基)甲基]-4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-(丙-2-烯-1-基)-1H-吲唑-6-甲酰胺(M-4) (258 mg, 0.399 mmol)的烧瓶中加入NaIO4 (259 mg, 1.21 mmol)、OsO4 (250 μL, 为在t-BuOH中的2.5重量%溶液, 0.02 mmol)、THF (1.4 mL)和H2O (270 μL)。将反应在室温搅拌3 h。将溶液用H2O淬灭并进一步用DCM稀释。分离各相,并将有机萃取物干燥(MgSO4),过滤,并在真空下浓缩。将粗残余物通过快速色谱法(40g SiO2, Isco, 5-10% MeOH/EtOAc)纯化以提供无色胶质。将该物质溶解在60% MeCN/H2O (10 mL)中,随后加入NaIO4 (47 mg,0.220 mmol)。将反应在室温搅拌5 h。将反应用稀NaS2O3水溶液淬灭并进一步用EtOAc稀释。分离各相,并将有机萃取物干燥(MgSO4),过滤,并在真空下浓缩以提供为黄褐色固体的标题化合物N-[(2,4-二甲氧基苯基)甲基]-4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-(2-氧代乙基)-1H-吲唑-6-甲酰胺(M-5) (136mg, 52%收率)。C35H38N8O6)的m/z(ESI+), 667.5 (M+H+H2O)+ 观测值。
步骤6:合成N-[(2,4-二甲氧基苯基)甲基]-4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-[2-(3-氟氮杂环丁烷-1-基)乙基]-1H-吲唑-6-甲酰胺(M-6)
向含有N-[(2,4-二甲氧基苯基)甲基]-4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-(2-氧代乙基)-1H-吲唑-6-甲酰胺(M-5)(25 mg, 0.039 mmol)的瓶中加入无水MeOH (1.0 mL)和3-氟氮杂环丁烷(19.1 mg, 0.077mmol)。将溶液搅拌5 min。随后加入氰基硼氢化钠NaBH3CN (4.84 mg, 0.077 mmol)。将反应在室温搅拌过夜。LCMS分析表明具有期望产物质量的新峰。将反应用稀NaHCO3水溶液(0.5 mL)淬灭并进一步用DCM稀释。分离各相,并将水相用1份DCM萃取。将合并的有机萃取物干燥(MgSO4),过滤,并在真空下浓缩以提供为粗制胶质的标题化合物N-[(2,4-二甲氧基苯基)甲基]-4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-[2-(3-氟氮杂环丁烷-1-基)乙基]-1H-吲唑-6-甲酰胺(M-6) (28 mg, >95%收率),将其不经进一步纯化地用于下一步。(C38H42FN9O4)的m/z(ESI+), 708.7 (M+H)+ 观测值。
步骤7:合成4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-1-[2-(3-氟氮杂环丁烷-1-基)乙基]-1H-吲唑-6-甲酰胺三氟乙酸盐(实施例M01)
向含有N-[(2,4-二甲氧基苯基)甲基]-4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-[2-(3-氟氮杂环丁烷-1-基)乙基]-1H-吲唑-6-甲酰胺(M-6) (27 mg, 0.038 mmol)的瓶中加入HFIP (20 mL)和MsOH (12.4 μL,0.191 mmol)。将反应在室温搅拌2 h。将反应用几滴饱和NaHCO3水溶液淬灭,并进一步用H2O(1.0 mL)和DCM (10 mL)稀释。通过移液器分离各相,并将有机萃取物干燥(MgSO4),过滤,并在真空下浓缩。将粗残余物通过色谱法纯化以提供为白色固体的标题化合物4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-1-[2-(3-氟氮杂环丁烷-1-基)乙基]-1H-吲唑-6-甲酰胺三氟乙酸盐(实施例M01) (8.1 mg, 47%收率)。(C21H24FN9O)的m/z(ESI+), 438.4 (M+H)+ 观测值。
根据用于合成(实施例M01)的步骤1-7中示例的程序(方案M),通过替换步骤6 (方案M)的适当胺中间体,合成实施例M02、M03和M04,本领域技术人员能够认识到对所示例的程序的非关键变化或置换。
Figure 155145DEST_PATH_IMAGE146
Figure 164689DEST_PATH_IMAGE147
实施例N01: 根据方案N制备磷酸二氢[3-(6-氨基甲酰基-1-甲基-1H-吲唑-4-基)-5-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-1-基]甲酯。
方案N:
Figure 526269DEST_PATH_IMAGE148
步骤1:合成4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-1-甲基-1H-吲唑-6-甲酸甲酯(N-1)
向含有4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-甲基-1H-吲唑-6-甲酸甲酯(A-1) (540 mg, 1.11 mmol)的烧瓶中加入TFA (4.0 mL)。将反应在28℃搅拌1 h。LCMS分析表明起始原料的消耗和具有期望产物质量的新峰。将溶液在真空下浓缩,随后冻干以提供为粗制黄色固体的标题化合物4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-1-甲基-1H-吲唑-6-甲酸甲酯(N-1)(690mg)。将物质不经进一步纯化地用于下一步。1H NMR (400 MHz, DMSO-d6) δ = 8.70(s, 1H), 8.47 (s, 1H), 8.40 (s, 1H), 6.70 (s, 1H), 4.67 (q, J = 7.0 Hz, 2H),4.19 (s, 3H), 3.96 (s, 3H), 2.24 (s, 3H), 1.43 (t, J = 7.1 Hz, 3H);(C18H19N7O2)的m/z (ESI+), 366.2 (M+H)+ 观测值。
步骤2:合成4-[1-{[(二叔丁氧基磷酰基)氧基]甲基}-5-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-3-基]-1-甲基-1H-吲唑-6-甲酸甲酯(N-2)
向含有4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-1-甲基-1H-吲唑-6-甲酸甲酯(N-1) (690 mg, 1.10 mmol)的烧瓶中加入NMP (5.0 mL)、(氯甲基)-磷酸二叔丁酯(586 mg, 2.27 mmol)、Cs2CO3 (1.48 g, 4.53 mmol)和碘化钾(376 mg,2.27 mmol)。将反应在室温搅拌20 h。将溶液用水(25 mL)淬灭并转移至含有EtOAc的分液漏斗。分离各相,并将水相用EtOAc (3x25 mL)萃取。将合并的有机萃取物用盐水(50 mL)洗涤,干燥(Na2SO4),过滤,并在真空下浓缩。将粗残余物通过快速色谱法(SiO2, 0%-75%-100%石油醚/EtOAc)纯化以提供标题化合物4-[1-{[(二叔丁氧基磷酰基)氧基]甲基}-5-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-3-基]-1-甲基-1H-吲唑-6-甲酸甲酯(N-2)(1000 mg),具有显著的残余NMP溶剂。将该物质不经进一步纯化地用于下一步。1H NMR(400 MHz, 氯仿-d) δ = 8.80 (s, 1H), 8.69 (s, 1H), 8.26 (s, 1H), 6.71 (s, 1H),6.08 -6.01 (m, 2H), 4.60 (q, J = 7.1 Hz, 2H), 4.20 (s, 3H), 4.01 (s, 3H),1.56 -1.50 (m, 21H);(C27H38N7O6P)的m/z (ESI+), 588.2 (M+H)+ 观测值。
步骤3:合成4-[1-{[(二叔丁氧基磷酰基)氧基]甲基}-5-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-3-基]-1-甲基-1H-吲唑-6-甲酸(N-3)
向含有4-[1-{[(二叔丁氧基磷酰基)氧基]甲基}-5-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-3-基]-1-甲基-1H-吲唑-6-甲酸甲酯(N-2) (1000 mg, 1.10 mmol)的烧瓶中加入THF (10 mL)、H2O (5.0 mL)和LiOH (71.8 mg, 1.71 mmol)。将反应在室温搅拌2h。LCMS分析表明起始原料的消耗。将溶液在真空下浓缩并冻干以提供为粗制黄色固体的标题化合物4-[1-{[(二叔丁氧基磷酰基)氧基]甲基}-5-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-3-基]-1-甲基-1H-吲唑-6-甲酸(N-3) (1100 mg),将其不经进一步纯化地用于下一步。(C26H36N7O6P)的m/z(ESI+), 574.2 (M+H)+ 观测值。
步骤4:合成磷酸二叔丁酯[3-(6-氨基甲酰基-1-甲基-1H-吲唑-4-基)-5-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-1-基]甲酯(N-4)
向含有4-[1-{[(二叔丁氧基磷酰基)氧基]甲基}-5-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-3-基]-1-甲基-1H-吲唑-6-甲酸(N-3) (1100 mg, 1.10 mmol)的烧瓶中加入DMF (5.0 mL)、HATU (508 mg, 1.33 mmol)、NH4Cl (178 mg, 3.34 mmol)和DIPEA(863 mg, 6.67 mmol)。将反应在室温搅拌2 h。LCMS分析表明具有期望产物质量的新峰。将反应用水(25 mL)淬灭并转移至含有EtOAc的分液漏斗。分离各相,并将水相用EtOAc (2x25mL)萃取。将合并的有机萃取物干燥(Na2SO4),过滤,并在真空下浓缩以提供为黄色油的标题化合物磷酸二叔丁酯[3-(6-氨基甲酰基-1-甲基-1H-吲唑-4-基)-5-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-1-基]甲酯(N-4) (550 mg, 86%收率),将其不经进一步纯化地用于下一步。(C26H37N8O5P)的m/z(ESI+), 461.1 (M+H-2xt-Bu)+ 观测值。
步骤5:合成磷酸二氢[3-(6-氨基甲酰基-1-甲基-1H-吲唑-4-基)-5-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-1-基]甲酯(实施例N01)
向含有磷酸二叔丁酯[3-(6-氨基甲酰基-1-甲基-1H-吲唑-4-基)-5-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-1-基]甲酯(N-4) (550 mg, 0.961 mmol)的烧瓶中加入TFA (5.0 mL)。将反应在室温搅拌16 h。LCMS分析表明具有期望产物质量的新峰。将溶液在真空下浓缩并将粗残余物用YMC-Actus Triart C18柱(150x30, 5 μm粒径)通过制备型HPLC纯化。用10-25% MeCN/H2O (0.05% NH4OH)以35 mL/min的流速洗脱,提供为白色固体的标题化合物磷酸二氢[3-(6-氨基甲酰基-1-甲基-1H-吲唑-4-基)-5-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-1-基]甲酯(实施例N01) (61 mg, 13%收率)。1H NMR (400MHz, DMSO-d6) δ = 8.60 (s, 1H), 8.38 (d, J = 1.0 Hz, 1H), 8.29 (s, 1H), 8.23(s, 1H), 7.53 (s, 1H), 7.23 (br s, 2H), 5.88 -5.77 (m, 2H), 4.49 (q, J = 7.2Hz, 2H), 4.13 (s, 3H), 2.24 (s, 3H), 1.41 (t, J = 7.0 Hz, 3H);(C18H21N8O5P)的m/ z (ESI+), 461.1 (M+H)+ 观测值。
实施例P01: 根据方案P制备{6-氨基甲酰基-4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-1H-吲唑-1-基}乙酸。
方案P:
Figure 861436DEST_PATH_IMAGE149
步骤1:合成4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1H-吲唑-6-甲酰胺(P-1)
将4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1H-吲唑-6-甲酸甲酯(M-2) (301.0 mg, 0.638 mmol)在饱和NH3/MeOH (15mL)中的黄色溶液在85℃(油浴)搅拌16 h。LCMS分析表明显著起始原料剩余。将反应在真空下浓缩并加入饱和NH3/MeOH (15 mL)。将反应在85℃加热另外4 h。在该阶段将反应在真空下浓缩以提供为粗制黄色胶质的标题化合物4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1H-吲唑-6-甲酰胺(P-1) (350 mg, >100%),将其不经进一步纯化地用于下一步。(C24H24N8O2)的m/z(ESI+), 456.9 (M+H)+ 观测值。
步骤2:合成(6-氨基甲酰基-4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1H-吲唑-1-基)乙酸叔丁酯(P-2)
向4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1H-吲唑-6-甲酰胺(P-1) (175 mg, 0.383 mmol)和Cs2CO3 (250 mg, 0.767mmol)在DMF (3.0 mL)中的溶液中加入溴乙酸叔丁酯(82.3 mg, 0.422mmol)。将反应在60℃搅拌14 h。LCMS分析表明起始原料的完全消耗。将反应用EtOAc (10 mL)和水(3 mL)稀释。分离各相,并将有机萃取物在真空下浓缩。将该粗残余物通过Prep-TLC (DCM:MeOH =15:1)纯化2次以提供为无色胶质的标题化合物(6-氨基甲酰基-4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1H-吲唑-1-基)乙酸叔丁酯(P-2) (88 mg, 50%收率)。1H NMR (400 MHz, 甲醇-d4) δ = 8.33 (s, 1H), 8.24 (d, J= 0.8 Hz, 1H), 7.94 (d, J = 1.3 Hz, 1H), 6.72 -6.64 (m, 2H), 6.58 (d, J = 8.8Hz, 2H), 6.54 (s, 1H), 5.49 (s, 2H), 5.38 -5.28 (m, 4H), 4.11 (q, J = 7.3 Hz,2H), 3.67 (s, 3H), 2.32 (s, 3H), 1.45 (s, 9H), 1.28 (t, J = 7.2 Hz, 3H);(C30H34N8O4)的m/z (ESI+), 571.0 (M+H)+ 观测值。
步骤3:合成{6-氨基甲酰基-4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-1H-吲唑-1-基}乙酸(实施例P01)
将(6-氨基甲酰基-4-{5-(1-乙基-3-甲基-1H-吡唑-5-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1H-吲唑-1-基)乙酸叔丁酯(P-2) (88 mg, 0.15 mmol)在TFA(2.0 mL)中的黄色溶液在室温搅拌1.5 h。LCMS分析表明起始原料的完全消耗。将反应在真空下浓缩。将粗残余物溶解在DMF (2 mL)中并用YMC-Triart C18柱(150x40, 7 μm粒径)通过制备型HPLC纯化。用15-55% MeCN/H2O (0.1% TFA)以30 mL/min的流速洗脱,提供为白色固体的标题化合物{6-氨基甲酰基-4-[3-(1-乙基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-1H-吲唑-1-基}乙酸(实施例P01) (22.87 mg, 29%收率, 1摩尔当量TFA盐)。1HNMR (400 MHz, DMSO-d6) δ = 14.62 (br s, 1H), 8.70 (d, J = 0.8 Hz, 1H), 8.41(s, 1H), 8.31 (br s, 1H), 7.60 (br s, 2H), 6.68 (br s, 1H), 5.32 (s, 2H),4.68 (q, J = 6.8 Hz, 2H), 2.25 (s, 3H), 1.45 (t, J = 7.2 Hz, 3H);(C18H18N8O3)的m/z (ESI+), 395.1 (M+H)+ 观测值。
实施例Q01: 根据方案Q制备4-[3-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺。
方案Q:
Figure 59199DEST_PATH_IMAGE150
步骤1:合成4-{3-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶(Q-1)
给瓶中装入在甲苯(1 mL)中的3-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑(Int-TG-12) (187 mg, 0.629 mmol)、4,6-二氯-1-甲基-1H-吡唑并[4,3-c]吡啶(Int-HG-08) (191 mg, 0.943 mmol)、Pd(OAc)2 (28.2 mg, 0.126 mmol)、cataCXium A (90.2 mg, 0.252 mmol)、新戊酸(19.3 mg, 0.189 mmol)和碳酸钾(261 mg,1.89 mmol),在室温脱气5 min,然后在120℃加热过夜。将反应混合物穿过硅藻土垫过滤并在真空中浓缩。将粗制物质通过快速色谱法(12 g SiO2, Isco, 0-100% EtOAc/庚烷)纯化以提供为黄色油的标题化合物4-{3-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶(Q-1) (63 mg, 22%收率)。(C23H23ClN8O)的m/z (ESI+), 463.3 (M+H)+ 观测值。
步骤2:合成4-{3-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(Q-2)
在室温向4-{3-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶(Q-1) (63 mg, 0.099 mmol)在MeOH(20 mL)和DMA (3 mL)中的溶液中加入Pd(dppf)Cl2 (29.9 mg, 0.0408 mmol)和TEA (142μL, 1.02 mmol)。将反应混合物在CO (100 psi)下在80℃加热22 h。LCMS分析表明具有期望产物质量的峰。使反应逐渐冷却至室温并将混合物穿过硅藻土垫过滤,随后在真空中浓缩滤液。将粗制物质转移至含有DCM的分液漏斗,并用3份水洗涤。将有机相在真空中浓缩并将粗产物通过快速色谱法(40 g SiO2, Isco, 0-100% EtOAc/庚烷)纯化以提供为不纯混合物的标题化合物。将该物质通过快速色谱法(12 g SiO2, Isco, 0-100% EtOAc/庚烷)再次纯化以提供为灰白色固体的标题化合物4-{3-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(Q-2)(34.1 mg, 52%收率)。(C25H26N8O3)的m/z(ESI+), 487.6 (M+H)+ 观测值。
步骤3:合成4-{3-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸(Q-3)
向4-{3-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(Q-2) (34.1 mg, 0.0701 mmol)在MeOH (4 mL)中的溶液中加入LiOH·H2O (10.1 mg, 0.421 mmol)在水(1 mL)中的溶液。将反应在室温搅拌1h。LCMS分析表明显著起始原料剩余。加入LiOH·H2O的另一个等分试样(9.99 mg, 0.417 mmol)并将反应在室温搅拌2 h。将反应混合物通过加入1N HCl水溶液中和至约pH 6,在真空中浓缩溶液,并进一步与4份PhMe共沸以除去残余水,以提供标题化合物4-{3-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸(Q-3),将其不经进一步纯化地用于下一步。(C24H24N8O3)的m/z(ESI+), 473.4 (M+H)+ 观测值。
步骤4:合成4-{3-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-N-[(3,4-二甲基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Q-4)
向4-{3-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸(Q-3) (33 mg, 0.070 mmol)在DMF (1 mL)中的溶液中加入HATU (37.2 mg, 0.0978 mmol)、DIPEA (31.1 μL, 0.175 mmol)和2,4-二甲氧基苄胺(21.0 μL, 0.140 mmol)在DMF中的溶液。将反应在室温搅拌3 h。将反应混合物倒入水中,并用3份DCM萃取。将合并的有机萃取物用3份水洗涤,随后在真空中浓缩。将粗制物质通过快速色谱法(4 g SiO2, Isco, 0-100% EtOAc/庚烷)纯化以提供为黄色油的标题化合物4-{3-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-N-[(3,4-二甲基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Q-4) (60.4mg),将其不经进一步纯化地用于下一步。(C33H35N9O4)的m/z(ESI+), 622.5 (M+H)+ 观测值。
步骤5:合成N-[(3,4-二甲基苯基)甲基]-4-[3-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Q-5)
将4-{3-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-N-[(3,4-二甲基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Q-4) (43mg, 0.069 mmol)、Pd-C 10重量% (15 mg)在EtOAc (8 mL)中的溶液和MeOH (2 mL)的悬浮液在氢气(75 psi)下在室温氢化2.5 h。将反应混合物穿过硅藻土垫过滤并将滤液在真空中浓缩。将粗制物质通过快速色谱法(4 g SiO2, Isco, 0-100% EtOAc/庚烷)纯化以提供为白色固体的标题化合物N-[(3,4-二甲基苯基)甲基]-4-[3-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Q-5) (15 mg, 41%收率, 3步)。(C26H29N9O4)的m/z(ESI+), 532.3 (M+H)+ 观测值。
步骤6:合成4-[3-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例Q01)
向N-[(3,4-二甲基苯基)甲基]-4-[3-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Q-5) (15 mg,0.028 mmol)在HFIP (3 mL)中的溶液中加入MsOH (9.16 μL, 0.141 mmol)。将反应在室温搅拌2 h。在真空中浓缩溶液并将粗残余物通过色谱法纯化以提供为固体的标题化合物4-[3-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例Q01) (10 mg, 93%收率)。1H NMR (600 MHz, DMSO-d6) δ = 8.76 (d, J = 0.9 Hz, 1H), 8.53 (d, J = 0.9 Hz, 1H), 8.08 (br s, 1H),8.04 (br s, 1H), 7.97 (br s, 1H), 4.47 (s, 3H), 4.44 (q, J = 7.0 Hz, 2H),4.23 (s, 3H), 2.14 (s, 3H), 1.34 (t, J = 7.2 Hz, 3H);(C17H19N9O2)的m/z (ESI+),382.5 (M+H)+ 观测值。
实施例R01: 根据方案R制备4-[5-(氨基甲基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺。
方案R:
Figure 872434DEST_PATH_IMAGE151
步骤1:合成4-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-甲酸甲酯(R-1)
将该步骤一式两份地执行,并在最终的纯化之前合并各批。向含有2-溴-3-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-3-氧代丙酸甲酯(Int-HG-16) (238 mg, 0.340mmol)和1-乙基-3-甲基-1H-吡唑-5-硫代甲酰胺(Int-TG-13) (44.7 mg, 0.264 mmol)的烧瓶中加入DMA (4 mL)。将反应在90℃加热3 h。将反应溶液在真空中浓缩。将粗制反应混合物用Phenomenex C18柱(100x30 mm, 5 μm粒径)通过制备型HPLC纯化。用2-90% MeCN/H2O (0.1% TFA)以20 mL/min的流速洗脱,提供为浅黄色泡沫的标题化合物4-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-甲酸甲酯(R-1) (237 mg, 58%收率)。1H NMR (400 MHz, DMSO-d6) δ = 8.40 (d, J = 0.8Hz, 1H), 8.02 (d, J = 0.8 Hz, 1H), 6.87 (s, 1H), 4.59 (q, J = 7.0 Hz, 2H),4.11 (s, 3H), 3.81 (s, 3H), 2.23 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H)。
步骤2:合成[4-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-基]甲醇(R-2)
给瓶中装入4-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-甲酸甲酯(R-1) (165 mg, 0.379 mmol)、THF (10 mL)和硼氢化锂(16.5 mg, 0.759 mmol)。将反应在室温搅拌过夜。LCMS分析表明显著起始原料剩余。将反应冷却至0℃并给烧瓶装入硼氢化锂的另一个等分试样(33 mg, 1.52 mmol)。将烧瓶从冰浴取出并将其逐渐温热至室温。将反应在室温搅拌过夜。将溶液用饱和NH4Cl水溶液(2mL)淬灭,用H2O (10 mL)稀释,并转移至含有DCM的分液漏斗。分离各相,并将水相用3份DCM、随后用2份EtOAc萃取。将合并的有机萃取物在真空中浓缩并加入MeOH,导致固体的沉淀,将所述固体通过过滤进行收集以提供为白色固体的标题化合物[4-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-基]甲醇(R-2) (108 mg, 70%收率)。1H NMR (400 MHz, DMSO-d6) δ = 8.64 (d, J = 1.2 Hz, 1H),7.89 (d, J = 0.8 Hz, 1H), 6.70 (s, 1H), 6.24 (t, J = 5.3 Hz, 1H), 5.23 (d, J= 5.5 Hz, 2H), 4.66 (q, J = 7.0 Hz, 2H), 4.09 (s, 3H), 2.23 (s, 3H), 1.43 (t,J = 7.0 Hz, 3H);(C17H17ClN6OS)的m/z (ESI+), 389.3 (M+H)+ 观测值。
步骤3:合成4-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-甲醛(R-3)
向[4-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-基]甲醇(R-2) (117 mg, 0.301 mmol)在DCM (10 mL)中的悬浮液中加入戴斯-马丁氧化剂(255 mg, 0.602 mmol)。将反应在室温搅拌6 h。将溶液用DCM (50mL)稀释,倒入饱和NaHCO3,并转移至分液漏斗。分离各相,并将水相用3份DCM萃取。将合并的有机萃取物在真空中浓缩。将粗残余物通过快速色谱法(12 g SiO2, Isco, 0-100%EtOAc/庚烷)纯化以提供为黄色固体的标题化合物4-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-甲醛(R-3) (125 mg, >95%收率)。1H NMR (400 MHz, DMSO-d6) δ = 10.81 (s, 1H), 8.63 (d, J = 0.8 Hz, 1H),8.12 (d, J = 0.8 Hz, 1H), 6.96 (s, 1H), 4.69 (q, J = 7.2 Hz, 2H), 4.13 (s,3H), 2.25 (s, 3H), 1.43 (t, J = 7.0 Hz, 3H)。
步骤4:合成{[4-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-基]甲基}[(2,4-二甲氧基苯基)甲基]氨基甲酸叔丁酯(R-4)
向4-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-甲醛(R-3) (80 mg, 0.21 mmol)在DCE中的溶液中加入2,4-二甲氧基苄胺(77.7 μL, 0.517 mmol)和AcOH (35.5 μL, 0.620 mmol)。将反应在60℃搅拌25 min,在此时反应混合物的颜色变成浅棕色。将烧瓶从加热取下并将其在搅拌下逐渐冷却至室温过夜。在真空中浓缩溶液并将粗制混合物溶解在MeOH (5 mL)中。将溶液在冰水浴中冷却至0℃并加入硼氢化钠(23.5 mg, 0.620 mmol)。将反应在0℃搅拌5 min,然后除去冰浴,使反应逐渐温热至室温,并将它在室温搅拌30 min。发生沉淀,并将固体通过过滤进行收集。将固体悬浮于MeCN (5 mL)中,随后加入二碳酸二叔丁酯(113 mg, 0.517 mmol)和三乙胺(86.5 μL, 0.620 mmol)。将悬浮液在室温搅拌10 min,随后加入DCM (5 mL)。将反应在室温搅拌另外20 min。LCMS分析表明起始原料已经被消耗。在真空中浓缩溶液并将粗残余物通过快速色谱法(12 g SiO2, Isco, 0-100% EtOAc/庚烷)纯化以提供为浅橙色固体的标题化合物{[4-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-基]甲基}[(2,4-二甲氧基苯基)甲基]氨基甲酸叔丁酯(R-4) (112 mg,>95%)。1H NMR (400 MHz, DMSO-d6) δ = 8.51 (s, 1H), 7.89 (d, J = 0.8 Hz, 1H),6.87 (d, J = 8.2 Hz, 1H), 6.67 (br d, J = 4.7 Hz, 1H), 6.36 -6.14 (m, 2H),5.18 (br s, 2H), 4.61 (q, J = 7.0 Hz, 2H), 4.33 (br d, J = 10.5 Hz, 2H), 4.09(s, 3H), 3.60 (s, 3H), 3.53 -3.39 (m, 3H), 2.22 (s, 3H), 1.60 -1.29 (m, 12H)。
步骤5:合成4-[5-({(叔丁氧基羰基)[(2,4-二甲氧基苯基)甲基]氨基}甲基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(R-5)
向{[4-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-基]甲基}[(2,4-二甲氧基苯基)甲基]氨基甲酸叔丁酯(R-4) (122mg, 0.191 mmol)在MeOH (20 mL)和DMA (5 mL)中的溶液中加入Pd(dppf)Cl2 (42.0 mg,0.0573 mmol)和三乙胺(200 μL, 1.43 mmol)。将反应混合物在CO气体(100 psi)下在80℃加热22 h。将反应混合物穿过硅藻土垫过滤并将滤液在真空中浓缩。将粗残余物再溶解在DCM中,转移至分液漏斗,并用3份水洗涤。将有机相在真空中浓缩。将粗残余物通过快速色谱法(40 g SiO2, Isco, 0-100% EtOAc/庚烷)纯化以提供为混合物的期望产物,其存在显著杂质。将分离的物质重新进行通过快速色谱法(40 g SiO2, Isco, 0-10% MeOH/DCM)的纯化以提供为浅棕色油的标题化合物4-[5-({(叔丁氧基羰基)[(2,4-二甲氧基苯基)甲基]氨基}甲基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(R-5) (92 mg, 72%收率)。(C33H39N7O6S)的m/z(ESI+), 662.9 (M+H)+观测值。
步骤6:合成4-[5-({(叔丁氧基羰基)[(2,4-二甲氧基苯基)甲基]氨基}甲基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸(R-6)
向4-[5-({(叔丁氧基羰基)[(2,4-二甲氧基苯基)甲基]氨基}甲基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(R-5) (92.0 mg, 0.14 mmol)在MeOH (5 mL)中的溶液中加入LiOH·H2O (9.99 mg, 0.417mmol)在水中的溶液。将反应在室温搅拌2 h。在该阶段加入LiOH·H2O的另一个等分试样(9.99 mg, 0.417 mmol)。将反应在室温搅拌过夜。将溶液用1N HCl水溶液中和至约pH 6,在真空中浓缩溶液,并进一步与4份PhMe共沸以除去残余水,以提供标题化合物4-[5-({(叔丁氧基羰基)[(2,4-二甲氧基苯基)甲基]氨基}甲基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸(R-6),将其不经进一步纯化地用于下一步。(C32H37N7O6S)的m/z(APCI+), 648.5 (M+H)+ 观测值。
步骤7:合成[(2,4-二甲氧基苯基)甲基]{[4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-基]甲基}氨基甲酸叔丁酯(R-7)
向4-[5-({(叔丁氧基羰基)[(2,4-二甲氧基苯基)甲基]氨基}甲基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸(R-6)(90 mg, 0.14 mmol)在DMF中的溶液中加入HATU (74.0 mg, 0.195 mmol)、DIPEA (61.8 μL, 0.347 mmol)和2,4-二甲氧基苄胺(41.7 μL, 0.278 mmol)。将反应在室温搅拌4.5 h。将溶液倒入H2O中,转移至分液漏斗,并用3份DCM萃取。将合并的有机萃取物用3份H2O洗涤,随后在真空中浓缩。将粗残余物通过快速色谱法(40 g SiO2, Isco, 0-10% MeOH/DCM)纯化以提供标题化合物[(2,4-二甲氧基苯基)甲基]{[4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-基]甲基}氨基甲酸叔丁酯(R-7),将其不经进一步纯化地用于下一步。(C41H48N8O7S)的m/z(ESI+), 797.6 (M+H)+ 观测值。
步骤8:合成4-[5-(氨基甲基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例R01)
向[(2,4-二甲氧基苯基)甲基]{[4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-基]甲基}氨基甲酸叔丁酯(R-7) (150 mg, 0.188 mmol)在HFIP (3 mL)中的溶液中加入MsOH (611 μL, 9.41 mmol)。将反应在室温搅拌3 h。在该阶段,加入MsOH的另一份等分试样(611 μL, 9.41 mmol),并将反应在50℃加热,直到LCMS分析表明反应进程已经停止。然后将溶液在真空中浓缩,转移至含有DCM的分液漏斗,并用饱和Na2CO3水溶液稀释至约pH 9。分离各相,并且LCMS分析表明所有期望产物存在于水相中。将水相冻干过夜以提供白色粉末。通过LCMS确定,有机相含有产物,其具有一个剩余的DMB保护基。因而,将有机相干燥(Na2SO4),过滤,并在真空中浓缩。将粗制混合物溶解于PhMe (约3 mL)中并在真空中浓缩以除去残余水。将粗残余物溶解在DCM (0.7 mL)中,随后加入TFA (0.7 mL)。将反应在35℃加热直到通过LCMS监测到结束。在真空中浓缩溶液并对合并的粗产物进行制备型HPLC纯化以提供为TFA盐的标题化合物4-[5-(氨基甲基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例R01) (10 mg, 10%收率, 3步)。(C18H20N8OS)的m/z(ESI+), 397.4 (M+H)+ 观测值;1H NMR (400 MHz, 甲醇-d4) δ =8.73 (s, 1H), 8.33 (s, 1H), 6.65 (s, 1H), 4.75 (q, J = 7.0 Hz, 2H), 4.58 (brs, 2H), 4.21 (s, 3H), 2.31 (s, 3H), 1.51 (t, J = 7.2 Hz, 3H)。
实施例S01: 根据方案S制备4-[5-(氨基甲基)-2-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺。
方案S:
Figure 104832DEST_PATH_IMAGE152
步骤1:合成4-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-甲酸甲酯(S-1)
在室温向4-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-甲酸甲酯(R-1) (358.0 mg, 0.859 mmol)在2 mL无水乙腈中的溶液中加入selectfluoro (26.2 mg, 0.0732 mmol)。混浊的反应在5 min以后变澄清并在45℃搅拌20小时。除去溶剂,将粗产物通过ISCO (二氧化硅, 40 g, 0-100% EtOAc/庚烷)纯化以提供为白色固体的4-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-甲酸甲酯(S-1) (225 mg, 60%收率)。(C17H16ClFN6OS)的m/z(ESI+), 435.3 (M+H)+ 观测值。
步骤2:合成[4-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-基]甲醇(S-2)
向4-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-甲酸甲酯(S-1) (285 mg, 0.655 mmol)在THF (5 mL)中的溶液中加入硼氢化锂(28.6 mg, 1.31 mmol),将反应混合物在40 -45℃搅拌7小时。将固体通过过滤进行收集并用EtOAc洗涤,在真空下干燥过夜以提供为白色固体的[4-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-基]甲醇(S-2) (271 mg, >95%收率)。1H NMR (400 MHz, DMSO-d 6) δ 8.65 (d, J = 1.0 Hz,1H), 7.91 (d, J = 1.0 Hz, 1H), 6.30 (t, J = 5.3 Hz, 1H), 5.27 (d, J = 5.2 Hz,2H), 4.66 (p, J = 8.3, 7.7 Hz, 2H), 4.10 (s, 3H), 2.25 (s, 3H), 1.43 (t, J =7.1 Hz, 3H)。
步骤3:合成4-[2-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-5-(羟基甲基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(S-3)
在室温向[4-(6-氯-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-基]甲醇(S-2) (120 mg, 0.295 mmol)在20 mL MeOH和2 mL DMA中的悬浮液中加入Pd(dppf)Cl2 (42.0 mg, 0.0573 mmol)和TEA (200 μL, 1.43mmol)。将反应混合物在CO (100 psi)下在80℃加热5天。使反应冷却至35℃,穿过硅藻土垫过滤并将滤液在真空中浓缩。将粗产物通过ISCO (二氧化硅12 g, 0-10% MeOH/CH2Cl2)纯化以提供为白色固体的4-[2-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-5-(羟基甲基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(S-3) (81 mg, 64%收率)。1HNMR (400 MHz, DMSO-d 6) δ 8.73 (d, J = 1.0 Hz, 1H), 8.46 (d, J = 1.0 Hz, 1H),6.32 (t, J = 5.7 Hz, 1H), 5.33 (d, J = 5.7 Hz, 2H), 4.69 (d, J = 7.2 Hz, 2H),4.23 (s, 3H), 3.99 (s, 3H), 2.26 (s, 3H), 1.44 (t, J = 7.1 Hz, 3H)。
步骤4:合成N-[(2,4-二甲氧基苯基)甲基]-4-[2-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-5-(羟基甲基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(S-4)
向4-[2-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-5-(羟基甲基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(S-3) (75 mg, 0.17 mmol)在10 mL THF中的悬浮液中加入溶解在1.5 mL水中的氢氧化锂一水合物(22.9 mg, 0.958 mmol),在室温搅拌2 h。将反应混合物通过加入1N HCl中和至pH 5。将反应混合物在真空中浓缩并用甲苯处理3次以除去痕量的水。将粗制酸4-[2-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-5-(羟基甲基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸在真空干燥箱中干燥过夜并直接用于下一步。在室温向4-[2-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-5-(羟基甲基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸(73.0 mg, 0.18 mmol)在DMF (8mL)中的溶液中加入HATU (133 mg, 0.351 mmol)、N-乙基二异丙胺(93.6 uL, 0.526mmol)和2,4-二甲氧基苄基-胺(39.5 μL, 0.263 mmol),在室温搅拌5 h。将溶剂在真空中除去,并将粗产物通过ISCO (二氧化硅, 12 g, 0-100% EtOAc/庚烷)纯化以提供为白色固体的N-[(2,4-二甲氧基苯基)甲基]-4-[2-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-5-(羟基甲基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(S-4) (75 mg, 76%收率)。(C27H28FN7O4S)的m/z(ESI+), 566.3 (M+H)+ 观测值。
.步骤5:合成N-[(2,4-二甲氧基苯基)甲基]-4-[2-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-5-(羟基甲基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(S-5)
在室温向N-[(2,4-二甲氧基苯基)甲基]-4-[2-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-5-(羟基甲基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(S-4)(78 mg, 0.14 mmol)在二氯甲烷(10 mL)中的悬浮液中加入戴斯-马丁氧化剂(119 mg,0.276 mmol)。将反应在室温搅拌6 h。将反应混合物用二氯甲烷稀释并倒入饱和NaHCO3中,用二氯甲烷x 3、EtOAc x 2萃取。在真空中浓缩溶液,并将粗制N-[(2,4-二甲氧基苯基)甲基]-4-[2-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-5-(羟基甲基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(S-5)不经进一步纯化直接用于下一步。(C27H26FN7O4S)的m/z(ESI+), 564.3 (M+H)+ 观测值。
步骤6:合成[(2,4-二甲氧基苯基)甲基]{[4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-基]甲基}氨基甲酸叔丁酯(S-6)
在室温向N-[(2,4-二甲氧基苯基)甲基]-4-[2-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-5-(羟基甲基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(S-5)(72.0 mg, 0.13 mmol)在1,2-二氯乙烷(5 mL)中的溶液中加入2,4-二甲氧基苄胺(38.4uL, 0.255 mmol)和乙酸(7.31 μL, 0.128 mmol)。将反应在55℃加热20 min,然后在搅拌下逐渐冷却至室温过夜。在真空中浓缩溶液并将粗制混合物溶解在MeOH (5 mL)中。将溶液在冰水浴中冷却至0℃并加入硼氢化钠(9.67 mg, 0.255 mmol)。将反应在0℃搅拌5 min,然后除去冰浴,使反应逐渐温热至室温,并将其在室温搅拌30 min。将所有挥发物在真空中除去。将粗制固体悬浮于DCM/THF (1:1, 6 mL)中,随后加入二碳酸二叔丁酯(83.6 mg,0.383 mmol)和N-乙基二异丙胺(0.0668 mL, 0.383 mmol)。将悬浮液在室温搅拌10 min,随后加入二氯甲烷(5 mL)。将反应在室温搅拌另外1 h。在真空中浓缩溶液,并将粗残余物通过快速色谱法(12 g SiO2, Isco, 0-100% EtOAc/庚烷)纯化以提供标题化合物[(2,4-二甲氧基苯基)甲基]{[4-(6-{[(2,4-二甲氧基苯基)甲基]-氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-基]甲基}氨基甲酸叔丁酯(S-6) (45 mg, 45%收率, 3步)。(C41H47FN8O7S)的m/z (ESI+), 815.6 (M+H)+观测值。
步骤7:合成4-[5-(氨基甲基)-2-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺, 三氟乙酸盐(实施例S01)
将[(2,4-二甲氧基苯基)甲基]{[4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-基]甲基}氨基甲酸叔丁酯(S-6) (45 mg, 0.055 mmol)均匀分入两个小瓶中。将第一个瓶中的物质用TFA (1 mL)处理。将反应在55℃加热5天。将第二个瓶中的物质用TFA(1 mL)和硫醇C12 (112 mg, 0.552 mmol, 0.132 mL)处理。将反应在55℃加热5天。将两个粗制反应混合物合并和在真空中浓缩。对粗产物进行通过制备型HPLC的纯化以提供为TFA盐的标题化合物4-[3-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例S01) (10 mg, 83%收率)。(C18H19FN8OS)的m/z(ESI+), 415.4 (M+H)+ 观测值。
实施例T01: 根据方案T制备4-[5-(氨基甲基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺。
方案T
Figure 345321DEST_PATH_IMAGE153
步骤1:合成4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-5-甲酸甲酯(T-1)
给瓶中装入在甲苯(10 mL)中的2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-5-甲酸甲酯(int-TG-14) (87.7 mg, 0.216 mmol)、4-溴-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Int-HG-17) (50.8 mg, 0.216 mmol)、Pd(OAc)2(9.69 mg, 0.0432 mmol)、cataCXium A (31.0 mg, 0.0864 mmol)、新戊酸钾(45.4 mg,0.324 mmol)和新戊酸(11.0 mg, 0.108 mmol),在室温脱气5 min,然后回流加热过夜。将反应混合物与相同规模的前一批次合并,穿过硅藻土垫过滤并在真空中浓缩。将粗制混合物通过ISCO (二氧化硅, 24 g, 0-100% EtOAc/庚烷)纯化以提供为白色固体的标题化合物(68.2 mg, 28%收率) 4-(6-{[(2,4-二甲氧基苯基)甲基-氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-5-甲酸甲酯(T-1)。1H NMR (400 MHz, DMSO-d 6) δ 9.04 (s, 1H), 8.64 (d, J = 1.0 Hz, 1H), 8.47 (d, J= 1.0 Hz, 1H), 7.23 (d, J = 8.4 Hz, 1H), 6.92 (s, 1H), 6.60 (d, J = 2.3 Hz,1H), 6.54 -6.46 (m, 1H), 4.69 (d, J = 7.2 Hz, 2H), 4.52 (d, J = 5.9 Hz, 2H),4.23 (s, 3H), 3.82 (s, 3H), 3.78 (d, J = 3.8 Hz, 3H), 3.75 (s, 3H), 2.28 (s,3H), 1.46 (t, J = 7.2 Hz, 3H)。(C28H29N7O6)的m/z (ESI+), 560.4 (M+H)+ 观测值。
步骤2:合成N-[(2,4-二甲氧基苯基)甲基]-4-[2-(1-乙基-3-甲基-1H-吡唑-5-基)-5-(羟基甲基)-1,3-噁唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(T-2)
给烧瓶装入在10 mL THF中的4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-5-甲酸甲酯(T-1)(68 mg, 0.11 mmol)和硼氢化锂(5.98 mg, 0.274 mmol)。将反应在0℃搅拌至室温过夜。将反应在真空中浓缩,将粗制混合物通过ISCO (二氧化硅, 12 g, 0-100%EtOAc/庚烷)纯化以提供为白色固体的N-[(2,4-二甲氧基苯基)甲基]-4-[2-(1-乙基-3-甲基-1H-吡唑-5-基)-5-(羟基甲基)-1,3-噁唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(T-2) (77.4 mg),其含有杂质。(C27H29N7O5)的m/z(ESI+), 532.3 (M+H)+ 观测值。
步骤3:合成N-[(2,4-二甲氧基苯基)甲基]-4-[2-(1-乙基-3-甲基-1H-吡唑-5-基)-5-甲酰基-1,3-噁唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(T-3)
在室温向N-[(2,4-二甲氧基苯基)甲基]-4-[2-(1-乙基-3-甲基-1H-吡唑-5-基)-5-(羟基甲基)-1,3-噁唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(T-2) (77.4mg, 0.146 mmol)在二氯甲烷(10 mL)中的悬浮液中加入戴斯-马丁氧化剂(126 mg, 0.291mmol),在室温搅拌3 h。将反应混合物用20 mL二氯甲烷稀释,并用饱和NaHCO3 (水溶液)洗涤,在真空中浓缩以提供粗制N-[(2,4-二甲氧基苯基)甲基]-4-[2-(1-乙基-3-甲基-1H-吡唑-5-基)-5-甲酰基-1,3-噁唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(T-3),将其不经进一步纯化直接使用。(C27H27N7O5)的m/z(ESI+), 530.3 (M+H)+ 观测值。
步骤4:合成[(2,4-二甲氧基苯基)甲基]{[4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-5-基]甲基}氨基甲酸叔丁酯(T-4)
在室温向N-[(2,4-二甲氧基苯基)甲基]-4-[2-(1-乙基-3-甲基-1H-吡唑-5-基)-5-甲酰基-1,3-噁唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(T-3) (43 mg,0.81 mmol)在1,2-二氯乙烷(8 mL)中的溶液中加入2,4-二甲氧基苄胺(20.4 mg, 0.122mmol, 18.3 μL)和乙酸(4.88 mg, 0.0812 mmol, 4.64 μL)。将反应在室温搅拌2 h,然后在56℃加热过夜。在真空中浓缩溶液并将粗制混合物溶解在MeOH (5 mL)中。将溶液在冰水浴中在0℃冷却并加入硼氢化钠(23.5 mg, 0.62 mmol)。将反应在0℃搅拌5 min,然后除去冰浴,使反应逐渐温热至室温,并将其在室温搅拌30 min。将所有挥发物在真空中除去。将粗制固体悬浮于CH2Cl2-MeCN (5 mL)中,随后加入二碳酸二叔丁酯(53.2 mg, 0.244 mmol)和N-乙基二异丙胺(0.042 mL, 0.244 mmol)。将悬浮液在室温搅拌2 h。在真空中浓缩溶液并将粗残余物通过快速色谱法ISCO (二氧化硅, 12 g, 0-100% EtOAc/庚烷)纯化以提供为黄色固体的标题化合物[(2,4-二甲氧基苯基)甲基]{[4-(6-{[(2,4-二甲氧基苯基)甲基]-氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-5-基]甲基}氨基甲酸叔丁酯(T-4) (25.0 mg, 29%收率, 5步骤)。(C41H48N8O8)的m/z(ESI+), 781.7 (M+H)+ 观测值。
步骤5: 4-[5-(氨基甲基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例T01)
向[(2,4-二甲氧基苯基)甲基]{[4-(6-{[(2,4-二甲氧基苯基)甲基]-氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-5-基]甲基}氨基甲酸叔丁酯(T-4) (25 mg, 0.032 mmol)在HFIP (0.1 mL)中的溶液中加入MsOH (0.4 mL)和TFA (1.5 mL)。将反应在50℃搅拌4 h。然后将溶液在真空中浓缩。对粗产物进行通过制备型HPLC的纯化以提供为TFA盐的标题化合物4-[5-(氨基甲基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例T01) (3.1 mg, 26%收率)。(C18H20N8O2)的m/z(ESI+), 381.3 (M+H)+ 观测值;1HNMR (400 MHz, DMSO-d6) δ = 8.77 (d, J = 0.9 Hz, 1H), 8.58 -8.22 (m, 3H), 8.09(s, 1H), 8.01 (br s, 1H), 6.82 (s, 1H), 4.79 (s, 2H), 4.72 (q, J = 7.1 Hz,2H), 4.20 (s, 3H), 2.28 (s, 3H), 1.48 (t, J = 7.2 Hz, 3H)。
实施例U01: 根据方案U制备4-[5-(氨基甲基)-2-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺
方案U
Figure 279647DEST_PATH_IMAGE154
步骤1:合成2-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-1,3-噁唑-5-甲酸乙酯(U-1)
给瓶中装入在甲苯(1 mL)中的2-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-1,3-噁唑-5-甲酸乙酯(Int-TG-15) (128 mg, 0.360 mmol)、cataCXium-A-Pd-G3 (105mg, 0.144 mmol)、4-溴-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Int-HG-17) (146 mg, 0.360 mmol)、新戊酸钾(75.8 mg, 0.540 mmol)和新戊酸(18.4 mg, 0.180 mmol),在室温脱气5 min,然后在115℃加热过夜。将反应混合物穿过硅藻土垫过滤并在真空中浓缩,将粗产物通过ISCO (二氧化硅, 40 g, 0-100% EtOAc/庚烷)纯化以提供45 mg (13%收率)为浅棕色油的标题化合物2-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-1,3-噁唑-5-甲酸乙酯(U-1)。还回收了另一批113 mg不太纯的产物2-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-1,3-噁唑-5-甲酸乙酯。1H NMR (400 MHz,DMSO-d 6 ) δ ppm 1.08 -1.15 (m, 3H), 1.42 (t, J = 7.22 Hz, 3H), 2.14 (s, 3H),3.73 -3.77 (m, 4H), 3.82 (s, 3H), 4.16 -4.27 (m, 6H) 4.51 (d, J = 5.85 Hz, 2H), 4.59 (d, J = 7.02 Hz, 2H), 5.07 (s, 2H), 6.50 (dd, J = 8.39, 2.54 Hz,1H), 6.61 (d, J = 2.34 Hz, 1H) 7.23 (d, J=8.59 Hz, 1H), 7.30 -7.42 (m, 3H),7.50 (dd, J = 7.61, 1.37 Hz, 2H), 8.47 (s, 1H), 8.59 (d, J = 0.78 Hz, 1H),9.03 (t, J = 5.88 Hz, 1H)。
步骤2:合成4-{2-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-5-(羟基甲基)-1,3-噁唑-4-基}-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(U-2)
在-45℃给瓶中装入在1.8 mL无水THF中的2-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-1,3-噁唑-5-甲酸乙酯(U-1) (13.8 mg, 0.0203 mmol)。然后在-45℃引入氢化铝锂(1.54 mg, 0.0406 mmol, 40.6 uL, 1.0 M),反应的颜色立即从浅黄色变成蓝色,然后逐渐变回黄色。将反应在-45℃搅拌1 h,然后通过加入水淬灭。将反应混合物用二氯甲烷稀释,穿过硅藻土垫过滤,将滤液在真空中浓缩以提供粗产物。将以上反应在13.5 mg至19mg之间的规模重复共5次。将来自每批的粗产物合并,并通过ISCO (二氧化硅24 g, 0-100%EtOAc/庚烷)纯化以提供58.9 mg (73%收率)为浅黄色固体的4-{2-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-5-(羟基甲基)-1,3-噁唑-4-基}-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(U-2)和4-{2-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-5-甲酰基-1,3-噁唑-4-基}-N-[(2,4-二甲氧基-苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(U-3)的1:1比率的混合物。(C34H35N7O6)的m/z(ESI+), 638.5 (M+H)+ 观测值和(C34H33N7O6)的m/z (ESI+), 636.5 (M+H)+ 观测值。
步骤3:合成4-{2-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-5-甲酰基-1,3-噁唑-4-基}-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(U-3)
在室温向4-{2-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-5-(羟基甲基)-1,3-噁唑-4-基}-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(U-2)和4-{2-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-5-甲酰基-1,3-噁唑-4-基}-N-[(2,4-二甲氧基-苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(U-3) (58.0mg, 0.091 mmol)的混合物在二氯甲烷(3 mL)中的悬浮液中加入戴斯-马丁氧化剂(126mg, 0.291 mmol),并将反应混合物在室温搅拌4 h。将反应混合物用20 mL二氯甲烷稀释,并用饱和NaHCO3 (水溶液)洗涤,在真空中浓缩以提供58 mg粗制4-{2-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-5-甲酰基-1,3-噁唑-4-基}-N-[(2,4-二甲氧基-苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(U-3),将其不经进一步纯化直接使用。(C34H33N7O6)的m/z(ESI+), 636.4 (M+H)+ 观测值。
步骤4:合成({2-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-1,3-噁唑-5-基}甲基)[(2,4-二甲氧基苯基)甲基]氨基甲酸叔丁酯(U-4)
在室温向4-{2-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-5-甲酰基-1,3-噁唑-4-基}-N-[(2,4-二甲氧基-苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(U-3) (58 mg, 0.091 mmol)在3 mL 1,2-二氯乙烷中的悬浮液中加入2,4-二甲氧基苄胺(22.9 mg, 0.137 mmol, 20.6 μL)和乙酸(5.48 mg, 0.0912 mmol, 5.22 μL),并将反应混合物在56℃搅拌90 min。将1,2-二氯乙烷在真空中除去并将粗制物质冷却至0℃,加入5mL甲醇,随后加入硼氢化钠(8.63 mg, 0.228 mmol),将反应在0℃搅拌5 min,然后在室温搅拌30 min。将溶剂除去并将粗产物再溶解在二氯甲烷中,并在室温引入Boc2O (59.7 mg,0.274 mmol)和N-乙基二异丙胺(35.4 mg, 0.274 mmol, 47.7 uL),将反应在室温搅拌1h,除去溶剂并将粗制物质通过ISCO (二氧化硅, 12 g, 0-100% EtOAc/庚烷)纯化以提供标题化合物({2-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-4-(6-{[(2,4-二甲氧基苯基)甲基]-氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-1,3-噁唑-5-基}甲基)[(2,4-二甲氧基-苯基)甲基]氨基甲酸叔丁酯(U-4) (81 mg),其含有杂质。(C48H54N8O9)的m/z(ESI+), 887.8 (M+H)+ 观测值。
步骤5:合成[(2,4-二甲氧基苯基)甲基]{[4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-5-基]甲基}氨基甲酸叔丁酯(U-5)
将({2-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-1,3-噁唑-5-基}甲基)[(2,4-二甲氧基苯基)甲基]氨基甲酸叔丁酯(U-4) (81.0 mg, 0.10 mmol)和Pd-C10% (120mg,0.11 mmol)在8 mL EtOAc和2 mL甲醇中的悬浮液在H2 (75 Psi)下氢化90 min。将反应混合物穿过硅藻土垫过滤并在真空中浓缩,将粗产物通过ISCO (二氧化硅, 12 g, 0-100%EtOAc/庚烷)纯化以提供为白色固体的标题化合物[(2,4-二甲氧基苯基)甲基]{[4-(6-{[(2,4-二甲氧基苯基)甲基]-氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-5-基]甲基}氨基甲酸叔丁酯(U-5) (30mg, 41%, 经5步)。(C41H48N8O9)的m/z (ESI+), 797.5 (M+H)+ 观测值。
步骤6:合成4-[5-(氨基甲基)-2-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例U01)
将[(2,4-二甲氧基苯基)甲基]{[4-(6-{[(2,4-二甲氧基苯基)甲基]-氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-5-基]甲基}氨基甲酸叔丁酯(U-5) (30.0 mg, 0.038 mmol)在纯净TFA (1.5mL)中的混合物在55℃加热2天。将过量的TFA除去并将粗产物通过制备型HPLC纯化以提供为TFA盐的标题化合物4-[5-(氨基甲基)-2-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例U01) (10.2 mg, 53%收率)。(C18H20N8O3)的m/z(ESI+), 397.4 (M+H)+ 观测值。
实施例U01: 根据方案U’的4-[5-(氨基甲基)-2-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺的替代制备。
方案U’
Figure 896574DEST_PATH_IMAGE155
步骤1:合成4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-{1-乙基-4-[(4-甲氧基苯基)甲氧基]-3-甲基-1H-吡唑-5-基}-1,3-噁唑-5-甲酸乙酯(U’-1)。
在20℃向4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-1,3-噁唑-5-甲酸乙酯(Int-HG-21) (7.8 g, 16.76 mmol, 1当量)在甲苯(160 mL)中的搅拌溶液中加入5-溴-1-乙基-4-[(4-甲氧基苯基)甲氧基]-3-甲基-1H-吡唑(Int-TG-23) (7.4 g, 22.76 mmol, 1.36当量)、CataXiumA (2.40 g, 6.70 mmol, 0.4当量)、PivOH (684.60 mg, 6.70 mmol, 770.08 μL, 0.4当量)和K2CO3 (6.95 g, 50.27mmol, 3当量)。将混合物在真空下脱气并用N2净化3次。在20℃加入Pd(OAc)2 (752.45 mg,3.35 mmol, 0.2当量)。将混合物再次在真空下脱气并用N2净化另外3次。将反应混合物加热至106℃(内部温度, 125℃外部油浴)和搅拌16小时。LCMS分析表明起始原料的消耗和具有期望产物质量的新峰。将反应从油浴取下并将其冷却至20℃。将反应在真空下浓缩以产生粗产物。将粗产物通过硅胶上的柱色谱法(用0-100% EtOAc/石油醚洗脱)纯化以提供为棕色固体的标题化合物4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-{1-乙基-4-[(4-甲氧基苯基)甲氧基]-3-甲基-1H-吡唑-5-基}-1,3-噁唑-5-甲酸乙酯(U’-1) (5.6 g, 7.89 mmol, 47%收率)。1H NMR (400 MHz, DMSO-d6) δ = 9.16 -8.94 (m, 1H), 8.53 (br s, 1H), 8.41 (br s, 1H), 7.48 -7.28 (m,2H), 7.27 -7.15 (m, 1H), 6.97 -6.77 (m, 2H), 6.68 -6.54 (m, 1H), 6.52 -6.40(m, 1H), 4.95 (br s, 2H), 4.68 -4.40 (m, 4H), 4.33 -4.06 (m, 5H), 3.81 (br s,3H), 3.74 (br s, 3H), 3.67 (br s, 3H), 2.08 (br s, 3H), 1.48 -1.26 (m, 3H),1.21 -1.08 (m, 3H)。
步骤2:合成N-[(2,4-二甲氧基苯基)甲基]-4-(2-{1-乙基-4-[(4-甲氧基苯基)甲氧基]-3-甲基-1H-吡唑-5-基}-5-甲酰基-1,3-噁唑-4-基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(U’-2)。
在20℃给1 L三颈圆底烧瓶装入在THF (560 mL)中的4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-{1-乙基-4-[(4-甲氧基苯基)甲氧基]-3-甲基-1H-吡唑-5-基}-1,3-噁唑-5-甲酸乙酯(U’-1) (5.6 g, 7.89mmol, 1当量)。将反应脱气并用N2净化3次。将反应冷却至-55℃(丙酮干冰浴)。在-55℃(丙酮干冰浴)逐滴加入LiAlH4 (1 M在THF中,37.33 mL, 4.73当量)。形成棕色溶液。将该反应在-55℃至-50℃(丙酮干冰浴)的温度搅拌2小时。LCMS分析表明起始原料的消耗、具有期望醛产物质量的新峰和过度还原的醇产物的质量的峰。将反应在-50℃以下用Na2SO4 .10H2O(25 g)和MeOH/H2O (50 mL, 1:1)淬灭,并在-50℃搅拌1小时。将反应用DCM (300 mL)稀释。将混合物穿过硅藻土垫过滤。将滤饼用DCM (6x50 mL)冲洗。将合并的滤液的有机相分离。将有机层经MgSO4干燥,过滤并将滤液在真空下浓缩,以产生为浅黄色固体的醛和醇产物的可混溶粗制混合物。将该混合物不经进一步纯化地用于下一步。在20℃向可混溶的粗制醛/醇产物(5.5 g, 8.24 mmol, 1当量)在DCM (220 mL)中的悬浮液中加入戴斯-马丁氧化剂(5.24 g, 12.36 mmol, 3.83 mL, 1.5当量)。将反应混合物在20℃搅拌2小时。将反应用H2O (100 mL)稀释。悬浮液变成溶液。将有机相分离。将水相用DCM (3x50 mL)萃取。将合并的有机萃取物经MgSO4干燥和过滤。将滤液在真空下浓缩以提供为淡黄色固体的标题化合物N-[(2,4-二甲氧基苯基)甲基]-4-(2-{1-乙基-4-[(4-甲氧基苯基)甲氧基]-3-甲基-1H-吡唑-5-基}-5-甲酰基-1,3-噁唑-4-基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(U’-2) (6 g, 粗制物)。将该物质不经进一步纯化地用于下一步。(C35H36N7O7)的m/z(ESI+), 666.1 (M+H)+ 观测值。
步骤3:合成4-[5-(氨基甲基)-2-{1-乙基-4-[(4-甲氧基苯基)甲氧基]-3-甲基-1H-吡唑-5-基}-1,3-噁唑-4-基]-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(U’-3)。
在20℃向N-[(2,4-二甲氧基苯基)甲基]-4-(2-{1-乙基-4-[(4-甲氧基苯基)甲氧基]-3-甲基-1H-吡唑-5-基}-5-甲酰基-1,3-噁唑-4-基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(U’-2) (5.9 g, 8.86 mmol, 1当量)在EtOH (50 mL)和H2O (20 mL)中的悬浮液中加入NH2OH.HCl (1.85 g, 26.59 mmol, 3当量)和AcONH4 (3.42 g, 44.31 mmol, 5当量)。然后,将THF (200 mL)加入反应混合物。形成淡黄色悬浮液。将混合物在20℃搅拌2小时。淡黄色悬浮液变成淡黄色溶液。LCMS分析表明具有期望产物质量的新峰。在该阶段,将NH3 (在H2O中的28%溶液) (22.19 g, 177.26 mmol, 24.38 mL, 28% 纯度, 20当量)和Zn(13.91 g, 212.71 mmol, 24当量)加入反应混合物。将反应加热至50℃和搅拌2小时。LCMS分析表明起始原料的消耗和具有期望产物质量的新峰。将反应从加热取下并将其冷却至20℃。将混合物穿过硅藻土垫过滤。将滤饼用DCM (3x100 mL)冲洗。将合并的滤液用H2O (20mL)稀释。将有机层分离,经MgSO4干燥和过滤。将滤液在真空下浓缩以提供为淡黄色固体的标题化合物4-[5-(氨基甲基)-2-{1-乙基-4-[(4-甲氧基苯基)甲氧基]-3-甲基-1H-吡唑-5-基}-1,3-噁唑-4-基]-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(U’-3) (6 g, 粗制物)。将该物质不经进一步纯化地用于下一步。(C35H39N8O6)的m/z(ESI+), 667.1 (M+H)+ 观测值。
步骤4:合成4-[5-(氨基甲基)-2-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例U01)。
向4-[5-(氨基甲基)-2-{1-乙基-4-[(4-甲氧基苯基)甲氧基]-3-甲基-1H-吡唑-5-基}-1,3-噁唑-4-基]-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(U’-3) (6 g, 粗制物)在HFIP (50 mL)中的溶液中加入甲磺酸(3.19 g, 33.24mmol, 2.37 mL, 11当量)。将得到的红色溶液加热至50℃和搅拌2小时。LCMS分析表明具有期望产物质量的新峰。通过加入饱和NaHCO3水溶液直到达到中性pH约7,淬灭该反应。将溶液转移至分液漏斗并进行相分离。在真空下在50℃浓缩有机相。将粗残余物与来自另一批次的粗制物质合并,并通过制备型HPLC (Phenomenex Gemini-NX 150x30mmx5 μm柱, 5-45% MeCN/H2O (含有0.05% HCl), 25mL/min流速, 54次进样)纯化以提供粗制黄色固体(440 mg)。将固体悬浮于MeOH (5 mL)和DCM (15 mL)中。将悬浮液在20℃搅拌30 min。将混合物过滤并将滤饼用DCM (10 mL)洗涤。将固体分离和在真空下干燥以提供为固体黄色盐酸盐的标题化合物4-[5-(氨基甲基)-2-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例U01) (365.19 mg, 30%)。(C18H20N8O3)的m/z(ESI+), 397.1 (M+H)+ 观测值;1H NMR (400 MHz, DMSO-d6) δ = 8.90(br s, 1H), 8.77 (d, J = 0.9 Hz, 1H), 8.73 (br s, 2H), 8.41 (d, J = 0.8 Hz,1H), 8.13 (br s, 1H), 7.98 (s, 1H), 4.79 (q, J = 5.3 Hz, 2H), 4.56 (q, J =7.1 Hz, 2H), 4.20 (s, 3H), 2.17 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H)。
根据用于合成4-[5-(氨基甲基)-2-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例U01)的方法(方案U’)合成实施例U02、U03和U04,本领域技术人员能够认识到对所示例的程序的非关键变化或置换。
Figure 983478DEST_PATH_IMAGE156
Figure 129289DEST_PATH_IMAGE157
实施例V01: 根据方案V制备4-{5-[4-羟基-1-(2-羟基乙基)-3-甲基-1H-吡唑-5-基]-4H-1,2,4-三唑-3-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺。
方案V
Figure 301644DEST_PATH_IMAGE158
步骤1:合成乙酸2-[4-(苄氧基)-5-{5-(6-{[(3,5-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基]乙酯(V-1)
给瓶中装入在甲苯(3 mL)中的乙酸2-[4-(苄氧基)-5-溴-3-甲基-1H-吡唑-1-基]乙酯(Int-TG-16) (73 mg, 0.21 mmol)和N-[(2,4-二甲氧基苯基)甲基]-4-{4-[(4-甲氧基苯基)-甲基]-4H-1,2,4-三唑-3-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Int-HG-18) (106 mg, 0.207 mmol)、Pd(OAc)2 (4.64 mg, 0.0207 mmol)、Ph3P (10.8 mg,0.0413 mmol)、碳酸钾(85.7 mg, 0.620 mmol)和碘[4,5-双(二苯基膦基)-9,9-二甲基呫吨]铜(I) (63.6 mg, 0.0827 mmol),在室温脱气5 min,然后在110℃加热过夜。将反应混合物穿过硅藻土垫过滤并将滤液在真空中浓缩。将粗产物通过ISCO (二氧化硅, 12 g, 0-100% EtOAc/庚烷)纯化以提供为白色泡沫的标题化合物乙酸2-[4-(苄氧基)-5-{5-(6-{[(3,5-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-4-[(4-甲氧基-苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基]乙酯(V-1) (126 mg,78%收率)。1H NMR (400 MHz, DMSO-d 6 ) δ = 8.82 (d, J = 1.2 Hz, 1H), 8.48 (d, J =1.2 Hz, 1H), 8.13 (t, J = 6.2 Hz, 1H), 7.23 -7.15 (m, 5H), 6.95 (d, J = 8.2Hz, 1H), 6.72 -6.65 (m, J = 9.0 Hz, 2H), 6.59 -6.54 (m, 2H), 6.52 (d, J = 2.3Hz, 1H), 6.36 (dd, J = 2.3, 8.2 Hz, 1H), 5.81 (s, 2H), 4.76 (s, 2H), 4.38 (d,J = 5.9 Hz, 2H), 4.23 (s, 3H), 4.18 -4.12 (m, 2H), 4.11 -4.06 (m, 2H), 3.76(s, 3H), 3.74 -3.70 (m, 3H), 3.52 (s, 3H), 2.14 (s, 3H), 1.89 (s, 3H)。(C42H43N9O7)的m/z (ESI+), 786.5 (M+H)+ 观测值。
步骤2:合成4-{5-[4-(苄氧基)-1-(2-羟基乙基)-3-甲基-1H-吡唑-5-基]-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-N-[(3,5-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(V-2)
在室温给瓶中装入乙酸2-[4-(苄氧基)-5-{5-(6-{[(3,5-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-4-[(4-甲氧基-苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基]乙酯(V-1) (132 mg, 0.168 mmol)、氢氧化锂(8.04mg, 0.336 mmol, 0.336 mL, 1.0 M)、水(3.03 mg, 0.168 mmol)和THF (9 mL)。将反应在室温搅拌2 h。然后在室温加入另外的1M LiOH (0.1 mL),将反应在室温搅拌3 h。将反应混合物在真空中浓缩,将粗产物用甲醇和甲苯x 3处理以除去痕量的水,在真空中浓缩以提供105 mg为粗产物的标题化合物4-{5-[4-(苄氧基)-1-(2-羟基乙基)-3-甲基-1H-吡唑-5-基]-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-N-[(3,5-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(V-2),将其不经纯化使用。(C40H41N9O6)的m/z(ESI+), 744.3 (M+H)+ 观测值。
步骤3:合成4-{5-[4-羟基-1-(2-羟基乙基)-3-甲基-1H-吡唑-5-基]-4H-1,2,4-三唑-3-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例V01)
给瓶中装入在TFA (1.5 mL)中的4-{5-[4-(苄氧基)-1-(2-羟基乙基)-3-甲基-1H-吡唑-5-基]-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-N-[(3,5-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(V-2) (100 mg, 0.134 mmol),在55℃搅拌过夜。将过量的TFA在真空中除去,将粗制反应混合物用甲醇x 3和甲苯x 3处理并在真空中浓缩以提供粗制三氟乙酸2-{5-[5-(6-氨基甲酰基-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-4H-1,2,4-三唑-3-基]-4-羟基-3-甲基-1H-吡唑-1-基}乙酯,然后将其用在甲醇(1 mL)(含有几滴二氯甲烷以增加溶解度)中的碳酸钾(37.2 mg, 0.269 mmol)在室温处理30 min。将固体滤出并将滤液浓缩,将粗产物通过制备型HPLC纯化以提供为白色固体的标题化合物4-{5-[4-羟基-1-(2-羟基乙基)-3-甲基-1H-吡唑-5-基]-4H-1,2,4-三唑-3-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例V01) (32 mg, 68%收率)。(C16H17N9O3)的m/z(ESI+), 384.2 (M+H)+ 观测值。
实施例W01: 根据方案W制备4-[5-(1-氨基乙基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺。
方案W
Figure 722261DEST_PATH_IMAGE159
步骤1:合成4-溴-5-(((叔丁基二甲基甲硅烷基)氧基)甲基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑(W-1)。
在-30℃向1-乙基-3-甲基-1H-吡唑(776 mg, 7.04 mmol)在THF (30 mL)中的溶液中逐滴加入n-BuLi (2.5 M在己烷中,3.10 mL, 7.75 mmol),并将混合物搅拌20分钟。然后逐滴加入ZnCl2溶液(1.9 M在2-MeTHF中, 4.45 mL, 8.45 mmol),并将反应温热至室温。2小时以后,LCMS分析表明起始原料的消耗。然后加入2,4-二溴-5-(((叔丁基二甲基甲硅烷基)氧基)甲基)噻唑(根据国际专利申请PCT/CA2010/000779在3个步骤中制备,该申请于2010年11月25日公开为WO 2010/132999 A1) (3.00 g, 7.75 mmol)在THF (9 mL)中的溶液,随后加入Pd(PPh3)4 (814 mg, 0.704 mmol)。将反应在室温搅拌2.5小时。LCMS分析表明起始原料的消耗,然后将反应用饱和NH4Cl水溶液(10 mL)淬灭。分离各层,并将水相用EtOAc萃取3次。将合并的有机萃取物经MgSO4干燥,过滤,并在真空中浓缩。将残余物通过快速色谱法(80 g SiO2, 0-10% EtOAc/庚烷)纯化以提供为无色油的4-溴-5-(((叔丁基二甲基甲硅烷基)氧基)甲基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑(W-1) (2.03 g, 63%)。1H NMR (400 MHz, CDCl3) δ 6.42 (s, 1H), 4.83 (s, 2H), 4.58 (q, J = 7.0 Hz,2H), 2.29 (s, 3H), 1.44 (t, J = 7.4 Hz, 3H) 0.94 (s, 9H), 0.15 (s, 6H);(C16H27BrN3OSSi)的m/z (ESI+), 416.0 (M+H)+ 观测值。
步骤2:合成(4-溴-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑-5-基)甲醇(W-2)
向4-溴-5-(((叔丁基二甲基甲硅烷基)氧基)甲基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑(W-1) (1.34 g, 3.22 mmol)在THF (6.44 mL)中的溶液中加入TBAF (1.0 M在THF中,6.44 mL, 6.44 mmol)并在室温搅拌30分钟。TLC分析(4:1庚类:EtOAc)表明起始原料的消耗。然后将混合物用H2O稀释并用EtOAc萃取3次。将合并的有机萃取物经MgSO4干燥,过滤,并在真空中浓缩。将残余物通过快速色谱法(40 g SiO2, 40-80% EtOAc/庚烷)纯化以提供为白色固体的(4-溴-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑-5-基)甲醇(W-2)(896 mg, 92%)。1H NMR (400 MHz, CDCl3) δ 6.42 (s, 1H), 4.86 (s, 2H), 4.58 (q, J = 7.0 Hz, 2H), 2.29 (s, 3H), 1.44 (t, J = 7.4 Hz, 3H);(C10H13BrN3OS)的m/z (ESI+), 302.0 (M+H)+ 观测值。
步骤3:合成4-溴-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑-5-甲醛(W-3)
在0℃向(4-溴-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑-5-基)甲醇(W-2) (896mg, 2.96 mmol)在CH2Cl2 (14.8 mL)中的溶液中加入戴斯-马丁氧化剂(1.92 g, 4.45mmol)。然后将混合物温热至室温,搅拌1小时,并且LCMS分析表明起始原料的消耗。将反应用H2O淬灭并用EtOAc萃取3次。将合并的有机萃取物经MgSO4干燥,过滤,并在真空中浓缩。将残余物通过快速色谱法(24 g SiO2, 10-60% EtOAc/庚烷)纯化以提供为黄色固体的4-溴-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑-5-甲醛(W-3) (678 mg, 76%)。1H NMR (400 MHz,CDCl3) δ 10.01 (s, 1H), 6.58 (s, 1H), 4.64 (q, J = 7.0 Hz, 2H), 2.30 (s, 3H),1.46 (t, J = 7.2 Hz, 3H);(C10H11BrN3OS)的m/z (ESI+), 300.0 (M+H)+ 观测值。
步骤4:合成(E)-N-((4-溴-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑-5-基)亚甲基)-2-甲基丙烷-2-亚磺酰胺(W-4)
将4-溴-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑-5-甲醛(W-3) (678 mg, 2.26mmol)、Cs2CO3 (1.47 g, 4.51 mmol)、2-甲基丙烷-2-亚磺酰胺(547 mg, 4.51 mmol)和CH2Cl2 (7.5 mL)的混合物在室温搅拌3小时。LCMS分析表明起始原料的消耗。然后将混合物用EtOAc穿过硅藻土垫过滤并在真空中浓缩。将残余物通过快速色谱法(24 g SiO2, 10-40% EtOAc/庚烷)纯化以提供为黄色固体的(E)-N-((4-溴-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑-5-基)亚甲基)-2-甲基丙烷-2-亚磺酰胺(W-4) (836 mg, 92%)。1H NMR (400MHz, CDCl3) δ 8.72 (s, 1H), 6.54 (s, 1H), 4.64 (q, J = 7.0 Hz, 2H), 2.31 (s,3H), 1.46 (t, J = 7.2 Hz, 3H), 1.27 (s, 9H);(C14H20BrN4OS2)的m/z (ESI+), 403.0(M+H)+ 观测值。
步骤5:合成N-(1-(4-溴-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑-5-基)乙基)-2-甲基丙烷-2-亚磺酰胺(W-5)
在-78℃向(E)-N-((4-溴-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑-5-基)亚甲基)-2-甲基丙烷-2-亚磺酰胺(W-4) (835 mg, 2.07 mmol)在CH2Cl2 (21 mL)中的溶液中加入甲基溴化镁溶液(1.4 M在THF:甲苯1:3中, 4.44 mL, 6.21 mmol)。搅拌5分钟以后,将反应温热至0℃和搅拌1小时。LCMS分析表明起始原料的消耗。然后将反应用H2O淬灭并用EtOAc萃取3次。将合并的有机萃取物经MgSO4干燥,过滤,并在真空中浓缩。将残余物通过快速色谱法(24 g SiO2, 50-100% EtOAc/庚烷)纯化以提供N-(1-(4-溴-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑-5-基)乙基)-2-甲基丙烷-2-亚磺酰胺(W-5) (785 mg, 90%)。1H NMR(400 MHz, CDCl3) δ 6.38 (s, 1H), 4.97 (m, 1H), 4.57 (q, J = 7.0 Hz, 2H), 3.47(s, 1H), 2.27 (s, 3H), 1.62 (d, J = 6.6 Hz, 3H), 1.44 (t, J = 7.0 Hz, 3H),1.23 (s, 9H);(C15H24BrN4OS2)的m/z (ESI+), 419.1 (M+H)+ 观测值。
步骤6:合成4-(5-(1-((叔丁基亚磺酰基)氨基)乙基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑-4-基)-N-(3,4-二甲基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(W-6)
N-(1-(4-溴-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑-5-基)乙基)-2-甲基丙烷-2-亚磺酰胺(W-5) (785 mg, 1.87 mmol)、4-溴-N-(2,4-二甲氧基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Int-HG-17) (758 mg, 1.87 mmol)、K3PO4 (1.19 g, 5.61mmol)、4,4,4',4',5,5,5',5'-八甲基-2,2'-二(1,3,2-二氧杂硼杂环戊烷) (951 mg,3.74 mmol)、Pd(dtbpf)Cl2 (122 mg, 0.187 mmol)、H2O (3.70 mL, 用N2鼓泡)和甲苯(18.7 mL)的混合物在80℃搅拌17小时。LCMS分析表明起始原料的消耗。将混合物冷却至室温,用EtOAc穿过硅藻土垫过滤,并加入分液漏斗。然后将混合物用H2O稀释,用EtOAc萃取3次,并将合并的有机萃取物经MgSO4干燥。然后将溶液过滤,在真空中浓缩,并将残余物通过快速色谱法(40 g SiO2, EtOAc)纯化以提供4-(5-(1-((叔丁基亚磺酰基)氨基)乙基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑-4-基)-N-(3,4-二甲基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(W-6)与其它未知杂质的混合物(597 mg)。将该物质不经进一步纯化地用于下一步。(C32H41N8O4S2)的m/z(ESI+), 665.3 (M+H)+ 观测值。
步骤7:合成1-(4-(6-氨基甲酰基-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑-5-基)乙烷-1-铵三氟乙酸盐(W-7)
向4-(5-(1-((叔丁基亚磺酰基)氨基)乙基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑-4-基)-N-(3,4-二甲基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(W-6) (597mg, 0.898 mmol)在MeOH (4.59 mL)和CH2Cl2 (4.59 mL)中的溶液中加入HCl (4 M在二氧杂环己烷中, 2.29 mL, 9.17 mmol)并在室温搅拌。30分钟以后,LCMS分析表明反应进展,将反应混合物在真空中浓缩,溶解在TFA (7.00 mL, 91.7 mmol)中并在55℃加热70分钟。然后将混合物冷却至室温,在真空中浓缩,并将残余物在EtOAc中制浆和搅拌16小时。将固体在N2下过滤以提供为粉红色固体的1-(4-(6-氨基甲酰基-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑-5-基)乙烷-1-铵三氟乙酸盐(W-7)(228 mg, 经两步19%)。1H NMR (400 MHz, DMSO-d 6) δ 8.63 (s, 1H), 8.36 (s, 1H),7.97 (br s, 1H), 7.82 (br s, 1H), 6.68 (s, 1H), 5.28 (m, 1H), 4.65 (q, J = 7.1 Hz, 2H), 4.20 (s, 3H), 2.23 (s, 3H), 1.49 (d, J = 6.2 Hz, 3H), 1.42 (t, J = 7.0 Hz, 3H);(C19H23N8OS)的m/z (ESI+), 411.2 (M+H)+ 观测值。
步骤8:纯化(R)-4-(5-(1-氨基乙基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑-4-基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺和(S)-4-(5-(1-氨基乙基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑-4-基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例W01和W02)
将1-(4-(6-氨基甲酰基-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑-5-基)乙烷-1-铵三氟乙酸盐(W-7)用Chiral Tech OX-H柱(250x30.0 mm, 5 μm粒径)通过制备型HPLC纯化,将其用20-70% 甲醇(2% 氨):CO2以80mL/min的流速洗脱以提供为棕色固体的对映异构体(R)-4-(5-(1-氨基乙基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑-4-基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺和(S)-4-(5-(1-氨基乙基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)噻唑-4-基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例W01, 39 mg, 11%和实施例W02, 48 mg, 13% -对映异构体未指定)。W01 -LCMS [M+H] = 411.4观测值;W02 -LCMS [M+H] = 411.3观测值;1H NMR (400MHz, DMSO-d6) δ = 8.62 (d, J = 0.8 Hz, 1H), 8.35 (d, J = 0.8 Hz, 1H), 7.97(br d, J = 2.3 Hz, 1H), 7.81 (br d, J = 2.3 Hz, 1H), 6.67 (s, 1H), 5.38 -5.17(m, 1H), 4.65 (q, J = 7.2 Hz, 2H), 4.19 (s, 3H), 2.23 (s, 3H), 1.48 (d, J =6.2 Hz, 3H), 1.41 (t, J = 7.0 Hz, 3H)。
实施例X01: 根据方案X制备(4-(6-氨基甲酰基-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)噻唑-5-基)甲铵甲酸盐。
方案X
Figure 663672DEST_PATH_IMAGE160
步骤1:合成4-(苄氧基)-1-乙基-3-甲基-1H-吡唑(X-1)
将1-乙基-3-甲基-1H-吡唑-4-醇(15.0 g, 119 mmol)、苄基溴(30.5 g, 178mmol)、Cs2CO3 (46.5 g, 143 mmol)和MeCN (1.19 L)的混合物在室温搅拌19小时。LCMS分析表明起始原料的消耗。然后将反应在真空中浓缩,加入H2O,并将混合物用EtOAc萃取3次。将合并的有机萃取物经MgSO4干燥,过滤,并在真空中浓缩。将粗残余物通过快速色谱法(SiO2塞, CH2Cl2 [1.5 L]然后EtOAc [3.0 L], 500 mL级分)纯化以提供为黄色油的4-(苄氧基)-1-乙基-3-甲基-1H-吡唑(X-1) (25.4 g, 99%)。1H NMR (400 MHz, CDCl3) δ 7.44-7.30 (m, 5H), 6.96 (s, 1H), 4.89 (s, 2H), 4.00 (q, J = 7.2 Hz, 2H), 2.22 (s,3H), 1.41 (t, J = 7.2 Hz, 3H);(C13H17N2O)的m/z (ESI+), 217.1 (M+H)+ 观测值。
步骤2:合成2-(4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基)-4-溴-5-(((叔丁基二甲基甲硅烷基)氧基)甲基)噻唑(X-2)
在-78℃向4-(苄氧基)-1-乙基-3-甲基-1H-吡唑(X-1) (1.03 g, 4.76 mmol)在THF (20 mL)中的溶液中逐滴加入n-BuLi (2.5 M在己烷中,1.90 mL, 4.76 mmol),并将混合物搅拌10分钟。然后逐滴加入ZnCl2溶液(1.9 M在2-MeTHF中, 3.01 mL, 5.71 mmol),并将反应温热至室温。1.5小时以后,加入2,4-二溴-5-(((叔丁基二甲基甲硅烷基)氧基)甲基)噻唑(根据WO 2010132999 A1在3个步骤中制备) (2.03 g, 5.24 mmol)在THF (3.8 mLmL)中的溶液,随后加入Pd(PPh3)4 (550 mg, 0.476 mmol)。将反应在室温搅拌3小时,并且LCMS分析表明起始原料的消耗。然后将反应用饱和NH4Cl水溶液淬灭,分离各层,并将水相用EtOAc萃取3次。将合并的有机萃取物经MgSO4干燥,过滤,并在真空中浓缩。将残余物通过快速色谱法(40 g SiO2, 0-20% EtOAc/庚烷)纯化以提供为白色固体的2-(4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基)-4-溴-5-(((叔丁基二甲基甲硅烷基)氧基)甲基)噻唑(X-2)(951 mg, 38%)。1H NMR (400 MHz, CDCl3) δ 7.36-7.22 (m, 5H), 4.84 (s, 2H), 4.73(s, 2H), 4.50 (q, J = 7.3 Hz, 2H), 2.11 (s, 3H), 1.31 (t, J = 7.2 Hz, 3H),0.82 (s, 9H), 0.02 (s, 6H);(C23H33BrN3O2SSi)的m/z (ESI+), 522.1 (M+H)+ 观测值。
步骤3:合成4-(2-(4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基)-5-(((叔丁基二甲基甲硅烷基)氧基)甲基)噻唑-4-基)-N-(2,4-二甲氧基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(X-3)
将2-(4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基)-4-溴-5-(((叔丁基二甲基甲硅烷基)氧基)甲基)噻唑(X-2) (944 mg, 1.81 mmol)、4-溴-N-(2,4-二甲氧基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Int-HG-17) (732 mg, 1.81 mmol)、K3PO4 (1.15 g,5.42 mmol)、4,4,4',4',5,5,5',5'-八甲基-2,2'-二(1,3,2-二氧杂硼杂环戊烷) (917mg, 3.61 mmol)、(t-Bu)3P-Pd-G3 (103 mg, 0.181 mmol)、H2O (3.62 mL, 用N2鼓泡)和甲苯(18.1 mL, 用N2鼓泡)的混合物在80℃搅拌23小时。TLC分析(4:1庚烷:EtOAc)表明起始原料的消耗。然后将混合物冷却至室温,用EtOAc穿过硅藻土垫过滤,经MgSO4干燥,过滤,并在真空中浓缩。将残余物通过快速色谱法(40 g SiO2, 60-80% EtOAc:庚烷)纯化以提供期望产物4-(2-(4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基)-5-(((叔丁基二甲基甲硅烷基)氧基)甲基)噻唑-4-基)-N-(2,4-二甲氧基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(X-3) (825 mg)和副产物N-(2,4-二甲氧基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺的混合物(1:1.4,通过1H NMR分析)。将该混合物不经进一步纯化地用于下一步。(C40H50N7O5SSi)的m/z(ESI+), 768.4 (M+H)+ 观测值。
步骤4:合成4-(2-(4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基)-5-(羟基甲基)噻唑-4-基)-N-(2,4-二甲氧基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(X-4)
向4-(2-(4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基)-5-(((叔丁基二甲基甲硅烷基)氧基)甲基)噻唑-4-基)-N-(2,4-二甲氧基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(X-3)和副产物N-(2,4-二甲氧基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(825 mg)的1:1.4混合物在THF (2.15 mL)中的溶液中加入TBAF (1 M在THF中,3.22 mL,3.22 mmol)并在室温搅拌。2小时以后,在CDCl3中通过1H NMR分析等分试样,并表明起始原料的消耗。然后将反应在CH2Cl2中稀释并在真空中浓缩。将残余物通过快速色谱法(24 gSiO2, 40-100% EtOAc/庚烷)纯化以提供为白色固体的4-(2-(4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基)-5-(羟基甲基)噻唑-4-基)-N-(2,4-二甲氧基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(X-4) (363 mg, 经两步31%)。1H NMR (400 MHz, CDCl3) δ 8.75(s, 1H), 8.74 (m, 1H), 8.25 (s, 1H), 7.49-7.29 (m, 6H), 6.50-6.41 (m, 2H),5.17 (s, 2H), 5.00 (s, 2H), 4.74 (q, J = 7.0 Hz, 2H), 4.65 (m, 2H), 4.17-4.11(m, 4H), 3.90 (s, 3H), 3.78 (s, 3H), 2.23 (s, 3H), 1.50 (t, J = 7.0 Hz, 3H);(C34H36N7O5S)的m/z (ESI+), 654.3 (M+H)+ 观测值。
步骤5:合成4-(2-(4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基)-5-甲酰基噻唑-4-基)-N-(2,4-二甲氧基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(X-5)
在0℃向4-(2-(4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基)-5-(羟基甲基)噻唑-4-基)-N-(2,4-二甲氧基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(X-4) (313 mg,0.479 mmol)在CH2Cl2 (2.39 mL)中的溶液中加入戴斯-马丁氧化剂(305 mg, 0.718mmol)。然后将混合物温热至室温和搅拌1小时。LCMS分析表明起始原料的消耗。然后将反应用CH2Cl2稀释并在真空中浓缩。将残余物通过快速色谱法(12 g SiO2, 50-100% EtOAc/庚烷)纯化以提供为黄色固体的4-(2-(4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基)-5-甲酰基噻唑-4-基)-N-(2,4-二甲氧基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(X-5)(302 mg, 在两个合并批之间84%)。1H NMR (400 MHz, CDCl3) δ 10.78 (s, 1H), 8.63(s, 1H), 8.43 (s, 1H), 7.50-7.25 (m, 6H), 6.52 (d, J = 2.3 Hz, 1H), 6.45 (dd,J = 8.2, 2.3 Hz, 1H), 5.09 (s, 2H), 4.77 (q, J = 7.3 Hz, 2H), 4.66 (d, J = 5.9 Hz, 2H), 4.21 (s, 3H), 3.91 (s, 3H), 3.80 (s, 3H), 2.26 (s, 3H), 1.48 (t,J = 7.4 Hz, 3H);(C34H34N7O5S)的m/z (ESI+), 652.3 (M+H)+ 观测值。
步骤6:合成(E)-4-(2-(4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基)-5-(((叔丁基亚磺酰基)亚氨基)甲基)噻唑-4-基)-N-(2,4-二甲氧基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(X-6)
将4-(2-(4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基)-5-甲酰基噻唑-4-基)-N-(2,4-二甲氧基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(X-5) (302 mg, 0.463mmol)、Cs2CO3 (302 mg, 0.927 mmol)、2-甲基丙烷-2-亚磺酰胺(168 mg, 1.39 mmol)和CH2Cl2 (2.32 mL)的混合物在室温搅拌19小时。LCMS分析表明起始原料的消耗。然后将混合物用EtOAc穿过硅藻土垫过滤并在真空中浓缩以提供为黄色固体的(E)-4-(2-(4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基)-5-(((叔丁基亚磺酰基)亚氨基)甲基)噻唑-4-基)-N-(2,4-二甲氧基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(X-6) (558 mg)。将该物质不经进一步纯化地用于下一步。(C38H43N8O5S2)的m/z(ESI+), 755.3 (M+H)+ 观测值。
步骤7:合成4-(2-(4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基)-5-(((叔丁基亚磺酰基)氨基)甲基)噻唑-4-基)-N-(2,4-二甲氧基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(X-7)
在0℃向(E)-4-(2-(4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基)-5-(((叔丁基亚磺酰基)亚氨基)甲基)噻唑-4-基)-N-(2,4-二甲氧基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(X-6) (208 mg, 0.276 mmol)在甲醇(1.38 mL)和THF (1.38 mL)中的溶液中加入NaBH4 (31.3 mg, 0.827 mmol)。3小时以后,LCMS分析表明起始原料的消耗。将反应用饱和NH4Cl水溶液淬灭并用EtOAc萃取3次。然后将合并的有机萃取物经MgSO4干燥,过滤,并在真空中浓缩。将残余物通过快速色谱法(24 g SiO2, 50-100% EtOAc/庚类)纯化以提供为黄色油的4-(2-(4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基)-5-(((叔丁基亚磺酰基)氨基)甲基)噻唑-4-基)-N-(2,4-二甲氧基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(X-7) (193 mg, 92%)。1H NMR (400 MHz, CDCl3) δ 8.68 (s, 1H), 8.44 (t, J = 5.8Hz, 1H), 8.30 (s, 1H), 7.49-7.25 (m, 6H), 6.48-6.42 (m, 2H), 5.05-4.95 (m,4H), 4.74 (q, J = 7.3 Hz, 2H), 4.68 (d, J = 6.2 Hz, 2H), 4.21 (t, J = 5.6 Hz,1H), 4.15 (s, 3H), 3.87 (s, 3H), 3.77 (s, 3H), 2.24 (s, 3H), 1.49 (t, J = 7.2Hz, 3H), 1.13 (s, 9H);(C38H45N8O5S2)的m/z (ESI+), 757.3 (M+H)+ 观测值。
步骤8:合成(4-(6-氨基甲酰基-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)噻唑-5-基)甲铵甲酸盐(实施例X01)
向4-(2-(4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基)-5-(((叔丁基亚磺酰基)氨基)甲基)噻唑-4-基)-N-(2,4-二甲氧基苄基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(X-7) (315 mg, 0.416 mmol)在MeOH (2.08 mL)和CH2Cl2 (2.08 mL)中的溶液中加入HCl(4 M在二氧杂环己烷中, 1.04 mL, 4.16 mmol)并在室温搅拌。45分钟以后,将反应混合物在真空中浓缩,溶解在TFA (3.20 mL, 41.6 mmol)中并在55℃加热27小时。LCMS分析表明起始原料的消耗。然后将混合物冷却至室温,在真空中浓缩,并将残余物在EtOAc中制浆16小时。然后将固体在N2下过滤。将固体用Princeton STX C18柱(250x21.2 mm, 5 μm粒径)通过制备型HPLC纯化,将其用5-100% 乙腈:H2O (1% 甲酸)以27 mL/min的流速洗脱以提供为白色固体的(4-(6-氨基甲酰基-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)噻唑-5-基)甲铵甲酸盐(实施例X01) (86 mg, 45%)。1H NMR(400 MHz, DMSO-d 6) δ 8.63 (s, 1H), 8.37 (s, 1H), 8.22 (s, 1H), 8.12 (s, 1H),7.93 (s, 1H), 4.68 (q, J = 7.4 Hz, 2H), 4.56 (s, 2H), 4.19 (s, 3H), 2.17 (s,3H), 1.36 (t, J = 7.0 Hz, 3H);(C18H21N8O2S)的m/z (ESI+), 413.2 (M+H)+ 观测值。
实施例Y01: 根据方案Y制备4-[3-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1-[3-羟基-2-(羟基甲基)丙基]-1H-吡唑并[4,3-c]吡啶-6-甲酰胺。
方案Y
Figure 512809DEST_PATH_IMAGE161
步骤1:合成6-氯-1-[(2,2-二甲基-1,3-二氧杂环己烷-5-基)甲基]-4-[3-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1H-吡唑并[4,3-c]吡啶(Y-1)
在室温向3-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑(Int-TG-05) (430 mg 2.06 mmol, 1当量)和4,6-二氯-1-[(2,2-二甲基-1,3-二氧杂环己烷-5-基)甲基]-1H-吡唑并[4,3-c]吡啶(Int-HG-19) (650 mg 2.06 mmol, 1当量)在无水甲苯(10 mL, 0.2 M)中的溶液中加入K2CO3 (852 mg, 6.17 mmol, 3当量)、PivOH (126 mg,1.23 mmol, 0.6当量)、P(n-Bu)Ad2 (295 mg, 0.822 mmol, 0.4当量)和Pd(OAc)2 (92.3mg, 0.411 mmol, 0.2当量)。将混合物在N2下在80℃搅拌60小时。在此时的TLC (石油醚:EtOAc=1:2)表明起始原料被消耗,并检测到2个新斑点,二者中的低极性者被证实为期望产物。将棕色混合物冷却至室温和过滤,然后将滤液在真空中浓缩。将得到的黑色残余物通过Prep-TLC (石油醚: EtOAc 1:2)纯化以提供为黄色固体的标题化合物6-氯-1-[(2,2-二甲基-1,3-二氧杂环己烷-5-基)甲基]-4-[3-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1H-吡唑并[4,3-c]吡啶(Y-1) (200 mg, 19.9%)。1H NMR (400MHz, 氯仿-d) δ 8.88 (d, J = 1.0 Hz, 1H), 7.52 (d, J = 1.0 Hz, 1H), 4.66 (d, J= 7.7 Hz, 2H), 4.61 (t, J = 7.2 Hz, 1H), 4.54 (s, 3H), 4.09 (q, 2H, J = 7.1Hz), 3.53 (dd, J = 12.6, 2.5 Hz, 2H), 2.31 (d, J = 0.7 Hz, 3H), 2.25 (dq, J =6.6, 3.3 Hz, 1H), 1.58 (s, 3H), 1.52 (s, 3H), 1.50 (t, J = 7.1 Hz, 1H)。
步骤2:合成1-[(2,2-二甲基-1,3-二氧杂环己烷-5-基)甲基]-4-[3-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1H-吡唑并[4,3-c]吡啶-6-甲腈(Y-2)
在室温向6-氯-1-[(2,2-二甲基-1,3-二氧杂环己烷-5-基)甲基]-4-[3-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1H-吡唑并[4,3-c]吡啶(Y-1) (70 mg, 0.14 mmol)在二氧杂环己烷(5.0 mL, 0.03 M)中的黄色溶液中加入Zn(CN)2(87.4 mg, 0.744 mmol, 5当量)、dppf (139 mg, 0.251 mmol, 1.7当量)和Pd2(dba)3(50.1 mg, 0.055 mmol, 0.4当量)。将得到的黄色反应混合物在N2下在100℃搅拌16 h。在此时的LCMS表明起始原料几乎耗尽,且存在期望产物。然后将浅棕色溶液用20 mL水稀释,然后用50 mL EtOAc萃取3次。将合并的有机层经Na2SO4干燥,过滤,并在减压下浓缩。将得到的黄色油通过制备型TLC (15:1 DCM/MeOH)纯化以提供为淡黄色固体的标题化合物1-[(2,2-二甲基-1,3-二氧杂环己烷-5-基)甲基]-4-[3-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1H-吡唑并[4,3-c]吡啶-6-甲腈(Y-2) (45 mg, 92%)。
步骤3:合成1-[(2,2-二甲基-1,3-二氧杂环己烷-5-基)甲基]-4-[3-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Y-3)
向1-[(2,2-二甲基-1,3-二氧杂环己烷-5-基)甲基]-4-[3-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1H-吡唑并[4,3-c]吡啶-6-甲腈(Y-2)(90 mg, 0.12 mmol)在MeOH (2 mL)和THF (1 mL, 0.04 M,在整个底物中)中的黄色溶液中加入H2O2 (136 mg, 1.20 mmol, 10当量)和NaOH (24.0 mg, 0.6 mmol, 5当量),并将得到的黄色悬浮液在室温搅拌16 h。在该时刻的LCMS分析表明起始原料被消耗,另外检测到期望产物。TLC (DCM: MeOH=10:1)也表明起始原料被消耗,并观察到2个新斑点,其中一个极性大于起始原料且另一个极性小于起始原料。然后将白色悬浮液用饱和Na2SO3水溶液(2mL)淬灭并用20 mL EtOAc萃取4次。将合并的有机相经无水Na2SO4干燥,过滤,并将该滤液在真空中浓缩以产生为白色固体的期望粗制1-[(2,2-二甲基-1,3-二氧杂环己烷-5-基)甲基]-4-[3-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Y-3),将其直接用于下一步。
步骤4:合成4-[3-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1-[3-羟基-2-(羟基甲基)丙基]-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例Y01)
向1-[(2,2-二甲基-1,3-二氧杂环己烷-5-基)甲基]-4-[3-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Y-3)缩醛(60 mg, 0.12 mmol)在HFIP (1 mL, 0.12 M)中的溶液中加入MsOH (58 mg, 0.6mmol, 5当量)。将混合物在45℃加热2小时。在此时LCMS显示起始原料的消耗以及产物形成。因此将混合物浓缩以产生棕色油,将其通过制备型HPLC纯化以产生为固体的期望产物4-[3-(1-乙基-4-氟-3-甲基-1H-吡唑-5-基)-1-甲基-1H-1,2,4-三唑-5-基]-1-[3-羟基-2-(羟基甲基)丙基]-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例Y01) (9.7 mg, 18%)。1HNMR (400 MHz, DMSO-d6) δ 8.72 (d, J = 1.0 Hz, 1H), 8.48 (d, J = 1.0 Hz, 1H),8.00 (d, J = 47.6 Hz, 2H), 4.69 (t, J = 5.0 Hz, 2H), 4.58 (d, J = 7.0 Hz,2H), 4.53 (q, J = 7.1 Hz, 2H), 4.47 (s, 3H), 3.38 (m, 6H), 2.21 (s, 3H), 1.39(t, J = 7.1 Hz, 3H)。
实施例Z01: 根据方案Z制备4-{3-[1-(3-羟基丙基)-3-甲基-1H-吡唑-5-基]-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺。
方案Z
Figure 172461DEST_PATH_IMAGE162
步骤1:合成4-{5-[1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-5-基]-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Z-1)
在20℃向3-[1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-5-基]-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-17) (275.0 mg, 0.623 mmol)和4-溴-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Int-HG-17) (303 mg, 0.747 mmol)在无水甲苯(4.0mL)中的溶液中加入K2CO3 (258 mg, 1.87mmol)、PivOH (38.2 mg, 0.374mmol)、P(n-Bu)Ad2 (89.3 mg, 0.249 mmol)和Pd(OAc)2(28.0 mg, 0.125 mmol)。将混合物在N2中在80℃搅拌16 h。继续在80℃搅拌另外48 h。LCMS分析表明起始原料仍然未耗尽,但是检测到期望产物。将该反应与在类似条件下以相同规模进行的另一批合并,并将这些一起进一步处理。将合并的反应用H2O (50 mL)淬灭,产生浅黄色溶液。将溶液转移至分液漏斗,并用EtOAc (50 mL*3)萃取。将合并的有机萃取物用盐水(50 mL)洗涤,干燥(Na2SO4),并在真空下浓缩以提供浅黄色固体。将粗制固体进一步通过快速色谱法(0-80%的EtOAc/石油醚,40 g硅胶)纯化以提供为浅黄色固体的标题化合物4-{5-[1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-5-基]-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Z-1) (250 mg, 52%)。(C40H52N9O5Si)的m/z(ESI+),766.2 (M+H)+ 观测值。
步骤2:合成4-{3-[1-(3-羟基丙基)-3-甲基-1H-吡唑-5-基]-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例Z01)
向4-{5-[1-(3-{[叔丁基(二甲基)甲硅烷基]氧基}丙基)-3-甲基-1H-吡唑-5-基]-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Z-1) (250 mg, 0.326 mmol)在HFIP (4.0 mL)中的黄色溶液中加入MeSO3H (314 mg, 3.26 mmol)。加入以后,将得到的浅红色反应溶液在50℃搅拌16 h。将反应浓缩以产生红色油,将其通过制备型HPLC (Boston Prime C18 150*25mm*5um, 水(0.05% 氢氧化铵v/v)-MeCN (11%-35% 梯度), 25 mL/min)纯化。将含有产物的级分收集以提供为白色固体的标题化合物4-{3-[1-(3-羟基丙基)-3-甲基-1H-吡唑-5-基]-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例Z01)(86.4 mg, 69%)。(C17H20N9O2)的m/z(ESI+), 382.0 (M+H)+ 观测值。1H NMR (400 MHz,DMSO-d6) δ = 15.33 (s, 1H), 8.86 (s, 1H), 8.84 (br s, 1H), 8.45 (s, 1H), 7.85(br s, 1H), 6.70 (s, 1H), 4.70 (br t, J = 7.3 Hz, 2H), 4.58 (br t, J = 4.9Hz, 1H), 4.22 (s, 3H), 3.53 -3.45 (m, 2H), 2.23 (s, 3H), 2.05 -1.95 (m, 2H)。
实施例AA01: 根据方案AA制备4-{2-(1-乙基-3-甲基-1H-吡唑-5-基)-5-[(甲基氨基)甲基]-1,3-噻唑-4-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺。
方案AA
Figure 865610DEST_PATH_IMAGE163
步骤1:合成4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-甲酸乙酯(AA-1)
给干燥的25-mL烧瓶中首先装入2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-甲酸乙酯(Int-TG-19) (250 mg, 0.942 mmol)在THF (0.94 mL, 0.1 M)中的溶液,并向其中加入Zn(TMP)2 (0.35 M在THF中,3.23 mL, 1.13 mmol, 1.2当量),产生红色溶液。在室温6小时以后,加入4-氯-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Int-HG-20) (340 mg, 0.942 mmol, 1当量),随后加入Pd2(dba)3 (43 mg, 0.05mmol, 0.05当量)和P(2-fur)3 (22 mg, 0.094 mmol, 0.1当量)。将溶液加热至70℃,20min以后,LCMS分析表明仅存在起始原料。然后将该反应加热至80℃并将其在该温度搅拌过夜。18小时以后,LCMS分析表明具有期望产物质量的新峰已经形成,且溶剂已经大部分蒸发,剩下焦油样残余物。将该残余物溶解在EtOAc中并与饱和NH4Cl水溶液一起搅拌直到所有固体已经溶解。然后将两相混合物转移至分液漏斗并进行相分离。将有机相用1份盐水洗涤,干燥(Na2SO4),过滤,并在真空下浓缩。通过柱色谱法(SiO2, 95% EtOAc/庚烷)纯化,提供为橙色固体的标题化合物4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-甲酸乙酯(AA-1) (120 mg, 0.204 mmol, 22%)。1H NMR (400 MHz, 氯仿-d) δ 8.47 (t, J = 6.0Hz, 1H), 8.42 (d, J = 1.0 Hz, 1H), 8.34 (d, J = 1.0 Hz, 1H), 7.28 (d, J = 8.2Hz, 1H), 6.55 (s, 1H), 6.47 (d, J = 2.3 Hz, 1H), 6.43 (dd, J = 8.2, 2.4 Hz,1H), 4.68 (q, J = 7.2 Hz, 2H), 4.64 (d, J = 6.1 Hz, 2H), 4.17 (s, 3H), 4.00(q, J = 7.1 Hz, 2H), 3.84 (s, 3H), 3.78 (s, 3H), 2.31 (s, 3H), 1.46 (t, J =7.2 Hz, 3H), 1.03 (t, J = 7.1 Hz, 3H)。
步骤2:合成N-[(2,4-二甲氧基苯基)甲基]-4-[2-(1-乙基-3-甲基-1H-吡唑-5-基)-5-(羟基甲基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AA-2)
向含有在THF (0.85 mL, 0.2 M)中的4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-(1-乙基-3-甲基-1H-吡唑-5-基)-1,3-噻唑-5-甲酸乙酯(AA-1) (100 mg, 0.17 mmol)的2-打兰瓶中加入LiBH4 (7.4 mg, 0.34mmol, 2当量)。将得到的白色悬浮液加热至40℃,这导致深色均质溶液的形成。2小时以后,LCMS分析表明起始原料的消失和具有期望产物质量的新峰。将反应从加热取下并将其逐渐冷却至室温。将反应用MeOH (1 mL)淬灭。反应混合物然后变成浅黄色,然后变成橙色,随后沉淀形成。搅拌4小时以后,将白色固体滤出并干燥以提供标题化合物N-[(2,4-二甲氧基苯基)甲基]-4-[2-(1-乙基-3-甲基-1H-吡唑-5-基)-5-(羟基甲基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AA-2) (60 mg, 0.11 mmol, 65%)。1H NMR (400MHz, DMSO-d6) δ 8.69 (t, J = 6.2 Hz, 1H), 8.68 (d, J = 1.0 Hz, 1H), 8.32 (d,J = 1.0 Hz, 1H), 7.19 (d, J = 8.3 Hz, 1H), 6.71 (s, 1H), 6.60 (d, J = 2.4 Hz,1H), 6.49 (dd, J = 8.3, 2.4 Hz, 1H), 6.28 (t, J = 5.8 Hz, 1H), 5.28 (d, J =5.7 Hz, 2H), 4.67 (q, J = 7.1 Hz, 2H), 4.52 (d, J = 6.2 Hz, 2H), 4.19 (s,3H), 3.89 (s, 3H), 3.74 (s, 3H), 2.23 (s, 3H), 1.42 (t, J = 7.1 Hz, 3H)。
步骤3:合成N-[(2,4-二甲氧基苯基)甲基]-4-[2-(1-乙基-3-甲基-1H-吡唑-5-基)-5-甲酰基-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AA-3)
向含有N-[(2,4-二甲氧基苯基)甲基]-4-[2-(1-乙基-3-甲基-1H-吡唑-5-基)-5-(羟基甲基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AA-2) (30 mg,0.055 mmol)的2-打兰瓶中加入DCM (0.274 mL, 0.2 M),随后加入戴斯-马丁氧化剂(47mg, 0.11 mmol, 2当量)。将反应在室温搅拌2小时。LCMS分析表明完全转化成具有期望产物质量的新峰。然后将反应混合物用DCM稀释并转移至分液漏斗。将有机相用1份饱和NaHCO3水溶液洗涤,干燥(Na2SO4),过滤,并在真空下浓缩以提供为白色固体的标题化合物N-[(2,4-二甲氧基苯基)甲基]-4-[2-(1-乙基-3-甲基-1H-吡唑-5-基)-5-甲酰基-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AA-3),将其不经进一步纯化地用于下一步。
步骤4:合成N-[(2,4-二甲氧基苯基)甲基]-4-{2-(1-乙基-3-甲基-1H-吡唑-5-基)-5-[(甲基氨基)甲基]-1,3-噻唑-4-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AA-4)
向含有溶解在DCE (0.275 mL, 0.2 M)中的N-[(2,4-二甲氧基苯基)甲基]-4-[2-(1-乙基-3-甲基-1H-吡唑-5-基)-5-甲酰基-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AA-3) (30 mg, 0.055 mmol)的2-打兰瓶中加入MeNH2 (17 mg, 0.55mmol, 10当量)和AcOH (9.91 mg, 0.165 mmol, 3当量)在THF (0.275 mL)中的混合溶液。将该反应在40℃加热20 min,在该时间中白色沉淀物形成。给瓶中装入300 μL加热至50℃的DCE并搅拌1.5 h。LCMS分析表明具有亚胺的期望质量的新峰的形成。在该阶段,将反应在真空下浓缩并将残余物悬浮于MeOH (0.275 mL, 0.2 mL)中。向溶液中加入NaBH4 (3.12mg, 0.0825 mmol, 1.5当量)。将反应在室温搅拌1.5 h。然后将溶液浓缩以提供标题化合物N-[(2,4-二甲氧基苯基)甲基]-4-{2-(1-乙基-3-甲基-1H-吡唑-5-基)-5-[(甲基氨基)甲基]-1,3-噻唑-4-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AA-4),将其不经进一步纯化地用于下一步。
步骤5:合成4-{2-(1-乙基-3-甲基-1H-吡唑-5-基)-5-[(甲基氨基)甲基]-1,3-噻唑-4-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例AA01)
向含有N-[(2,4-二甲氧基苯基)甲基]-4-{2-(1-乙基-3-甲基-1H-吡唑-5-基)-5-[(甲基氨基)甲基]-1,3-噻唑-4-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AA-4)的2-打兰瓶中加入TFA (0.55 mL, 0.1 M),这产生浅黄色均质溶液。将反应搅拌30 min,在此时LCMS分析没有揭示具有期望产物质量的峰。然后将反应加热至50℃和搅拌过夜。LCMS分析没有显示具有期望产物质量的峰和显著起始原料剩余。将反应混合物在真空下浓缩以提供白色固体。将固体溶解在HFIP (200 μL)中并加入MsOH (20 μL)。将反应在50℃加热4 h。LCMS分析表明起始原料的消耗和具有期望产物质量的新峰的形成。将反应在真空下浓缩并将粗残余物通过制备型HPLC纯化以提供标题化合物4-{2-(1-乙基-3-甲基-1H-吡唑-5-基)-5-[(甲基氨基)甲基]-1,3-噻唑-4-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例AA01) (4.4 mg, 19%)。LCMS [M+H] = 411.4观测值。
实施例AB01: 根据方案AB制备4-{3-[1-乙基-3-(羟基甲基)-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺。
方案AB
Figure 927107DEST_PATH_IMAGE164
步骤1:合成4-(3-{3-[(苄氧基)甲基]-1-乙基-1H-吡唑-5-基}-1-甲基-1H-1,2,4-三唑-5-基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(AB-1)
将含有3-{3-[(苄氧基)甲基]-1-乙基-1H-吡唑-5-基}-1-甲基-1H-1,2,4-三唑(Int-TG-20) (55 mg, 0.19 mmol)、4-溴-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(HG-12d) (50 mg, 0.19 mmol)、Pd(OAc)2 (4.2 mg, 0.019 mmol)、二(1-金刚烷基)-正丁基膦(13 mg, 0.037 mmol)、新戊酸(5.7 mg, 0.056 mmol)和碳酸钾(77 mg, 0.56 mmol)的密封瓶用N2净化。加入甲苯(1.9 mL)并将混合物用N2鼓泡。将反应在120℃加热和搅拌过夜。将反应冷却至室温并穿过硅藻土过滤。将滤液在真空下浓缩并通过快速色谱法(12 gSiO2, Isco, 0-10% MeOH/DCM)纯化以提供标题化合物4-(3-{3-[(苄氧基)甲基]-1-乙基-1H-吡唑-5-基}-1-甲基-1H-1,2,4-三唑-5-基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(AB-1) (60 mg, 66%)。LCMS [M+H] = 487观测值;1H NMR (400 MHz, DMSO-d6) δ ppm8.83 (d, J = 0.98 Hz, 1 H) 8.61 (d, J=0.86 Hz, 1 H) 7.37 (d, J = 4.52 Hz, 4H) 7.26 -7.33 (m, 1 H) 6.91 (s, 1 H) 4.69 (q, J = 7.17 Hz, 2 H) 4.56 -4.58(m, 5 H) 4.53 (s, 2 H) 4.25 (s, 3 H) 3.99 (s, 3 H) 1.45 (t, J = 7.15 Hz, 3H)。
步骤2:合成4-{3-[1-乙基-3-(羟基甲基)-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(AB-2)
向4-(3-{3-[(苄氧基)甲基]-1-乙基-1H-吡唑-5-基}-1-甲基-1H-1,2,4-三唑-5-基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(AB-1) (60 mg, 0.12 mmol)在甲醇(3mL)和HCl (4 N在二氧杂环己烷中, 300 μL, 1.2 mmol)中的溶液中加入10% Pd/C (15mg)。将烧瓶抽真空并用N2气体(3x)、然后用H2气体(3x)回填。将反应在1大气压H2气体下在50℃加热和搅拌过夜。将溶液穿过玻璃纤维过滤器过滤。将滤液在真空下浓缩以提供标题化合物4-{3-[1-乙基-3-(羟基甲基)-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(AB-2),将其不经进一步纯化地用于下一步。LCMS[M+H] = 397观测值。
步骤3:合成4-{3-[1-乙基-3-(羟基甲基)-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(实施例AB01)
向含有4-{3-[1-乙基-3-(羟基甲基)-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(AB-2) (24 mg, 0.06 mmol)的瓶中加入7 N的NH3在甲醇中的溶液(1 mL)。将反应混合物在80℃加热0.5 h。将瓶从加热取下并将其逐渐冷却至室温。将溶液在真空下浓缩。将残余物在MeOH中制浆并将固体通过过滤进行收集以提供为白色固体的标题化合物4-{3-[1-乙基-3-(羟基甲基)-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酸甲酯(实施例AB01) (10mg, 43%)。LCMS [M+H] = 382观测值;1H NMR (400 MHz, DMSO-d6) δ ppm 8.75 (s, 1 H)8.51 (s, 1 H) 8.03 (br s, 1 H) 7.91 (br s, 1 H) 6.82 (s, 1 H) 5.07 (t, J =5.87 Hz, 1 H) 4.66 (q, J = 7.09 Hz, 2 H) 4.43 -4.52 (m, 5 H) 4.23 (s, 3 H)1.44 (t, J = 7.09 Hz, 3 H)。
实施例AC01: 根据方案AC制备4-[3-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺。
Figure 945879DEST_PATH_IMAGE165
步骤1:合成4-{5-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AC-1)
给压力烧瓶装入3-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑(Int-TG-21) (4.80 g, 11.90 mmol)、4-溴-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Int-HG-17) (5.79 g, 14.3mmol)、K2CO3 (4.93 g, 35.7 mmol)、Pd(OAc)2 (801 mg, 3.57 mmol)、cataCXium A (2.56g, 7.14 mmol)、CuI (906 mg, 4.76 mmol)、PivOH (729 mg, 7.14 mmol)和甲苯(80 mL)。将得到的暗红色混合物用N2脱气5次并加热至120℃。将混合物在120℃搅拌18h。LCMS分析表明起始原料的消耗和具有期望产物质量的新峰的形成。将得到的黄色悬浮液穿过硅藻土过滤并将滤液在真空下浓缩。将粗残余物用EtOAc (50 mL)制浆30分钟并将固体滤出。将滤液在真空下浓缩。将粗残余物通过柱色谱法(120g SiO2, 15% EtOAc/石油醚至100%EtOAc)纯化以提供为黄色固体的标题化合物4-{5-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AC-1) (4.47 g, 51%)。1H NMR (400 MHz, 氯仿-d) δ = 9.04 (s, 1H), 8.40 (s, 1H), 7.83 (br t, J = 5.9 Hz, 1H), 7.19 -7.12(m, 5H), 7.09 (d, J = 8.3 Hz, 1H), 6.65 (d, J = 8.7 Hz, 2H), 6.53 -6.45 (m,2H), 6.37 (dd, J = 2.4, 8.4 Hz, 1H), 6.40 -6.33 (m, 1H), 6.30 (d, J = 2.3 Hz,1H), 5.80 (s, 2H), 4.78 (s, 2H), 4.50 (d, J = 6.0 Hz, 2H), 4.22 (s, 3H), 3.92(q, J = 7.1 Hz, 2H), 3.77 (s, 3H), 3.64 (s, 3H), 3.60 (s, 3H), 2.27 (s, 3H),1.08 (t, J = 7.2 Hz, 3H)。
步骤2:合成4-[3-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例AC01)
将4-{5-[4-(苄氧基)-1-乙基-3-甲基-1H-吡唑-5-基]-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AC-1) (4.51 g, 6.197 mmol)在TFA (84mL)中的溶液加热至80℃和搅拌4h。LCMS分析表明起始原料的消耗和具有期望产物质量的新峰的形成。将紫色溶液在真空下浓缩。将粗残余物在EtOAc(100 mL)中制浆1.5 h和过滤。将固体用EtOAc (20 mLx5)洗涤。将滤饼收集并用MeOH (50 mL)制浆0.5 h。将悬浮液过滤并将固体收集,随后在高真空下干燥以提供白色固体(1.72 g)。NMR分析指示杂质仍然存在。将白色固体在DCM/MeOH (1:5, 50mL)中制浆0.5 h和过滤。将滤饼收集并在高真空下干燥以提供为白色固体的标题化合物4-[3-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例AC01) (1.59 g)。(C16H18N9O2)的m/z(ESI+), 368.0 (M+H)+观测值;1H NMR (400 MHz, DMSO-d6) δ = 15.35 (s, 1H), 8.87 (br s, 1H), 8.81 (s,1H), 8.47 (s, 1H), 7.99 (s, 1H), 7.90 (br s, 1H), 4.46 (q, J = 6.8 Hz, 2H),4.23 (s, 3H), 2.15 (s, 3H), 1.36 (t, J = 7.0 Hz, 3H)。
根据用于合成4-[3-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1H-1,2,4-三唑-5-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例AC01)的方法(方案AC-1)合成实施例AC02,本领域技术人员能够认识到对所示例的程序的非关键变化或置换。
Figure 810935DEST_PATH_IMAGE166
实施例AD01: 根据方案AD制备4-{3-[1-(3-羟基丙基)-3-甲基-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺。
方案AD
Figure 573355DEST_PATH_IMAGE167
步骤1:合成乙酸3-{5-[5-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-1-甲基-1H-1,2,4-三唑-3-基]-3-甲基-1H-吡唑-1-基}丙酯(AD-1)。
将乙酸3-[3-甲基-5-(1-甲基-1H-1,2,4-三唑-3-基)-1H-吡唑-1-基]丙酯(Int-TG-22) (666 mg, 1.64 mmol, 1.1当量)、4-溴-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Int-HG-17) (404.5 mg, 1.536 mmol)、K2CO3 (667 mg,4.82 mmol, 3当量)、Pd(OAc)2 (69.0 mg, 0.307 mmol, 0.2当量)、PivOH (62.8 mg,0.615 mmol, 0.3当量)和P(n-Bu)Ad2 (165 mg, 0.461 mmol, 0.4当量)在甲苯(10 mL,0.15 M)中的暗红色悬浮液用N2鼓泡2 min,然后密封,然后在120℃搅拌16小时。将反应混合物与另一批粗制物质合并,并将固体滤出。将滤饼用10:1 DCM/MeOH (10 mL)洗涤。将滤液在真空中浓缩并将粗残余物通过快速柱色谱法(ISCO, 硅胶: 20 g, MeOH, 0%至5%在乙酸乙酯中)纯化以提供为黄色固体的标题化合物乙酸3-{5-[5-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-1-甲基-1H-1,2,4-三唑-3-基]-3-甲基-1H-吡唑-1-基}丙酯(AD-1) (538 mg, 55%)。(C29H34N9O5)的m/z(ESI+), 588.1(M+H)+ 观测值。
步骤2:合成N-[(2,4-二甲氧基苯基)甲基]-4-{3-[1-(3-羟基丙基)-3-甲基-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AD-2)。
在室温向乙酸3-{5-[5-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-1-甲基-1H-1,2,4-三唑-3-基]-3-甲基-1H-吡唑-1-基}丙酯(AD-1) (538.7 mg, 0.92 mmol)在MeOH (15 mL, 0.06 M)中的溶液中加入K2CO3 (380mg, 2.75 mmol)并将混合物搅拌16小时。将反应混合物用4.0 N HCl/MeOH中和。将混合物在真空中浓缩并将粗残余物通过快速柱色谱法(ISCO, 硅胶: 25 g, MeOH/DCM,从0%至5%)纯化以提供为黄色固体的标题化合物N-[(2,4-二甲氧基苯基)甲基]-4-{3-[1-(3-羟基丙基)-3-甲基-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AD-2) (397.7 mg, 79%)。(C27H32N9O4)的m/z(ESI+), 546.1 (M+H)+ 观测值。
步骤3:合成4-{3-[1-(3-羟基丙基)-3-甲基-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例AD01)。
N-[(2,4-二甲氧基苯基)甲基]-4-{3-[1-(3-羟基丙基)-3-甲基-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AD-2)(97.7 mg, 0.11 mmol)在HFIP (1 mL, 0.1 M)中的浅黄色溶液中加入MsOH (155 mg,1.61 mmol, 1.5当量)。将反应混合物在室温搅拌16小时。将反应混合物用NH4OH水溶液中和并将混合物在真空中浓缩。将粗残余物通过制备型HPLC (Boston Prime C18150x25mmx5 μM柱, 25mL/min, 20%-43% MeCN/含有0.225% 甲酸的H2O, 5次进样)纯化以得到标题化合物。将该物质进行通过SFC的进一步纯化以提供为白色固体的标题化合物4-{3-[1-(3-羟基丙基)-3-甲基-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例AD01) (14 mg, 34%)。(C18H22N9O2)的m/z(ESI+),396.1 (M+H)+ 观测值;1H NMR (400 MHz, DMSO-d6) δ = 8.80 (s, 1H), 8.52 (s, 1H),8.05 (br s, 1H), 7.94 (br s, 1H), 6.66 (s, 1H), 4.67 (t, J = 7.3 Hz, 2H),4.56 (t, J = 5.1 Hz, 1H), 4.45 (s, 3H), 4.23 (s, 3H), 3.50 -3.43 (m, 2H),2.22 (s, 3H), 1.98 (quin, J = 6.7 Hz, 2H)。
根据用于合成4-{3-[1-(3-羟基丙基)-3-甲基-1H-吡唑-5-基]-1-甲基-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例AD01)的方法(方案AD)合成实施例AD02,本领域技术人员能够认识到对所示例的程序的非关键变化或置换。
Figure 489358DEST_PATH_IMAGE168
实施例AE01: 根据方案AE制备4-[2-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺。
方案AE
Figure 413452DEST_PATH_IMAGE169
步骤1:合成4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-{1-乙基-4-[(4-甲氧基苯基)甲氧基]-3-甲基-1H-吡唑-5-基}-1,3-噁唑-5-甲酸(AE-1)。
向4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-{1-乙基-4-[(4-甲氧基苯基)甲氧基]-3-甲基-1H-吡唑-5-基}-1,3-噁唑-5-甲酸乙酯(U’-1) (190mg, 0.268mmol)在EtOH (5mL)和H2O (0.5mL)中的黄色悬浮液中加入LiOH·H2O (22.5mg, 0.535mmol)。将得到的淡黄色悬浮液加热至40℃和搅拌16小时。将得到的淡黄色悬浮液浓缩至干燥。将粗残余物溶解在水(10 mL)中并转移至含有EtOAc的分液漏斗。分离各相,并将水相用EtOAc (3x10 mL)萃取。将水层用12N HCl酸化以达到pH 5-6,这导致黄色沉淀物的形成。将悬浮液过滤,将固体分离,并进一步在真空下干燥以提供为黄色固体的标题化合物4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-{1-乙基-4-[(4-甲氧基苯基)甲氧基]-3-甲基-1H-吡唑-5-基}-1,3-噁唑-5-甲酸(AE-1) (120 mg, 65%)。(C35H35N7O8)的m/z(ESI+), 682.1 (M+H)+ 观测值。
步骤2:合成N-[(2,4-二甲氧基苯基)甲基]-4-(2-{1-乙基-4-[(4-甲氧基苯基)甲氧基]-3-甲基-1H-吡唑-5-基}-1,3-噁唑-4-基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AE-2)。
向4-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-2-{1-乙基-4-[(4-甲氧基苯基)甲氧基]-3-甲基-1H-吡唑-5-基}-1,3-噁唑-5-甲酸(AE-1) (115.3mg, 0.1691mmol)在DMSO (1.00 mL)中的黄色悬浮液中加入Ag2CO3(5.2mg, 0.019mmol)和AcOH (1.8mg, 0.030mmol)。将得到的混合物加热至60℃和搅拌16小时。LCMS分析指示起始原料尚未完全耗尽,但是,观察到具有期望产物的新峰。在该阶段,加入Ag2CO3 (22.3mg, 0.0809mmol)和AcOH (7.6mg, 0.13mmol)的另外等分试样。将得到的混合物在80℃搅拌2小时。将反应从加热取下并将其冷却至室温。将溶液用DCM (5 mL)稀释并穿过硅藻土过滤。将滤液转移至分液漏斗,并用饱和NaHCO3 (5 mL)和水(3x5 mL)洗涤。将合并的水性洗液用DCM (2x10 mL)反萃取。将合并的有机萃取物经无水Na2SO4干燥,过滤并在真空下浓缩以提供为黄色固体的标题化合物N-[(2,4-二甲氧基苯基)甲基]-4-(2-{1-乙基-4-[(4-甲氧基苯基)甲氧基]-3-甲基-1H-吡唑-5-基}-1,3-噁唑-4-基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AE-2) (85 mg)。将该物质不经进一步纯化地用于下一步。(C34H35N7O6)的m/z(ESI+), 638.2 (M+H)+ 观测值。
步骤3:合成4-[2-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例AE01)。
N-[(2,4-二甲氧基苯基)甲基]-4-(2-{1-乙基-4-[(4-甲氧基苯基)甲氧基]-3-甲基-1H-吡唑-5-基}-1,3-噁唑-4-基)-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AE-2)(85mg, 0.13mmol)在HFIP (1.50mL)中的黄色悬浮液中加入MsOH (128mg, 1.33mmol)。将得到的混合物加热至50℃并在该温度搅拌2小时。形成紫色溶液,且LCMS分析表明起始原料已经被消耗。将得到的混合物浓缩至干燥以产生粗残余物。将残余物溶解在DCM (10 mL)中,用NH3/MeOH碱化以达到pH 7-8,并在真空下浓缩。将粗残余物通过快速柱色谱法(12gSiO2, Combi-Flash, 0-5% MeOH/EtOAc)纯化以提供产物(39 mg),微量杂质仍然存在。将物质进一步进行通过prep-TLC (DCM/MeOH=10:1)的纯化以提供为白色固体的标题化合物4-[2-(1-乙基-4-羟基-3-甲基-1H-吡唑-5-基)-1,3-噁唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例AE01) (22mg, 在3步中22%)。(C17H17N7O3)的m/z(ESI+), 368.3(M+H)+ 观测值;1H NMR (400 MHz, DMSO-d6) δ = 9.34 (s, 1H), 8.84 (s, 1H), 8.75(d, J = 0.8 Hz, 1H), 8.54 (br d, J = 2.5 Hz, 1H), 8.29 (s, 1H), 7.83 (br d, J= 2.3 Hz, 1H), 4.56 (q, J = 7.0 Hz, 2H), 4.18 (s, 3H), 2.15 (s, 3H), 1.41 (t,J = 7.2 Hz, 3H)。
实施例AF01: 根据方案AF-1制备4-{5-(氨基甲基)-2-[1-(3-羟基丙基)-3-甲基-1H-吡唑-5-基]-1,3-噻唑-4-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺。
方案AF-1
Figure 47696DEST_PATH_IMAGE170
步骤1:合成2,4-二溴-5-({[叔丁基(二甲基)甲硅烷基]氧基}甲基)-1,3-噻唑(AF-2)。
向圆底烧瓶中加入(2,4-二溴-1,3-噻唑-5-基)甲醇(AF-1) (1.3 g, 4.8 mmol)、叔丁基二甲基氯硅烷(1.1 g, 7.3 mmol)、咪唑(660 mg, 7.3 mmol)和DMF (16 mL)。将反应在室温搅拌2小时。在该阶段,将反应浓缩并将粗残余物通过快速柱色谱法(40 g SiO2,Isco, 0-10% EtOAc/庚烷)纯化以提供为淡黄色油的标题化合物2,4-二溴-5-({[叔丁基(二甲基)甲硅烷基]氧基}甲基)-1,3-噻唑(AF-2) (1.7 g, 90%)。(C10H17Br2NOSSi)的m/z(ESI+), 230 (M-2Br+H)+ 观测值;1H NMR (400 MHz, DMSO-d 6) δ ppm 4.78 (s, 2 H)0.88 (s, 9 H) 0.10 (s, 6 H)。
步骤2:合成4-溴-5-({[叔丁基(二甲基)甲硅烷基]氧基}甲基)-2-(3-甲基-1-{3-[(氧杂环己烷-2-基)氧基]丙基}-1H-吡唑-5-基)-1,3-噻唑(AF-3)。
向3-甲基-1-{3-[(氧杂环己烷-2-基)氧基]丙基}-1H-吡唑(Int-TG-24) (100mg, 0.45 mmol)在THF (3.0 mL)中的冷却的(-25至-30℃丙酮/足够干冰以控制温度)溶液中逐滴加入正丁基锂(2.3 M在己烷中,210 μL, 0.49 mmol)。20 min以后,加入氯化锌(1.9M在MeTHF中, 280 μL, 0.54 mmol)并除去冰浴。30 min以后,加入2,4-二溴-5-({[叔丁基(二甲基)甲硅烷基]氧基}甲基)-1,3-噻唑(AF-2) (190 mg, 0.49 mmol)在THF (0.50 mL)中的溶液,随后加入四(三苯基膦)钯(0) (52 mg, 0.045 mmol)。将反应在室温搅拌过夜,然后在真空下浓缩。将粗残余物通过快速柱色谱法(12 g SiO2, Isco, 0-15% EtOAc/庚烷)纯化以提供标题化合物4-溴-5-({[叔丁基(二甲基)甲硅烷基]氧基}甲基)-2-(3-甲基-1-{3-[(氧杂环己烷-2-基)氧基]丙基}-1H-吡唑-5-基)-1,3-噻唑(AF-3) (69 mg, 29%)。(C22H36BrN3O3SSi)的m/z (ESI+), 530 (M+H)+ 观测值;1H NMR (400 MHz, DMSO-d 6) δ ppm6.64 (s, 1 H) 4.84 (s, 2 H) 4.48 -4.61 (m, 2 H) 4.42 -4.48 (m, 1 H) 3.49 -3.67 (m, 2 H) 3.32 -3.40 (m, 1 H) 3.21 -3.27 (m, 1 H) 2.18 (s, 3 H) 2.00(quin, J=6.60 Hz, 2 H) 1.62 -1.73 (m, 1 H) 1.48 -1.58 (m, 1 H) 1.34 -1.47 (m,4 H) 0.90 (s, 9 H) 0.12 (s, 6 H)。
步骤3:合成4-[5-({[叔丁基(二甲基)甲硅烷基]氧基}甲基)-2-(3-甲基-1-{3-[(氧杂环己烷-2-基)氧基]丙基}-1H-吡唑-5-基)-1,3-噻唑-4-基]-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AF-4)。
给圆底烧瓶装入4-溴-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Int-HG-17) (56 mg, 0.14 mmol)、B2Pin2 (67 mg, 0.27 mmol)、碳酸钾(84 mg, 0.40 mmol)和(t-Bu3P)-Pd-G4 (6.8 mg, 0.013 mmol)并用氮气净化。向烧瓶中加入4-溴-5-({[叔丁基(二甲基)甲硅烷基]氧基}甲基)-2-(3-甲基-1-{3-[(氧杂环己烷-2-基)氧基]丙基}-1H-吡唑-5-基)-1,3-噻唑(AF-3) (70 mg, 0.13 mmol)在甲苯(1.3 mL)中的溶液,随后加入水(0.26 mL)。将反应混合物用氮气鼓泡并在80℃加热过夜。将烧瓶从加热取下并将其冷却至室温。将溶液用EtOAc稀释,并用水和盐水洗涤。将有机相经Na2SO4干燥,过滤并在真空下浓缩。将粗残余物通过快速柱色谱法(4 g SiO2, Isco, 0-50% EtOAc/庚烷)纯化以提供标题化合物4-[5-({[叔丁基(二甲基)甲硅烷基]氧基}甲基)-2-(3-甲基-1-{3-[(氧杂环己烷-2-基)氧基]丙基}-1H-吡唑-5-基)-1,3-噻唑-4-基]-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AF-4) (28 mg, 27%)。(C39H53N7O6SSi)的m/z (ESI+), 776 (M+H)+ 观测值;1H NMR (400 MHz, DMSO-d 6) δ ppm8.72 (d, J=0.98 Hz, 1 H) 8.61 (t, J=6.24 Hz, 1 H) 8.34 (d, J=0.86 Hz, 1 H)7.15 (d, J=8.44 Hz, 1 H) 6.71 (s, 1 H) 6.59 (d, J=2.32 Hz, 1 H) 6.46 (dd, J=8.38, 2.38 Hz, 1 H) 5.51 (s, 2 H) 4.77 (t, J=6.97 Hz, 2 H) 4.52 (d, J=6.24Hz, 2 H) 4.19 (s, 3 H) 3.84 (s, 4 H) 3.73 (s, 3 H) 3.54 -3.60 (m, 2 H) 3.21 -3.26 (m, 2 H) 2.23 (s, 3 H) 2.04 -2.12 (m, 2 H) 1.29 -1.44 (m, 4 H) 1.14 -1.20 (m, 2 H) 0.88 (s, 9 H) 0.02 (s, 6 H)。
步骤4:合成N-[(2,4-二甲氧基苯基)甲基]-4-[5-(羟基甲基)-2-(3-甲基-1-{3-[(氧杂环己烷-2-基)氧基]丙基}-1H-吡唑-5-基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AF-5)。
向4-[5-({[叔丁基(二甲基)甲硅烷基]氧基}甲基)-2-(3-甲基-1-{3-[(氧杂环己烷-2-基)氧基]丙基}-1H-吡唑-5-基)-1,3-噻唑-4-基]-N-[(3,4-二甲基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AF-4) (50 mg, 0.64 mmol)在THF (650 μL)中的溶液中加入四丁基氟化铵(1 N在THF中,97 μL, 0.097 mmol)。将反应在室温搅拌1小时。将反应在真空下浓缩并将粗残余物通过快速柱色谱法(4 g SiO2, Isco, 0-200% EtOAc/庚烷)纯化以提供标题化合物N-[(2,4-二甲氧基苯基)甲基]-4-[5-(羟基甲基)-2-(3-甲基-1-{3-[(氧杂环己烷-2-基)氧基]丙基}-1H-吡唑-5-基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AF-5) (31 mg, 73%)。(C33H39N7O6S)的m/z (ESI+), 662 (M+H)+观测值。
步骤5:合成N-[(2,4-二甲氧基苯基)甲基]-4-[5-甲酰基-2-(3-甲基-1-{3-[(氧杂环己烷-2-基)氧基]丙基}-1H-吡唑-5-基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AF-6)。
N-[(3,4-二甲基苯基)甲基]-4-[5-(羟基甲基)-2-(3-甲基-1-{3-[(氧杂环己烷-2-基)氧基]丙基}-1H-吡唑-5-基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AF-5) (31 mg, 0.047)在二氯甲烷(1.0 mL)中的冷却的(冰水浴)溶液中加入Des-Martin氧化剂(30 mg, 0.070 mmol)并除去冰浴。将反应在室温搅拌2小时。在该阶段,将反应用EtOAc稀释,并用水和盐水洗涤。将有机相经Na2SO4干燥,过滤,并在真空下浓缩以提供标题化合物N-[(2,4-二甲氧基苯基)甲基]-4-[5-甲酰基-2-(3-甲基-1-{3-[(氧杂环己烷-2-基)氧基]丙基}-1H-吡唑-5-基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AF-6)。将该物质不经进一步纯化用于下一步。(C33H37N7O6S)的m/z(ESI+),660 (M+H)+ 观测值。
步骤6:合成N-[(2,4-二甲氧基苯基)甲基]-1-甲基-4-[2-(3-甲基-1-{3-[(氧杂环己烷-2-基)氧基]丙基}-1H-吡唑-5-基)-5-{(E)-[(2-甲基丙烷-2-亚磺酰基)亚氨基]甲基}-1,3-噻唑-4-基]-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AF-7)。
向含有粗制N-[(2,4-二甲氧基苯基)甲基]-4-[5-甲酰基-2-(3-甲基-1-{3-[(氧杂环己烷-2-基)氧基]丙基}-1H-吡唑-5-基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AF-6)的烧瓶中加入叔丁基亚磺酰胺(11 mg, 0.094 mmol)、碳酸铯(301mg, 0.094 mmol)和二氯甲烷(1.0 mL)。将反应在室温搅拌6小时。LCMS分析表明痕量的具有期望产物质量的峰已经形成。在该阶段,加入THF (1.0 mL)并将反应加热至50℃过夜。在该阶段,加入另外2当量的叔丁基亚磺酰胺和碳酸铯。3小时以后,将反应穿过硅藻土过滤并在真空下浓缩以提供标题化合物N-[(2,4-二甲氧基苯基)甲基]-1-甲基-4-[2-(3-甲基-1-{3-[(氧杂环己烷-2-基)氧基]丙基}-1H-吡唑-5-基)-5-{(E)-[(2-甲基丙烷-2-亚磺酰基)亚氨基]甲基}-1,3-噻唑-4-基]-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AF-7)。将该物质不经进一步纯化地用于下一步。(C37H46N8O6S2)的m/z(ESI+), 763 (M+H)+ 观测值。
步骤7:合成N-[(2,4-二甲氧基苯基)甲基]-1-甲基-4-[2-(3-甲基-1-{3-[(氧杂环己烷-2-基)氧基]丙基}-1H-吡唑-5-基)-5-{[(2-甲基丙烷-2-亚磺酰基)氨基]甲基}-1,3-噻唑-4-基]-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AF-8)。
向含有粗制N-[(2,4-二甲氧基苯基)甲基]-1-甲基-4-[2-(3-甲基-1-{3-[(氧杂环己烷-2-基)氧基]丙基}-1H-吡唑-5-基)-5-{(E)-[(2-甲基丙烷-2-亚磺酰基)亚氨基]甲基}-1,3-噻唑-4-基]-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AF-7)的烧瓶中加入THF (1.0mL)和硼氢化钠(5.3 mg, 0.14 mmol)。将反应在室温搅拌30分钟。在该阶段,将反应用甲醇淬灭并在真空下浓缩以提供标题化合物N-[(2,4-二甲氧基苯基)甲基]-1-甲基-4-[2-(3-甲基-1-{3-[(氧杂环己烷-2-基)氧基]丙基}-1H-吡唑-5-基)-5-{[(2-甲基丙烷-2-亚磺酰基)氨基]甲基}-1,3-噻唑-4-基]-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AF-8)。将该物质不经进一步纯化地用于下一步。(C37H48N8O6S2)的m/z(ESI+), 765 (M+H)+ 观测值。
步骤8:合成4-{5-(氨基甲基)-2-[1-(3-羟基丙基)-3-甲基-1H-吡唑-5-基]-1,3-噻唑-4-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例AF01)。
向含有粗制N-[(2,4-二甲氧基苯基)甲基]-1-甲基-4-[2-(3-甲基-1-{3-[(氧杂环己烷-2-基)氧基]丙基}-1H-吡唑-5-基)-5-{[(2-甲基丙烷-2-亚磺酰基)氨基]甲基}-1,3-噻唑-4-基]-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AF-8)的烧瓶中加入MeOH (0.5 mL)和TFA (0.5 mL)。将反应在50℃加热和搅拌过夜。在该阶段,将反应在真空下浓缩并将粗残余物溶解在纯净三氟乙酸中,并加热至60℃保持20 min。然后将溶液在真空下浓缩。将粗残余物溶解在MeOH中并加入1 N NaOH (100 μL)。将混合物在室温搅拌15分钟,然后在真空下浓缩。将粗残余物通过制备型HPLC (Phenomenex Gemini C18 5 μmx150x21.2 mm柱, 在环境温度, 10-100% MeCN/含有0.1% 氢氧化铵的水, 40 mL/min流速)纯化以提供标题化合物4-{5-(氨基甲基)-2-[1-(3-羟基丙基)-3-甲基-1H-吡唑-5-基]-1,3-噻唑-4-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例AF01) (6 mg, 在4步中30%)。(C19H22N8O2S)的m/z(ESI+), 427 (M+H)+ 观测值;1H NMR (400 MHz, DMSO-d 6) δ ppm 1H NMR (600 MHz, 溶剂) δ ppm 8.70 (s, 1 H) 8.32 (s, 1 H) 6.66 (s, 1 H) 4.68 -4.73 (m, 2 H) 4.46-4.55 (m, 2 H) 4.19 (s, 3 H) 3.40 -3.43 (m, 2 H) 2.23 (s, 3 H) 1.91 -2.07 (m,2 H)。
根据用于合成4-{5-(氨基甲基)-2-[1-(3-羟基丙基)-3-甲基-1H-吡唑-5-基]-1,3-噻唑-4-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例AF01)的方法(方案AF-1)合成实施例AF02,本领域技术人员能够认识到对所示例的程序的非关键变化或置换。
Figure 82648DEST_PATH_IMAGE171
实施例AG01: 根据方案AG制备4-[2-(1-乙基-3-羟基-4-甲基-1H-吡咯-2-基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺
方案AG
Figure 102425DEST_PATH_IMAGE172
步骤1:合成2-[3-(苄氧基)-1-乙基-4-甲基-1H-吡咯-2-基]-4-溴-1,3-噻唑(AG-2)。
将3-(苄氧基)-1-乙基-4-甲基-1H-吡咯(TG-13a) (200mg, 0.925mmol)在无水THF (5mL)中的无色溶液用干冰-EtOH浴冷却至-65℃。向溶液中逐滴加入n-BuLi (90mg,0.56 mL, 1.4mmol)以维持内部温度低于-60℃。将得到的黄色溶液搅拌30 min。然后逐滴加入ZnCl2 (190mg, 0.70 mL, 1.4mmol, 2.5 M在2-Me THF中)以维持内部温度低于-60℃。形成淡黄色浆液。将反应在该温度搅拌10 min,然后除去冰浴并将反应在搅拌下逐渐温热至室温30分钟。形成无色溶液。然后加入2,4-二溴-1,3-噻唑(AG-1) (247mg, 1.02mmol)和Pd(PPh3)4 (107mg, 0.0925mmol)。将得到的混合物用N2冲洗2 min,密封,且在80℃加热16小时。将得到的黄色溶液在真空下浓缩并将粗残余物通过快速柱色谱法(12g SiO2,Combi-Flash, 5%-20% EtOAc/石油醚)纯化以提供为黄色固体的标题化合物2-[3-(苄氧基)-1-乙基-4-甲基-1H-吡咯-2-基]-4-溴-1,3-噻唑(AG-2) (174 mg, 49%)。1H NMR (400MHz, 氯仿-d) δ = 7.50 -7.33 (m, 5H), 7.23 (s, 1H), 4.97 (s, 2H), 4.63 (q, J =7.1 Hz, 2H), 2.23 (s, 3H), 1.43 (t, J = 7.2 Hz, 3H)。
步骤2:合成4-{2-[3-(苄氧基)-1-乙基-4-甲基-1H-吡咯-2-基]-1,3-噻唑-4-基}-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AG-3)。
给烧瓶装入2-[3-(苄氧基)-1-乙基-4-甲基-1H-吡咯-2-基]-4-溴-1,3-噻唑(AG-2) (170mg, 0.449mmol)、4-溴-N-[(3,4-二甲基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Int-HG-17) (182mg, 0.449mmol)、K3PO4 (286mg, 1.35mmol)、B2Pin2(228mg, 0.899mmol)、(CataCXium A)-Pd-G3 (32.7mg, 0.0449mmol)和甲苯(2.50mL)、H2O(0.50mL)。将得到的混合物用N2冲洗2 min,密封,且在80℃加热16小时。将得到的混合物用EtOAc (10 mL)稀释,经无水Na2SO4干燥,穿过硅藻土过滤,并在真空下浓缩。将粗残余物通过快速柱色谱法(20g SiO2, Combi-Flash, 15%-100% EtOAc/石油醚)纯化以提供为黄色胶质的标题化合物4-{2-[3-(苄氧基)-1-乙基-4-甲基-1H-吡咯-2-基]-1,3-噻唑-4-基}-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AG-3) (126mg, 45%)。(C34H34N6O4S)的m/z(ESI+), 624.1 (M+H)+ 观测值。
步骤3:合成4-[2-(1-乙基-3-羟基-4-甲基-1H-吡咯-2-基)-1,3-噻唑-4-基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例AG01)。
向4-{2-[3-(苄氧基)-1-乙基-4-甲基-1H-吡咯-2-基]-1,3-噻唑-4-基}-N-[(2,4-二甲氧基苯基)甲基]-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(AG-3) (126mg,0.202mmol)在HFIP (2.00mL)中的混合物中加入MsOH (194mg, 2.02mmol)。将得到的混合物在50℃加热2.5小时。将得到的混合物在真空下浓缩。将粗残余物用DMF (2 mL)稀释,用NH4OH (在H2O中的28%溶液)中和,并通过制备型HPLC (YMC Triart C18 250x50mmx7 μm柱,8%-48% MeCN/含有0.05% NH4OH的H2O, 60 mL/min流速, 2次进样)纯化。将含有产物的级分冻干以提供为白色固体的标题化合物(18.46 mg, 23%)。(C18H18N6O2S)的m/z (ESI+),384.1 (M+H)+ 观测值;1H NMR (400 MHz, DMSO-d6) δ = 9.24 (s, 1H), 8.74 (d, J =1.0 Hz, 1H), 8.63 (br s, 1H), 8.32 (d, J = 0.8 Hz, 1H), 7.79 (br d, J = 2.0Hz, 1H), 4.75 (q, J = 7.0 Hz, 2H), 4.19 (s, 3H), 2.18 (s, 3H), 1.42 (t, J =7.2 Hz, 3H)。
实施例AH01: 根据方案AH制备4-{3-[1-(3-氨基丙基)-4-羟基-3-甲基-1H-吡唑-5-基]-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺。
方案AH
Figure 462999DEST_PATH_IMAGE173
步骤1:合成{3-[4-(苄氧基)-5-{5-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基]丙基}氨基甲酸叔丁酯(AH-1)。
给瓶中装入{3-[4-(苄氧基)-5-溴-3-甲基-1H-吡唑-1-基]丙基}氨基甲酸叔丁酯(Int-TG-31) (121mg, 0.285mmol)、N-[(2,4-二甲氧基苯基)甲基]-4-{4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(Int-HG-17)(176mg, 0.342mmol)、Pd(OAc)2 (7.1mg, 0.032mmol)、PPh3 (15.0mg, 0.0570mmol)、K2CO3(117.0mg, 0.847mmol)、CuI(Xantphos) (67mg, 0.0.087mmol)和甲苯(5mL)。将反应混合物在室温脱气约1分钟,然后在120℃加热16小时。LCMS分析表明起始原料仍然剩余,因此将反应在氮气氛下在120℃搅拌另外48小时。在该阶段,将反应过滤并在真空中浓缩。将粗残余物通过prep-TLC (100% EtOAc)纯化以提供为无色胶质的标题化合物{3-[4-(苄氧基)-5-{5-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基]丙基}氨基甲酸叔丁酯(AH-1) (85 mg, 35%)。将该物质不经进一步纯化地用于下一步。(C46H52N10O7)的m/z(ESI+), 857.4 (M+H)+ 观测值。
步骤2:合成4-{3-[1-(3-氨基丙基)-4-羟基-3-甲基-1H-吡唑-5-基]-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例AH01)。
将{3-[4-(苄氧基)-5-{5-(6-{[(2,4-二甲氧基苯基)甲基]氨基甲酰基}-1-甲基-1H-吡唑并[4,3-c]吡啶-4-基)-4-[(4-甲氧基苯基)甲基]-4H-1,2,4-三唑-3-基}-3-甲基-1H-吡唑-1-基]丙基}氨基甲酸叔丁酯(AH-1) (85mg, 0.099mmol)在TFA (2mL)中的浅黄色溶液在80℃搅拌2小时。LCMS分析表明起始原料的消耗。将反应在真空中浓缩并将粗残余物通过制备型HPLC (Waters Xbridge BEH C18 100x30mmx10 μm柱, 0%-37% MeCN/含有0.05% NH4OH的H2O, 25 mL/min, 4次进样)纯化。将含有产物的级分收集并冻干以提供为白色TFA盐的标题化合物4-{3-[1-(3-氨基丙基)-4-羟基-3-甲基-1H-吡唑-5-基]-1H-1,2,4-三唑-5-基}-1-甲基-1H-吡唑并[4,3-c]吡啶-6-甲酰胺(实施例AH01) (22.34 mg, 57%)。(C17H20N10O2)的m/z(ESI+), 397.3 (M+H)+ 观测值;1H NMR (400 MHz, DMSO-d6) δ =15.38 (s, 1H), 8.86 (br d, J = 1.7 Hz, 1H), 8.83 (s, 1H), 8.49 (s, 1H), 8.11(s, 1H), 7.89 (br s, 1H), 7.65 (br s, 3H), 4.53 (br t, J = 6.4 Hz, 2H), 4.23(s, 3H), 2.86 -2.71 (m, 2H), 2.15 (s, 3H), 2.12 -2.03 (m, 2H);19F NMR (377MHz, DMSO-d6) δ = -73.45 (s, 1F)。
根据与本文描述的那些类似的合成途径和合成方法制备实施例YY01-YY35,本领域技术人员能够认识到对所示例的程序的非关键变化或置换。
Figure 53381DEST_PATH_IMAGE174
Figure 157603DEST_PATH_IMAGE175
Figure 48199DEST_PATH_IMAGE176
Figure 314095DEST_PATH_IMAGE177
Figure 906619DEST_PATH_IMAGE178
Figure 548953DEST_PATH_IMAGE179
Figure 28476DEST_PATH_IMAGE180
Figure 730853DEST_PATH_IMAGE181
Figure 561405DEST_PATH_IMAGE182
Figure 7430DEST_PATH_IMAGE183
根据与本文描述的那些类似的合成途径和合成方法制备实施例ZZZ001-ZZZ132,本领域技术人员能够认识到对所示例的程序的非关键变化或置换。
Figure 856306DEST_PATH_IMAGE184
Figure 729585DEST_PATH_IMAGE185
Figure 516275DEST_PATH_IMAGE186
Figure 765991DEST_PATH_IMAGE187
Figure 485685DEST_PATH_IMAGE188
Figure 264285DEST_PATH_IMAGE189
Figure 53119DEST_PATH_IMAGE190
Figure DEST_PATH_IMAGE191
Figure 309788DEST_PATH_IMAGE192
Figure 883988DEST_PATH_IMAGE193
Figure 833490DEST_PATH_IMAGE194
Figure DEST_PATH_IMAGE195
Figure 109619DEST_PATH_IMAGE196
Figure 169979DEST_PATH_IMAGE197
Figure 864266DEST_PATH_IMAGE198
Figure 984668DEST_PATH_IMAGE199
Figure 498826DEST_PATH_IMAGE200
Figure 612145DEST_PATH_IMAGE201
Figure 160938DEST_PATH_IMAGE202
Figure 717821DEST_PATH_IMAGE203
Figure 719275DEST_PATH_IMAGE204
Figure 387017DEST_PATH_IMAGE205
Figure 790316DEST_PATH_IMAGE206
Figure 518101DEST_PATH_IMAGE207
Figure 996399DEST_PATH_IMAGE208
Figure 733411DEST_PATH_IMAGE209
Figure 725637DEST_PATH_IMAGE210
Figure 624323DEST_PATH_IMAGE211
Figure 334790DEST_PATH_IMAGE212
Figure 859181DEST_PATH_IMAGE213
Figure 971494DEST_PATH_IMAGE214
Figure 306660DEST_PATH_IMAGE215
生物学实施例
生化测定方法
闪烁迫近测定(SPA)竞争性结合
开发了一种放射性配体结合测定以确定化合物相互作用是否与氚标记形式的天然STING配体3H-环状鸟嘌呤(2',5')单磷酸腺嘌呤(3',5')单磷酸(3H-cGAMP)竞争。STING构建体(WT和H232R)由具有N端和C端截短的残基155-341构成;除去了N-端跨膜结构域(1-154)以及C端尾巴(342-379)。用大肠杆菌生物素连接酶(BirA)酶促实现高特异性的N端生物素化,并包含高亲和力生物素化肽AviTagTM。将100 nM STING蛋白在150 mM NaCl、25 mMHepes (pH 7.5)、0.1 mM EDTA、1 mM DTT、0.005% (v/v)吐温-20、1% (v/v) DMSO中固定化在20 μg链霉亲和素聚乙烯基甲苯(SA-PVT)珠上。加入100 nM 3H-cGAMP和化合物并在室温下达到平衡(20 min)。从100 μM起始浓度以3倍稀释系列测试化合物,并相对于完全阻断3H-cGAMP结合的阳性对照化合物和阴性对照DMSO标准化。用Cheng-Prusoff方程式(Cheng& Prusoff, Biochemical Pharmacology, 22 (1973), 第3099-3108页)由IC50确定竞争性结合的KI。在Cheng-Prusoff方程式中使用的3H-cGAMP的KD值根据经验确定为1 nM(对于WTSTING)和750 nM(对于R232H STING)。在表1、表1A和表1B中提供了SPA竞争性结合数据。
表1:
Figure 238844DEST_PATH_IMAGE216
Figure 317659DEST_PATH_IMAGE217
Figure 284478DEST_PATH_IMAGE218
*如此指示的化合物如上文实施例部分所述制备为位置异构体混合物,并照此在体外生物学测定中进行测试。
表1A:
Figure 56125DEST_PATH_IMAGE219
表1B:
Figure 741184DEST_PATH_IMAGE220
IRF3的磷酸化:THP-1细胞ELISA
STING活化导致TBK1的募集和IRF3转录因子的磷酸化,然后诱导I型干扰素。在添加了2 mM L-谷氨酰胺、10% 胎牛血清和0.5% Pen-Strep的RPMI培养基中培养THP-1细胞(InvivoGen)。将104个细胞接种在96-孔板中并在37℃、5% CO2下温育过夜。将培养基中的化合物系列稀释的化合物(最终0.5% DMSO)添加给细胞并温育另外3小时。温育后,将平板以2000 rpm离心5 min。然后将细胞在100 μl RIPA缓冲液中裂解并在室温涡旋30分钟。然后将25 μl裂解物转移到先前已用小鼠抗-人IRF-3捕获抗体(BD Pharmigen)包被的透明聚苯乙烯High Bind平板中,并将其在4℃温育16小时。然后将平板洗涤并与兔抗-磷酸化IRF3检测抗体(Cell Signaling Technologies)在室温温育1.5小时。最后,加入HRP-连接的二抗(Cell Signaling Technologies)保持30 min,然后使用Glo Substrate试剂(R&DSystems)产生发光信号。使用Perkin-Elmer Envision微量培养板读数器测量信号。使用已知将磷酸化IRF3信号最大化的阳性对照STING激动剂和阴性对照DMSO,将数据标准化为“%作用”。在表2和表2A中提供了IRF3磷酸化数据。
表2:
Figure 607378DEST_PATH_IMAGE221
Figure 694282DEST_PATH_IMAGE222
*如此指示的化合物如上文实施例部分所述制备为位置异构体混合物,并照此在体外生物学测定中进行测试。
表2A:
Figure 371251DEST_PATH_IMAGE223
干扰素-β诱导: THP-1 ISG报道细胞系
THP-1 Lucia™ ISG细胞(InvivoGen)表达分泌的萤光素酶“Lucia”报道基因,其在由5个干扰素应答元件构成的IRF诱导型复合启动子的控制下。在添加了2 mM L-谷氨酰胺、10% 胎牛血清和0.5% Pen-Strep的RPMI培养基中培养THP-1 Lucia™ ISG细胞。存在潮霉素B和Zeocin以维持稳定的转染。将104个细胞接种在96-孔板中,并在37℃、5% CO2下温育过夜。加入50 μL的在培养基中系列稀释的化合物(最终0.5% DMSO),并温育另外24小时。温育后,将平板以2000 rpm离心10 min。将每个孔的50 μl细胞培养物上清液转移至白色不透明96-孔板中。在25 mL无内毒素的水中制备一袋QUANTI-Luc™(InvivoGen)粉末,并将100μL制备的温QUANTI-Luc溶液添加到每个含有上清液的孔中。使用Perkin-Elmer Envision微量培养板读数器测量发光信号。使用已知将萤光素酶信号最大化的阳性对照STING激动剂和阴性对照DMSO,将数据标准化为“%作用”。在表3和表3A中提供了干扰素-β诱导数据。
表3:
Figure 543607DEST_PATH_IMAGE224
Figure 964224DEST_PATH_IMAGE225
Figure 905635DEST_PATH_IMAGE226
*如此指示的化合物如上文实施例部分所述制备为位置异构体混合物,并照此在体外生物学测定中进行测试。
表3A:
Figure 753505DEST_PATH_IMAGE227
PBMC磷酸化IRF3和IFNβ测定
从新鲜人全血的leukopak制品(StemCell Technologies, Cambridge, MA, 美国)分离外周血单核细胞(PBMC)。将血液与等体积的含有2% 胎牛血清(FBS)的磷酸盐缓冲盐水(PBS) (PBS + 2% FBS)混合,铺在LymphoprepTM密度梯度介质的顶部,并离心分离PBMC。将PBMC在标准细胞冷冻保存培养基中冷冻并在根据需要用于实验之前解冻。将经证实为STING野生型的单个人供体用于本文所述的所有研究。
对于均相时间分辨荧光(HTRF) IFNβ测定,将400k PBMC/孔接种在RPMI培养基中,并在37℃、5% CO2下温育过夜。将化合物在培养基中连续稀释(最终0.5% DMSO),并与PMBC一起温育另外4小时。温育后,将平板在1500 x g离心5 min,收集培养基用于IFNβHTRF测定(Product Reference 62HIFNBPEG, Cisbio US, Bedford, MA, 美国)。将14 μL培养基与6μL抗体反应试剂(Cisbio US, Bedford, MA, 美国)混合,然后与测定的抗体以2:1比率合并。将抗体与培养基在4℃温育过夜,并在BMG Pherastar微量培养板读数器上测量FRET信号(比率665nm/620nm)。使用已知将IFNβ信号最大化的阳性对照STING激动剂和DMSO的阴性对照,将数据标准化为“%作用”。结果显示在下表4中。
对于磷酸化IRF3测定,将400k PBMC/孔接种在RPMI培养基中,并在37℃、5% CO2温育过夜。将化合物在培养基中连续稀释(最终0.5% DMSO),并与PMBC一起温育另外4小时。然后将细胞在50 μl RIPA缓冲液中裂解,并在4℃涡旋30分钟。然后将25 μl裂解物转移到先前已用小鼠抗-人IRF-3捕获抗体(BD Pharmigen)包被的透明聚苯乙烯High Bind平板中,并将其在4℃温育16小时。然后将平板洗涤并与兔抗-磷酸化IRF3检测抗体(CellSignaling Technologies)在室温温育1.5小时。最后,加入HRP-连接的二抗(CellSignaling Technologies)保持30 min,然后使用Glo Substrate试剂(R&D Systems)产生发光信号。使用Perkin-Elmer Envision微量培养板读数器测量信号。使用已知将磷酸化IRF3信号最大化的阳性对照STING激动剂和阴性对照DMSO,将数据标准化为“%作用”。结果显示在下表4中。
表4:
Figure 413157DEST_PATH_IMAGE228

Claims (31)

1.式(I)的化合物或其药学上可接受的盐:
Figure DEST_PATH_IMAGE001
其中
在环中的每个
Figure DEST_PATH_IMAGE002
独立地代表5元杂芳族环中的两个共轭双键和6元芳族或杂芳族环中的三个共轭双键;
W1选自CR11和N;
X1选自CR1、C(R1)2、N、NR1、O和S;
X2选自CR2、C(R2)2、N、NR2、O和S;
X3选自CR3、C(R3)2、N、NR3、O和S;
其中X1、X2和X3中的两个或三个独立地选自N、NR1、NR2、NR3、O和S;且
其中X1、X2和X3中的至少一个选自N、NR1、NR2和NR3
Y1选自N、NR4、O、S、CR4和C(R4)2
Y2选自N、NR5、O、S、CR5和C(R5)2
Y3选自N、NR6、O、S、CR6和C(R6)2
Y4选自C和N;
Y5选自C和N;
其中Y1、Y2和Y3中的至少一个且不超过两个独立地选自N、NR4、NR5和NR6
其中当Y4或Y5中的一个是N时,Y4或Y5中的另一个是C;
Z1选自C和N;
Z2选自N、NR8和CR8
Z3选自N、NR9和CR9
Z4选自N、NR10和CR10
Z5选自N、NR7和CR7
其中Z1、Z2、Z3、Z4和Z5中的两个或三个独立地选自N、NR7、NR8、NR9和NR10
每个R1独立地选自H、C1-C8烷基、C1-C8亚烷基-NRR和C1-C8亚烷基-C(O)OR;
每个R2独立地选自H、C1-C8烷基、C1-C8亚烷基-NRR、C1-C8亚烷基-C(O)OR、C1-C8亚烷基-OR和C1-C8亚烷基-O-P(O)(OH)2
每个R3独立地选自H、C1-C8烷基、C1-C8亚烷基-NRR、C1-C8亚烷基-C(O)OR和C1-C8亚烷基-O-P(O)(OH)2
每个R4独立地选自H、-OR、-NRR、任选地被一个或两个-OR取代的C1-C8烷基、C1-C8亚烷基-NRR、-C(O)OR、C1-C8亚烷基-C(O)OR、3-10元杂环、任选地被一个3-10元杂环取代的C1-C8亚烷基-3-10元杂环、(C3-C10)-环烃基和C1-C8亚烷基-(C3-C10)-环烃基;
每个R5独立地选自H、OR、C1-C8烷基、-NRR、C1-C8亚烷基-NRR、-C(O)OR、C1-C8亚烷基-C(O)OR、3-10元杂环、任选地被一个3-10元杂环取代的C1-C8亚烷基-3-10元杂环和C1-C8亚烷基-OR;
每个R6是H;
R7选自H、卤素、羟基或NH2
R8选自H、任选地被一个或两个-NRR或-OR取代的C1-C8烷基、C1-C8亚烷基-C(O)OR和C1-C8亚烷基-SO2R;
R9是H;
R10选自H、任选地被一个或两个-OR取代的C1-C8烷基和卤素;
R11选自H、C1-C8烷基、-OR和卤素;
R12是-C(O)N(R)2或-C(O)NHR;
R13是H;
每个R独立地选自H或C1-C8烷基或C1-C8卤代烷基,或两个R与它们所结合的一个或多个原子一起连接形成-(C3-C10)环烃基或3-10元杂环,其中所述3-10元杂环含有一个、两个或三个选自N、O和S的原子;且
其中,当两个R与它们所结合的一个或多个原子一起连接形成-(C3-C10)环烃基或3-10元杂环时,所述-(C3-C10)环烃基或3-10元杂环任选地被一个或多个取代基取代,所述取代基各自独立地选自C1-C8烷基、羟基、C1-C8烷氧基、-(C3-C10)环烃基、3-10元杂环、卤素和氰基。
2.根据权利要求1所述的化合物或其药学上可接受的盐,其中每个R1独立地是H。
3.根据权利要求1或2中的任一项所述的化合物或其药学上可接受的盐,其中每个R2独立地选自H、CH3、CH2NH2、CH(NH2)CH3和CH2NH(CH3)。
4.根据权利要求1-3中的任一项所述的化合物或其药学上可接受的盐,其中每个R3独立地选自H和CH2OPO(OH)2
5.根据权利要求1-4中的任一项所述的化合物或其药学上可接受的盐,其中每个R4独立地选自CH3、CH2CH3、(CH2)3OH、CH2CH(CH2OH)2、(CH2)2N(CH3)CH2CF3、(CH2)2-(N-吗啉基)、(CH2)3-(N-吗啉基)、CH(CH3)CH2-(N-吗啉基)、(CH2)2-(N-2,6-二甲基吗啉基)、(CH2)2-(N-2,5-二甲基-吗啉基)、(CH2)2-(N-8-氧杂-3-氮杂双环[3.2.1]辛烷-3-基)、(CH2)2-(N-4-氰基哌啶基)、(CH2)2-(N-4,4-二氟-哌啶基)、(CH2)2-(N-2-氟氮杂环丁基)、CH2-(2-氮杂环丁基-N-四氢吡喃基)和CH2C(O)OH。
6.根据权利要求1-5中的任一项所述的化合物或其药学上可接受的盐,其中每个R5独立地选自H、CH3、CH2CH3、(CH2)2N(CH3)(CH2CF3)、(CH2)2-(N-吗啉基)、(CH2)3-(N-吗啉基)、(CH2)2-(N-2,6-二甲基吗啉基)和CH2-(2-氮杂环丁基-N-四氢吡喃基)。
7.根据权利要求1-6中的任一项所述的化合物或其药学上可接受的盐,其中R7选自H、氟、氯、OH和NH2
8.根据权利要求1-7中的任一项所述的化合物或其药学上可接受的盐,其中R8选自CH3、CH2CH3、(CH2)3NH2、(CH2)2OH、(CH2)3OH和(CH2)2COOH。
9.根据权利要求1-8中的任一项所述的化合物或其药学上可接受的盐,其中R10选自CH3和CH2OH。
10.根据权利要求1-9中的任一项所述的化合物或其药学上可接受的盐,其中R11选自H和氟。
11.根据权利要求1-10中的任一项所述的化合物或其药学上可接受的盐,其中R12是-CONH2
12.根据权利要求1-11中的任一项所述的化合物或其药学上可接受的盐,其中每个R独立地选自H、CH3、CH2FCF3
13.式(II)的根据权利要求1-12中的任一项所述的化合物
Figure DEST_PATH_IMAGE003
或其药学上可接受的盐。
14.式(VII)的根据权利要求1-13中的任一项所述的化合物
Figure DEST_PATH_IMAGE004
或其药学上可接受的盐。
15.式(VIID)的根据权利要求1-14中的任一项所述的化合物
Figure DEST_PATH_IMAGE005
或其药学上可接受的盐。
16.根据权利要求1-15中的任一项所述的化合物或其药学上可接受的盐,其中所述化合物或其药学上可接受的盐竞争性地结合STING,其体外Ki小于0.750 μM,优选小于约0.500 μM,更优选小于约0.250 μM,且甚至更优选小于约0.100 μM。
17.根据权利要求1-16中的任一项所述的化合物或其药学上可接受的盐,其中所述化合物或其药学上可接受的盐活化STING,当通过监测IRF3的磷酸化来测量时,其体外EC50为约100 μM或更小,优选约50 μm或更小,更优选约20 μM或更小,且最优选约10 μm或更小。
18.根据权利要求1-17中的任一项所述的化合物或其药学上可接受的盐,其中所述化合物或其药学上可接受的盐活化STING,当通过监测干扰素-β诱导来测量时,其体外EC50为约100 μM或更小,优选约50 μm或更小,更优选约20 μM或更小,且最优选约10 μm或更小。
19.化合物,其选自:
Figure DEST_PATH_IMAGE006
Figure DEST_PATH_IMAGE007
Figure DEST_PATH_IMAGE008
Figure DEST_PATH_IMAGE009
Figure DEST_PATH_IMAGE010
Figure DEST_PATH_IMAGE011
或其药学上可接受的盐。
20.药物组合物,其包含根据权利要求1-19中的任一项所述的化合物或其药学上可接受的盐和药学上可接受的载体。
21.药物组合物,其包含根据权利要求1-19中的任一项所述的化合物或其药学上可接受的盐,其中所述化合物是抗体-药物缀合物的组分。
22.药物组合物,其包含根据权利要求1-19中的任一项所述的化合物或其药学上可接受的盐,其中所述化合物是基于颗粒的递送系统的组分。
23.治疗哺乳动物中的异常细胞生长的方法,所述方法包括给所述哺乳动物施用治疗有效量的根据权利要求1-19中的任一项所述的化合物或其药学上可接受的盐。
24.根据权利要求23所述的方法,其中所述异常细胞生长是癌症。
25.根据权利要求24所述的方法,其中所述癌症是肺癌、骨癌、胰腺癌、皮肤癌、头或颈癌、皮肤或眼内黑素瘤、子宫癌、卵巢癌、直肠癌、肛门区域的癌症、胃癌、结肠癌、乳腺癌、子宫癌、输卵管癌、子宫内膜癌、子宫颈癌、阴道癌、外阴癌、霍奇金病、食管癌、小肠癌、内分泌系统的癌症、甲状腺癌、甲状旁腺癌、肾上腺癌、软组织肉瘤、尿道癌、阴茎癌、前列腺癌、慢性或急性白血病、淋巴细胞性淋巴瘤、膀胱癌、肾或输尿管的癌症、肾细胞癌、肾盂癌、中枢神经系统(CNS)的肿瘤、原发性CNS淋巴瘤、脊髓轴肿瘤、脑干神经胶质瘤或垂体腺瘤。
26.根据权利要求25所述的方法,其中所述癌症是膀胱癌。
27.根据权利要求23-26中的任一项所述的方法,其中所述哺乳动物是人。
28.根据权利要求23-27中的任一项所述的方法,所述方法包括施用另外的治疗剂。
29.根据权利要求28所述的方法,其中所述另外的治疗剂选自干扰素、CTLA-4途径拮抗剂、抗-4-1BB抗体、抗-PD-1抗体和抗-PD-L1抗体。
30.上调哺乳动物中STING活性的方法,所述方法包括给所述哺乳动物施用有效量的根据权利要求1-19中的任一项所述的化合物或其药学上可接受的盐的步骤。
31.增加哺乳动物中干扰素-β水平的方法,所述方法包括给所述哺乳动物施用有效量的根据权利要求1-19中的任一项所述的化合物或其药学上可接受的盐的步骤。
CN202080081716.2A 2019-09-25 2020-09-22 Sting (干扰素基因刺激剂)的多杂环调节剂 Pending CN114728946A (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201962905532P 2019-09-25 2019-09-25
US62/905532 2019-09-25
US202063021216P 2020-05-07 2020-05-07
US63/021216 2020-05-07
US202063069831P 2020-08-25 2020-08-25
US63/069831 2020-08-25
PCT/IB2020/058854 WO2021059136A1 (en) 2019-09-25 2020-09-22 Polyheterocyclic modulators of sting (stimulator of interferon genes)

Publications (1)

Publication Number Publication Date
CN114728946A true CN114728946A (zh) 2022-07-08

Family

ID=72744805

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080081716.2A Pending CN114728946A (zh) 2019-09-25 2020-09-22 Sting (干扰素基因刺激剂)的多杂环调节剂

Country Status (19)

Country Link
US (1) US20210087180A1 (zh)
EP (1) EP4034534A1 (zh)
JP (1) JP2022550297A (zh)
KR (1) KR20220070254A (zh)
CN (1) CN114728946A (zh)
AU (1) AU2020355343B2 (zh)
BR (1) BR112022005463A2 (zh)
CA (1) CA3155569A1 (zh)
CL (1) CL2022000736A1 (zh)
CO (1) CO2022003321A2 (zh)
CR (1) CR20220126A (zh)
EC (1) ECSP22022958A (zh)
GE (1) GEP20237572B (zh)
IL (1) IL291650A (zh)
MX (1) MX2022003633A (zh)
PE (1) PE20221784A1 (zh)
TW (2) TW202244043A (zh)
UY (1) UY38892A (zh)
WO (1) WO2021059136A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115884970A (zh) * 2020-09-24 2023-03-31 中国医药研究开发中心有限公司 芳基甲酰胺类化合物及其制备方法和医药用途
US11964978B2 (en) * 2021-03-18 2024-04-23 Pfizer Inc. Modulators of STING (stimulator of interferon genes)
US20220388986A1 (en) * 2021-04-29 2022-12-08 Boehringer Ingelheim International Gmbh Heterocyclic compounds capable of activating sting
WO2023222644A1 (en) * 2022-05-18 2023-11-23 F. Hoffmann-La Roche Ag Pyrazole derivatives as sting agonists

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0166088B1 (ko) 1990-01-23 1999-01-15 . 수용해도가 증가된 시클로덱스트린 유도체 및 이의 용도
US5376645A (en) 1990-01-23 1994-12-27 University Of Kansas Derivatives of cyclodextrins exhibiting enhanced aqueous solubility and the use thereof
GB9711643D0 (en) 1997-06-05 1997-07-30 Janssen Pharmaceutica Nv Glass thermoplastic systems
AR076601A1 (es) 2009-05-21 2011-06-22 Chlorion Pharma Inc Pirimidinas como agentes terapeuticos
RU2710717C2 (ru) 2010-09-09 2020-01-10 Пфайзер Инк. Молекулы, связывающиеся с 4-1ВВ
TWI595006B (zh) 2014-12-09 2017-08-11 禮納特神經系統科學公司 抗pd-1抗體類和使用彼等之方法
EP3408294A1 (en) 2016-01-25 2018-12-05 Pfizer Inc. Combination of an ox40 agonist and a 4-1bb agonist monoclonal antibody for treating cancer
JP2019510802A (ja) * 2016-04-07 2019-04-18 グラクソスミスクライン、インテレクチュアル、プロパティー、ディベロップメント、リミテッドGlaxosmithkline Intellectual Property Development Limited タンパク質調節物質として有用な複素環アミド
BR112019027127A2 (pt) * 2017-06-22 2020-07-07 Curadev Pharma Limited moduladores de sting humano de molécula pequena
JP2021513976A (ja) * 2018-02-16 2021-06-03 ユーシービー バイオファルマ エスアールエル 医薬活性を有する6,5複素二環式環誘導体
TWI741268B (zh) * 2018-03-15 2021-10-01 美商輝瑞股份有限公司 干擾素基因刺激劑(sting)的環戊烷為主體之調節劑

Also Published As

Publication number Publication date
MX2022003633A (es) 2022-04-19
CL2022000736A1 (es) 2023-01-06
ECSP22022958A (es) 2023-03-31
TW202126650A (zh) 2021-07-16
EP4034534A1 (en) 2022-08-03
WO2021059136A1 (en) 2021-04-01
PE20221784A1 (es) 2022-11-22
BR112022005463A2 (pt) 2022-06-14
IL291650A (en) 2022-05-01
AU2020355343A1 (en) 2022-04-14
CA3155569A1 (en) 2021-04-01
AU2020355343B2 (en) 2023-11-30
UY38892A (es) 2021-04-30
JP2022550297A (ja) 2022-12-01
GEP20237572B (en) 2023-11-27
TW202244043A (zh) 2022-11-16
US20210087180A1 (en) 2021-03-25
TWI757889B (zh) 2022-03-11
KR20220070254A (ko) 2022-05-30
CR20220126A (es) 2022-06-07
CO2022003321A2 (es) 2022-04-19

Similar Documents

Publication Publication Date Title
AU2021200639B2 (en) PD-1/PD-L1 inhibitors
TWI820081B (zh) Cbl-b抑制劑及其使用方法
AU2020355343B2 (en) Polyheterocyclic modulators of STING (stimulator of interferon genes)
KR102317169B1 (ko) 2-(모르폴린-4-일)-1,7-나프티리딘
ES2708211T3 (es) 3-amino-1,5,6,7-tetrahidro-4H-indol-4-onas
KR102352022B1 (ko) Pge2 수용체 조절제로서의 n-치환된 인돌 유도체
KR102071095B1 (ko) 지질 합성의 헤테로사이클릭 조절인자
BR112019027127A2 (pt) moduladores de sting humano de molécula pequena
JP2019194250A (ja) Atrキナーゼのインヒビターとして有用なピラジン誘導体
IL268469A (en) 2-Troaril-3-oxo-3,2-dihydropyridazine-4-carboxamides for the treatment of cancer
EA037112B1 (ru) Ингибиторы tgf-
AU2018269666B2 (en) Phenyl derivatives as PGE2 receptor modulators
KR20140117651A (ko) 이소퀴놀린 및 나프티리딘 유도체
JP2020520354A (ja) ピリミジン誘導体
KR20230146606A (ko) Sting (인터페론 유전자의 자극인자)의 조정제
EA046412B1 (ru) Полигетероциклические модуляторы sting (стимулятор генов интерферона)
WO2018174266A1 (ja) 新規ピリドンカルボン酸誘導体又はその塩
TW202322808A (zh) 治療疾病之化合物、組合物及方法
KR20240038624A (ko) Sting (인터페론 유전자의 자극인자)의 조정제
JP2024041730A (ja) Sting(インターフェロン遺伝子刺激因子)のモジュレーター
TW202102495A (zh) Eed及prc2調節劑之巨環唑并吡啶衍生物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40079907

Country of ref document: HK