CN114704927B - 一种空调器和空调器室内机水泵控制方法 - Google Patents

一种空调器和空调器室内机水泵控制方法 Download PDF

Info

Publication number
CN114704927B
CN114704927B CN202111666473.1A CN202111666473A CN114704927B CN 114704927 B CN114704927 B CN 114704927B CN 202111666473 A CN202111666473 A CN 202111666473A CN 114704927 B CN114704927 B CN 114704927B
Authority
CN
China
Prior art keywords
humidity
indoor
water pump
interval
alarm signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111666473.1A
Other languages
English (en)
Other versions
CN114704927A (zh
Inventor
武署光
刘伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisense Air Conditioning Co Ltd
Original Assignee
Hisense Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisense Air Conditioning Co Ltd filed Critical Hisense Air Conditioning Co Ltd
Priority to CN202111666473.1A priority Critical patent/CN114704927B/zh
Publication of CN114704927A publication Critical patent/CN114704927A/zh
Application granted granted Critical
Publication of CN114704927B publication Critical patent/CN114704927B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明公开了一种空调器和空调器室内机水泵控制方法,所述空调包括冷媒循环回路、室外热交换器和室内热交换器、室内机水泵、室内机浮球开关、室内环境湿度传感器及控制器,控制器被配置为:基于所述室内湿度确定所述室内湿度所处的湿度区间,所述湿度区间包括高湿度区间、中湿度区间或低湿度区间;在所述空调器运行于制冷模式下,基于所述湿度区间及所述室内机浮球开关的报警信号控制水泵的开启状态,从而实现对水泵的智能控制,避免了能源浪费。

Description

一种空调器和空调器室内机水泵控制方法
技术领域
本申请涉及空调器技术领域,更具体地,涉及一种空调器和空调器室内机水泵控制方法。
背景技术
轻商空调安装场景比较复杂,多数产品需要暗装。如果出现漏水等问题,则有可能要破坏房间装修进行维修,因此,在这种背景下,产品质量可靠性尤为重要。带室内机水泵的轻商空调,为防止浮球开关失效,保证室内机冷凝水一直有效排到室外,一般情况下按照制冷模式下水泵一直开启工作进行设计。由于在一定情况下,室内机并没有冷凝水,而水泵却一直开启工作,这就造成了能源浪费。
因此如何提供一种空调器及空调器室内机水泵控制方法,用以对水泵进行动态控制,降低能源浪费,是目前有待解决的技术问题。
发明内容
本发明提供一种空调器,用以解决现有技术中在一定情况下,室内机并没有冷凝水,而水泵却一直开启工作,造成能源浪费的技术问题。
该空调器包括:
冷媒循环回路,使冷媒在压缩机、冷凝器、膨胀阀和蒸发器组成回路中进行循环;
室外热交换器和室内热交换器,其中,一个为冷凝器进行工作,另一个为蒸发器进行工作;
室内机水泵;
室内机浮球开关,用于通过与冷凝水液面的相对高差关系生成报警信号;
室内环境湿度传感器,用于检测室内湿度;
控制器,被配置为:
基于所述室内湿度确定所述室内湿度所处的湿度区间,所述湿度区间包括高湿度区间、中湿度区间或低湿度区间;
在所述空调器运行于制冷模式下,基于所述湿度区间及所述室内机浮球开关的报警信号控制水泵的开启状态。
在本申请一些实施例中,所述控制器具体被配置为:
判断所述室内湿度是否处于高湿度区间;
若是,则开启所述水泵;
若否,则判断所述室内湿度是否处于中湿度区间。
在本申请一些实施例中,所述控制器具体被配置为:
当所述室内湿度不处于中湿度区间且所述浮球开关未发出水位高位报警信号,则关闭所述水泵;
当所述室内湿度不处于中湿度区间且所述浮球开关发出水位高位报警信号,则开启所述水泵;
当所述室内湿度处于中湿度区间,则判断所述压缩机频率是否处于高湿度区间。
在本申请一些实施例中,所述控制器具体被配置为:
当所述压缩机频率处于高湿度区间,则开启所述水泵;
当所述压缩机频率不处于所述高湿度区间,则判断所述浮球开关是否发出水位高位报警信号。
在本申请一些实施例中,所述控制器具体被配置为:
当所述压缩机频率不处于所述高湿度区间且所述浮球开关发出水位高位报警信号,则开启所述水泵;
当所述压缩机频率不处于所述高湿度区间且所述浮球开关未发出水位高位报警信号,则关闭所述水泵。
相应的,本发明还提出了一种空调器室内机水泵控制方法,应用于包括冷媒循环回路、室外热交换器和室内热交换器、室内机水泵、室内机浮球开关、室内环境湿度传感器及控制器的空调器中,所述方法包括:
基于所述室内湿度确定所述室内湿度所处的湿度区间,所述湿度区间包括高湿度区间、中湿度区间或低湿度区间;
在所述空调器运行于制冷模式下,基于所述湿度区间及所述室内机浮球开关的报警信号控制水泵的开启状态。
在本申请一些实施例中,在所述空调器运行于制冷模式下,基于所述湿度区间及所述室内机浮球开关的报警信号控制水泵的开启状态,具体为:
判断所述室内湿度是否处于高湿度区间;
若是,则开启所述水泵;
若否,则判断所述室内湿度是否处于中湿度区间。
在本申请一些实施例中,若否,则判断所述室内湿度是否处于中湿度区间,具体为:
当所述室内湿度不处于中湿度区间且所述浮球开关未发出水位高位报警信号,则关闭所述水泵;
当所述室内湿度不处于中湿度区间且所述浮球开关发出水位高位报警信号,则开启所述水泵;
当所述室内湿度处于中湿度区间,则判断所述压缩机频率是否处于高湿度区间。
在本申请一些实施例中,当所述室内湿度处于中湿度区间,则判断所述压缩机频率是否处于高湿度区间,具体为:
当所述压缩机频率处于高湿度区间,则开启所述水泵;
当所述压缩机频率不处于所述高湿度区间,则判断所述浮球开关是否发出水位高位报警信号。
在本申请一些实施例中,当所述压缩机频率不处于所述高湿度区间,则判断所述浮球开关是否发出水位高位报警信号,具体为:
当所述压缩机频率不处于所述高湿度区间且所述浮球开关发出水位高位报警信号,则开启所述水泵;
当所述压缩机频率不处于所述高湿度区间且所述浮球开关未发出水位高位报警信号,则关闭所述水泵。
通过应用以上技术方案,在包括冷媒循环回路、室外热交换器和室内热交换器、室内机水泵、室内机浮球开关、室内环境湿度传感器及控制器的空调器中,控制器被配置为:基于所述室内湿度确定所述室内湿度所处的湿度区间,所述湿度区间包括高湿度区间、中湿度区间或低湿度区间;在所述空调器运行于制冷模式下,基于所述湿度区间及所述室内机浮球开关的报警信号控制水泵的开启状态,从而实现对水泵的智能控制,避免了能源浪费。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明实施例提出的一种空调器的结构示意图;
图2示出了本发明实施例提出的一种空调器室内机水泵控制方法的流程示意图;
图3示出了本发明另一实施例提出的一种空调器室内机水泵控制方法的流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请中空调器通过使用压缩机、冷凝器、膨胀阀和蒸发器来执行制冷循环。制冷循环包括一系列过程,涉及压缩、冷凝、膨胀和蒸发,并向已被调节和热交换的空气供应制冷剂。
压缩机压缩处于高温高压状态的制冷剂气体并排出压缩后的制冷剂气体,所排出的制冷剂气体流入冷凝器,冷凝器将压缩后的制冷剂冷凝成液相,并且热量通过冷凝过程释放到周围环境。
膨胀阀使在冷凝器中冷凝的高温高压状态的液相制冷剂膨胀为低压的液相制冷剂。蒸发器蒸发在膨胀阀中膨胀的制冷剂,并使处于低温低压状态的制冷剂气体返回到压缩机。蒸发器可以通过利用制冷剂的蒸发的潜热与待冷却的材料进行热交换来实现制冷效果。在整个循环中,空调器可以调节室内空间的温度。
空调器的室外单元是指制冷循环的包括压缩机和室外热交换器的部分,空调器的室内单元包括室内热交换器,并且膨胀阀可以提供在室内单元或室外单元中。
室内热交换器和室外热交换器用作冷凝器或蒸发器。当室内热交换器用作冷凝器时,空调器用作制热模式的加热器,当室内热交换器用作蒸发器时,空调器用作制冷模式的冷却器。
本申请实施例提供一种空调器,如图1,包括:
冷媒循环回路,使冷媒在压缩机、冷凝器、膨胀阀和蒸发器组成回路中进行循环;
室外热交换器和室内热交换器,其中,一个为冷凝器进行工作,另一个为蒸发器进行工作;
室内机水泵;
室内机浮球开关,用于通过与冷凝水液面的相对高差关系生成报警信号;
室内环境湿度传感器,用于检测室内湿度;
控制器,被配置为:
基于所述室内湿度确定所述室内湿度所处的湿度区间,所述湿度区间包括高湿度区间、中湿度区间或低湿度区间;
在所述空调器运行于制冷模式下,基于所述湿度区间及所述室内机浮球开关的报警信号控制水泵的开启状态。
本实施例中,如背景技术所述,轻商空调安装场景比较复杂,多数产品需要暗装。如果出现漏水等问题,则有可能要破坏房间装修进行维修,因此,在这种背景下,产品质量可靠性尤为重要。带室内机水泵的轻商空调,为防止浮球开关失效,保证室内机冷凝水一直有效排到室外,一般情况下按照制冷模式下水泵一直开启工作进行设计。由于在一定情况下,室内机并没有冷凝水,而水泵却一直开启工作,这就造成了能源浪费。
而本方案中,室内机浮球开关通过与冷凝水液面的相对高差关系生成报警信号,在液面处于高水位时,生成水位高位报警信号,同时本方案中将湿度区间进行划分,划分为高湿度区间、中湿度区间及低湿度区间,具体根据空调在不同湿度下凝结冷凝水的难易程度,把室内湿度划分为三个区间,如表1所示。
表1
同时根据空调在不同压缩机频率下凝结冷凝水的难易程度,把压缩机运转频率划分为两个区间,如表2所示:
表2
根据所述室内湿度对应的所述湿度区间及所述室内机浮球开关的报警信号控制水泵的开启状态,从而避免资源浪费。
为了实现对水泵开启状态的控制,在本申请一些实施例中,所述控制器具体被配置为:
判断所述室内湿度是否处于高湿度区间;
若是,则开启所述水泵;
若否,则判断所述室内湿度是否处于中湿度区间。
本实施例中,首先判断室内温度是否达到了高湿度区间,如果到达了高湿度区间,则开启水泵,降低冷凝水液面,如果没有,则进一步判断所述室内湿度是否处于中湿度区间。
为了实现对水泵开启状态的控制,在本申请一些实施例中,所述控制器具体被配置为:
所述控制器具体被配置为:
当所述室内湿度不处于中湿度区间且所述浮球开关未发出水位高位报警信号,则关闭所述水泵;
当所述室内湿度不处于中湿度区间且所述浮球开关发出水位高位报警信号,则开启所述水泵;
当所述室内湿度处于中湿度区间,则判断所述压缩机频率是否处于高湿度区间。
本实施例中,当所述室内湿度不处于中湿度区间并所述浮球开关没有发出水位高位报警信号,则关闭所述水泵,当所述室内湿度不处于中湿度区间并且所述浮球开关发出水位高位报警信号,则开启所述水泵,当所述室内湿度处于中湿度区间,则进一步判断所述压缩机频率是否处于高湿度区间。
为了实现对水泵开启状态的控制,在本申请一些实施例中,所述控制器具体被配置为:
当所述压缩机频率处于高湿度区间,则开启所述水泵;
当所述压缩机频率不处于所述高湿度区间,则判断所述浮球开关是否发出水位高位报警信号。
本实施例中,当所述压缩机频率处于高湿度区间,则开启所述水泵,当所述压缩机频率不处于所述高湿度区间,则进一步判断所述浮球开关是否发出水位高位报警信号。
为了实现对水泵开启状态的控制,在本申请一些实施例中,所述控制器具体被配置为:
当所述压缩机频率不处于所述高湿度区间且所述浮球开关发出水位高位报警信号,则开启所述水泵;
当所述压缩机频率不处于所述高湿度区间且所述浮球开关未发出水位高位报警信号,则关闭所述水泵。
本实施例中,当所述压缩机频率不处于所述高湿度区间并且所述浮球开关发出水位高位报警信号,则开启所述水泵,当所述压缩机频率不处于所述高湿度区间且所述浮球开关没有发出水位高位报警信号,则关闭所述水泵。
通过应用以上技术方案,在包括冷媒循环回路、室外热交换器和室内热交换器、室内机水泵、室内机浮球开关、室内环境湿度传感器及控制器的空调器中,控制器被配置为:基于所述室内湿度确定所述室内湿度所处的湿度区间,所述湿度区间包括高湿度区间、中湿度区间或低湿度区间;在所述空调器运行于制冷模式下,基于所述湿度区间及所述室内机浮球开关的报警信号控制水泵的开启状态,从而实现对水泵的智能控制,避免了能源浪费。
为了进一步阐述本发明的技术思想,现结合具体的应用场景,对本发明的技术方案进行说明。
本申请实施例提供一种空调器室内机水泵控制方法,应用于包括冷媒循环回路、室外热交换器和室内热交换器、室内机水泵、室内机浮球开关、室内环境湿度传感器及控制器的空调器中,如图2所示,所述方法包括:
步骤S201,基于所述室内湿度确定所述室内湿度所处的湿度区间,所述湿度区间包括高湿度区间、中湿度区间或低湿度区间。
室内机浮球开关通过与冷凝水液面的相对高差关系生成报警信号,在液面处于高水位时,生成水位高位报警信号,同时本方案中将湿度区间进行划分,划分为高湿度区间、中湿度区间及低湿度区间,具体根据空调在不同湿度下凝结冷凝水的难易程度,把室内湿度划分为三个区间,同时根据空调在不同压缩机频率下凝结冷凝水的难易程度,把压缩机运转频率划分为两个区间。
步骤S202,在所述空调器运行于制冷模式下,基于所述湿度区间及所述室内机浮球开关的报警信号控制水泵的开启状态。
为了实现对水泵开启状态的控制,在本申请一些实施例中,在所述空调器运行于制冷模式下,基于所述湿度区间及所述室内机浮球开关的报警信号控制水泵的开启状态,具体为:
判断所述室内湿度是否处于高湿度区间;
若是,则开启所述水泵;
若否,则判断所述室内湿度是否处于中湿度区间。
本实施例中,首先判断室内温度是否达到了高湿度区间,如果到达了高湿度区间,则开启水泵,降低冷凝水液面,如果没有,则进一步判断所述室内湿度是否处于中湿度区间。
为了实现对水泵开启状态的控制,在本申请一些实施例中,若否,则判断所述室内湿度是否处于中湿度区间,具体为:
所述控制器具体被配置为:
当所述室内湿度不处于中湿度区间且所述浮球开关未发出水位高位报警信号,则关闭所述水泵;
当所述室内湿度不处于中湿度区间且所述浮球开关发出水位高位报警信号,则开启所述水泵;
当所述室内湿度处于中湿度区间,则判断所述压缩机频率是否处于高湿度区间。
本实施例中,当所述室内湿度不处于中湿度区间并所述浮球开关没有发出水位高位报警信号,则关闭所述水泵,当所述室内湿度不处于中湿度区间并且所述浮球开关发出水位高位报警信号,则开启所述水泵,当所述室内湿度处于中湿度区间,则进一步判断所述压缩机频率是否处于高湿度区间。
为了实现对水泵开启状态的控制,在本申请一些实施例中,当所述室内湿度处于中湿度区间,则判断所述压缩机频率是否处于高湿度区间,具体为:
当所述压缩机频率处于高湿度区间,则开启所述水泵;
当所述压缩机频率不处于所述高湿度区间,则判断所述浮球开关是否发出水位高位报警信号。
本实施例中,当所述压缩机频率处于高湿度区间,则开启所述水泵,当所述压缩机频率不处于所述高湿度区间,则进一步判断所述浮球开关是否发出水位高位报警信号。
为了实现对水泵开启状态的控制,在本申请一些实施例中,当所述压缩机频率不处于所述高湿度区间,则判断所述浮球开关是否发出水位高位报警信号,具体为:
当所述压缩机频率不处于所述高湿度区间且所述浮球开关发出水位高位报警信号,则开启所述水泵;
当所述压缩机频率不处于所述高湿度区间且所述浮球开关未发出水位高位报警信号,则关闭所述水泵。
本实施例中,当所述压缩机频率不处于所述高湿度区间并且所述浮球开关发出水位高位报警信号,则开启所述水泵,当所述压缩机频率不处于所述高湿度区间且所述浮球开关没有发出水位高位报警信号,则关闭所述水泵。
为了进一步对技术方案进行说明,本申请另一实施例提出一种空调器室内机水泵控制方法,流程如图3所示:
步骤一:判定室内湿度是否处于高湿区间,如果是,则开启水泵;
步骤二:判定室内湿度是否处于中湿区间,如果是,判断压缩机频率是否处于高湿区间,如果是,则水泵开启运转;如果不是,且浮球开关无高水位报警,则关闭水泵;如果浮球开关高水位报警,则开启水泵;
步骤三:判定室内湿度是否处于低湿区间,如果是,判断浮球开关有无高水位报警,如果有高水位报警,则开启水泵;如果无高水位报警,则关闭水泵。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (2)

1.一种空调器,其特征在于,包括:
冷媒循环回路,使冷媒在压缩机、冷凝器、膨胀阀和蒸发器组成回路中进行循环;
室外热交换器和室内热交换器,其中,一个为冷凝器进行工作,另一个为蒸发器进行工作;
室内机水泵;
室内机浮球开关,用于通过与冷凝水液面的相对高差关系生成报警信号;
室内环境湿度传感器,用于检测室内湿度;
控制器,被配置为:
基于所述室内湿度确定所述室内湿度所处的湿度区间,所述湿度区间包括高湿度区间、中湿度区间或低湿度区间;
在所述空调器运行于制冷模式下,基于所述湿度区间及所述室内机浮球开关的报警信号控制水泵的开启状态;
所述控制器具体被配置为:
判断所述室内湿度是否处于高湿度区间;
若是,则开启所述水泵;
若否,则判断所述室内湿度是否处于中湿度区间;
所述控制器具体被配置为:
当所述室内湿度不处于中湿度区间且所述浮球开关未发出水位高位报警信号,则关闭所述水泵;
当所述室内湿度不处于中湿度区间且所述浮球开关发出水位高位报警信号,则开启所述水泵;
当所述室内湿度处于中湿度区间,则判断所述压缩机频率是否处于高湿度区间;
所述高湿度区间为容易凝结冷凝水的所述压缩机频率的区间;
所述控制器具体被配置为:
当所述压缩机频率处于高湿度区间,则开启所述水泵;
当所述压缩机频率不处于所述高湿度区间,则判断所述浮球开关是否发出水位高位报警信号;
所述控制器具体被配置为:
当所述压缩机频率不处于所述高湿度区间且所述浮球开关发出水位高位报警信号,则开启所述水泵;
当所述压缩机频率不处于所述高湿度区间且所述浮球开关未发出水位高位报警信号,则关闭所述水泵。
2.一种空调器室内机水泵控制方法,其特征在于,应用于包括冷媒循环回路、室外热交换器和室内热交换器、室内机水泵、室内机浮球开关、室内环境湿度传感器及控制器的空调器中,所述方法包括:
基于室内湿度确定所述室内湿度所处的湿度区间,所述湿度区间包括高湿度区间、中湿度区间或低湿度区间;
在所述空调器运行于制冷模式下,基于所述湿度区间及所述室内机浮球开关的报警信号控制水泵的开启状态;
在所述空调器运行于制冷模式下,基于所述湿度区间及所述室内机浮球开关的报警信号控制水泵的开启状态,具体为:
判断所述室内湿度是否处于高湿度区间;
若是,则开启所述水泵;
若否,则判断所述室内湿度是否处于中湿度区间;
若否,则判断所述室内湿度是否处于中湿度区间,具体为:
当所述室内湿度不处于中湿度区间且所述浮球开关未发出水位高位报警信号,则关闭所述水泵;
当所述室内湿度不处于中湿度区间且所述浮球开关发出水位高位报警信号,则开启所述水泵;
当所述室内湿度处于中湿度区间,则判断压缩机频率是否处于高湿度区间;
所述高湿度区间为容易凝结冷凝水的所述压缩机频率的区间;
当所述室内湿度处于中湿度区间,则判断所述压缩机频率是否处于高湿度区间,具体为:
当所述压缩机频率处于高湿度区间,则开启所述水泵;
当所述压缩机频率不处于所述高湿度区间,则判断所述浮球开关是否发出水位高位报警信号;
当所述压缩机频率不处于所述高湿度区间,则判断所述浮球开关是否发出水位高位报警信号,具体为:
当所述压缩机频率不处于所述高湿度区间且所述浮球开关发出水位高位报警信号,则开启所述水泵;
当所述压缩机频率不处于所述高湿度区间且所述浮球开关未发出水位高位报警信号,则关闭所述水泵。
CN202111666473.1A 2021-12-31 2021-12-31 一种空调器和空调器室内机水泵控制方法 Active CN114704927B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111666473.1A CN114704927B (zh) 2021-12-31 2021-12-31 一种空调器和空调器室内机水泵控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111666473.1A CN114704927B (zh) 2021-12-31 2021-12-31 一种空调器和空调器室内机水泵控制方法

Publications (2)

Publication Number Publication Date
CN114704927A CN114704927A (zh) 2022-07-05
CN114704927B true CN114704927B (zh) 2023-08-25

Family

ID=82167002

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111666473.1A Active CN114704927B (zh) 2021-12-31 2021-12-31 一种空调器和空调器室内机水泵控制方法

Country Status (1)

Country Link
CN (1) CN114704927B (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311535A (ja) * 2000-04-27 2001-11-09 Sanyo Electric Co Ltd 空気調和機
CN103673204A (zh) * 2012-09-12 2014-03-26 江苏新科电器有限公司 冷凝水自蒸发分体空调的控制方法
KR20160016119A (ko) * 2014-08-04 2016-02-15 엘지전자 주식회사 제습기의 제어방법 및 그에 따른 제습기
CN105928151A (zh) * 2016-05-06 2016-09-07 广东美的制冷设备有限公司 空调器的冷凝水产生方法、清洁方法及空调器
CN106839145A (zh) * 2017-01-10 2017-06-13 美的集团武汉制冷设备有限公司 移动式空调器及其控制方法
CN206496435U (zh) * 2017-01-10 2017-09-15 美的集团武汉制冷设备有限公司 移动式空调器
CN109028453A (zh) * 2018-07-11 2018-12-18 海信(山东)空调有限公司 空调器以及空调器控制方法
KR20190032942A (ko) * 2017-09-20 2019-03-28 엘지전자 주식회사 공기조화기 실내기의 제어방법
CN110186146A (zh) * 2019-06-14 2019-08-30 宁波奥克斯电气股份有限公司 空调器的水满预警方法、控制装置及空调器
CN111023397A (zh) * 2019-12-25 2020-04-17 宁波奥克斯电气股份有限公司 一种空调器水泵控制方法、装置、空调器及存储介质
CN211822855U (zh) * 2019-12-23 2020-10-30 广东百奥电气有限公司 一种用于除湿机的排水装置
CN112066602A (zh) * 2020-09-14 2020-12-11 珠海格力电器股份有限公司 一种换热器及空调、空调控制方法及装置
CN112240628A (zh) * 2020-09-27 2021-01-19 青岛海尔空调器有限总公司 用于空调器的控制方法及装置、空调器
CN212746720U (zh) * 2020-04-30 2021-03-19 深圳市筑梦空间科技有限公司 天花式空调器
CN214094701U (zh) * 2020-12-29 2021-08-31 青岛海信日立空调系统有限公司 空调器
CN113531771A (zh) * 2021-07-26 2021-10-22 海信(广东)空调有限公司 一种移动空调及其水满预警方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9243947B2 (en) * 2008-08-27 2016-01-26 Trane International Inc. Drain pan level monitoring system
JP6591060B2 (ja) * 2016-05-31 2019-10-16 三菱電機株式会社 空気調和装置

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311535A (ja) * 2000-04-27 2001-11-09 Sanyo Electric Co Ltd 空気調和機
CN103673204A (zh) * 2012-09-12 2014-03-26 江苏新科电器有限公司 冷凝水自蒸发分体空调的控制方法
KR20160016119A (ko) * 2014-08-04 2016-02-15 엘지전자 주식회사 제습기의 제어방법 및 그에 따른 제습기
CN105928151A (zh) * 2016-05-06 2016-09-07 广东美的制冷设备有限公司 空调器的冷凝水产生方法、清洁方法及空调器
CN106839145A (zh) * 2017-01-10 2017-06-13 美的集团武汉制冷设备有限公司 移动式空调器及其控制方法
CN206496435U (zh) * 2017-01-10 2017-09-15 美的集团武汉制冷设备有限公司 移动式空调器
KR20190032942A (ko) * 2017-09-20 2019-03-28 엘지전자 주식회사 공기조화기 실내기의 제어방법
CN109028453A (zh) * 2018-07-11 2018-12-18 海信(山东)空调有限公司 空调器以及空调器控制方法
CN110186146A (zh) * 2019-06-14 2019-08-30 宁波奥克斯电气股份有限公司 空调器的水满预警方法、控制装置及空调器
CN211822855U (zh) * 2019-12-23 2020-10-30 广东百奥电气有限公司 一种用于除湿机的排水装置
CN111023397A (zh) * 2019-12-25 2020-04-17 宁波奥克斯电气股份有限公司 一种空调器水泵控制方法、装置、空调器及存储介质
CN212746720U (zh) * 2020-04-30 2021-03-19 深圳市筑梦空间科技有限公司 天花式空调器
CN112066602A (zh) * 2020-09-14 2020-12-11 珠海格力电器股份有限公司 一种换热器及空调、空调控制方法及装置
CN112240628A (zh) * 2020-09-27 2021-01-19 青岛海尔空调器有限总公司 用于空调器的控制方法及装置、空调器
CN214094701U (zh) * 2020-12-29 2021-08-31 青岛海信日立空调系统有限公司 空调器
CN113531771A (zh) * 2021-07-26 2021-10-22 海信(广东)空调有限公司 一种移动空调及其水满预警方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
空调多联机的系统优化;易巨开;;建材与装饰(27);全文 *

Also Published As

Publication number Publication date
CN114704927A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
US7856836B2 (en) Refrigerating air conditioning system
US7472559B2 (en) Method for controlling air conditioner
CN111780362B (zh) 一种空调器及其控制方法
US10746449B2 (en) Method for controlling air conditioner
KR20040023132A (ko) 냉난방기의 제습 절전 운전방법
CN108954710A (zh) 一种空调器低温制热启动方法和空调器
CN112682883B (zh) 一种空调及空调恒风量静压自适应控制方法
CN111928435A (zh) 空调器
JP2008164226A (ja) 冷凍装置
CN101086361A (zh) 空调及其控制方法
JP2018031527A (ja) 空気調和装置
CN114704927B (zh) 一种空调器和空调器室内机水泵控制方法
KR101964946B1 (ko) 외기온도 보상형 고효율 냉각시스템
JP2003240310A (ja) 空気調和機及びそれに用いられる室外機
CN108759178B (zh) 满液式蒸发器的液位控制方法和制冷循环系统
KR100517600B1 (ko) 공기조화기의 난방 운전 방법
CN1213274C (zh) 电子冰箱低温驱动控制方法
CN111720977A (zh) 空调器的控制方法
CN109798633A (zh) 空调系统的控制方法和空调系统
KR100556809B1 (ko) 빌딩용 멀티 공조기의 운전제어방법
JP2004144351A (ja) 多室形空気調和機の制御方法
JP2003302111A (ja) 空気調和装置
CN214370579U (zh) 空调器系统
CN112303814B (zh) 一种空调及空调化霜方法
JP2011226724A (ja) 冷凍サイクル装置及びその起動制御方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: No.1, Hisense Road, Nancun Town, Pingdu City, Qingdao City, Shandong Province 266700

Applicant after: Hisense Air Conditioning Co.,Ltd.

Address before: No.1, Hisense Road, Nancun Town, Pingdu City, Qingdao City, Shandong Province 266700

Applicant before: HISENSE (SHANDONG) AIR-CONDITIONING Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant