CN114702308B - 一种高强度zta多孔陶瓷材料及其制备方法 - Google Patents

一种高强度zta多孔陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN114702308B
CN114702308B CN202210334679.2A CN202210334679A CN114702308B CN 114702308 B CN114702308 B CN 114702308B CN 202210334679 A CN202210334679 A CN 202210334679A CN 114702308 B CN114702308 B CN 114702308B
Authority
CN
China
Prior art keywords
zta
porous ceramic
slurry
ceramic
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210334679.2A
Other languages
English (en)
Other versions
CN114702308A (zh
Inventor
张劲松
曹小明
金鹏
杨永进
徐奕辰
刘强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN202210334679.2A priority Critical patent/CN114702308B/zh
Publication of CN114702308A publication Critical patent/CN114702308A/zh
Application granted granted Critical
Publication of CN114702308B publication Critical patent/CN114702308B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • C04B35/119Composites with zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63476Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)

Abstract

本发明涉及多孔陶瓷的制备技术,具体地说是一种高强度ZTA多孔陶瓷材料及其制备方法。按重量百分比计,其成份由60%~90%的Al2O3和35%~5%的mY‑ZrO2和5%的烧结助剂组成,mY‑ZrO2中的m=0、2、3、5或8等,烧结助剂为TiO2、MnO2、MgO、La2O3、Y2O3中的一种或两种以上。以Al2O3微粉、mY‑ZrO2微粉、烧结助剂、高产碳率树脂、固化剂和酒精为基本原料,以有机多孔材料为模板,主要工艺包括切割多孔模板、陶瓷料浆配制、浸挂料浆、脱胶、填充预制体骨架中心孔、加工成型、致密化烧结。本发明ZTA多孔陶瓷具有整体增强作用,能够显著提高复合材料的高温性能;作为复合耐磨钢增强体,可提高其在常温和高温环境中耐磨性能。

Description

一种高强度ZTA多孔陶瓷材料及其制备方法
技术领域
本发明涉及多孔陶瓷的制备技术,具体地说是一种高强度ZTA(ZrO2增韧Al2O3)多孔陶瓷材料及其制备方法。
背景技术
ZTA陶瓷由于其较高的硬度和断裂韧性、良好的高温强度、稳定的化学性能、优良的耐磨性能,可以应用到高温、磨损、冲蚀等苛刻的工作环境中,是一种综合性能优良的先进结构材料;同时,ZTA陶瓷的热膨胀系数明显高于SiC、Si3N4、B4C陶瓷,与高铬铸铁、合金钢较为接近,因此又是复合耐磨钢广泛应用的增强陶瓷材料。
多孔陶瓷是一种结构陶瓷,其几何结构特征是以多边型封闭环为基本单元,各基本单元相互连接形成的三维连通网络可以应用到钢水过滤、化工精馏、催化剂载体、隔热、吸声和仿生骨骼等领域。将ZTA陶瓷制备成多孔陶瓷,这种独特的三维网络结构为复合材料提供了充分的设计空间。由于ZTA多孔陶瓷材料同样具有陶瓷固有的耐高温、抗氧化、耐磨损、抗冲蚀等性能,同时基体材料又保持原有的增韧性能,可以实现单质材料无法实现的独特性能。因此,ZTA多孔陶瓷材料的制作和应用得到广泛的重视。
目前的ZTA多孔陶瓷材料有以下四种方法制备:颗粒粘接法、溶胶/凝胶法、3D打印法、固相反应烧结法。
颗粒粘接法:利用无机粘接剂、金属粉末与ZTA陶瓷颗粒混合,模压成型,在空气、保护气氛或真空环境中高温烧结的方法获得ZTA多孔陶瓷。该方法工艺简单适合工业化生产,但粘接剂的强度与ZTA陶瓷比相对相较低,材料的整体性能提高受到影响。
溶胶/凝胶法:在溶胶过程中在ZTA陶瓷浆料中添加造孔剂,经过凝胶固化成型,然后经过排胶、高温烧结除去造孔剂同时获得ZTA多孔陶瓷,通过造孔剂的尺度与添加量的选择,可是实现多孔陶瓷中孔隙尺寸和体积分数的控制。
3D打印技术:通过选择合适的ZTA原料,可以利用3D打印技术获得需要的尺寸与形状的ZTA多孔陶瓷坯体,经过排胶和烧结可获得ZTA多孔陶瓷。3D打印技术是多孔陶瓷制备中一个非常有发展前景的新技术,规模化生产是其需要克服的一个重要关键技术。
粉末烧结法:将含有一定量烧结助剂的ZTA陶瓷粉与连接剂(如硅酸乙脂水解液、硅溶胶和聚乙烯醇等)调成合适浓度的料浆后,浸挂在聚氨脂泡沫上,固化干燥后,在200~600℃范围脱出聚氨脂泡沫。而后,将温度升高到1400~1700℃之间进行烧结便得到泡沫状的ZTA多孔陶瓷。
发明内容:
本发明的目的在于提供一种高强度致密的ZTA多孔陶瓷材料及其制备方法,用该方法制备的ZTA多孔陶瓷的网孔尺寸、结构形状、体积分数精准可控;陶瓷骨架筋致密度高,超过95%、组织均匀,大幅度地提高ZTA多孔陶瓷的强度。
本发明的技术方案是:
一种高强度ZTA多孔陶瓷材料,按重量百分比计,其成份由60%~90%的Al2O3和35%~5%的mY-ZrO2(钇稳定二氧化锆YSZ)和5%的烧结助剂组成,mY-ZrO2中的m=0、2、3、5或8,烧结助剂为TiO2、MnO2、MgO、La2O3、Y2O3中的一种或两种以上。
所述的高强度ZTA多孔陶瓷材料,ZTA多孔陶瓷以多边型封闭环为基本单元,各基本单元相互连接形成三维连通网络结构,构成多边形封闭环单元的陶瓷筋的相对致密度≥95%,平均晶粒尺寸在10nm~100μm。
所述的高强度ZTA多孔陶瓷材料的制备方法,以Al2O3微粉、mY-ZrO2微粉、烧结助剂、高产碳率树脂、固化剂和酒精为基本原料,以有机多孔材料为模板,主要工艺包括切割多孔模板、陶瓷料浆配制、浸挂料浆、脱胶、填充预制体骨架中心孔、加工成型、致密化烧结。
所述的高强度ZTA多孔陶瓷材料的制备方法,按重量百分比计,Al2O3微粉40wt%~20wt%,mY-ZrO2微粉25wt%~5wt%,烧结助剂微粉0.5wt%~5wt%,高产碳率树脂8wt%~15wt%,固化剂0.5wt%~5wt%,酒精25wt%~50wt%。
所述的高强度ZTA多孔陶瓷材料的制备方法,以高产碳率树脂作为粘接剂,选自酚醛树脂、环氧树脂、糠醛树脂之一种或两种以上;固化剂为对甲苯磺酸、五洛脱品、草酸或柠檬酸,固化剂的加入量为高产碳率树脂重量的1~20%。
所述的高强度ZTA多孔陶瓷材料的制备方法,有机多孔模板选自聚氨酯泡沫、涤纶网布或氨纶网布。
所述的高强度ZTA多孔陶瓷材料的制备方法,Al2O3微粉平均粒度为10nm~100μm,mY-ZrO2微粉平均粒度为10nm~10μm,烧结助剂微粉平均粒度为10nm~10μm。
所述的高强度ZTA多孔陶瓷材料的制备方法,脱胶在氩气或氮气气氛保护下进行,升温速率为每分钟1~10℃,温度500~600℃,保温0.5~2小时。
所述的高强度ZTA多孔陶瓷材料的制备方法,填充预制体骨架中心孔过程是利用真空吸注结合高压压注的方法将填充料浆压入中心孔内,真空度为50~5000Pa,压力为1~15MPa,保压5~30分钟。
所述的高强度ZTA多孔陶瓷材料的制备方法,致密化烧结在空气气氛中进行,升温速率为每分钟1~10℃,温度1400~1700℃,保温0.5~4小时。
本发明的设计思想是:
本发明是将Al2O3、mY-ZrO2、树脂、烧结助剂、酒精溶剂等制成陶瓷料浆,选择合适孔径的有机多孔材料,并加工、剪裁成所需要的形状和尺寸,而后将其浸入料浆中,取出后,用挤压、风吹、离心等方式除去多余的料浆,烘干、固化,重复上述过程多次直到达到需要的陶瓷体积分数。将固化后的多孔前驱体在氩气或氮气气体保护炉中进行有机多孔材料脱除,得到与原始有机多孔材料形状一样的由ZTA多孔材料预制体。磨开预制体中心孔,利用真空吸注结合压注方法将ZTA多料浆压注到多孔骨架中心孔内并添满中心孔,经过空气气氛中致密化烧结,从而得到高强度致密的ZTA多孔陶瓷。
在ZTA多孔陶瓷组成中各相的作用如下:
在ZTA陶瓷中,主相为A12O3、mY-ZrO2(钇稳定二氧化锆YSZ)和烧结助剂,其中:刚玉α-A12O3的洛氏硬度88~92HRA、抗压强度≥2000MPa(25~1000℃)、热膨胀系数7.9~8.8/×10-6K-1(20~1000℃),断裂韧性3.5~5.9MPa.m1/2具有优越的高温强度、良好的耐磨性、耐腐蚀性,但陶瓷固有的脆性限制了它在工程领域中的应用。因而,需要改善其陶瓷结构,提高其韧性。
ZrO2颗粒随着温度的变化发生四方相t-ZrO2变成单斜相m-ZrO2的相变,产生体积膨胀和切应变,形成微裂纹,当裂纹扩展到残余应力集中区域时,残余应力得到释放并阻碍主裂纹扩展,对A12O3形成韧化作用,实现对氧化铝陶瓷的增韧效果。
在烧结助剂中TiO2、MgO、MnO2可以固溶于Al2O3和ZrO2中,形成低粘度液相、促进固相扩散并加速晶界移动和晶粒生长、促进烧结。La2O3/Y2O3与ZrO2化学相容,可以有效阻碍ZrO2不稳态晶型相变,促进介稳态t-ZrO2的形成,降低烧结温度,提高致密程度,硬度、断裂韧性等,有效提高ZTA陶瓷材料的综合力学性能。
本发明具有如下优点及有益效果:
1、ZTA多孔陶瓷筋致密度高、显微组织均匀
本发明一是采用多次浸挂、风干、固化技术,每次均使陶瓷料浆中溶剂充分挥发,获得均匀致密的预制体,二是利用真空吸注结合压注方法使ZTA陶瓷料浆浆进入多孔陶瓷预制体骨架中心孔中使中心孔尺寸明显减少,三是合理的利用烧结助剂如TiO2、MnO2、MgO、La2O3、Y2O3微粉结合高温烧结,使多孔陶瓷骨架筋致密度明显提高并可以达到热压烧结陶瓷致密度的95%以上,气孔率减少到5%以下、显微组织均匀,见附图2。这是其它ZTA多孔陶瓷制备方法所不具备的显著特点。
由于陶瓷筋致密度、显微组织均匀性的大幅度提高,从根本上解决了ZTA多孔陶瓷强度低的关键原因,使用本发明制备出的ZTA多孔陶瓷的比抗压强度达到400MPa·cm3·g-1,比用其它方法制备的其他方法制备的ZTA多孔陶瓷的比抗压强度提高5~10倍。
2、ZTA多孔陶瓷体积分数、网孔尺寸精准控制
在前驱体制备过程中,经过实验获得了ZTA多孔陶瓷前驱体的体密度与烧结后ZTA多孔陶瓷体积分数存在着一一对应的线性关系,通过控制ZTA多孔陶瓷前驱体的体密度就可以实现ZTA多孔陶瓷体积分数的精准控制。通过无机多孔材料孔径尺寸的选择、可以实现ZTA多孔陶瓷的网孔尺寸的精准控制,见附图1。
3、具有可加工性,能够实现工件尺寸的准确控制
ZTA多孔陶瓷预制体内含有少量树脂粘接剂,脱胶后树脂碳化,碳化的树脂对陶瓷颗粒仍能保持一定的粘结强度,同时考虑到收缩率与体积分数是一一对应的线性关系,因此,在预留收缩量后可以选用硬质合金切片、磨片结合通用加工机械将ZTA多孔陶瓷骨架精密加工到需要的尺寸和形状。本发明适合于大尺寸、复杂形状构件的制造,易于获得净尺寸产品,减少后续加工成本。
4、工艺简单,适合批量生产
ZTA多孔陶瓷制备工艺简单,可操作性强,作为多孔模板有机多孔材料为工业材料,通过脱胶除去模板的方法简单、技术成熟。致密化烧结是在空气气氛炉内烧结一步成型,工艺简单,成本低。
5、具有整体增强作用,能够显著提高复合材料的高温性能
具有三维连通网络结构的ZTA多孔陶瓷作为复合材料增强体,与金属复合,ZTA多孔陶瓷和金属形成两个相互贯通的三维网络,这一结构特征使复合材料既能表现出陶瓷的高硬度特征,同时又表现出金属的韧性特征。ZTA多孔陶瓷利用三维连通网络结构对金属基体具有整体增强机制。多孔陶瓷的作用是:一方面起到承载作用,对复合基体起到整体增强作用;另一方面高温条件下约束基体的塑性变形,提高复合材料的高温性能。因此,ZTA多孔陶瓷为复合材料开发提供了广泛的设计空间,并提出了一种陶瓷结构增韧的新思路。
附图说明
图1为致密ZTA多孔陶瓷的宏观形貌。其中,图(a)、(b)、(d)代表以聚氨酯泡沫为模板制备的ZTA多孔陶瓷、图(c)、(e)、(f)代表以涤纶网布为模板制备的ZTA多孔陶瓷,ZTA多孔陶瓷的结构和体积分数可进行人工设计。
图2为致密ZTA多孔陶瓷骨架断口的微观形貌。其中,图(a)的放大倍数为2000倍、(b)的放大倍数为10000倍,陶瓷晶粒分布均匀、致密度高但含有少量气孔。
具体实施方式
在具体实施过程中,本发明高强度ZTA多孔陶瓷的制备方法,以Al2O3和Y-ZrO2等微粉和高产碳率树脂为原料,以有机多孔材料为模板,通过浸挂、脱胶、烧结的方法获得,其制备过程如下:
(1)切割多孔模板
利用加热电阻丝切割、刀具切割或空心转刀钻孔等加工方式将多孔模板制备需要的形状和尺寸。
(2)陶瓷料浆配制
将Al2O3、mY-ZrO2(钇稳定二氧化锆YSZ)、烧结助剂(TiO2、MnO2、MgO、La2O3、Y2O3微粉)、树脂、固化剂和酒精按一定比例混合。Al2O3微粉、mY-ZrO2微粉、烧结助剂(TiO2、MnO2、MgO、La2O3、Y2O3):高产碳率树脂、固化剂、酒精之间重量百分比例为40wt%~20wt%:25wt%~5wt%:0.5wt%~5wt%:8wt%~15wt%:0.5wt%~5wt%:25wt%~50wt%。经机械搅拌后球磨,过滤,得陶瓷料浆,所述陶瓷料浆中固形物的重量为料浆总量的75~50%。
(3)浸挂
将多孔模板均匀地浸入料浆中、拿出后挤去多余料浆、采用气吹和离心的方式除去多余料浆,加热固化,重复多次,达到所需要的体积分数,得到ZTA多孔陶瓷前驱体。
(4)脱胶
将ZTA多孔陶瓷前驱体在氩气、氮气或其它惰性气体的保护下脱胶,升温速率每分钟1~10℃,升温至500~600℃,保温0.5~2小时,获得ZTA多孔陶瓷预制体;
(5)填充ZTA多孔陶瓷预制体中心孔
由于脱胶后多孔模板被烧掉,在ZTA陶瓷预制体骨架筋内留下中心孔,因此需要填充骨架中心孔,实现致密化。将骨架表面的中心孔磨开后,利用真空吸注结合高压压注的方法将填充料浆(步骤(2)配制的陶瓷料浆)压入中心孔内。得到ZTA多孔陶瓷骨架。
(6)加工成型
选用硬质合金切片、磨片结合通用加工机械将ZTA多孔陶瓷骨架精密加工到需要的尺寸和形状。
(7)致密化烧结
将ZTA多孔陶瓷骨架烧结,烧结在空气气氛条件下进行,升温速率为每分钟1~10℃,温度为:1400~1700℃,保温0.5~4小时,得高强度ZTA多孔陶瓷材料。
下面,通过实施例和附图进一步详述本发明。
实施例1
按重量百分比计,取30wt%(α-Al2O3微粉)、12wt%(3Y-ZrO2微粉)、0.5wt%(TiO2)、0.5wt%(MnO2)、11wt%(氨酚醛树脂)、1wt%(对甲苯磺酸)和45wt%(工业酒精)制成料浆,机械搅拌后球磨,料球质量比2:1,磨球为Ф10mm的ZrO2球,转速200转/分钟,球磨时间1小时,制成陶瓷料浆。其中:Al2O3微粉粒度为3.5μm,四方相3Y-ZrO2微粉粒度30nm,TiO2和MnO2为市售化学纯微粉粒度0.5μm,工业酒精纯度≥95wt%。
将平均孔径5mm、孔隙率98%的聚胺脂泡沫切割成要求尺寸后均匀地浸入所述料浆中,浸泡1分钟,拿出后离心除去多余料浆,风干后于烘箱中进行固化,温度100℃,时间10分钟。上述过程反复多次,直到50%预定体积分数所需的重量,得到前驱体。
将前驱体在氩气保护下脱胶,生成预制体;其中:升温速率每分钟2℃,升温至600℃,保温1小时,得到预制体骨架。将预制体骨架表面的中心孔磨开,在真空度为2000Pa的真空容器内吸注粘度为250mPa.s的陶瓷料浆,然后放入高压容器内,充氮气或惰性气体,将陶瓷料浆压入中心孔内,压力为5MPa、保压20分钟,取出后100℃时间10分钟固化。
选用硬质合金切片、磨片结合通用加工机械将ZTA多孔陶瓷骨架精密加工到需要的尺寸和形状。
致密化烧结,在硅钼棒烧结炉内放入ZTA多孔陶瓷骨架,烧结温度1600℃,其中:1200℃前升温速率为3℃/分钟,1200℃后升温速率为1.5℃/分钟,于1600℃保温2小时,得高强度ZTA多孔陶瓷材料,筋致密度为96%,ZTA平均晶粒粒度为4.2μm。
实施例2
按重量百分比计,取35wt%(α-Al2O3微粉)、10wt%(3Y-ZrO2微粉)、1wt%(TiO2)、13wt%(氨酚醛树脂)、1wt%(对甲苯磺酸)和40wt%(工业酒精),机械搅拌后球磨,料球质量比2:1,磨球为Ф10mm的ZrO2球,转速200转/分钟,球磨时间1小时,制成陶瓷料浆。其中:Al2O3微粉粒度为1.5μm,四方相3Y-ZrO2微粉粒度30nm,TiO2为市售化学纯微粉粒度0.5μm,工业酒精纯度≥95wt%。
将平均孔径3mm、孔隙率96%的聚胺脂泡沫切割成要求尺寸后均匀地浸入所述料浆中,浸泡0.5分钟,拿出后离心除去多余料浆,风干后于烘箱中进行半固化,温度100℃,时间10分钟。上述过程反复多次,直到40%预定体积分数所需的重量,得到前驱体。
将前驱体在氩气保护下脱胶,生成预制体;其中:升温速率每分钟2℃,升温至500℃,保温1小时,得到预制体骨架。将预制体骨架表面的中心孔磨开,在真空度为1500Pa的真空容器内吸注粘度为200mPa.s的陶瓷料浆,然后放入高压容器内,充氮气或惰性气体,将陶瓷料浆压入中心孔内,压力为10MPa、保压10分钟,取出后100℃时间10分钟固化。
选用硬质合金切片、磨片结合通用加工机械将ZTA多孔陶瓷骨架精密加工到需要的尺寸和形状。
致密化烧结,在硅钼棒烧结炉内放入ZTA多孔陶瓷骨架,烧结温度1550℃,其中:1200℃前升温速率为3℃/分钟,1200℃后升温速率为2℃/分钟,于1550℃保温3小时,得高强度ZTA多孔陶瓷材料,筋致密度为96%,ZTA平均晶粒粒度为2.2μm。
实施例3
按重量百分比计,取40wt%(α-Al2O3微粉)、15wt%(3Y-ZrO2微粉)、0.5wt%(TiO2)、0.5wt%(MgO)、10wt%(FQ-5热固性酚醛树脂)、1wt%(对甲苯磺酸)和33wt%(工业酒精),机械搅拌后球磨,料球质量比2:1,磨球为Ф10mm的ZrO2球,转速200转/分钟,球磨时间1小时,制成陶瓷料浆。其中:Al2O3微粉粒度为3.5μm,5Y-ZrO2微粉粒度200nm,TiO2为市售化学纯微粉粒度0.5μm,MgO微粉粒度200nm,工业酒精纯度≥95wt%。
将平均孔径1mm、孔隙率95%的聚胺脂泡沫切割成要求尺寸后均匀地浸入所述料浆中,浸泡0.5分钟,拿出后挤去多余料浆,风干后于烘箱中进行固化,温度120℃,时间10分钟。上述过程反复多次,直到30%预定体积分数所需的重量,得到前驱体。
将前驱体在氩气保护下脱胶,生成预制体;其中:升温速率每分钟2℃,升温至550℃,保温1小时,得到预制体骨架。将预制体骨架表面的中心孔磨开,在真空度为500Pa的真空容器内吸注粘度为300mPa.s的陶瓷料浆,然后放入高压容器内,充氮气或惰性气体,将陶瓷料浆压入中心孔内,压力为15MPa、保压5分钟,取出后100℃时间10分钟固化。
选用硬质合金切片、磨片结合通用加工机械将ZTA多孔陶瓷骨架精密加工到需要的尺寸和形状。
致密化烧结,在硅钼棒烧结炉内放入ZTA多孔陶瓷骨架,烧结温度1650℃,其中:1200℃前升温速率为2℃/分钟,1200℃后升温速率为1℃/分钟,于1650℃保温1小时,得高强度ZTA多孔陶瓷材料,筋致密度为95%,ZTA平均晶粒粒度为4.2μm。
实施例4
按重量百分比计,取40wt%(α-Al2O3微粉)、9wt%(0Y-ZrO2微粉)、0.2wt%(TiO2)、0.2wt%(La2O3)、1.6wt%(Y2O3)、8wt%(硼酚醛树脂)、1wt%(对甲苯磺酸)和40wt%(工业酒精),机械搅拌后球磨,料球质量比2:1,磨球为Ф10mm的ZrO2球,转速150转/分钟,球磨时间2小时,制成陶瓷料浆。其中:Al2O3微粉粒度为1.5μm,0Y-ZrO2微粉粒度30nm,TiO2、Y2O3为市售化学纯微粉,LaO、CeO微粉粒度200nm,工业酒精纯度≥95wt%。
将平均孔径3mm、孔隙率96%的聚胺脂泡沫切割成要求尺寸后均匀地浸入所述料浆中,浸泡0.5分钟,拿出后离心脱出多余料浆,风干后于烘箱中进行半固化,温度100℃,时间10分钟。上述过程反复多次,直到60%预定体积分数所需的重量,得到前驱体。
将前驱体在氮气保护下脱胶,生成预制体;其中:升温速率每分钟2℃,升温至600℃,保温1.5小时,得到预制体骨架。将预制体骨架表面的中心孔磨开,在真空度为200Pa的真空容器内吸注粘度为200mPa.s的陶瓷料浆,然后放入高压容器内,充氮气或惰性气体,将陶瓷料浆压入中心孔内,压力为1MPa、保压30分钟,取出后100℃时间10分钟固化。
选用硬质合金切片、磨片结合通用加工机械将预制体骨架精密加工到需要的尺寸和形状。
致密化烧结,在硅钼棒烧结炉内放入ZTA多孔陶瓷骨架,烧结温度1600℃,其中:1200℃前升温速率为2℃/分钟,1200℃后升温速率为1℃/分钟,于1600℃保温2小时,得高强度ZTA多孔陶瓷材料,筋致密度为96%,ZTA平均晶粒粒度为2.2μm。
实施例5
按重量百分比计,取30wt%(α-Al2O3微粉)、5.5wt%(2Y-ZrO2微粉)、1wt%(TiO2)、0.2wt%(La2O3)、0.3wt%(Y2O3)、12wt%(氨酚醛树脂)、1wt%(对甲苯磺酸)和50wt%(工业酒精),机械搅拌后球磨,料球质量比2:1,磨球为Ф10mm的ZrO2球,转速300转/分钟,球磨时间1小时,制成陶瓷料浆。其中:Al2O3微粉粒度为20μm,四方相5Y-ZrO2微粉粒度400nm,TiO2为市售化学纯微粉粒度0.5μm,La2O3、Y2O3微粉粒度200nm,工业酒精纯度≥95wt%。
将平均孔径3mm、孔隙率96%的聚胺脂泡沫切割成要求尺寸后均匀地浸入所述料浆中,浸泡0.5分钟,拿出后离心除去多余料浆,风干后于烘箱中进行固化,温度120℃,时间10分钟。上述过程反复多次,直到50%预定体积分数所需的重量,得到前驱体。
将前驱体在氮气保护下脱胶,生成预制体;其中:升温速率每分钟2℃,升温至550℃,保温2小时,得到预制体骨架。将预制体骨架表面的中心孔磨开,在真空度为100Pa的真空容器内吸注粘度为250mPa.s的陶瓷料浆,然后放入高压容器内,充氮气或惰性气体,将陶瓷料浆压入中心孔内,压力为3MPa、保压25分钟,取出后100℃时间10分钟固化。
选用硬质合金切片、磨片结合通用加工机械将预制体骨架精密加工到需要的尺寸和形状。
致密化烧结,在硅钼棒烧结炉内放入ZTA多孔陶瓷骨架,烧结温度1580℃,其中:1200℃前升温速率为3℃/分钟,1200℃后升温速率为1.5℃/分钟,于1580℃保温2小时,出炉后得高强度ZTA多孔陶瓷材料。
实施例6
按重量百分比计,取32wt%(α-Al2O3微粉)、5.5wt%(3Y-ZrO2微粉)、1wt%(TiO2)、0.5wt%(Y2O3)、15wt%(氨酚醛树脂)、2wt%(乌洛托品)和44wt%(工业酒精),机械搅拌后球磨,料球质量比2:1,磨球为Ф10mm的ZrO2球,转速300转/分钟,球磨时间1小时,制成陶瓷料浆。其中:Al2O3微粉粒度为5μm,四方相3Y-ZrO2微粉粒度400nm,TiO2为市售化学纯微粉粒度0.5μm,Y2O3微粉粒度200nm,工业酒精纯度≥95wt%。
将平均孔径5mm、孔隙率98%的氨纶网布切割成要求尺寸后均匀地浸入所述料浆中,浸泡0.5分钟,拿出后挤去多余料浆,风干后放置在已经预热模具中成型,模具预热温度温度180℃,成型时间20秒,将成型的单片网布用料浆粘结叠加成需要的形状和尺寸,放入烘箱中进行固化,温度120℃,时间10分钟。取出后风冷,继续浸挂料浆、风干、固化,上述过程反复多次,直到50%预定体积分数所需的重量,得到前驱体。
将前驱体在氮气保护下脱胶,生成预制体;其中:升温速率每分钟3℃,升温至600℃,保温2小时,得到预制体骨架。由于在预制体骨架中氨纶网布残留中心孔很小,对多孔陶瓷性能影响极小,可以不填充中心孔。
选用硬质合金切片、磨片结合通用加工机械将预制体骨架精密加工到需要的尺寸和形状。
致密化烧结,在硅钼棒烧结炉内放入ZTA多孔陶瓷骨架,烧结温度1620℃,其中:1200℃前升温速率为3℃/分钟,1200℃后升温速率为1.5℃/分钟,于1620℃保温3小时,出炉后得高强度ZTA多孔陶瓷材料。
如图1所示,从致密ZTA多孔陶瓷的宏观形貌可以看出,多孔陶瓷的网孔分布均匀、陶瓷结构及体积分数可以根据应用需求进行人工设计。其中,多孔陶瓷的形状与尺寸可以通过选择模板聚氨酯泡沫或氨纶(涤纶)网布的孔隙率控制;陶瓷的体积分数可以通过浸挂陶瓷料浆后获得预制体的密度控制。其中,图(a)、(b)、(d)代表以聚氨酯泡沫为模板制备的ZTA多孔陶瓷、图(c)、(e)、(f)代表以涤纶网布为模板制备的ZTA多孔陶瓷。
如图2所示,从致密ZTA多孔陶瓷骨架断口的微观形貌可以看出(a)氧化铝晶粒分布均匀并有少量气孔、(b)氧化铝晶粒断裂方式包括沿晶断裂和穿晶断裂,其中以穿晶断裂为主,氧化锆晶粒分布在氧化铝晶粒周围起到相变增韧的作用。
实施例结果表明,本发明ZTA多孔陶瓷以多边封闭环为基本单元,各基本单元相互连接形成三维连通网络结构,构成多边形封闭环单元的陶瓷骨架筋的相对致密度≥95%,网孔尺寸,体积分数精准可控,能够实现工件尺寸的准确控制。ZTA多孔陶瓷具有整体增强作用,能够显著提高复合材料的高温性能;作为复合耐磨钢增强体,可提高其在常温和高温环境中耐磨性能。

Claims (1)

1.一种高强度ZTA多孔陶瓷材料的制备方法,其特征在于,按重量百分比计,取35wt%α-Al2O3微粉、10wt%四方相3Y-ZrO2、1wt% TiO2、13wt%氨酚醛树脂、1wt%对甲苯磺酸和40wt%工业酒精,机械搅拌后球磨,料球质量比2:1,磨球为Ф10mm的ZrO2球,转速200转/分钟,球磨时间1小时,制成陶瓷料浆;其中:α-Al2O3微粉粒度为1.5µm,四方相3Y-ZrO2粒度为30nm,TiO2为市售化学纯,粒度为0.5µm,工业酒精纯度≥95wt%;
将平均孔径3mm、孔隙率96%的聚胺脂泡沫切割成要求尺寸后均匀地浸入所述料浆中,浸泡0.5分钟,拿出后离心除去多余料浆,风干后于烘箱中进行半固化,温度100℃,时间10分钟;上述过程反复多次,直到40%预定体积分数所需的重量,得到前驱体;
将前驱体在氩气保护下脱胶,生成预制体;其中:升温速率每分钟2℃,升温至500℃,保温1小时,得到预制体骨架;将预制体骨架表面的中心孔磨开,在真空度为1500Pa的真空容器内吸注粘度为200mPa.s的陶瓷料浆,然后放入高压容器内,充氮气或惰性气体,将陶瓷料浆压入中心孔内,压力为10MPa、保压10分钟,取出后100℃时间10分钟固化;
选用硬质合金切片、磨片结合通用加工机械将ZTA多孔陶瓷骨架精密加工到需要的尺寸和形状;
致密化烧结,在硅钼棒烧结炉内放入ZTA多孔陶瓷骨架,烧结温度1550℃,其中:1200℃前升温速率为3℃/分钟,1200℃后升温速率为2℃/分钟,于1550℃保温3小时,得高强度ZTA多孔陶瓷材料,筋致密度为96%,ZTA平均晶粒粒度为2.2µm。
CN202210334679.2A 2022-03-30 2022-03-30 一种高强度zta多孔陶瓷材料及其制备方法 Active CN114702308B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210334679.2A CN114702308B (zh) 2022-03-30 2022-03-30 一种高强度zta多孔陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210334679.2A CN114702308B (zh) 2022-03-30 2022-03-30 一种高强度zta多孔陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114702308A CN114702308A (zh) 2022-07-05
CN114702308B true CN114702308B (zh) 2023-05-12

Family

ID=82170335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210334679.2A Active CN114702308B (zh) 2022-03-30 2022-03-30 一种高强度zta多孔陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114702308B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1152844C (zh) * 2002-05-17 2004-06-09 中国科学院上海硅酸盐研究所 氧化锆增韧氧化铝陶瓷的低温液相烧结的方法
JP2004323249A (ja) * 2003-04-21 2004-11-18 National Institute Of Advanced Industrial & Technology 高気孔率セラミックフォーム成形体及びその製造方法
CN100457682C (zh) * 2003-09-22 2009-02-04 中国科学院金属研究所 一种高强度致密的泡沫碳化硅陶瓷材料及其制备方法
CN1269771C (zh) * 2003-12-12 2006-08-16 中国科学院上海硅酸盐研究所 网眼多孔陶瓷的制备方法
CN109336565A (zh) * 2018-12-24 2019-02-15 焦作市德邦科技有限公司 一种氧化锆增韧氧化铝耐磨陶瓷的制备方法
CN111825432A (zh) * 2020-07-31 2020-10-27 中南大学湘雅医院 一种细晶粒粉色zta陶瓷及其制备方法

Also Published As

Publication number Publication date
CN114702308A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
CN109879669B (zh) 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用
CN108706978B (zh) 喷雾造粒结合3dp和cvi制备碳化硅陶瓷基复合材料的方法
WO2022222778A1 (zh) 一种通过陶瓷前驱体骨架成型的精细陶瓷材料及其制备方法和应用
CN109320246B (zh) 一种高温抗氧化石墨陶瓷复合材料及其制备方法
EP1561737B1 (en) Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
EP1626036A2 (en) Processing of sic/sic ceramic matrix composites by use of colloidal carbon black
US20220135489A1 (en) Method for preparing continuous fiber-reinforced ceramic matrix composite by flash sintering technology
CN108838404B (zh) 钛合金低成本近净成形方法
CN110590369B (zh) 一种连续梯度TiC多孔陶瓷及其模板压缩制备方法
CN112898009B (zh) 一种多层结构的六铝酸钙泡沫陶瓷的制备方法
CN114315359A (zh) 一种利用固溶耦合法制备高强韧复相高熵陶瓷的方法和应用
CN109095930A (zh) 一种氮化硼泡沫材料及其制备方法
CN109942310B (zh) 一种高性能氮化硅多孔陶瓷的制备方法
CN114702308B (zh) 一种高强度zta多孔陶瓷材料及其制备方法
CN113698215B (zh) 一种致密的层状碳化硅陶瓷及其制备方法
JPH08501523A (ja) ファイバー複合材料の製造方法
CN114685169A (zh) 一种基于浆料叠层设计的纤维增强碳化硅陶瓷基复合材料的制备方法
CN111484330A (zh) 金刚石增强碳化硅基板及其制备方法和电子产品
CN109095932A (zh) 一种晶须增韧氮化硅泡沫材料及其无压烧结制备方法
CN111375758A (zh) 一种钛或钛合金粉末的烧结方法
CN108585907B (zh) 一种Cr2AlC改性的自愈合碳化硅陶瓷基复合材料的制备方法
CN113563088B (zh) 多孔氮化硅陶瓷零件及其制造方法
CN115161529A (zh) 一种铝基碳化硅复合材料及其制备方法和应用
CN110483058B (zh) 一种超硬高强度的硼化物陶瓷及其制备方法和应用
CN111719062A (zh) 一种TiC/不锈钢复合多孔材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant