CN114671425A - 一种碘掺杂生物质衍生多孔碳复合材料及其制备方法 - Google Patents

一种碘掺杂生物质衍生多孔碳复合材料及其制备方法 Download PDF

Info

Publication number
CN114671425A
CN114671425A CN202210013553.5A CN202210013553A CN114671425A CN 114671425 A CN114671425 A CN 114671425A CN 202210013553 A CN202210013553 A CN 202210013553A CN 114671425 A CN114671425 A CN 114671425A
Authority
CN
China
Prior art keywords
iodine
composite material
preparation
heating
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202210013553.5A
Other languages
English (en)
Inventor
侯仰政
徐俊伟
葛林恒
刘伟良
任慢慢
乔从德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN202210013553.5A priority Critical patent/CN114671425A/zh
Publication of CN114671425A publication Critical patent/CN114671425A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • C01B32/348Metallic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/13Iodine; Hydrogen iodide
    • C01B7/14Iodine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/388Halogens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种碘掺杂生物质衍生分层次多孔碳(BCHP/I2)复合材料及其制备方法,属于电池电极材料制备技术领域。一种BCHP/I2复合材料,在制备过程中以生物质材料银杏肉为前驱体制得BCHP,BCHP具有丰富的多孔结构,衍生的碳材料错落有致,提供了大的比表面积。BCHP中存在的这些分层次的多孔结构可以提供丰富的活性位点,有利于BCHP吸附碘单质;因此在所制备的BCHP/I2复合材料中,碘单质能够均匀的分布在BCHP的多孔结构之中。本发明还提供BCHP/I2复合材料的制备方法及其用途,用于电池的电极材料。BCHP/I2复合材料的制备方法简单、成本低,有利于规模化工业生产。BCHP/I2复合材料,具有优异的倍率性能和长循环稳定性,适合用作电池电极材料。

Description

一种碘掺杂生物质衍生多孔碳复合材料及其制备方法
技术领域
本发明涉及了一种碘掺杂生物质衍生分层次多孔碳复合材料及其制备方法,属于电池电极材料制备技术领域。
背景技术
能源危机和迫在眉睫的环境问题是追求可靠、低成本和环保的电化学储能装置的主要动机。在各种储能模式中,可充电金属碘电池(MIB)因其高能量密度、低成本和丰富的碘资源而成为最具吸引力的候选者之一。1970年代最初提出可充电锂离子电池,其循环寿命超过100次。在接下来的几十年中,相关工作陆续出现。最近,由于先进的分析技术和纳米技术在电极制造中的蓬勃应用,对各种MIB(Na-I2、Mg-I2、Al-I2)的兴趣增加了。然而,所报道的电池是使用易燃和有毒的有机电解质制成的,引起了各种安全问题。因此,迫切需要仅使用水性电解质的MIB。在水性MIB中,基于可逆转化反应Zn + I2↔ ZnI2的锌碘电池是一个很有前途的候选者。
金属锌是一种高能量密度的阳极,在水中很稳定。与使用有机电解质的可充电锂离子电池、循环寿命有限的锌-空气电池相比,由于使用温和的水性电解质和快速的氧化还原反应,锌碘电池表现出更高的安全性。这些特征增加了高循环性能的可能性。1980年代首次报道了锌碘原型电池,但其发展受到一系列问题的困扰,例如缺乏合适的碘载体、严重的自放电以及循环过程中的锌枝晶生长。
因此,本发明提出一种BCHP/I2复合材料作为锌碘电池的有效正极基体,在制备过程中以生物质材料银杏肉为前驱体制得分层次多孔碳BCHP,BCHP具有丰富的多孔结构,衍生的碳材料错落有致,提供了大的比表面积。BCHP中存在的这些分层次的多孔结构可以提供丰富的活性位点,有利于BCHP吸附碘单质;因此在所制备的BCHP/I2复合材料中,碘单质能够均匀的分布在BCHP的多孔结构之中。本发明还提供BCHP/I2复合材料的制备方法及其用途,用于电池的电极材料。BCHP/I2复合材料的制备方法简单、成本低,有利于规模化工业生产。BCHP/I2复合材料,具有优异的倍率性能和长循环稳定性,适合用作电池电极材料。
发明内容
本发明的目的是提供一种BCHP/I2复合材料及其制备方法,目的在于克服现有锌碘电池正极材料的导电性能和储能性能不佳的不足,本发明提供的方法将生物质多孔碳与碘结合,多孔碳的导电性良好,同时可以有效的提供电子/离子传导,另外多孔的结构能限制碘脱出,提高BCHP/I2复合材料的电化学性能。
为实现上述发明目的,本发明采用如下技术方案:
一种碘掺杂生物质衍生分层次多孔碳复合材料的制备方法,其特征在于,包括以下步骤:
(1)将银杏肉用去离子水超声清洗15 min后60°C烘干,然后在管式炉中进行预碳化,在空气气氛下300°C煅烧4h,升温速率为5°C/min;
(2)将预碳化的产物加入到50 mL氢氧化钾溶液中混合均匀后冷冻干燥,氢氧化钾的浓度为0.25~1 M;
(3)煅烧上述的产物,进行碳化,在Ar气氛下加热到600~900°C保温3 h,升温速率为5°C/min,得到BCHP
(4)将单质碘溶于有机溶剂中,再将多孔碳加入,混合均匀后挥发溶剂,然后在Ar气氛下加热到130°C,保温5h,最后在空气气氛下加热100°C,保温3h及得到BCHP/I2复合材料,所述的碘与多孔碳的质量比为1~5:1;为了比较,在制备方法基本一样的情况下,将未经步骤(2)中所述的使用KOH造孔步骤的碳命名为BCNP
本发明的发明人经反复研究,提出了一种新的碳碘复合材料制备方法,利用银杏肉碳化造孔成生物质多孔碳,然后在有机溶液中与碘吸附复合成碳碘复合材料。除去有机溶剂后在惰性气体条件下加热,使得碘吸附的更加牢固,防止其从载体碳材料上脱落。生物质多孔碳的导电性良好,可以有效的提供电子/离子传导,另外多孔的结构能限制碘脱出,提高正极材料储电性能。
具体地,步骤(4)中碘溶解在有机溶剂中,与多孔碳混合后,碘被束缚在碳材料的内部和表面,不会轻易脱落,同时在Ar气氛保护下加热到130°C,保温5h,能够让碘与多孔碳结合的更加紧密,从而可以在后期使用其作为电池正极材料时,有效的抑制电池的“穿梭效应”,提升了电池循环的稳定性等电化学性能。
本发明提供的制备方法过程简单,原料廉价易得,操作方便;制备得到锌碘电池正极材料具有优异的导电性能和储电性能。
优选地,所述步骤(2)中所述的氢氧化钾浓度为0.25~1 M;进一步优选为0.5~1M。
优选地,所述步骤(3)中所述的碳化温度为600~900°C;进一步优选为700~900°C。
优选地,所述步骤(4)中所述的有机溶剂为乙醇、甲醇、乙二醇中的一种或几种。
优选地,所述步骤(4)中所述的碘与多孔碳的质量比为1~5:1;进一步优选为1~3:1。
优选地,所述步骤(4)中碘碳材料混合的方式为超声波辅助分散、机械搅拌中的一种或两种。
具体地,超声波辅助分散的时间为10~60min;优选为10~50min,进一步优选为20~40min。
机械搅拌的转速为200~300r/min,优选为250r/min。搅拌时间为1~4h,优选为2~3h。
优选地,挥发溶剂的方法为自然挥发、加热挥发。
具体地,自然挥发时间为12~48h,优选为24~48h。
加热挥发温度为40~60°C,时间为10~24h;温度优选为40°C,时间为12~24h。
一种碘掺杂生物质衍生分层次多孔碳复合材料的制备方法,通过上述制备方法制备得到。
优选地,所述碘掺杂生物质衍生分层次多孔碳复合材料具有明显的多孔结构,碘与多孔碳结合牢固。另外,如多孔碳材料经过N、B或P等一种或多种杂原子掺杂或含有上述杂原子的高分子改性后,其吸附多碘化物的能力会进一步加强,电极的电化学性能更佳。
当所述碳材料使用含N、P等一种或两种杂原子的高分子改性时,优选聚苯胺、聚吡咯等导电高分子。
本发明对正极材料的裁剪尺寸没有特殊要求,采用本领域技术人员所熟知的尺寸即可。在本发明中,碘在正极材料中的面积载量优选为0.1~1mg/cm2,进一步优选为0.3~0.5mg/cm2;本发明采用所述面积载量能使电极实现载量和活性物质利用率的最优。
与现有技术相比,本发明具有如下有益效果:
本发明提供的方法将生物质多孔碳与碘结合,多孔碳的导电性良好,同时可以有效的提供电子/离子传导,另外多孔的结构能限制碘脱出,提高正极材料储电性能。
本发明还提供所述工作电极用途,用于制造电池。
与现有技术相比,本发明具有如下有益效果:
本发明所提供的复合材料在电流密度100 mA g-1下循环100次后容量保持在100-110 mAh g-1,容量保持率为82-90%;具有较高的容量保持率和优异的倍率性能,适合用作电池电极材料。
附图说明
图1为本发明实施例1和对比例制备得到的BCHP/I2与BCNP/I2复合材料的热重曲线;
图2为本发明对比例制备得到的BCNP/I2复合材料的SEM图;
图3为本发明实施例1制备得到的BCHP/I2复合材料作的SEM图;
图4为本发明实施例1制备得到的BCHP/I2复合材料的SEM图及其对应元素分布图;
图5和图6为本发明实施例1制备得到的BCHP与BCHP/I2的比表面积与孔径分布图;
图7和图8本发明对比例制备得到的BCNP与BCNP/I2的比表面积与孔径分布图;
图9为本发明实施例1和对比例制备得到的BCHP/I2复合材料作为锌碘电池正极材料在0.2 mV/s扫描速度下的循环伏安图;
图10为本发明实施例1和对比例制备得到的BCHP/I2复合材料作为锌碘电池正极材料在100 mA g-1电流密度下的充放电曲线;
图11为本发明实施例1和对比例制备得到的BCHP/I2复合材料作为锌碘电池正极材料在100 mA g-1条件下循环稳定性;
图12为本发明实施例1和对比例制备得到的BCHP/I2复合材料作为锌碘电池正极材料在200 mA g-1条件下长循环稳定性;
图13为本发明实施例1和对比例制备得到的BCHP/I2复合材料作为锌碘电池正极材料的倍率性能。
具体实施方式
下面结合实施例进一步阐述本发明。这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照本领域常规条件或按照制造厂商建议的条件;所使用的原料、试剂等,如无特殊说明,均为可从常规市场等商业途径得到的原料和试剂。本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。
实施例1
本实施例提供一种锌碘电池正极材料的制备方法。
首先将50 g银杏肉用去离子水超声清洗15 min后60°C烘干,然后在管式炉中在空气气氛下300°C煅烧4h,升温速率为5°C/min进行预碳化,取0.9033g预碳化的产物加入50mL的0.5M氢氧化钾溶液中混合均匀后冷冻干燥,再在Ar气氛下加热到800°C保温3h,升温速率为5°C/min,煅烧上述的产物,进行碳化,得到BCHP,将0.1275 g单质碘溶于1mL乙醇中,再加入0.1268 gBCHP,混合均匀后加热到40°C,保温12h挥发乙醇,然后将得到的混合物在Ar气氛下加热到130°C,保温5h,最后在空气气氛下加热100°C,保温3h得到BCHP/I2复合材料。
实施例2
本实施例提供一种锌碘电池正极材料的制备方法。
首先将50 g银杏肉用去离子水超声清洗15 min后60°C烘干,然后在管式炉中在空气气氛下300°C煅烧4h,升温速率为5°C/min进行预碳化,取0.9046g预碳化的产物加入50mL的1M氢氧化钾溶液中混合均匀后冷冻干燥,再在Ar气氛下加热到800°C保温3h,升温速率为5°C/min,煅烧上述的产物,进行碳化,得到BCHP,将0.1127 g单质碘溶于1mL乙醇中,再加入0.1107 gBCHP,混合均匀后加热到40°C,保温12h挥发乙醇,然后将得到的混合物在Ar气氛下加热到130°C,保温5h,最后在空气气氛下加热100°C,保温3h得到BCHP/I2复合材料。
实施例3
本实施例提供一种锌碘电池正极材料的制备方法。
首先将50 g银杏肉用去离子水超声清洗15 min后60°C烘干,然后在管式炉中在空气气氛下300°C煅烧4h,升温速率为5°C/min进行预碳化,取0.9033g预碳化的产物加入50mL的0.5M氢氧化钾溶液中混合均匀后冷冻干燥,再在Ar气氛下加热到800°C保温3h,升温速率为5°C/min,煅烧上述的产物,进行碳化,得到BCHP,将0.2241 g单质碘溶于1mL乙醇中,再加入0.1171 gBCHP,混合均匀后加热到40°C,保温12h挥发乙醇,然后将得到的混合物在Ar气氛下加热到130°C,保温5h,最后在空气气氛下加热100°C,保温3h得到BCHP/I2复合材料。
实施例4
本实施例提供一种锌碘电池正极材料的制备方法。
首先将50 g银杏肉用去离子水超声清洗15 min后60°C烘干,然后在管式炉中在空气气氛下300°C煅烧4h,升温速率为5°C/min进行预碳化,取0.9021g预碳化的产物加入50mL的0.5M氢氧化钾溶液中混合均匀后冷冻干燥,再在Ar气氛下加热到900°C保温3h,升温速率为5°C/min,煅烧上述的产物,进行碳化,得到BCHP,将0.1960 g单质碘溶于1mL乙醇中,再加入0.1948 gBCHP,混合均匀后加热到40°C,保温12h挥发乙醇,然后将得到的混合物在Ar气氛下加热到130°C,保温5h,最后在空气气氛下加热100°C,保温3h得到BCHP/I2复合材料。
实施例5
本实施例提供一种锌碘电池正极材料的制备方法。
首先将50 g银杏肉用去离子水超声清洗15 min后60°C烘干,然后在管式炉中在空气气氛下300°C煅烧4h,升温速率为5°C/min进行预碳化,取0.9033g预碳化的产物加入50mL的0.5M氢氧化钾溶液中混合均匀后冷冻干燥,再在Ar气氛下加热到800°C保温3h,升温速率为5°C/min,煅烧上述的产物,进行碳化,得到BCHP,将0.1275 g单质碘溶于1mL甲醇中,再加入0.1268 gBCHP,混合均匀后加热到40°C,保温12h挥发甲醇,然后将得到的混合物在Ar气氛下加热到130°C,保温5h,最后在空气气氛下加热100°C,保温3h得到BCHP/I2复合材料。
对比例1
本对比例提供了一种锌碘电池正极材料
首先将50 g银杏肉用去离子水超声清洗15 min后60°C烘干,然后在管式炉中在空气气氛下300°C煅烧4h,升温速率为5°C/min进行预碳化,取0.9010g预碳化的产物在Ar气氛下加热到800°C保温3h,升温速率为5°C/min,煅烧上述的产物,进行碳化,得到BCNP,将0.1287 g单质碘溶于1mL乙醇中,再加入0.1283 gBCNP,混合均匀后加热到40°C,保温12h挥发乙醇,然后将得到的混合物在Ar气氛下加热到130°C,保温5h,最后在空气气氛下加热100°C,保温3h得到BCNP/I2复合材料。
本对比例中没有通过氢氧化钾与碳混合,再经过高温煅烧形成多孔碳的过程,没有丰富的孔结构,使得抑制碘溶出的能力大大减弱,致使电极电化学性能表现不佳。
性能测试
对实施例1和对比例制备的BCHP,BCHP/I2与BCNP,BCNP/I2进行热重表征,结果如图1所示实施例1制备得到BCHP/I2中碘的量为41%,对比实例中为24%;说明BCHP吸附的碘的量多于BCNP的量。
利用扫描电镜对实施例1和对比例进行显微观察。结果如图2和图3所示,实施例1制备的BCHP具有丰富的多孔结构,对比例制得的BCNP则没有发现明显孔洞结构。
利用扫描电镜配套的能谱仪,对样品进行元素分析,如图4可以看出碘均匀分布在实施例1制备的BCHP之中。
对BCHP与BCHP/I2进行BET测试以分析其比表面积和孔径分布,如图5和6所示,在相对较低的压力下(P/P0<0.1),等温线出现近垂直的峰,表明BCHP中存在丰富的微孔。负载碘后,BCHP的比表面积出现明显的下降,表明BCHP的微孔结构中充满了碘。BCHP/I2的孔径分布峰强度明显降低,这一结果进一步表明,大量的碘被捕获在微孔内,而不是捕获在BCHP的表面。
类似的,如图7和8所示,未经造孔制得的BCNP与BC HP相比,比表面积小得多,并且吸附碘前后孔径变化不大,说明BCNP吸附碘的效果不如BC HP
实施例1和对比例制备得到的正极材料分别作为正极使用时,在0.2mV/s扫描速度下的循环伏安图如图7所示。由图7可知,有一个氧化峰和一个还原峰,对应
Figure 378402DEST_PATH_IMAGE001
的相互转换。对比实施例1和对比例可知,实施例1制备的正极材料导电性更强,氧化还原峰的电势差更小,电极极化更小,反应动力学更好。
实施例1和对比例制备得到的正极材料使用时,在100mA g-1电流密度下的充放电曲线如图8所示。由图可知,实施例1相较于对比例,对应的充放电平台间的电势差小,表明其电极极化小。
实施例1和对比例制备得到的复合材料分别作为正极材料使用时,在100mA g-1电流密度下的循环稳定性及库伦效率测试,结果如图9所示。由图9可知,实施例1电池的比容量和循环稳定都要好于对比例,库伦效率也接近100%。图10 在200mA g-1的电流密度下进行更多的循环圈数,可以看出同样呈现上述的实验结果。
图11展示了实施例1和对比例的倍率性能,可以看出实施例1具有更好的倍率性能。
实施例2、3、4、5基本也呈现了以上一样的效果。
以上实施例和对比例的结果表明,本发明提出的制备策略切实可行,提供的制备方法简单易行,可操作性强,能低成本制备高性能的电池电极材料。
在制备过程中以生物质材料银杏肉为前驱体制得BCHP,BCHP具有丰富的多孔结构,衍生的碳材料错落有致,提供了高的比表面积。BCHP中存在的这些分层次的多孔结构可以提供丰富的活性位点,有利于BCHP吸附碘单质;因此在所制备的BCHP/I2复合材料中,碘单质能够均匀的分布在BCHP的多孔结构之中。使用BCHP复合材料组装的电池具有优异的倍率性能和长循环稳定性,经检验适合用作电池电极材料。

Claims (8)

1.一种BCHP/I2复合材料的制备方法,其特征在于,包括以下步骤:
(1)将银杏肉用去离子水超声清洗15 min后60°C烘干,然后在管式炉中进行预碳化,在空气气氛下300°C煅烧4h,升温速率为5°C/min;
(2)将预碳化的产物加入到50 mL氢氧化钾溶液中混合均匀后冷冻干燥,氢氧化钾的浓度为0.25~1 M;
(3)煅烧上述的产物,进行碳化,在Ar气氛下加热到600~900°C保温3 h,升温速率为5°C/min;
(4)将单质碘溶于有机溶剂中,再将多孔碳加入,混合均匀后挥发溶剂,然后在Ar气氛下加热到130°C,保温5h,最后在空气气氛下加热100°C,保温3h即得到锌碘电池正极材料,所述的碘与多孔碳的质量比为1~5:1;
(5)制备BCHP/I2复合材料:将碘单质分散在有机溶剂中,再将BCHP加入溶液中,控制碘和BCHP的重量比为1:1~2;接下来,将产物在40°C烘箱中干燥挥发除去乙醇,然后在Ar气氛中130°C下加热;最后在空气中100°C下加热3小时除去过量的碘;为了比较,在制备方法基本一样的情况下,将未经步骤(2)中所述的使用KOH造孔步骤的碳命名为BCNP
2.根据权利要求1所述制备方法,其特征在于,步骤(2)中所述的氢氧化钾浓度为0.25~1 M。
3.根据权利要求1所述制备方法,其特征在于,步骤(3)中所述的碳化温度为600~900°C。
4.根据权利要求1所述制备方法,其特征在于,步骤(4)中所述的有机溶剂为乙醇、甲醇、乙二醇中的一种或几种。
5.根据权利要求1所述制备方法,其特征在于,步骤(4)中所述的碘与多孔碳的质量比为1~5:1。
6.一种BCHP/I2复合材料,其特征在于,通过权利要求1~5任一所述制备方法制备得到。
7.如权利要求6所述BCHP/I2复合材料的用途,用于制作电池的电极材料。
8.如权利要求6所述BCHP/I2复合材料的用途,用于制作电池。
CN202210013553.5A 2022-01-07 2022-01-07 一种碘掺杂生物质衍生多孔碳复合材料及其制备方法 Withdrawn CN114671425A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210013553.5A CN114671425A (zh) 2022-01-07 2022-01-07 一种碘掺杂生物质衍生多孔碳复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210013553.5A CN114671425A (zh) 2022-01-07 2022-01-07 一种碘掺杂生物质衍生多孔碳复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN114671425A true CN114671425A (zh) 2022-06-28

Family

ID=82071247

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210013553.5A Withdrawn CN114671425A (zh) 2022-01-07 2022-01-07 一种碘掺杂生物质衍生多孔碳复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114671425A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116161644A (zh) * 2023-03-09 2023-05-26 四川兴储能源科技有限公司 一种碘掺杂钠离子硬碳的制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109174141A (zh) * 2018-10-12 2019-01-11 宝鸡文理学院 一种复合纳米光催化材料的制备方法
CN110510595A (zh) * 2019-07-15 2019-11-29 电子科技大学 一种用于锂硫电池的n/s共掺杂多孔碳的制备方法
CN113036144A (zh) * 2021-03-10 2021-06-25 山东大学 一种高稳定锌碘电池正极复合材料及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109174141A (zh) * 2018-10-12 2019-01-11 宝鸡文理学院 一种复合纳米光催化材料的制备方法
CN110510595A (zh) * 2019-07-15 2019-11-29 电子科技大学 一种用于锂硫电池的n/s共掺杂多孔碳的制备方法
CN113036144A (zh) * 2021-03-10 2021-06-25 山东大学 一种高稳定锌碘电池正极复合材料及其制备方法与应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116161644A (zh) * 2023-03-09 2023-05-26 四川兴储能源科技有限公司 一种碘掺杂钠离子硬碳的制备方法及应用

Similar Documents

Publication Publication Date Title
Liu et al. Nanoporous selenium as a cathode material for rechargeable lithium–selenium batteries
CN107359338B (zh) 一种具有十二面体结构的氧化钴/碳复合中空纳米结构材料及其在锂电池负极中的应用
CN112670507B (zh) 金属硒化物负载的碳纳米纤维的锂硫电池中间层的制备方法及锂硫电池
KR102588699B1 (ko) 열수-볼 밀링에 의한 Ni-HITP 복합 재료와 이의 제조 방법 및 이를 이용한 리튬 이온 배터리 전극 재료
CN105742633B (zh) 多孔富氧氮化钒纳米片及其制备方法和应用
CN111244445B (zh) 锂硫电池复合正极活性材料及其制备和应用
CN104157860A (zh) 钠-硒电池及其制备方法
Gong et al. Anchoring high-mass iodine to nanoporous carbon with large-volume micropores and rich pyridine-N sites for high-energy-density and long-life Zn-I2 aqueous battery
CN112794324A (zh) 一种高介孔率木质素多级孔碳材料及其制备方法与应用
CN110611099A (zh) 一种用于锂硫电池正极材料的3D-ZIF8@zif67制备方法
CN110993919B (zh) 一种钾离子电池负极储能材料的制备方法和应用
CN114530601A (zh) 一种硼掺杂多孔碳材料的制备方法及其在钾离子电池中的应用
CN109301246B (zh) 一种硫掺杂硬碳材料、其制备方法及其作为负极的钾离子电池
CN114671425A (zh) 一种碘掺杂生物质衍生多孔碳复合材料及其制备方法
CN111554905B (zh) 一种氧化锌基碳复合纳米材料制备方法、产品及应用
CN113363452A (zh) 自支撑磷/碳三维导电网络复合电极材料及其制备方法和应用
CN116253311A (zh) 一种三维多孔硬碳材料的制备及其应用
CN113113604B (zh) 微米开孔笼状缺陷MnO@Ni材料及其制备方法与应用
CN111313020B (zh) 一种硫掺杂富氮碳材料的制备方法、电极及其在钠/钾离子电池中的应用
CN114751395A (zh) 一种氮掺杂多孔碳球/s复合材料及其制备方法和在锂硫电池中的应用
CN114267828A (zh) 一种衍生多孔碳作为锌碘电池正极材料及其制备方法
CN114678538A (zh) 一种生物质衍生多孔碳作为锌碘电池正极材料
Liu et al. Biomass-Derived Three-Dimensionally Connected Hierarchical Porous Carbon Framework for Long-Life Lithium–Sulfur Batteries
CN110589795A (zh) 二氧化锰纳米粒子修饰的三维分级多孔碳网络及其制备方法与应用
CN115642254B (zh) 导电复合材料、导电复合材料的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20220628

WW01 Invention patent application withdrawn after publication