CN114669332A - 一种离子型超高交联多孔有机聚合物负载钴催化剂的制备方法 - Google Patents

一种离子型超高交联多孔有机聚合物负载钴催化剂的制备方法 Download PDF

Info

Publication number
CN114669332A
CN114669332A CN202210434550.9A CN202210434550A CN114669332A CN 114669332 A CN114669332 A CN 114669332A CN 202210434550 A CN202210434550 A CN 202210434550A CN 114669332 A CN114669332 A CN 114669332A
Authority
CN
China
Prior art keywords
organic polymer
porous organic
cobalt catalyst
polymer supported
supported cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210434550.9A
Other languages
English (en)
Other versions
CN114669332B (zh
Inventor
王建军
陈嘉琦
刘姣
王显龙
吴婷婷
范敏伊
藏雨
徐亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qiqihar University
Original Assignee
Qiqihar University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qiqihar University filed Critical Qiqihar University
Priority to CN202210434550.9A priority Critical patent/CN114669332B/zh
Publication of CN114669332A publication Critical patent/CN114669332A/zh
Application granted granted Critical
Publication of CN114669332B publication Critical patent/CN114669332B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0616Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only two nitrogen atoms in the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/025Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)

Abstract

本发明属于多孔有机催化剂制备技术领域,公开了一种超高交联多孔有机聚合物负载钴催化剂的制备方法,在氮气保护状态下,将四苯基卟啉、二溴对二甲苯与N‑甲基咪唑溶解在1,2‑二氯乙烷溶剂中,得到混合液A;向所述混合液A中加入氯化铝,然后依次油浴搅拌、淬灭、冲洗、纯化干燥,得到中间产物B;将乙酸钴溶解于去离子水中,得到溶液C;向所述溶液C中添加含有中间产物B的乙腈溶液,然后室温搅拌、离心分离、洗涤干燥,得到目标产物D;所形成的聚合物能催化CO2和环氧化物生成环状碳酸酯,极大提高CO2吸附能力和在常压环境下高效转化CO2

Description

一种离子型超高交联多孔有机聚合物负载钴催化剂的制备 方法
技术领域
本发明属于多孔有机催化剂技术领域,具体涉及一种离子型超高交联多孔有机聚合物负载钴催化剂的制备方法。
背景技术
多孔有机催化材料丰富的孔结构、优异的CO2吸附能力和丰富的催化活性使其成为CO2捕集和化学转化相结合的理想材料。关于多孔有机催化材料的CO2催化研究是一种可持续和低碳的战略,不仅可以有效降低大气中的CO2水平,还可以对CO2进行回收利用、并生产与CO2有关的多种增值化学品。
已经探索的几种类型的多孔材料包括沸石、多孔碳、金属有机框架(MOF)和微孔有机聚合物(MOPs)等,多孔有机催化材料拥有丰富的孔结构和较大比表面积,可以对CO2进行吸附,并通过负载的催化位点对捕获的CO2进行催化环加成反应,但现有的大多数有机多孔催化剂仅在高温和高CO2压力条件下表现出优异的催化性能,并且大多需要加入四丁基氯化铵等助催化剂进行反应,从而增加了能耗、生产成本和CO2的过量排放。
发明内容
鉴于此,为解决上述背景技术中所提出的问题,本发明的目的在于提供一种离子型超高交联多孔有机聚合物负载钴催化剂的制备方法。
为实现上述目的,本发明提供如下技术方案:
一种离子型超高交联多孔有机聚合物负载钴催化剂的制备方法,包括:
在氮气保护状态下,将四苯基卟啉、二溴对二甲苯与N-甲基咪唑溶解在1,2-二氯乙烷溶剂中,得到混合液A;
向所述混合液A中加入氯化铝,然后依次油浴搅拌、淬灭、冲洗、纯化干燥,得到中间产物B;
将乙酸钴溶解于去离子水中,得到溶液C;
向所述溶液C中添加含有中间产物B的乙腈溶液,然后室温搅拌、离心分离、洗涤干燥,得到目标产物D;所述目标产物D即为离子型超高交联多孔有机聚合物负载钴催化剂。
优选的,所述四苯基卟啉、二溴对二甲苯、N-甲基咪唑的混合质量比为5:10~12:5~10。
优选的,按1:16(四苯基卟啉:氯化铝)的混合比向所述混合液A中加入氯化铝。
优选的,在所述油浴搅拌中:油浴加热温度为80℃,搅拌时间为24h。
优选的,在所述淬灭中:利用混合体积比为2:1的HCl与H2O的混合液进行淬灭。
优选的,在所述冲洗中:利用去离子水冲洗三次、无水乙醇冲洗两次。
优选的,在所述纯化干燥中:
纯化:通过无水乙醇索氏提取48h;
干燥:在65℃的真空烘箱中干燥24h。
优选的,在所述室温搅拌中,搅拌时间为24h。
优选的,在所述洗涤干燥中,65℃下真空干燥24h。
一种基于上述公开的制备方法所制备得到的负载钴催化剂的超高交联多孔有机聚合物负载钴催化剂。
本发明与现有技术相比,具有以下有益效果:
在本发明的制备方法中,以四苯基卟啉、二溴对二甲苯、N-甲基咪唑为原料,与1,2-二氯乙烷混合,然后加入氯化铝油浴反应获得中间产物,将中间产物、乙酸钴水溶液、乙腈溶液混合,室温搅拌反应后制得离子型超高交联多孔有机聚合物负载钴催化剂,整体制备工艺简单。
对于本发明所制备的离子型超高交联多孔有机聚合物负载钴催化剂中,卟啉是含氮原子和大π共轭体系的多孔材料的理想构建块,其刚性骨架结构能够在聚合物中形成多孔结构,有效增强聚合物与CO2的相互作用,提高其CO2吸附能力,并且能够与金属离子络合,形成一种均相催化剂,有助于催化CO2和环氧化物生成环状碳酸酯,而结构中引入的咪唑阴离子基团,能够作为共催化位点,实现环氧化物反应过程中的开环反应,实现常压环境下CO2的高效转化。
附图说明
图1为本发明的中间产物B的红外谱图;
图2为本发明的中间产物B的扫描电镜图;
图3为本发明的目标产物D的XPS图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明中提供一种离子型超高交联多孔有机聚合物负载钴催化剂的制备方法,具体该制备方法包括:
S1.在氮气保护状态下,将四苯基卟啉、二溴对二甲苯与N-甲基咪唑溶解在1,2-二氯乙烷溶剂中,得到混合液A;
向混合液A中加入氯化铝,然后依次油浴搅拌、淬灭、冲洗、纯化干燥,得到中间产物B;
S2.将乙酸钴溶解于去离子水中,得到溶液C;
向溶液C中添加含有中间产物B的乙腈溶液,然后室温搅拌、离心分离、洗涤干燥,得到目标产物D;目标产物D即为负载钴催化剂的离子型超高交联多孔有机聚合物。
优选的,针对上述制备方法所公开的步骤,在本发明中提供如下实施例S1.制备中间产物B
在氮气保护状态下,将307.5mg四苯基卟啉、316.8mg二溴对二甲苯与39.6μL的N-甲基咪唑溶解在10mL的1,2-二氯乙烷溶剂中,得到混合液A;向混合液A中加入1.30g氯化铝,然后油浴加温至80℃并持续搅拌24h;
利用混合体积比为2:1的HCl与H2O的混合液对上述反应体系进行淬灭,之后利用去离子水冲洗三次、无水乙醇冲洗两次,并通过无水乙醇索提48h进一步纯化,最后在65℃的真空烘箱中干燥24h,得到中间产物B。
在上述步骤S1中,中间产物B的收率为98%,所制备的中间产物B即为一种超高交联多孔有机聚合物,且具体反应过程为:
Figure BDA0003612351840000041
另外,结合图示可知:
图1为经索氏提取后的中间产物B(HCP)与原料四苯基卟啉(TPP)比较的红外谱图,图中2870cm-1为亚甲基C-H的伸缩振动峰,1603cm-1为咪唑的伸缩振动峰,由此表明了该超交联聚合物的成型;
图2为该超交联聚合物HCP的扫描电镜图,图中表明所制备的超交联聚合物形貌为多孔疏松的球状结构,且具有较大的比表面积。
S2.制备目标产物D
将165mg乙酸钴溶解于10mL去离子水中,得到溶液C;
将200mg中间产物B溶于6mL乙腈溶液中,并向溶液C中添加含有中间产物B的乙腈溶液,室温搅拌24h后离心分离;
用去离子水反复洗涤离心分离后的固体,然后在65℃下真空干燥24h,得到目标产物D(黑色固体)。
在上述步骤S2中,目标产物D的收率为87.81%,所制备的目标产物D即为超高交联多孔有机聚合物负载钴催化剂;
另外,结合图示可知:
图3为负载钴催化剂的多孔超交联聚合物的XPS图,图中在HCP-Co中观察到N1s在Co2p、780.4eV处的不对称宽峰,对应于特征CoN4中心,这表明钴离子已成功地并入四苯基卟啉的中心方形平面配位位点。
综上所示,本实施例中有效实现了离子型超高交联多孔有机聚合物负载钴催化剂的成功制备;其中,卟啉是含氮原子和大π共轭体系的多孔材料的理想构建块,其刚性骨架结构能够在聚合物中形成多孔结构,有效增强聚合物与CO2的相互作用,提高其CO2吸附能力,并且能够与金属离子络合,形成一种均相催化剂,有助于催化CO2和环氧化物生成环状碳酸酯,而结构中引入的咪唑阴离子基团,能够作为共催化位点,实现环氧化物反应过程中的开环反应,进而实现常压环境下CO2的高效转化。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

1.一种离子型超高交联多孔有机聚合物负载钴催化剂的制备方法,其特征在于,包括:
在氮气保护状态下,将四苯基卟啉、二溴对二甲苯与N-甲基咪唑溶解在1,2-二氯乙烷溶剂中,得到混合液A;
向所述混合液A中加入氯化铝,然后依次油浴搅拌、淬灭、冲洗、纯化干燥,得到中间产物B;
将乙酸钴溶解于去离子水中,得到溶液C;
向所述溶液C中添加含有中间产物B的乙腈溶液,然后室温搅拌、离心分离、洗涤干燥,得到目标产物D;所述目标产物D即为离子型超高交联多孔有机聚合物负载钴催化剂。
2.根据权利要求1所述的一种离子型超高交联多孔有机聚合物负载钴催化剂的制备方法,其特征在于:所述四苯基卟啉、二溴对二甲苯、N-甲基咪唑的混合质量比为5:10~12:5~10。
3.根据权利要求1所述的一种离子型超高交联多孔有机聚合物负载钴催化剂的制备方法,其特征在于:向所述混合液A中加入氯化铝时控制所述四苯基卟啉与氯化铝的混合比为1:16。
4.根据权利要求1所述的一种离子型超高交联多孔有机聚合物负载钴催化剂的制备方法,其特征在于,在所述油浴搅拌中:油浴加热温度为80℃,搅拌时间为24h。
5.根据权利要求1所述的一种离子型超高交联多孔有机聚合物负载钴催化剂的制备方法,其特征在于,在所述淬灭中:利用混合体积比为2:1的HCl与H2O的混合液进行淬灭。
6.根据权利要求1所述的一种离子型超高交联多孔有机聚合物负载钴催化剂的制备方法,其特征在于,在所述冲洗中:利用去离子水冲洗三次、无水乙醇冲洗两次。
7.根据权利要求1所述的一种离子型超高交联多孔有机聚合物负载钴催化剂的制备方法,其特征在于,在所述纯化干燥中:
纯化:通过无水乙醇索氏提取48h;
干燥:在65℃的真空烘箱中干燥24h。
8.根据权利要求1所述的一种离子型超高交联多孔有机聚合物负载钴催化剂的制备方法,其特征在于:在所述室温搅拌中,搅拌时间为24h。
9.根据权利要求1所述的一种离子型超高交联多孔有机聚合物负载钴催化剂的制备方法,其特征在于:在所述洗涤干燥中,65℃下真空干燥24h。
10.基于权利要求1-9中任意一项所述的制备方法制备得到离子型超高交联多孔有机聚合物负载钴催化剂。
CN202210434550.9A 2022-04-24 2022-04-24 一种离子型超高交联多孔有机聚合物负载钴催化剂的制备方法 Active CN114669332B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210434550.9A CN114669332B (zh) 2022-04-24 2022-04-24 一种离子型超高交联多孔有机聚合物负载钴催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210434550.9A CN114669332B (zh) 2022-04-24 2022-04-24 一种离子型超高交联多孔有机聚合物负载钴催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN114669332A true CN114669332A (zh) 2022-06-28
CN114669332B CN114669332B (zh) 2023-08-01

Family

ID=82080764

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210434550.9A Active CN114669332B (zh) 2022-04-24 2022-04-24 一种离子型超高交联多孔有机聚合物负载钴催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN114669332B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115254061A (zh) * 2022-08-15 2022-11-01 齐齐哈尔大学 一种超高交联多孔有机聚合物碘吸附剂的制备方法
CN115449073A (zh) * 2022-10-25 2022-12-09 广东工业大学 一种金属卟啉基超交联离子聚合物和制备方法及其应用
CN115591586A (zh) * 2022-10-24 2023-01-13 西华师范大学(Cn) 超交联聚合物负载金属催化剂用于合成环碳酸酯中的应用
CN116410744A (zh) * 2023-04-12 2023-07-11 兰州交通大学 基于碳量子点的双金属复合材料的制备和作为比率型荧光探针在检测诺氟沙星中的应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1074689A (zh) * 1991-09-24 1993-07-28 加利福尼亚大学 大环金属螯合剂聚合物及其制备方法和应用
CN103987714A (zh) * 2011-09-21 2014-08-13 国立大学法人冈山大学 金属卟啉配位化合物、其制造方法及由其构成的二氧化碳固定化催化剂、以及环状碳酸酯的制造方法
WO2016147116A1 (en) * 2015-03-19 2016-09-22 Sol S.P.A. A gas-adsorbing porous aromatic hyper-cross-linked polymer and a method of preparing thereof
CN106831698A (zh) * 2016-12-20 2017-06-13 中山大学 一种多相催化合成环状碳酸酯的方法
US20180050328A1 (en) * 2015-04-15 2018-02-22 Agency For Science, Technology And Research Modified porous hypercrosslinked polymers for co2 capture and conversion
CN111039902A (zh) * 2019-10-25 2020-04-21 中山大学惠州研究院 一种环氧环己烷的制备方法
CN111440302A (zh) * 2020-04-26 2020-07-24 中山大学惠州研究院 一种超交联金属卟啉催化ε-己内酯开环聚合制备聚己内酯的方法
CN113181962A (zh) * 2021-04-28 2021-07-30 浙江理工大学 钴卟啉交联聚季鏻盐离子液体及其制备和在催化二氧化碳与环氧化物环加成反应中的应用
CN113304124A (zh) * 2021-06-07 2021-08-27 合肥工业大学 一种口服胰岛素壳聚糖纳米粒溶液及其制备方法
CN113659158A (zh) * 2021-08-13 2021-11-16 山东能源集团有限公司 一种碳基Fe/S/N共掺杂氧还原催化剂及其制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1074689A (zh) * 1991-09-24 1993-07-28 加利福尼亚大学 大环金属螯合剂聚合物及其制备方法和应用
CN103987714A (zh) * 2011-09-21 2014-08-13 国立大学法人冈山大学 金属卟啉配位化合物、其制造方法及由其构成的二氧化碳固定化催化剂、以及环状碳酸酯的制造方法
WO2016147116A1 (en) * 2015-03-19 2016-09-22 Sol S.P.A. A gas-adsorbing porous aromatic hyper-cross-linked polymer and a method of preparing thereof
US20180050328A1 (en) * 2015-04-15 2018-02-22 Agency For Science, Technology And Research Modified porous hypercrosslinked polymers for co2 capture and conversion
CN106831698A (zh) * 2016-12-20 2017-06-13 中山大学 一种多相催化合成环状碳酸酯的方法
CN111039902A (zh) * 2019-10-25 2020-04-21 中山大学惠州研究院 一种环氧环己烷的制备方法
CN111440302A (zh) * 2020-04-26 2020-07-24 中山大学惠州研究院 一种超交联金属卟啉催化ε-己内酯开环聚合制备聚己内酯的方法
CN113181962A (zh) * 2021-04-28 2021-07-30 浙江理工大学 钴卟啉交联聚季鏻盐离子液体及其制备和在催化二氧化碳与环氧化物环加成反应中的应用
CN113304124A (zh) * 2021-06-07 2021-08-27 合肥工业大学 一种口服胰岛素壳聚糖纳米粒溶液及其制备方法
CN113659158A (zh) * 2021-08-13 2021-11-16 山东能源集团有限公司 一种碳基Fe/S/N共掺杂氧还原催化剂及其制备方法和应用

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DU JING 等: "Porous Organic Polymers for Catalytic Conversion of Carbon Dioxide", 《CHEMISTRY-AN ASIAN JOURNAL》, vol. 16, no. 32, pages 3833 - 3850 *
HU LINGLING 等: "Hypercrosslinked Polymers Incorporated With Imidazolium Salts for Enhancing CO2 Capture", 《POLYMER ENGINEERING AND SCIENCE》, vol. 56, no. 5, pages 573 - 582, XP055516559, DOI: 10.1002/pen.24282 *
OUYANG HUANG 等: "Creating chemisorption sites for enhanced CO2 chemical conversion activity through amine modification of metalloporphyrin-based hypercrosslinked polymers", 《CHEMICAL ENGINEERING JOURNAL》, vol. 431, pages 1 - 9 *
WANG SHAOLEI 等: "A novel metalporphyrin-based microporous organic polymer with high CO2 uptake and efficient chemical conversion of CO2 under ambient conditions", 《JOURNAL OF MATERIALS CHEMISTRY A》, vol. 5, no. 4, pages 1509 - 1515 *
王丹: "不同配体大位阻铁卟啉配合物氧合能力的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, no. 7, pages 014 - 458 *
阿斯根: "卟啉基共轭微孔聚合物的合成及性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, no. 9, pages 014 - 227 *
黄媛 等: "手性有机多孔材料的合成及其手性拆分膜研究进展", 《化工新型材料》, vol. 50, no. 1, pages 39 - 45 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115254061A (zh) * 2022-08-15 2022-11-01 齐齐哈尔大学 一种超高交联多孔有机聚合物碘吸附剂的制备方法
CN115591586A (zh) * 2022-10-24 2023-01-13 西华师范大学(Cn) 超交联聚合物负载金属催化剂用于合成环碳酸酯中的应用
CN115591586B (zh) * 2022-10-24 2024-03-15 西华师范大学 超交联聚合物负载金属催化剂用于合成环碳酸酯中的应用
CN115449073A (zh) * 2022-10-25 2022-12-09 广东工业大学 一种金属卟啉基超交联离子聚合物和制备方法及其应用
CN115449073B (zh) * 2022-10-25 2024-01-12 广东工业大学 一种金属卟啉基超交联离子聚合物和制备方法及其应用
CN116410744A (zh) * 2023-04-12 2023-07-11 兰州交通大学 基于碳量子点的双金属复合材料的制备和作为比率型荧光探针在检测诺氟沙星中的应用
CN116410744B (zh) * 2023-04-12 2024-04-12 兰州交通大学 基于碳量子点的双金属复合材料的制备和作为比率型荧光探针在检测诺氟沙星中的应用

Also Published As

Publication number Publication date
CN114669332B (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
CN114669332B (zh) 一种离子型超高交联多孔有机聚合物负载钴催化剂的制备方法
Zhang et al. Ionization of a covalent organic framework for catalyzing the cycloaddition reaction between epoxides and carbon dioxide
Du et al. Immobilization poly (ionic liquid) s into hierarchical porous covalent organic frameworks as heterogeneous catalyst for cycloaddition of CO2 with epoxides
CN110790926B (zh) 一种含钯金属-聚卡宾多孔有机聚合物的制备方法及应用
CN110684203A (zh) 一种二维含溴共价有机框架化合物及其制备方法
CN111514939A (zh) 一种离子液体/mof复合催化剂的制备方法及应用
CN114832863B (zh) 一种多级孔金属有机框架材料及其制备方法和应用
CN111318306A (zh) 一种新型的双功能电化学高效催化剂复合材料及其制备方法
CN111729679B (zh) 一种氮掺杂多孔碳材料及其制备方法和应用
Yuan et al. Metal-assisted synthesis of salen-based porous organic polymer for highly efficient fixation of CO 2 into cyclic carbonates
CN114471487B (zh) 一类可溶解加工的超交联多孔聚合物材料及其制备方法
CN110090664B (zh) 一种酸性离子液体@cof材料及其制备方法和应用
CN115304062A (zh) 一种氮掺杂多孔碳材料固体吸附剂的制备方法及由其制备的二氧化碳固体吸附剂
CN114887661A (zh) 一种Ti基卟啉材料的制备方法和应用
CN111454455B (zh) 一类富含poss衍生硅羟基的多孔杂化聚合物及其制备方法与催化应用
Tao et al. Synchronous activation for boosting CO2 cycloaddition over the DABCO-derived ionic liquid confined in MIL-101 (Cr) nanocages
CN111135848B (zh) 木质基碳催化剂、其制备方法及苯酚加氢制备环己酮的方法
CN111790446B (zh) 一种铁/钨双金属有机框架阳极析氧复合材料及其制备方法
CN102921445A (zh) 氮掺杂中空碳球的制备及在直接甲醇燃料电池阴极中的应用
CN108246340B (zh) 用于固定床乙炔氢氯化制备氯乙烯的无金属催化剂的制备和使用方法
CN114917892A (zh) 二氧化碳环加成反应中碳基金属单原子催化剂的制备方法
CN115463687A (zh) 苯并三噻吩基共价有机框架催化剂及其制备方法和应用
CN111215149B (zh) 一种MOF@POP-n复合催化剂及其制备方法和应用
CN109174189B (zh) 基于PCN-222(Co)@TpPa-1的多孔结晶核壳杂化材料及其制备方法和应用
CN116120583B (zh) 过渡态zif及其制备方法以及在co2环加成制备环状碳酸酯中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant