CN114664551A - 一种高磁高性能钐钴基磁体合金及其制备方法 - Google Patents
一种高磁高性能钐钴基磁体合金及其制备方法 Download PDFInfo
- Publication number
- CN114664551A CN114664551A CN202210141967.6A CN202210141967A CN114664551A CN 114664551 A CN114664551 A CN 114664551A CN 202210141967 A CN202210141967 A CN 202210141967A CN 114664551 A CN114664551 A CN 114664551A
- Authority
- CN
- China
- Prior art keywords
- equal
- powder
- magnetic
- based magnet
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 title claims abstract description 32
- 239000000956 alloy Substances 0.000 title claims abstract description 26
- KPLQYGBQNPPQGA-UHFFFAOYSA-N cobalt samarium Chemical compound [Co].[Sm] KPLQYGBQNPPQGA-UHFFFAOYSA-N 0.000 title claims abstract description 25
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- 239000000843 powder Substances 0.000 claims abstract description 61
- 238000005098 hot rolling Methods 0.000 claims abstract description 20
- 238000005496 tempering Methods 0.000 claims abstract description 20
- 238000005245 sintering Methods 0.000 claims abstract description 17
- 230000005674 electromagnetic induction Effects 0.000 claims abstract description 10
- 238000000137 annealing Methods 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 9
- 238000005516 engineering process Methods 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims abstract description 6
- 239000002994 raw material Substances 0.000 claims abstract description 6
- 238000010791 quenching Methods 0.000 claims abstract description 5
- 230000000171 quenching effect Effects 0.000 claims abstract description 5
- 238000009694 cold isostatic pressing Methods 0.000 claims abstract description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 38
- 229910052757 nitrogen Inorganic materials 0.000 claims description 19
- 239000002245 particle Substances 0.000 claims description 15
- 238000005096 rolling process Methods 0.000 claims description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- 230000006698 induction Effects 0.000 claims description 10
- 239000011812 mixed powder Substances 0.000 claims description 10
- 238000000227 grinding Methods 0.000 claims description 9
- 230000003068 static effect Effects 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 238000010902 jet-milling Methods 0.000 claims description 5
- 229910001004 magnetic alloy Inorganic materials 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 238000003825 pressing Methods 0.000 claims description 5
- 238000009423 ventilation Methods 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims description 4
- 238000003723 Smelting Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 20
- 230000007547 defect Effects 0.000 abstract description 5
- 239000000696 magnetic material Substances 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 3
- 238000002844 melting Methods 0.000 abstract description 3
- 230000008018 melting Effects 0.000 abstract description 3
- 230000000704 physical effect Effects 0.000 abstract description 2
- 238000007670 refining Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 230000001360 synchronised effect Effects 0.000 abstract 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- 239000010949 copper Substances 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 229910052684 Cerium Inorganic materials 0.000 description 6
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910001172 neodymium magnet Inorganic materials 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910020630 Co Ni Inorganic materials 0.000 description 1
- 229910002440 Co–Ni Inorganic materials 0.000 description 1
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0266—Moulding; Pressing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/0551—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/0555—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
- H01F1/0556—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together pressed
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/0555—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
- H01F1/0557—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Hard Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明公开了一种高磁高性能钐钴基磁体合金及其制备方法,属于磁性材料技术领域。所述钐钴基磁体合金化学式为SmxCobalFeaNibCucCedBe,其中x,a,b,c,d,e分别代表对应元素的质量百分比,24.65≤x≤27.4,7≤a≤9,7≤b≤9,4.4≤c≤7.4,0.2≤d≤1,0.1≤e≤0.5,其余为Co元素。通过将原料粉末在垂直磁场冷等静压压胚后,采用真空电磁感应熔炼技术径向阶梯型烧结,再进行淬火、回火、磁场热轧及去应力退火处理。真空电磁感应熔炼能够提高材料的致密度,磁场热轧及热处理工艺消除了材料内部的残余应力、减少内部缺陷和细化晶粒等效果,所获得的钐钴基磁性材料具备较高的抗压强度、居里温度及温度稳定性等物理性能,同时磁性能获得较好的提高效果,实现了钐钴磁体的力学性能及磁性能的同步提高。
Description
技术领域
本发明属于磁性材料技术领域,尤其涉及一种高磁高性能钐钴基磁体合金及其制备方法。
背景技术
随着新能源汽车、节能家电、风力发电、电子产品等技术的不断进步与发展, 稀土永磁材料成为使用市场需求量最多的材料之一,而这同时也对稀土永磁材料 的发展提出了更高的要求。目前常见的稀土永磁材料有Nd-Fe-B、Sm-Co系合金 等,由于钐钴系合金较高的居里温度,良好的磁能积和矫顽力,比钕铁硼在高温 环境中具有更广泛的应用。但是钐钴系磁性材料仍存在力学性能低、加工性能差、 高温环境易退磁等问题,如何同步提高钐钴合金的力/磁性能是磁性材料的研究 热点之一。
发明内容
为了克服现有技术的不足,本发明的第一目的在于提供一种高磁高性能钐钴基磁体合金及其制备方法,同步提高钐钴合金的力学性能和磁性能。
一种高磁高性能钐钴基磁体合金的制备方法,其特征在于,包括如下步骤:
1)制备SmxCobalFeaNibCucCedBe磁性合金粉末:将SmCo5粉、FeB粉、Ni粉、Cu粉、Ce粉通过气流磨技术进行细磨混粉,得到粒径为0.1~3μm的混合粉末;所述SmxCobalFeaNibCucCedBe中x,a,b,c,d,e分别代表对应元素的质量百分比,24.65≤x≤27.4,7≤a≤9,7≤b≤9,4.4≤c≤7.4,0.2≤d≤1,0.1≤e≤0.5,bal表示余量为Co元素;
2)磁场取向冷等静压压坯:将制备好的混合粉末在磁场冷等静压机进行垂直压制,得到压坯;
3)真空电磁感应熔炼:将压坯放入电磁感应炉中,抽真空,使得内部压强为1×10- 4Pa以下,再进行通入氩气达到0.1MPa,进行阶梯式烧结,即300~350℃保温5~8min,600~650℃保温5~8min,最终烧结温度为900~1100℃,烧结时间为30~60min,升温速率为10-300℃/min;
4)淬火后回火:将烧结后的试样迅速浸入液氮,持续时间10~60s,之后迅速进行回火处理;所述回火温度为300~500℃,回火时间为15~45min;
5)磁场热轧处理:将回火后的合金材料放入脉冲磁场装置中持续一定时间后,进行热轧处理;
6)将热轧后的试样进行去应力退火处理。
进一步地,步骤1)所述SmCo5粉、FeB粉、Ni粉、Cu粉、Ce粉的原料纯度均大于99.9%,FeB粉中的B的质量分数为15~20%。
进一步地,步骤1)所述SmCo5粉、FeB粉、Ce粉的粉末粒径范围为40~80μm,所述Ni粉、Cu粉的粉末粒径范围为15~35μm。
进一步地,步骤1)所述气流磨方式为双喷式,加料速率为10~30kg/min,气体采用高纯氮气,纯度>99.99%,通气量为10~20m³/h,排气量为20~40 m³/h,氮气供给压力为10~50kPa,气流磨时间持续5~30min。
进一步地,步骤2)所述磁场的磁感应强度为:1~10T,静压力为:300~1000MPa,持续时间为:5~15min;磁场方向垂直于静压力载荷方向。
进一步地,步骤5)所述脉冲磁场处理时间为15~60min,磁感应强度为10~50T。
进一步地,步骤5)所述热轧前试样厚度为5~10mm,轧前温度为500~600℃,终轧温度为300~350℃,轧辊预热温度150~200℃;总压下量为50%~75%,热轧为多次热轧,试样轧后厚度为2.5~5mm。
进一步地,前3道次为5%,4~8道次为7%~12%。
进一步地,步骤6)所述去应力退火温度为500~550℃,去应力退火时间为2~8h。
所述的制备方法制备的高磁高性能钐钴基磁体合金。
本发明对Sm-Co系磁体进行成分设计与优化,在钐钴基磁体合金中加入Fe、Cu元素有助于提高塑性及加工性能等。Fe以FeB形式加入,一方面引入B元素,由于B元素与M(Fe、Ni、Cu等)元素的原子尺寸的差异加大,进而形成间隙固溶体,显著阻碍了位错运动,晶界钉扎效果显著提高,有利于提升钐钴基磁体合金的力学性能;另一方面,Ce元素与FeB经过烧结,在材料内部生成了细小的微纳米级Ce2Fe14B磁性相,它与Fe-Co-Ni、SmCo5主磁相进行交换耦合作用,有效提高了钐钴基磁体合金的磁性能。
本发明采用真空电磁感应熔炼技术,交变电流流向环形铜管产生磁束,压坯被磁束贯穿整体,在与磁束耦合的方向产生涡电流,电能转换为内能,加热试样。由于压坯中存在大量的硬磁性颗粒,加快了涡电流产生的效率,大大提高了材料的致密性。
同时短时间的快速烧结也抑制了晶粒的形核和长大,发生细晶强化和弥散强化。经液氮淬火后,抑制了材料中的晶粒长大。淬火后进行回火处理,减小或消除内应力,减少材料的缺陷,提高材料的加工性能。
磁场热轧处理有利于促进材料中硬磁性析出相的晶粒择优取向和发生细晶强化,进一步提高材料的致密性和加工性能,使组织中析出相实现均匀弥散分布。去应力退火消除了材料内部的残余应力,减少材料内的组织缺陷,改善了材料的切削加工性。
与现有技术相比,本发明对Sm-Co系磁体进行成分设计与优化,并采用真空电磁熔炼技术、回火处理以及磁场热轧退火的方式,使制备出的材料内部残余应力大大消除,内部缺陷减小,组织晶粒得以细化,磁性能和力学性能同步提高。
具体实施方式
下面结合具体实施方式对本发明作进一步阐述。
实施例1:
1)以纯度大于99.9%的SmCo5粉末、FeB粉、镍粉、铜粉及铈粉为原料,制备Sm24.65CobalFe9Ni9Cu4.4Ce0.4B0.2磁性合金粉末,其中下标表示质量百分比。SmCo5粉、FeB粉及铈粉的粉末粒径范围为40~80μm,镍粉及铜粉的粉末粒径范围为15~35μm。将五种粉末以双喷式气流磨方式进行细磨混粉,以15kg/min的加料速率,采用高纯氮气作为气流磨介质,高纯氮气纯度大于99.99%,通气量设置为20m³/h,排气量设置为40m³/h,氮气供给压力为30kPa的方式。气流磨持续时间设置在10min,制备出混合粉末的粒径尺寸为0.1~3μm。
2)将制备好的混合粉末装入橡胶模具中,放置在磁场冷等静压机进行垂直压制,磁场方向垂直于静压力载荷方向。设置磁感应强度大小为5T,静压力为400MPa,持续时间为10min。
3)将压坯放入真空电磁感应炉中,抽真空使得内部压强为0.1Pa以下,再通入氩气,进行阶梯式烧结。在300℃时保温5min,600℃时保温5min,烧结温度为1050℃,烧结时间为1h,升温速率为30℃/min。
4)将烧结后的试样迅速浸入液氮,持续时间15s。之后迅速进行回火处理。回火温度为300℃,回火时间为30min。
5)将材料放入脉冲磁场装置中持续一定时间后,进行热轧处理。脉冲磁场处理时间为15min,磁感应强度为30T。热轧前试样厚度为10mm,轧前试样温度为600℃,试样终轧温度为350℃,轧辊预热温度为150℃。总压下量为75%,前3道次为5%,第4到8道次为12%,试样轧后厚度为2.5mm。
6)将热轧后的试样在500℃退火处理4h。
实施例2:
1)以纯度大于99.9%的SmCo5粉末、FeB粉、镍粉、铜粉及铈粉为原料,制备Sm27.4CobalFe9Ni9Cu4.4Ce0.4B0.2磁性合金粉末,其中下标表示质量百分比。SmCo5粉末、FeB粉及铈粉的粉末粒径范围为40~80μm,镍粉及铜粉的粉末粒径范围为15~35μm。将五种粉末以双喷式气流磨方式进行细磨混粉,以15kg/min的加料速率,采用高纯氮气作为气流磨介质,高纯氮气纯度大于99.99%,通气量设置为20m³/h,排气量设置为40m³/h,氮气供给压力为30kPa的方式。气流磨持续时间设置在10min,制备出混合粉末的粒径尺寸为0.1~3μm。
2)将制备好的混合粉末装入橡胶模具中,放置在磁场冷等静压机进行垂直压制,设置磁感应强度大小为5T,静压力为400MPa,持续时间为10min。
3)将压坯放入真空电磁感应炉中,使得内部压强为0.1Pa以下,再通入氩气,进行阶梯式烧结。在300℃时保温5min,600℃时保温5min,烧结温度为1050℃,烧结时间为1h,升温速率为30℃/min。
4)将烧结后的试样迅速浸入液氮,持续时间15s。之后迅速进行回火处理。回火温度为300℃,回火时间为30min。
5)将材料放入脉冲磁场装置中持续一定时间后,进行热轧处理。脉冲磁场处理时间为15min,磁感应强度为30T。热轧前试样厚度为10mm,轧前试样温度为600℃,试样终轧温度为350℃,轧辊预热温度为150℃。总压下量为75%,前3道次为5%,第4到8道次为12%,试样轧后厚度为2.5mm。
6)将热轧后的试样在500℃退火处理4h。
实施例3:
1)以纯度大于99.9%的SmCo5粉末、FeB粉、镍粉、铜粉及铈粉为原料,制备Sm27.4CobalFe9Ni9Cu4.4Ce1B0.5磁性合金粉末,其中下标表示质量百分比。SmCo5粉末、FeB粉及铈粉的粉末粒径范围为40~80μm,镍粉及铜粉的粉末粒径范围为15~35μm。将五种粉末以双喷式气流磨方式进行细磨混粉,以15kg/min的加料速率,采用高纯氮气作为气流磨介质,高纯氮气纯度大于99.99%,通气量设置为20m³/h,排气量设置为40m³/h,氮气供给压力为30kPa的方式。气流磨持续时间设置在10min,制备出混合粉末的粒径尺寸为0.1~3μm。
2)将制备好的混合粉末装入橡胶模具中,放置在磁场冷等静压机进行垂直压制,设置磁感应强度大小为5T,静压力为400MPa,持续时间为10min。
3)将压坯放入真空电磁感应炉中,使得内部压强为0.1Pa以下,再通入氩气,进行阶梯式烧结。在300℃时保温5min,600℃时保温5min,烧结温度为1050℃,烧结时间为1h,升温速率为30℃/min。
4)将烧结后的试样迅速浸入液氮,持续时间15s,之后迅速进行回火处理。回火温度为300℃,回火时间为30min。
5)将材料放入脉冲磁场装置中持续一定时间后,进行热轧处理。脉冲磁场处理时间为15min,磁感应强度为30T。热轧前试样厚度为10mm,轧前试样温度为600℃,试样终轧温度为350℃,轧辊预热温度为150℃。总压下量为75%,前3道次为5%,第4到8道次为12%,试样轧后厚度为2.5mm。
6)将热轧后的试样在500℃退火处理4h。
上述实施例1,2,3的物理性能测试结果如表1所示。
表1
实施例 | 抗压强度(MPa) | 居里温度(℃) | 热膨胀系数(×10<sup>-6</sup>℃<sup>-1</sup>) |
实施例1 | 889 | 820-890 | 7~8 |
实施例2 | 857 | 817-887 | 7~8 |
实施例3 | 917 | 825-900 | 7~8 |
SmCo<sub>5</sub>永磁体 | 850 | 800-850 | 8~11 |
上述实施例1,2,3的磁性能测试结果如表2所示。
表2
实施例 | T<sub>w</sub>(℃) | B<sub>r</sub>(T) | H<sub>cj</sub>(kOe) | (BH)<sub>max</sub>(kA/m) |
实施例1 | 250 | 1.03 | 806 | 1774 |
实施例2 | 250 | 0.97 | 719 | 1327 |
实施例3 | 250 | 1.01 | 763 | 1568 |
SmCo<sub>5</sub>永磁体 | 250 | 0.8~1.02 | 557~716 | 1194~1990 |
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (10)
1.一种高磁高性能钐钴基磁体合金的制备方法,其特征在于,包括如下步骤:
1)制备SmxCobalFeaNibCucCedBe磁性合金粉末:将SmCo5粉、FeB粉、Ni粉、Cu粉、Ce粉通过气流磨技术进行细磨混粉,得到粒径为0.1~3μm的混合粉末;所述SmxCobalFeaNibCucCedBe中x,a,b,c,d,e分别代表对应元素的质量百分比,24.65≤x≤27.4,7≤a≤9,7≤b≤9,4.4≤c≤7.4,0.2≤d≤1,0.1≤e≤0.5,bal表示余量为Co元素;
2)磁场取向冷等静压压坯:将制备好的混合粉末在磁场冷等静压机进行垂直压制,得到压坯;
3)真空电磁感应熔炼:将压坯放入电磁感应炉中,抽真空,使得内部压强为1×10-4Pa以下,再进行通入氩气达到0.1MPa,进行阶梯式烧结,即300~350℃保温5~8min,600~650℃保温5~8min,最终烧结温度为900~1100℃,烧结时间为30~60min,升温速率为10-300℃/min;
4)淬火后回火:将烧结后的试样迅速浸入液氮,持续时间10~60s,之后迅速进行回火处理;所述回火温度为300~500℃,回火时间为15~45min;
5)磁场热轧处理:将回火后的合金材料放入脉冲磁场装置中持续一定时间后,进行热轧处理;
6)将热轧后的试样进行去应力退火处理。
2.根据权利要求1所述的高磁高性能钐钴基磁体合金的制备方法,其特征在于,步骤1)所述SmCo5粉、FeB粉、Ni粉、Cu粉、Ce粉的原料纯度均大于99.9%,FeB粉中的B的质量分数为15~20%。
3.根据权利要求1所述的高磁高性能钐钴基磁体合金的制备方法,其特征在于,步骤1)所述SmCo5粉、FeB粉、Ce粉的粉末粒径范围为40~80μm,所述Ni粉、Cu粉的粉末粒径范围为15~35μm。
4.根据权利要求1所述的高磁高性能钐钴基磁体合金的制备方法,其特征在于,步骤1)所述气流磨方式为双喷式,加料速率为10~30kg/min,气体采用高纯氮气,纯度>99.99%,通气量为10~20m³/h,排气量为20~40 m³/h,氮气供给压力为10~50kPa,气流磨时间持续5~30min。
5.根据权利要求1所述的高磁高性能钐钴基磁体合金的制备方法,其特征在于,步骤2)所述磁场的磁感应强度为:1~10T,静压力为:300~1000MPa,持续时间为:5~15min;磁场方向垂直于静压力载荷方向。
6.根据权利要求1所述的高磁高性能钐钴基磁体合金的制备方法,其特征在于,步骤5)所述脉冲磁场处理时间为15~60min,磁感应强度为10~50T。
7.根据权利要求1所述的高磁高性能钐钴基磁体合金的制备方法,其特征在于,步骤5)所述热轧前试样厚度为5~10mm,轧前温度为500~600℃,终轧温度为300~350℃,轧辊预热温度150~200℃;总压下量为50%~75%,热轧为多次热轧,试样轧后厚度为2.5~5mm。
8.根据权利要求7所述的高磁高性能钐钴基磁体合金的制备方法,其特征在于,前3道次为5%,4~8道次为7%~12%。
9.根据权利要求1所述的高磁高性能钐钴基磁体合金的制备方法,其特征在于,步骤6)所述去应力退火温度为500~550℃,去应力退火时间为2~8h。
10.根据权利要求1-9中任一项所述的制备方法制备的高磁高性能钐钴基磁体合金。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210141967.6A CN114664551B (zh) | 2022-02-16 | 2022-02-16 | 一种高磁高性能钐钴基磁体合金及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210141967.6A CN114664551B (zh) | 2022-02-16 | 2022-02-16 | 一种高磁高性能钐钴基磁体合金及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114664551A true CN114664551A (zh) | 2022-06-24 |
CN114664551B CN114664551B (zh) | 2024-03-19 |
Family
ID=82027924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210141967.6A Active CN114664551B (zh) | 2022-02-16 | 2022-02-16 | 一种高磁高性能钐钴基磁体合金及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114664551B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101285155A (zh) * | 2008-05-29 | 2008-10-15 | 天津冶金集团天材科技发展有限公司 | 复合硅、锆元素的铁铬钴永磁合金及其变形加工工艺 |
CN102760545A (zh) * | 2012-07-24 | 2012-10-31 | 钢铁研究总院 | 高剩磁低矫顽力钐钴永磁材料及制备方法 |
US20180277289A1 (en) * | 2017-03-21 | 2018-09-27 | Intermolecular, Inc. | Inverse Phase Allotrope Rare Earth Magnets |
CN111755188A (zh) * | 2020-06-15 | 2020-10-09 | 赣州科瑞精密磁材有限公司 | 一种钐钴磁体的制备方法 |
-
2022
- 2022-02-16 CN CN202210141967.6A patent/CN114664551B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101285155A (zh) * | 2008-05-29 | 2008-10-15 | 天津冶金集团天材科技发展有限公司 | 复合硅、锆元素的铁铬钴永磁合金及其变形加工工艺 |
CN102760545A (zh) * | 2012-07-24 | 2012-10-31 | 钢铁研究总院 | 高剩磁低矫顽力钐钴永磁材料及制备方法 |
US20180277289A1 (en) * | 2017-03-21 | 2018-09-27 | Intermolecular, Inc. | Inverse Phase Allotrope Rare Earth Magnets |
CN111755188A (zh) * | 2020-06-15 | 2020-10-09 | 赣州科瑞精密磁材有限公司 | 一种钐钴磁体的制备方法 |
Non-Patent Citations (2)
Title |
---|
HARUFUMI SENNO ET AL.: ""Permanent-Magnet Properties of Srm-Ce-Co-Fe-Cu Alloys with Compositions between 1-5 and 2-17"", 《IEEE TRANSACTIONS ON MAGNETICS》 * |
XIANG CHI ET AL.: ""A new Sm(Co, Fe, Cu)4B/Sm2(Co, Fe, Cu)7 cell structure with the coercivity of up to 5.01 T"", 《JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS》 * |
Also Published As
Publication number | Publication date |
---|---|
CN114664551B (zh) | 2024-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101853725B (zh) | 烧结钕铁硼永磁材料的制备方法 | |
CN112466643B (zh) | 一种烧结钕铁硼材料的制备方法 | |
CN102290182B (zh) | 低氧含量高性能烧结钕铁硼材料及其制造方法 | |
CN110957090B (zh) | 一种钐钴1:5型永磁材料及其制备方法 | |
CN111916285A (zh) | 一种低重稀土高矫顽力烧结钕铁硼磁体的制备方法 | |
CN104157386A (zh) | N52和48m烧结钕铁硼永磁体及其制备方法 | |
CN111968819A (zh) | 一种低重稀土高性能烧结钕铁硼磁体及其制备方法 | |
CN104637643A (zh) | 白云鄂博共伴生原矿混合稀土永磁材料及其制备方法 | |
CN112582122A (zh) | 高膝点矫顽力烧结钐钴磁体的制备方法 | |
CN103310972A (zh) | 一种高性能烧结钕铁硼磁体的制备方法 | |
CN111210960B (zh) | 一种高方形度高磁能积钐钴永磁材料及制备方法 | |
CN114823027A (zh) | 一种高硼钕铁硼永磁材料及其制备方法 | |
CN114210976B (zh) | 一种烧结钕铁硼双合金结合晶界扩散的方法 | |
CN112750586B (zh) | 混合稀土烧结钕铁硼永磁体及其制备方法 | |
CN106158213A (zh) | 一种高矫顽力钕铁硼永磁材料及其制备方法 | |
CN103971919B (zh) | 一种钕铁硼磁体的烧结方法 | |
CN113380527A (zh) | 增韧脱模剂的制备方法及其在制备烧结钕铁硼中的应用 | |
CN106531385B (zh) | 一种梯度型烧结钕铁硼磁体及其制备方法 | |
CN109545491B (zh) | 一种钕铁硼永磁材料及其制备方法 | |
CN112750614A (zh) | 提升稀土元素利用率的钕铁硼制备方法 | |
CN110473684B (zh) | 一种高矫顽力烧结钕铁硼磁体的制备方法 | |
CN108281270A (zh) | 金属蒸气热处理制备高性能钕铁硼磁体的方法 | |
CN114664551B (zh) | 一种高磁高性能钐钴基磁体合金及其制备方法 | |
CN108777202B (zh) | 一种提高Zr元素固溶度的钐钴磁体及方法 | |
CN114196864B (zh) | 一种Y-Gd基合金及包括该基合金的钕铈铁硼磁体与制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |