CN114660687A - 镜片元件 - Google Patents
镜片元件 Download PDFInfo
- Publication number
- CN114660687A CN114660687A CN202210386377.XA CN202210386377A CN114660687A CN 114660687 A CN114660687 A CN 114660687A CN 202210386377 A CN202210386377 A CN 202210386377A CN 114660687 A CN114660687 A CN 114660687A
- Authority
- CN
- China
- Prior art keywords
- optical elements
- lens element
- optical
- lens
- eye
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/022—Ophthalmic lenses having special refractive features achieved by special materials or material structures
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/06—Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/06—Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
- G02C7/061—Spectacle lenses with progressively varying focal power
- G02C7/063—Shape of the progressive surface
- G02C7/066—Shape, location or size of the viewing zones
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/02—Simple or compound lenses with non-spherical faces
- G02B3/04—Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/06—Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
- G02C7/061—Spectacle lenses with progressively varying focal power
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/06—Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
- G02C7/061—Spectacle lenses with progressively varying focal power
- G02C7/063—Shape of the progressive surface
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/08—Auxiliary lenses; Arrangements for varying focal length
- G02C7/086—Auxiliary lenses located directly on a main spectacle lens or in the immediate vicinity of main spectacles
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C2202/00—Generic optical aspects applicable to one or more of the subgroups of G02C7/00
- G02C2202/20—Diffractive and Fresnel lenses or lens portions
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C2202/00—Generic optical aspects applicable to one or more of the subgroups of G02C7/00
- G02C2202/24—Myopia progression prevention
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Health & Medical Sciences (AREA)
- Eyeglasses (AREA)
- Lenses (AREA)
- Optical Couplings Of Light Guides (AREA)
- Optical Head (AREA)
- Eye Examination Apparatus (AREA)
Abstract
一种旨在配戴在人的眼睛前方的镜片元件,所述镜片元件包括:‑屈光区域,所述屈光区域具有基于用于矫正所述人的眼睛的屈光异常的处方的第一屈光力和不同于所述第一屈光力的第二屈光力;‑多个至少三个光学元件,至少一个光学元件具有不将图像聚焦在眼睛的视网膜上的光学功能,以便减缓眼睛的屈光异常的发展。
Description
本申请是中国申请号为201980005176.7、申请日为2019年3月1日的PCT申请PCT/EP2019/055216的、名称为“镜片元件”的发明专利申请的分案申请。
技术领域
本发明涉及一种镜片元件,所述镜片元件旨在配戴在人的眼睛前方,以抑制眼睛的比如近视或远视等屈光异常的发展。
背景技术
眼睛的近视的特征为眼睛将远处的物体聚焦在其视网膜前方。通常使用凹镜片矫正近视,并且通常使用凸镜片矫正远视。
已经观察到一些个人在使用常规单光光学镜片矫正时、特别是儿童在其观察位于近距离处的物体时(即,在视近条件下)聚焦不准确。因为针对视远进行矫正的近视儿童的一部分的这种聚焦缺陷,其视网膜后面(甚至在中央凹区内)还形成附近物体的图像。
这种聚焦缺陷可能对这类个体的近视发展有影响。可以观察到,对于大多数所述个体,近视缺陷往往随时间加重。
因此,似乎需要一种能够抑制或至少减缓眼睛的比如近视或远视等屈光异常的发展的镜片元件。
发明内容
为此,本发明提出一种旨在配戴在人的眼睛前方的镜片元件,所述镜片元件包括:
-屈光区域,所述屈光区域具有基于用于矫正所述人的眼睛的屈光异常的处方的第一屈光力和不同于所述第一屈光力的第二屈光力;
-多个至少三个光学元件,至少一个光学元件具有不将图像聚焦在眼睛的视网膜上的光学功能,以便减缓眼睛的屈光异常的发展。
有利地,在所述屈光区域中具有与用于矫正人的眼睛的异常屈光的第一屈光力不同的第二屈光力允许在近视情况下增大光线在视网膜前方的散焦。
换言之,发明人已经观察到,在所述屈光区域中具有与用于矫正异常屈光的第一屈光力不同的第二屈光力结合具有不使图像聚焦在眼睛的视网膜上的光学功能帮助减缓比如近视或远视等眼睛异常屈光的发展。
本发明的解决方案还有助于改善镜片的美观性并有助于补偿调节滞后。
根据可以单独考虑或组合考虑的另外的实施例:
-所述第一屈光力与所述第二屈光力之差大于或等于0.5D;和/或
-所述屈光区域形成为除了形成为所述多个光学元件的区域之外的区域;和/或
-至少一个光学元件具有非球面光学功能;和/或
-至少一个、例如所有的所述光学元件具有将图像聚焦在除视网膜之外的位置上的光学功能;和/或
-在所述屈光区域中,屈光力具有连续变化;和/或
-在所述屈光区域中,屈光力具有至少一处不连续性;和/或
-所述镜片元件分为五个互补区:中心区,所述中心区具有等于第一屈光力的焦度;以及四个在45°处的象限,所述象限中的至少一个具有等于第二屈光力的屈光力;和/或
-所述中心区包括框架参考点并且具有大于或等于4mm且小于20mm的直径,所述框架参考点面向在标准配戴条件下直视前方的人的瞳孔;和/或
-至少下部象限具有所述第二屈光力;和/或
-所述屈光区域具有渐变多焦点屈光函数;和/或
-所述颞侧象限和鼻侧象限中的至少一个具有所述第二屈光力;和/或
-所述四个象限具有同心的焦度渐变;和/或
-对于半径包含在2mm与4mm之间的每个圆形区包括位于距面向在标准配戴条件下笔直向前注视的使用者的瞳孔的参考系大于或等于所述半径+5mm的距离处的几何中心,位于所述圆形区内的光学元件部分的面积之和与所述圆形区的面积之间的比率在20%与70%之间;和/或
-所述至少三个光学元件是不连续的;和/或
-所述光学元件中的至少一个是球面微镜片;和/或
-所述光学元件中的至少一个是多焦点屈光微镜片;和/或
-所述至少一个多焦点屈光微镜片包括非球面表面,具有或不具有任何旋转对称性;和/或
-所述光学元件中的至少一个是复曲面屈光微镜片;和/或
-所述光学元件中的至少一个是柱面微镜片;和/或
-所述至少一个多焦点屈光微镜片包括复曲面表面;和/或
-所述光学元件中的至少一个由双折射材料制成;和/或
-所述光学元件中的至少一个是衍射镜片;和/或
-所述至少一个衍射镜片包括超颖表面(metasurface)结构;和/或
-至少一个光学元件的形状被配置为在人的眼睛的视网膜前方形成焦散点;和/或
-至少一个光学元件是多焦点二元部件;和/或
-至少一个光学元件是像素化镜片;和/或
-至少一个光学元件是π-菲涅耳镜片;和/或
-至少一部分、例如所有的所述光学元件位于所述眼科镜片的前表面上;和/或
-至少一部分、例如所有的所述光学元件位于所述眼科镜片的后表面上;和/或
-至少一部分、例如所有的所述光学元件位于所述眼科镜片的前表面与后表面之间;和/或
-至少一部分、例如所有的光学功能包括高阶光学像差;和/或
-所述镜片元件包括承载屈光区域的眼科镜片和承载多个至少三个光学元件的夹片,所述光学元件适于在配戴镜片元件时可移除地附接到眼科镜片;和/或
-所述光学元件被配置成使得沿着所述镜片的至少一个区段,光学元件的平均球镜从所述区段的点朝向所述区段的周边部分增大;和/或
-所述光学元件被配置成使得沿着所述镜片的至少一个区段,光学元件的平均柱镜从所述区段的点朝向所述区段的周边部分增大;和/或
-所述光学元件被配置成使得沿着所述镜片的至少一个区段,光学元件的平均球镜和/或平均柱镜从所述区段的中心朝向所述区段的周边部分增大;和/或
-所述屈光区域包括光学中心,并且光学元件被配置成使得沿着穿过所述镜片的光学中心的任何区段,所述光学元件的平均球镜和/或平均柱镜从所述光学中心朝向所述镜片的周边部分增大;和/或
-所述屈光区域包括视远参考点、视近参考点、以及连接所述视远参考点和近视参考点的子午线,所述光学元件被配置成使得在标准配戴条件下沿着所述镜片的任何水平区段,所述光学元件的平均球镜和/或平均柱镜从所述水平区段与所述子午线的交叉点朝向所述镜片的周边部分增大;和/或
-沿着所述区段的平均球镜和/或平均柱镜递增函数根据所述区段沿着所述子午线的位置而不同;和/或
-沿着所述区段的平均球镜和/或平均柱镜递增函数是不对称的;和/或
-所述光学元件被配置成使得在标准配戴条件下,所述至少一个区段是水平区段;和/或
-光学元件的平均球镜和/或平均柱镜从所述区段的第一点朝向所述区段的周边部分增大,并且从所述区段的第二点朝向所述区段的周边部分减小,第二点比第一点更靠近所述区段的周边部分;和/或
-沿着所述至少一个水平区段的平均球镜和/或平均柱镜递增函数是高斯函数;和/或
-沿着所述至少一个水平区段的平均球镜和/或平均柱镜递增函数是二次函数;和/或
-至少一个、例如至少70%、例如所有的光学元件是可以由光学镜片控制器装置激活的有源光学元件;和/或
-所述有源光学元件包括具有可变折射率的材料,折射率的值由光学镜片控制装置控制;和/或
-至少一个光学元件具有可内接在直径大于或等于0.8mm且小于或等于3.0mm的圆内的外形形状;和/或
-光学元件定位于网络上;和/或
-网络是结构化网络;和/或
-结构化网络是方形网络或六边形网络或三角形网络或八边形网络;和/或
-所述镜片元件进一步包括至少四个光学元件,所述光学元件被组织成至少两组光学元件;和/或
-每组光学元件被组织成具有相同中心的至少两个同心环,每组光学元件的同心环由对应于与所述组中的至少一个光学元件相切的最小圆的内径以及对应于与所述组中的至少一个光学元件相切的最大圆的外径限定;和/或
-至少一部分、例如所有光学元件的同心环以镜片元件的表面的光学中心为中心,所述光学元件设置在所述镜片元件上;和/或
-光学元件同心环的直径在9.0mm与60mm之间;和/或
-两个连续的光学元件同心环之间的距离大于或等于5.0mm,两个连续同心环之间的距离由第一同心环的内径与第二同心环的外径之差限定,第二同心环更靠近镜片元件的周边。
附图说明
现在将参照附图来描述本发明的非限制性实施例,在附图中:
ο图1是根据本发明的镜片元件的平面视图;
ο图2是根据本发明的镜片元件的总体轮廓视图;
ο图3表示菲涅耳镜高度轮廓的实例;
ο图4表示衍射镜片径向轮廓的实例;
ο图5展示了π-菲涅耳镜片轮廓;
ο图6a至图6c展示了本发明的二元镜片实施例;
ο图7a展示了在TABO惯例中的镜片的散光轴位γ;
ο图7b展示了在用于表征非球面表面的惯例中的柱镜轴位γAX;以及
ο图8是根据本发明的实施例的镜片元件的平面视图。
附图中的元件仅为了简洁和清晰而展示并且不一定按比例绘制。例如,图中的某些元件的尺寸可以相对于其他元件被放大,以帮助提高对本发明的实施例的理解。
具体实施方式
本发明涉及一种镜片元件,所述镜片元件旨在配戴在人的眼睛前方。
在本说明书的剩余部分,可以使用如《上》、《底》、《水平》、《竖直》、《上方》、《下方》、《前》、《后》等术语、或其他指示相对位置的单词。在镜片元件的配戴条件下理解这些术语。
在本发明的上下文中,术语“镜片元件”可以指未切割的光学镜片或被磨边以配合特定眼镜架的眼镜光学镜片或眼科镜片以及适于定位在眼科镜片上的光学装置。光学装置可以定位于眼科镜片的前表面或后表面上。所述光学装置可以是光学贴片。光学装置可以适于可移除地定位在眼科镜片上,例如夹片(clip),所述夹片被配置为夹在包括眼科镜片的眼镜架上。
根据本发明的镜片元件10适用于人并且旨在配戴在所述人的眼睛前方。
如图1中所表示的,根据本发明的镜片元件10包括:
-屈光区域12,以及
-多个至少三个光学元件14。
屈光区域12具有第一屈光力P1,所述第一屈光力基于镜片元件所适用的人的眼睛的处方。所述处方适用于矫正人的眼睛的异常屈光。
术语“处方”应当被理解为指光焦度、散光、棱镜偏差的一组光学特性,所述光学特性是由眼科医师或验光师确定的以便例如借助于定位于配戴者眼睛前方的镜片矫正眼睛的视力缺陷。例如,近视眼的处方包括光焦度值和具有用于视远的轴位的散光值。
屈光区域12进一步至少包括与第一屈光力P1不同的第二屈光力P2。
在本发明的意义上,当两个屈光力之间的差大于或等于0.5D时,认为两个屈光力是不同的。
当人的眼睛的屈光异常对应于近视时,第二屈光力大于第一屈光力。
当人的眼睛的屈光异常对应于远视时,第二屈光力小于第一屈光力。
屈光区域优选地形成为除了形成为多个光学元件的区域之外的区域。换言之,屈光区域是与由多个光学元件形成的区域互补的区域。
屈光区域可以具有连续的屈光力变化。例如,屈光区域可以具有渐变多焦点设计。
屈光区域的光学设计可以包括
-配镜十字,在所述配镜十字处,光焦度为负,
-第一区,当配戴者戴着镜片元件时,所述第一区在屈光的颞侧延伸。在第一区中,当朝颞侧延伸时,光焦度增大,并且在镜片的鼻侧,眼科镜片的光焦度与在配镜十字处的基本上相同。
在WO 2016/107919中更详细地披露了这种光学设计。
替代性地,屈光区域的屈光力可以包括至少一种不连续性。
如图1上所表示,镜片元件可以分成五个互补区:中心区16,所述中心区的焦度等于第一屈光力;四个在45°处的象限Q1、Q2、Q3、Q4,至少一个象限至少具有屈光力等于第二屈光力的点。
在本发明的意义上,根据图1上所示的TABO惯例,“在45°处的象限”应理解为朝45°/225°和135°/315°方向定向的90°的等角度象限。
优选地,中心区16包括框架参考点并且具有大于或等于4mm且小于或等于22mm的直径,所述框架参考点面向在标准配戴条件下直视前方的人的瞳孔。
配戴条件应被理解为镜片元件相对于配戴者眼睛的位置,例如由前倾角、角膜到镜片距离、瞳孔与角膜距离、眼睛转动中心(CRE)到瞳孔距离、CRE到镜片距离、以及包角来限定。
角膜到镜片距离是沿着处于第一眼位的眼睛的视轴(通常被视为是水平的)在角膜与镜片的后表面之间的距离,例如等于12mm。
瞳孔与角膜距离是沿着眼睛的视轴在其瞳孔与角膜之间的距离,通常等于2mm。
CRE到瞳孔距离是沿着眼睛的视轴在其转动中心(CRE)与角膜之间的距离,例如等于11.5mm。
CRE到镜片距离是沿着处于第一眼位的眼睛的视轴(通常被视为是水平的)在眼睛的CRE与镜片的后表面之间的距离,例如等于25.5mm。
前倾角是在镜片的后表面与处于第一眼位的眼睛的视轴(通常被视为是水平的)之间的相交处、在所述镜片的后表面的法线与处于第一眼位的眼睛的视轴之间在竖直平面上的角,例如等于-8°。
包角是在镜片的后表面与处于第一眼位的眼睛的视轴(通常被视为是水平的)之间的相交处、在所述镜片的后表面的法线与处于第一眼位的眼睛的视轴之间、在水平平面上的角,例如等0°。
标准配戴者条件的实例可以由-8°的前倾角、12mm的角膜到镜片距离、2mm的瞳孔-角膜距离、11.5mm的CRE到瞳孔距离、25.5mm的CRE到镜片距离、以及0°的包角来限定。
根据本发明的实施例,至少下部象限Q4具有与符合用于矫正屈光异常的处方的第一屈光力不同的第二屈光力。
例如,屈光区域具有渐变多焦点屈光函数。渐变多焦点屈光函数可以在上部象限Q2与下部象限Q4之间延伸。
有利地,这样的配置允许补偿由于添加镜片而当人在例如视近距离观看时的调节滞后。
根据实施例,颞侧象限Q3和鼻侧象限Q1中的至少一个具有第二屈光力。例如,颞侧象限Q3具有随镜片偏心率变化的焦度变化。
有利地,这种配置提高了周边视力的屈光异常控制的效率,并且在水平轴线上具有更大的效果。
根据实施例,四个象限Q1、Q2、Q3和Q4具有同心的焦度渐变。
当在标准配戴条件下戴着镜片元件时,所述多个至少三个光学元件14中的至少一个光学元件具有不将图像聚焦在人的眼睛的视网膜上的光学功能。
有利地,光学元件的这种光学功能与具有至少一个与处方的屈光力不同的屈光力的屈光区域相组合,允许减缓配戴镜片元件的人的眼睛的异常屈光的发展。
光学元件可以如图1所表示,是不连续的光学元件。
在本发明的意义上,如果对于连接两个光学元件的所有路径,至少可以沿着每个路径的一部分基于人的眼睛的处方来测量屈光力,则这两个光学元件是不连续的。
当两个光学元件在球面表面上时,如果对于连接两个光学元件的所有路径,至少可以沿着每个路径的一部分来测量所述球面表面的曲率,则这两个光学元件是不连续的。
如图2上所示,根据本发明的镜片元件10包括形成为朝向物体侧的凸曲面的物体侧表面F1、以及形成为具有与物体侧表面F1的曲率不同的曲率的凹面的眼睛侧表面F2。
根据本发明的实施例,至少一部分、例如所有的光学元件位于镜片元件的前表面上。
至少一部分、例如所有的光学元件可以位于镜片元件的后表面上。
至少一部分、例如所有的光学元件可以位于镜片元件的前表面与后表面之间。例如,镜片元件可以包括形成光学元件的具有不同折射率的区。
根据本发明的实施例,镜片的中心区对应于以镜片元件的光学中心为中心的区,不包括光学元件。例如,镜片元件可以包括以所述镜片元件的光学中心为中心并且具有等于0.9mm的直径的空区,所述空区不包括光学元件。
镜片元件的光学中心可以对应于镜片的配适点。
替代性地,光学元件可以设置在镜片元件的整个表面上。
根据本发明的实施例,光学元件位于网络上。
光学元件所位于的网络可以是结构化网络。
在图8所示的实施例中,光学元件沿多个同心环定位。
光学元件的同心环可以是环形环。
根据本发明的实施例,镜片元件进一步包括至少四个光学元件。所述至少四个光学元件被组织成至少两组光学元件,每组光学元件被组织成具有相同中心的至少两个同心环,每组光学元件的同心环由内径和外径限定。
每组光学元件的同心环的内径对应于与所述组光学元件中的至少一个光学元件相切的最小圆。光学元件的同心环的外径对应于与所述组中的至少一个光学元件相切的最大圆。
例如,镜片元件可以包括n个光学元件环,f内1指的是最靠近镜片元件的光学中心的同心环的内径,f外1指的是最靠近镜片元件的光学中心的同心环的外径,f内n指的是最靠近镜片元件的周边的环的内径,并且f外n指的是最接近镜片元件的周边的“同心环”的外径。
两个连续光学元件同心环i和i+1之间的距离Di可以表示为:
Di=|f内i+1-f外i|,
其中,f外i指的是第一光学元件环i的外径并且f内i+1指的是第二光学元件环i+1的内径,其与第一光学元件环相连并且更靠近镜片元件的周边。
根据本发明的另一个实施例,光学元件被组织成以镜片元件的表面的光学中心为中心的同心环,所述镜片元件的表面上设置有所述光学元件并连接每个光学元件的几何中心。
例如,镜片元件可以包括n个光学元件环,f1指的是最靠近镜片元件的光学中心的环的直径,并且fn指的是最靠近镜片元件的周边的环的直径。
两个连续光学元件同心环i和i+1之间的距离Di可以表示为:
其中,fi指的是第一光学元件环i的直径,并且fi+1指的是与第一光学元件环相连并且更靠近镜片元件的周边的第二光学元件环i+1的直径,并且
其中,di指的是在第一光学元件环上的光学元件的直径,并且di+1指的是在第二光学元件环上的光学元件的直径,第二光学元件环与第一环相连并且更靠近镜片元件的周边。光学元件的直径对应于内接光学元件的外形形状的圆的直径。
光学元件的同心环可以是环形环。
有利地,镜片元件的光学中心和光学元件同心环的中心重合。例如,镜片元件的几何中心、镜片元件的光学中心和光学元件同心环的中心重合。
在本发明的意义上,术语“重合”应理解为非常靠近在一起,例如相距小于1.0mm。
两个连续同心环之间的距离Di可以根据i而变化。例如,两个连续同心环之间的距离Di可以在2.0mm与5.0mm之间变化。
根据本发明的实施例,两个连续光学元件同心环之间的距离Di大于2.00mm、优选为3.0mm、更优选为5.0mm。
有利地,在两个连续光学元件同心环之间具有大于2.00mm的距离Di允许在这些光学元件环之间管理更大的折射面积,从而提供更好的视敏度。
考虑到镜片元件的环形区具有大于9mm的内径和小于57mm的外径,使几何中心位于距镜片元件的光学中心小于1mm的距离,位于所述圆形区内的光学元件部分的面积总和与所述圆形区的面积之间的比率在20%与70%之间、优选在30%与60%之间、更优选在40%与50%之间。
换言之,发明人已经观察到,对于上述比率的给定值,光学元件的组织成同心环,其中这些环间隔大于2.0mm的距离,允许提供屈光区域的环形区比当光学元件设置在六边形网络中或随机地设置在镜片元件的表面上时管理的屈光区域更容易制造,从而提供更好的眼睛屈光异常矫正,并因此提供更好的视敏度。
根据本发明的实施例,镜片元件的所有光学元件的直径di是相同的。
根据本发明的实施例,当i朝向镜片元件的周边增加时,两个连续同心环i和i+1之间的距离Di可以增加。
光学元件同心环可以具有9mm与60mm之间的直径。
根据本发明的实施例,镜片元件包括设置成至少2个同心环、优选地多于5个、更优选地多于10个同心环的光学元件。例如,光学元件可以设置成以镜片的光学中心为中心的11个同心环。
根据本发明的实施例,至少一个光学元件具有将图像聚焦在除视网膜之外的位置上的光学功能。
优选地,至少50%、例如至少80%、例如所有的光学元件具有将图像聚焦在除视网膜之外的位置上的光学功能。
根据本发明的实施例,光学元件被配置成使得至少沿着镜片的一个区段,光学元件的平均球镜从所述区段的某个点朝向所述区段的周边增大。
光学元件可以被进一步被配置成使得至少沿着镜片的一个区段,例如至少与光学元件的平均球镜增大所沿着的区段相同的区段,平均柱镜从所述区段的某个点(例如,与平均球镜相同的点)朝所述区段的周边部分增大。
有利地,使光学元件配置成沿着镜片的至少一个区段,光学元件的平均球镜和/或平均柱镜从所述区段的点朝向所述区段的周边部分增大,允许在近视情况下增大光线在视网膜前方的散焦,或在远视情况下增大光线在视网膜后面的散焦。
换言之,发明人已经观察到将光学元件配置成使得沿着所述镜片的至少一个区段,光学元件的平均球镜从所述区段的点朝向所述区段的周边部分增大,有助于减缓眼睛的比如近视或远视等屈光异常的发展。
如已知的是,非球面表面上的任一点处的最小曲率CURVmin由以下公式来定义:
其中,Rmax为局部最大曲率半径,用米来表示,并且CURVmin用屈光度来表示。
类似地,非球面表面上的任一点处的最大曲率CURVmax可以由以下公式来定义:
其中,Rmin为局部最小曲率半径,用米来表示,并且CURVmax用屈光度来表示。
可以注意到,当表面局部为球面时,局部最小曲率半径Rmin和局部最大曲率半径Rmax是相同的,并且相应地,最小和最大曲率CURVmin和CURVmax也是相同的。当表面是非球面时,局部最小曲率半径Rmin和局部最大曲率半径Rmax是不同的。
根据最小曲率CURVmin和最大曲率CURVmax的这些表达式,标记为SPHmin和SPHmax的最小球镜和最大球镜可以根据所考虑的表面类型来推断。
当所考虑的表面是物体侧表面(又称为前表面)时,这些表达式如下:
其中,n为镜片的成分材料的折射率。
如果所考虑的表面是眼球侧表面(又称为后表面)时,这些表达式如下:
其中,n为镜片的成分材料的折射率。
如熟知的,在非球面表面上的任一点处的平均球镜度SPHmean也可以通过下公式来定义:
因此,平均球镜的表达式取决于所考虑的表面:
还通过公式CYL=|SPHmax-SPHmin|定义柱镜CYL。
镜片的任何非球面的特性可以借助于局部平均球镜和柱镜来表示。当柱镜为至少0.25屈光度时,可以认为表面是局部非球面的。
对于非球面表面,可以进一步定义局部柱镜轴位γAX。图7a展示了在TABO惯例中定义的散光轴位γ,而图7b展示了在被定义用于表征非球面表面的惯例中的柱镜轴位γAX。
柱镜轴位γAX是最大曲率CURVmax的取向相对于参考轴位并且在所选转动方向上的角度。在以上定义的惯例中,参考轴位是水平的(此参考轴位的角度为0°)并且所述旋转方向在看向配戴者时对于每一只眼而言是逆时针的(0°≤γAX≤180°)。因此,柱镜轴位γAX的+45°轴位值表示倾斜定向的轴线,在看向配戴者时,所述轴线从位于右上方的象限延伸到位于左下方的象限。
光学元件可以配置成使得沿着镜片的至少一个区段,光学元件的平均球镜和/或平均柱镜从所述区段的中心朝向所述区段的周边部分增大。
根据本发明的实施例,光学元件被配置成使得在标准配戴条件下,至少一个区段是水平区段。
平均球镜和/或平均柱镜可以沿着至少一个水平区段根据递增函数而增大,递增函数是高斯函数。高斯函数在镜片的鼻部与颞部之间可以是不同的,以便考虑人的视网膜的不对称性。
替代性地,平均球镜和/或平均柱镜可以沿着至少一个水平区段根据递增函数而增大,所述递增函数是二次函数。所述二次函数在镜片的鼻部与颞部之间可以是不同的,以便考虑人的视网膜的不对称性。
根据本发明的实施例,光学元件的平均球镜和/或平均柱镜从所述区段的第一点朝向所述区段的周边部分增大,并且从所述区段的第二点朝向所述区段的周边部分减小,第二点比第一点更靠近所述区段的周边部分。
在表1中展示了这样的实施例,其根据它们到镜片元件的光学中心的径向距离来提供光学元件的平均球镜。
在表1的实例中,光学元件是放置在具有329.5mm的曲率的球面前表面上的微镜片,并且镜片元件由具有1.591的折射率的光学材料制成,配戴者的处方光焦度为6D。光学元件应在标准配戴条件下配戴,并且配戴者的视网膜被认为在30°的角度下具有0.8D的散焦。
表1
距光学中心的距离(mm) | 光学元件的平均球镜(D) |
0 | 1.992 |
5 | 2.467 |
7.5 | 2.806 |
10 | 3.024 |
15 | 2.998 |
20 | 2.485 |
如表1中所示,从靠近镜片元件的光学中心开始,光学元件的平均球镜朝向所述区段的周边部分增大,然后朝向所述区段的周边部分减小。
根据本发明的实施例,光学元件的平均柱镜从所述区段的第一点朝向所述区段的周边部分增大,并且从所述区段的第二点朝向所述区段的周边部分减小,第二点比第一点更靠近所述区段的周边部分。
在表2和表3中展示了这样的实施例,其提供了在对应于局部径向的第一方向Y和与第一方向正交的第二方向X上投影的柱镜向量的幅度。
在表2的实例中,光学元件是放置在具有167.81mm的曲率的球面前表面上的微镜片,并且镜片元件由具有1.591的折射率的材料制成,配戴者的处方光焦度是-6D。应在标准配戴条件下配戴镜片元件,并且认为配戴者的视网膜在30°的角度下具有0.8D的散焦。确定元件提供2D的周边散焦。
在表3的实例中,光学元件是放置在具有167.81mm的曲率的球面前表面上的微镜片,并且镜片元件由具有1.591的折射率的材料制成,配戴者的处方光焦度是-1D。应在标准配戴条件下配戴镜片元件,并且认为配戴者的视网膜在30°的角度下具有0.8D的散焦。确定光学元件提供2D的周边散焦。
表2
表3
如表2和3所示,从靠近镜片元件的光学中心开始,光学元件的柱镜朝向所述区段的周边部分增大,然后朝向所述区段的周边部分减小。
根据本发明的实施例,屈光区域包括光学中心,并且光学元件被配置成使得沿着穿过镜片的光学中心的任何区段,光学元件的平均球镜和/或平均柱镜从光学元件朝向镜片的周边部分增大。
例如,光学元件可以沿着以屈光区域的光学中心为中心的圆规则地分布。
在直径为10mm且以屈光区域的光学中心为中心的圆上的光学元件可以是具有2.75D的平均球镜的微镜片。
在直径为20mm且以屈光区域的光学中心为中心的圆上的光学元件可以是具有4.75D的平均球镜的微镜片。
在直径为30mm且以屈光区域的光学中心为中心的圆上的光学元件可以是具有5.5D的平均球镜的微镜片。
在直径为40mm且以屈光区域的光学中心为中心的圆上的光学元件可以是具有5.75D的平均球镜的微镜片。
可以基于人的视网膜的形状来调整不同微镜片的平均柱镜。
根据本发明的实施例,屈光区域包括视远参考点、视近参考点、以及连接视远参考点和视近参考点的子午线。例如,屈光区域可以包括渐变多焦点镜片设计,其适于人的处方或适于减缓配戴镜片元件的人的眼睛的屈光异常的发展。
优选地,根据这样的实施例,光学元件被配置成使得在标准配戴条件下沿着镜片的任何水平区段,光学元件的平均球镜和/或平均柱镜从所述水平区段与子午线的交叉点朝向镜片的周边部分增大。
所述子午线对应于主注视方向与镜片表面的交叉点的轨迹。
沿着所述区段的平均球镜和/或平均柱镜增大函数可以根据所述区段沿着子午线的位置而不同。
特别地,沿着所述区段的平均球镜和/或平均柱镜增大函数是不对称的。例如,在标准配戴条件下,平均球镜和/或平均柱镜增大函数沿着竖直和/或水平区段是不对称的。
根据本发明的实施例,至少一个光学元件具有非球面光学功能。
优选地,至少50%、例如至少80%、例如所有的光学元件14具有非球面光学功能。
在本发明的意义上,“非球面光学功能”应理解为不具有单个焦点。
替代性地,光学元件的这种光学功能减小配戴者的眼睛视网膜的变形,允许减缓配戴所述镜片元件的人的眼睛的屈光异常的发展。
具有非球面光学功能的至少一个元件是透明的。
有利地,非连续的光学元件在镜片元件上不可见并且不影响镜片元件的美观。
根据本发明的实施例,镜片元件可以包括承载屈光区域的眼科镜片和承载多个至少三个光学元件的夹片,所述光学元件适于在配戴镜片元件时可移除地附接到眼科镜片。有利地,当人处于远距离环境中、例如室外时,人可以将夹片与眼科镜片分开,并最终替换上没有至少三个光学元件中的任何一个的第二夹片。例如,第二夹片可以包括防晒色调。人还可以使用眼科镜片而无需任何额外的夹片。
光学元件可以独立地添加到镜片元件上,添加到镜片元件的每个表面上。
可以将这些光学元件添加在定义的阵列上,如正方形或六边形或随机或其他。
光学元件可以覆盖镜片元件的特定区,如在中心或任何其他区域。
可以根据镜片元件的区来调整光学元件密度或焦度量。通常,光学元件可以定位于镜片元件的周边,以增加光学元件对近视控制的影响,从而补偿由于例如视网膜的周边形状引起的周边散焦。
根据本发明的优选实施例,半径包含在2mm与4mm之间的每个圆形区包括位于距光学元件的光学中心一段距离处的几何中心,所述距离大于或等于所述半径+5mm,位于所述圆形区内的光学元件部分的面积之和与所述圆形区的面积之间的比率在20%与70%之间、优选地在30%与60%之间、更优选地在40%与50%之间。
光学元件可以使用不同的技术制造,如直接表面处理、成型、铸造或注塑、压花、成膜、或光刻法等......
根据本发明的实施例,至少一个、例如所有的光学元件的形状被配置为在人的眼睛的视网膜前方形成焦散点。换言之,这样的光学元件被配置成使得光通量集中的每个区段平面(如果有的话)位于人的眼睛的视网膜前面。
根据本发明的实施例,至少一个、例如所有的具有非球面光学功能的光学元件是多焦点屈光微镜片。
在本发明的意义上,“微镜片”具有可内接在直径大于或等于0.8mm且小于或等于3.0mm、优选地大于或等于1.0mm且小于2.0mm的圆内的外形形状。
在本发明的意义上,光学元件是“多焦点屈光微镜片”,包括双焦点(具有两个焦度)、三焦点(具有三个焦度)、渐变多焦点镜片,具有连续变化的焦度,例如非球面渐变表面镜片。
根据本发明的实施例,光学元件中的至少一个、优选地多于50%、更优选地多于80%的光学元件是非球面微镜片。在本发明的意义上,非球面微镜片在其表面上具有连续的焦度演变。
非球面微镜片可以具有介于0.1D与3D之间的非球面性。非球面微镜片的非球面性对应于在微镜片中心测量的光焦度与在微镜片周边测量的光焦度之比。
微镜片的中心可以由以微镜片的几何中心为中心并且直径在0.1mm与0.5mm之间、优选地等于2.0mm的球面区域限定。
微镜片的周边可以由以微镜片的几何中心为中心并且内径在0.5mm与0.7mm之间、外径在0.70mm与0.80mm之间的环形区限定。
根据本发明的实施例,非球面微镜片在其几何中心的光焦度的绝对值在2.0D与7.0D之间,并且在其周边的光焦度的绝对值在1.5D与6.0D之间。
在涂覆上面设置有光学元件的镜片元件的表面之前,非球面微镜片的非球面性可以根据距所述镜片元件的光学中心的径向距离而变化。
另外,在涂覆上面设置有光学元件的镜片元件的表面之后,非球面微镜片的非球面性可以进一步根据距所述镜片元件的光学中心的径向距离而变化。
根据本发明的实施例,至少一个多焦点屈光微镜片具有复曲面。复曲面是旋转表面,其可以通过围绕旋转轴线(最终定位在无穷远处)旋转一个圆或弧来产生,所述旋转轴线不穿过其曲率中心。
复曲面镜片具有彼此成直角的两个不同的径向轮廓,因此产生两个不同的焦度。
复曲面镜片的复曲面和球面部件产生像散光束,而不是单点焦点。
根据本发明的实施例,至少一个、例如所有的具有非球面光学功能的光学元件是复曲面屈光微镜片。例如,球镜度值大于或等于0屈光度(δ)且小于或等于+5屈光度(δ)并且柱镜度值大于或等于0.25屈光度(δ)的复曲面折射微镜片。
作为具体实施例,复曲面屈光微镜片可以是纯柱镜,意味着子午线最小焦度为零,而子午线最大焦度严格为正,例如小于5屈光度。
根据本发明的实施例,至少一个、例如所有的光学元件由双折射材料制成。换言之,光学元件由具有取决于光的偏振和传播方向的折射率的材料制成。双折射可以被量化为材料展现出的折射率之间的最大差异。
根据本发明的实施例,至少一个、例如所有的光学元件具有不连续性,比如不连续表面,例如菲涅耳表面和/或具有不连续的折射率分布。
图3表示可以用于本发明的光学元件的菲涅耳镜高度轮廓的实例。
根据本发明的实施例,至少一个、例如所有的光学元件由衍射镜片制成。
图4表示可以用于本发明的光学元件的衍射镜片径向轮廓的实例。
至少一个、例如所有的衍射镜片可以包括如WO 2017/176921中披露的超表面结构。
衍射镜片可以是菲涅耳镜片,其相位函数ψ(r)在标称波长处具有π相位跃变,如图5中所看到的。为了清晰起见,可以给这些结构命名为“π-菲涅耳镜片”,因为它与相位跃变是2π的多个值的单焦点菲涅耳镜片相反。相位函数在图5中显示的π-菲涅耳镜片主要在与屈光度0δ和正屈光度P、例如3δ相关的两个衍射级中衍射光。
根据本发明的实施例,至少一个、例如所有的光学元件是多焦点二元部件。
例如,如图6a中所示,二元结构主要显示两个屈光度,表示为-P/2和P/2。当与如图6b中所示的折射结构相关联时,屈光度为P/2,图6c中表示的最终结构具有屈光度0δ和P。所示的情况与P=3δ相关。
根据本发明的实施例,至少一个、例如所有的光学元件是像素化镜片。在EyalBen-Eliezer等人的“APPLIED OPTICS[应用光学],第44卷,第14期,2005年5月10日”中披露了多焦点像素化镜片的实例。
根据本发明的实施例,至少一个、例如所有的光学元件具有带高阶光学像差的光学功能。例如,光学元件是由泽尼克多项式定义的连续表面构成的微镜片。
以上已经借助于实施例描述了本发明,而并不限制总体发明构思。
在参考前述说明性实施例时,许多进一步的修改和变化将对本领域的技术人员而言是明显的,这些实施例仅以举例方式给出并且无意限制本发明的范围,本发明的范围仅是由所附权利要求来确定的。
在权利要求中,词语“包括”并不排除其他元件或步骤,并且不定冠词“一(a)或(an)”并不排除复数。在相互不同的从属权利要求中叙述不同的特征这个单纯的事实并不表示不能有利地使用这些特征的组合。权利要求中的任何附图标记都不应被解释为限制本发明的范围。
Claims (16)
1.一种能够配戴在眼睛前方的镜片元件,所述镜片元件包括:
屈光区域,所述屈光区域具有基于与所述眼睛对应的处方的屈光力;以及
至少两个非连续光学元件,至少一个光学元件具有不将图像聚焦在所述眼睛的视网膜上的光学功能,以便减缓所述眼睛的屈光异常的发展,
其中,对于半径包含在2mm与4mm之间的每个圆形区包括位于距面向在标准配戴条件下笔直向前注视的瞳孔的参考系大于或等于所述半径+5mm的距离处的几何中心,所述至少两个非连续光学元件的位于所述圆形区内的部分的面积之和与所述圆形区的面积之间的比率包含在20%与70%之间。
2.根据权利要求1所述的镜片元件,其中,所述至少两个非连续光学元件是独立的。
3.根据权利要求1所述的镜片元件,其中,所述至少两个非连续光学元件定位于网络上。
4.根据权利要求3所述的镜片元件,其中,所述网络是结构化网络。
5.根据权利要求1所述的镜片元件,其中,所述至少两个非连续光学元件沿多个同心环定位。
6.根据权利要求1所述的镜片元件,还包括径向地布置在两个同心环之间的所述至少两个非连续光学元件中的光学元件。
7.根据权利要求1所述的镜片元件,其中,所述至少两个非连续光学元件的至少一部分具有固定屈光力以及在所述至少两个非连续光学元件中的两个非连续光学元件之间的不连续第一导数。
8.根据权利要求1所述的镜片元件,其中,所述至少两个非连续光学元件的至少一部分具有变化屈光力并且具有在所述至少两个非连续光学元件中的两个非连续光学元件之间的所述镜片元件的外表面的连续第一导数。
9.根据权利要求1所述的镜片元件,其中,所述至少两个非连续光学元件中的至少一个具有将图像聚焦在除视网膜之外的位置上的光学功能。
10.根据权利要求1所述的镜片元件,其中,所述至少两个非连续光学元件中的至少一个是复曲面屈光微镜片。
11.根据权利要求1所述的镜片元件,其中,所述至少两个非连续光学元件被配置为使得沿着所述镜片元件的至少一个区段,所述至少两个非连续光学元件的平均球镜从所述区段的中心朝向所述区段的周边部分增大。
12.根据权利要求1所述的镜片元件,其中,所述屈光区域形成为除了形成为包括所述至少两个非连续光学元件的区域之外的区域。
13.根据权利要求1所述的镜片元件,其中,所述镜片元件还包括至少四个光学元件,所述至少四个光学元件被组织成至少两组非连续光学元件,每组非连续光学元件被组织成具有相同中心的至少两个同心环,每组非连续光学元件的同心环由内径和外径限定,所述内径对应于与相应组中的至少一个光学元件相切的最小圆,所述外径对应于与相应组中的至少一个光学元件相切的最大圆。
14.根据权利要求1所述的镜片元件,其中,光学元件的两个连续的同心环之间的距离大于或等于5.0mm,两个连续的同心环之间的距离由第一同心环的内径与第二同心环的外径之差限定,所述第二同心环更靠近所述镜片元件的周边。
15.一种能够配戴在眼睛前方的镜片元件,所述镜片元件包括:
屈光区域,所述屈光区域具有基于与所述眼睛对应的处方的屈光力;以及
至少两个非连续光学元件,至少一个光学元件具有不将图像聚焦在所述眼睛的视网膜上的光学功能,以便减缓所述眼睛的屈光异常的发展,
其中,所述至少两个非连续光学元件被配置为使得沿着所述镜片元件的至少一个区段,所述至少两个非连续光学元件的平均球镜从所述区段的中心朝向所述区段的周边部分增大。
16.一种能够配戴在眼睛前方的镜片元件,所述镜片元件包括:
屈光区域,所述屈光区域具有基于与所述眼睛对应的处方的屈光力;以及
至少两个光学元件,至少一个光学元件具有不将图像聚焦在所述眼睛的视网膜上的光学功能,以便减缓所述眼睛的屈光异常的发展,
其中,对于半径包含在2mm与4mm之间的至少一个区包括位于距面向在标准配戴条件下笔直向前注视的瞳孔的参考系大于或等于所述半径+5mm的距离处的几何中心,所述至少两个光学元件的位于所述区内的部分的面积之和与所述区的面积之间的比率包含在20%与70%之间。
Applications Claiming Priority (18)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18305217 | 2018-03-01 | ||
EP18305216 | 2018-03-01 | ||
EP18305216.6 | 2018-03-01 | ||
EP18305217.4 | 2018-03-01 | ||
EP18305385.9 | 2018-03-30 | ||
EP18305385 | 2018-03-30 | ||
EP18305384.2 | 2018-03-30 | ||
EP18305384 | 2018-03-30 | ||
EP18305436.0A EP3553594B1 (en) | 2018-04-11 | 2018-04-11 | Lens element |
EP18305436.0 | 2018-04-11 | ||
EP18305435.2 | 2018-04-11 | ||
EP18305435 | 2018-04-11 | ||
EP18305526.8 | 2018-04-26 | ||
EP18305527.6 | 2018-04-26 | ||
EP18305526.8A EP3561578A1 (en) | 2018-04-26 | 2018-04-26 | Lens element |
EP18305527 | 2018-04-26 | ||
PCT/EP2019/055216 WO2019166654A1 (en) | 2018-03-01 | 2019-03-01 | Lens element |
CN201980005176.7A CN111226161B (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980005176.7A Division CN111226161B (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114660687A true CN114660687A (zh) | 2022-06-24 |
Family
ID=65576373
Family Applications (14)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111314339.5A Active CN113960808B (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN201980004568.1A Active CN111095082B (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN201980004572.8A Pending CN111095084A (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN202220219624.2U Active CN217085443U (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN202111314506.6A Pending CN113960809A (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN202220350815.2U Active CN217689666U (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN201980005176.7A Active CN111226161B (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN201980004571.3A Active CN111095083B (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN202122895458.6U Active CN216561274U (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN202210386647.7A Active CN114545660B (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN202210386377.XA Pending CN114660687A (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN201990000358.0U Active CN216310444U (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN202123299149.9U Active CN216561273U (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN202021364080.6U Active CN213122475U (zh) | 2018-03-01 | 2019-03-01 | 眼镜光学镜片、未切割光学镜片、镜片元件 |
Family Applications Before (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111314339.5A Active CN113960808B (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN201980004568.1A Active CN111095082B (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN201980004572.8A Pending CN111095084A (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN202220219624.2U Active CN217085443U (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN202111314506.6A Pending CN113960809A (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN202220350815.2U Active CN217689666U (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN201980005176.7A Active CN111226161B (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN201980004571.3A Active CN111095083B (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN202122895458.6U Active CN216561274U (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN202210386647.7A Active CN114545660B (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201990000358.0U Active CN216310444U (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN202123299149.9U Active CN216561273U (zh) | 2018-03-01 | 2019-03-01 | 镜片元件 |
CN202021364080.6U Active CN213122475U (zh) | 2018-03-01 | 2019-03-01 | 眼镜光学镜片、未切割光学镜片、镜片元件 |
Country Status (15)
Country | Link |
---|---|
US (15) | US11567344B2 (zh) |
EP (8) | EP3759544A1 (zh) |
JP (9) | JP7532256B2 (zh) |
KR (6) | KR20200124234A (zh) |
CN (14) | CN113960808B (zh) |
BR (3) | BR112020017312B1 (zh) |
CA (6) | CA3155413C (zh) |
CO (5) | CO2020010242A2 (zh) |
DE (7) | DE202019005795U1 (zh) |
ES (1) | ES2973511T3 (zh) |
HU (2) | HUE062437T2 (zh) |
PL (1) | PL3759545T3 (zh) |
RU (5) | RU2765344C1 (zh) |
SG (5) | SG11202008010SA (zh) |
WO (5) | WO2019166653A1 (zh) |
Families Citing this family (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG11201900867UA (en) | 2016-08-01 | 2019-02-27 | Jay Neitz | Ophthalmic lenses for treating myopia |
TWI685692B (zh) | 2017-05-08 | 2020-02-21 | 美商賽特眼鏡視光有限公司 | 用於降低近視之隱形眼鏡及製造彼之方法 |
US10901237B2 (en) | 2018-01-22 | 2021-01-26 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lens with an optically non-coaxial zone for myopia control |
US10884264B2 (en) | 2018-01-30 | 2021-01-05 | Sightglass Vision, Inc. | Ophthalmic lenses with light scattering for treating myopia |
EP3759544A1 (en) * | 2018-03-01 | 2021-01-06 | Essilor International | Lens element |
EP3821291A4 (en) | 2018-07-12 | 2022-04-13 | Sightglass Vision, Inc. | METHODS AND DEVICES TO REDUCE MYOPIA IN CHILDREN |
US12111518B2 (en) | 2019-04-23 | 2024-10-08 | Sightglass Vision, Inc. | Ophthalmic lenses with dynamic optical properties for reducing development of myopia |
JP2021005081A (ja) | 2019-06-25 | 2021-01-14 | ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd | 眼鏡レンズおよびその設計方法 |
US20220100000A1 (en) * | 2019-10-07 | 2022-03-31 | Essilor International | Characterizing an optical element |
EP3812142A1 (de) | 2019-10-23 | 2021-04-28 | Carl Zeiss Vision International GmbH | Verfahren zur herstellung eines brillenglases sowie ein erzeugnis umfassend ein brillenglas |
WO2021131454A1 (ja) * | 2019-12-27 | 2021-07-01 | ホヤ レンズ タイランド リミテッド | 眼鏡レンズ |
US20230083468A1 (en) * | 2020-03-09 | 2023-03-16 | Hoya Lens Thailand Ltd. | Eyeglass lens |
US20230129377A1 (en) * | 2020-03-17 | 2023-04-27 | Hoya Lens Thailand Ltd. | Spectacle lens |
CA3169046A1 (en) | 2020-04-14 | 2021-10-21 | Essilor International | Compound microlens design for hyperopic peripheral defocus reduction |
CN115485610A (zh) * | 2020-05-14 | 2022-12-16 | 豪雅镜片泰国有限公司 | 眼镜镜片 |
WO2021236687A2 (en) | 2020-05-19 | 2021-11-25 | Sightglass Vision, Inc. | Ophthalmic lenses, methods of manufacturing the ophthalmic lenses, and methods of dispensing eye care products including the same |
CN111694165A (zh) * | 2020-07-09 | 2020-09-22 | 上海万明眼镜有限公司 | 一种多功能改善镜片及其制备方法 |
CN116133577A (zh) | 2020-07-23 | 2023-05-16 | 依视路国际公司 | 包含一副眼镜的光学缺陷监测设备 |
EP3943240A1 (en) | 2020-07-24 | 2022-01-26 | Essilor International | Centering apparatus and process |
CN220553053U (zh) | 2020-08-07 | 2024-03-01 | 卡尔蔡司光学国际有限公司 | 用于近视控制的渐进多焦点镜片 |
TW202207889A (zh) * | 2020-08-26 | 2022-03-01 | 泰國商豪雅鏡片泰國有限公司 | 眼鏡鏡片、其設計方法及其設計系統 |
CN112162415A (zh) * | 2020-09-25 | 2021-01-01 | 江苏淘镜有限公司 | 一种抗疲劳高清树脂镜片的制造工艺 |
US11126012B1 (en) | 2020-10-01 | 2021-09-21 | Michael Walach | Broadview natural addition lens |
EP3988289A1 (en) | 2020-10-23 | 2022-04-27 | Carl Zeiss Vision International GmbH | Method of manufacturing a spectacle lens |
EP3988288A1 (en) | 2020-10-23 | 2022-04-27 | Carl Zeiss Vision International GmbH | Method of manufacturing a spectacle lens |
EP3988290A1 (en) | 2020-10-23 | 2022-04-27 | Carl Zeiss Vision International GmbH | Method for manufacturing a spectacle lens |
EP4006624B1 (en) | 2020-11-26 | 2024-04-24 | Carl Zeiss Vision International GmbH | Spectacle lens design, method of manufacturing a spectacle lens and method of providing a spectacle lens for at least retarding myopia progression |
EP4006627B1 (en) | 2020-11-26 | 2023-07-12 | Carl Zeiss Vision International GmbH | Spectacle lens design, spectacle lens kit and method of manufacturing a spectacle lens |
EP4006626A1 (en) | 2020-11-26 | 2022-06-01 | Carl Zeiss Vision International GmbH | Spectacle lens design, spectacle lens kit and method of manufacturing a spectacle lens |
EP4304807A1 (en) | 2021-03-09 | 2024-01-17 | Essilor International | Method for automatically centering an ophthalmic lens |
CN113050203B (zh) * | 2021-03-12 | 2022-08-09 | 中国科学院上海光学精密机械研究所 | 一种超表面稀疏孔径透镜 |
CN115236877A (zh) * | 2021-04-22 | 2022-10-25 | 亮点光学股份有限公司 | 近视控制隐形眼镜 |
KR20240006539A (ko) | 2021-05-07 | 2024-01-15 | 에씰로 앙터나시오날 | 굴절력 변화에 대한 제어가 개선된 렌즈렛을 갖는 렌즈를 코팅하기 위한 방법 |
CN113253481B (zh) * | 2021-05-10 | 2022-11-15 | 苏州大学 | 一种具有隐形微结构的眼镜片 |
EP4089473A1 (en) | 2021-05-10 | 2022-11-16 | Carl Zeiss Vision International GmbH | Spectacle lens design, spectacle lens kit, method of manufacturing a spectacle lens and method of providing a spectacle lens design |
EP4094932B1 (en) | 2021-05-26 | 2024-09-04 | Essilor International | Composite mold for manufacturing a microstructured thermoset article, manufacturing method and method for obtaining the mold |
EP4105010B1 (en) | 2021-06-18 | 2024-08-07 | Essilor International | Method for coating lenses with lenslets with an improved control on power shift |
EP4108438A1 (en) | 2021-06-25 | 2022-12-28 | Essilor International | Method for manufacturing a lens element |
WO2023275189A1 (en) * | 2021-06-30 | 2023-01-05 | Essilor International | Lens element |
EP4119321A1 (en) | 2021-07-13 | 2023-01-18 | Essilor International | Method for fabricating microstructured inserts for injection molding |
EP4122687A1 (en) | 2021-07-19 | 2023-01-25 | Essilor International | Composite mold insert for fabricating microstructured lenses |
EP4373658A1 (en) | 2021-07-19 | 2024-05-29 | Essilor International | Mold for manufacturing a thermoset optical article, method for manufacturing the mold and method for manufacturing the thermoset optical article |
EP4122689A1 (en) | 2021-07-20 | 2023-01-25 | Essilor International | Low thermal conductivity metal insert with surface microstructures |
JP7177959B1 (ja) | 2021-09-15 | 2022-11-24 | ホヤ レンズ タイランド リミテッド | 眼鏡レンズ |
JP2023042948A (ja) | 2021-09-15 | 2023-03-28 | ホヤ レンズ タイランド リミテッド | 眼鏡レンズ |
EP4163706A1 (en) | 2021-10-05 | 2023-04-12 | Essilor International | Lens element |
EP4163705A1 (en) | 2021-10-05 | 2023-04-12 | Essilor International | Lens element with improved visual performance |
WO2023063398A1 (ja) | 2021-10-15 | 2023-04-20 | 三井化学株式会社 | 光硬化性組成物、硬化物、積層体、硬化物の製造方法、及び、レンズの製造方法 |
WO2023072930A1 (en) * | 2021-10-26 | 2023-05-04 | Essilor International | Lens element |
WO2023088588A1 (en) | 2021-11-18 | 2023-05-25 | Essilor International | A method for determining an ophthalmic lens adapted to slow down the progression of a vision impairment |
EP4187311A1 (en) | 2021-11-26 | 2023-05-31 | Essilor International | Computer-implemented method, apparatus, system and computer program for providing a user with a representation of an effect of a sightedness impairment control solution |
WO2023114400A1 (en) | 2021-12-15 | 2023-06-22 | Sightglass Vision, Inc. | Automated process for forming features on ophthalmic lens |
EP4197765A1 (en) | 2021-12-16 | 2023-06-21 | Essilor International | Method for encapsulating a microstructured lens by pipc |
EP4197766A1 (en) * | 2021-12-16 | 2023-06-21 | Essilor International | Method for microforming microstructured films and lenses |
EP4197764A1 (en) | 2021-12-16 | 2023-06-21 | Essilor International | Method for encapsulating a microstructured lens by coating transfer |
JP2023092251A (ja) * | 2021-12-21 | 2023-07-03 | ホヤ レンズ タイランド リミテッド | 眼鏡レンズ、および眼鏡レンズの設計方法 |
WO2023152338A1 (en) | 2022-02-14 | 2023-08-17 | Essilor International | Method for manufacturing a spectacle lens |
WO2023155984A1 (en) | 2022-02-16 | 2023-08-24 | Carl Zeiss Vision International Gmbh | Spectacle lens to reduce the progression of myopia |
KR20240134176A (ko) | 2022-03-03 | 2024-09-06 | 호야 렌즈 타일랜드 리미티드 | 안경 렌즈, 안경 렌즈의 제조 방법, 안경 렌즈의 설계 방법, 안경 및 안경의 제조 방법 |
WO2023175193A2 (en) | 2022-03-18 | 2023-09-21 | Carl Zeiss Vision International Gmbh | Coated lens and method for manufacturing the same |
WO2023180403A1 (en) * | 2022-03-25 | 2023-09-28 | Essilor International | Lens element |
CN117136292A (zh) | 2022-03-27 | 2023-11-28 | 依视路国际公司 | 用于表征镜片元件的至少一部分的方法 |
WO2023203244A1 (en) | 2022-04-21 | 2023-10-26 | Essilor International | Lens with improved visual performance |
CN114911070B (zh) | 2022-04-29 | 2023-10-03 | 麦得科科技有限公司 | 用于防近视发展的眼用透镜和使用其的眼镜 |
WO2023213669A1 (en) * | 2022-05-03 | 2023-11-09 | Essilor International | Optical lens intended to be worn by a wearer |
DE102022111995B4 (de) | 2022-05-12 | 2024-01-18 | Rodenstock Gmbh | Brillengläser zur Reduzierung der Progression von Myopie sowie Verfahren zur individuellen Brechnung oder Herstellung |
CN114895483B (zh) * | 2022-05-19 | 2024-04-16 | 苏州大学 | 一种叠加周边离散顺规散光眼镜片及其设计方法 |
EP4283382A1 (en) | 2022-05-27 | 2023-11-29 | Carl Zeiss Vision International GmbH | Stiles-crawford-effect based mechanism and spectacle lens for retinal-region weighted prevention of myopia progression |
WO2023237653A1 (en) * | 2022-06-09 | 2023-12-14 | Essilor International | Optical lens intended to be worn by a wearer |
EP4292798A1 (en) | 2022-06-14 | 2023-12-20 | Carl Zeiss Vision International GmbH | Method of providing refractive microstructures on a surface of a spectacle lens and spectacle lens design |
CN115091664A (zh) * | 2022-07-15 | 2022-09-23 | 西安交通大学 | 一种对称式复眼结构的防近视眼镜镜片模具的制备方法 |
WO2024019070A1 (ja) * | 2022-07-19 | 2024-01-25 | ホヤ レンズ タイランド リミテッド | 眼鏡レンズの設計方法、眼鏡レンズの製造方法、眼鏡レンズ及び眼鏡 |
JPWO2024019071A1 (zh) * | 2022-07-19 | 2024-01-25 | ||
JP2024027333A (ja) * | 2022-08-17 | 2024-03-01 | 東海光学株式会社 | 屈折異常の進行を抑制するための眼鏡用レンズ |
EP4328658A1 (en) | 2022-08-26 | 2024-02-28 | Carl Zeiss Vision International GmbH | Spectacle lens design and methods to retard and control the progression of myopia |
EP4335630A1 (en) | 2022-09-07 | 2024-03-13 | Essilor International | Method for patterning a mask, method for producing an insert or a mold, and optical article with surface microstructures |
EP4349579A1 (en) | 2022-10-04 | 2024-04-10 | Essilor International | Method for manufacturing an optical device comprising a microstructure, manufacturing system to carry out such a method, and optical device thus obtained |
WO2024083751A1 (en) | 2022-10-17 | 2024-04-25 | Essilor International | An ophthalmic lens adapted to correct a vision impairment and to slow down the progression thereof |
EP4365668A1 (en) | 2022-11-04 | 2024-05-08 | Carl Zeiss Vision International GmbH | Spectacle lens with non-concentric microstructures |
CN117148598A (zh) * | 2022-11-29 | 2023-12-01 | 温州医科大学附属眼视光医院 | 连续型高阶相位调制的眼镜片及其相位调制方法 |
WO2024121218A1 (en) * | 2022-12-07 | 2024-06-13 | Essilor International | A pair of spectacle lenses comprising a first optical lens intended to be worn in front of a first eye of a wearer and a second optical lens intended to be worn in front of a second eye of the wearer |
EP4382997A1 (en) | 2022-12-08 | 2024-06-12 | Essilor International | Method for designing a contact lens |
EP4390520A1 (en) | 2022-12-21 | 2024-06-26 | Essilor International | Spectacle lens |
US20240210729A1 (en) * | 2022-12-22 | 2024-06-27 | Johnson & Johnson Vision Care, Inc. | Opthalmic lens for myopia control |
EP4390516A1 (en) | 2022-12-23 | 2024-06-26 | Carl Zeiss Vision International GmbH | Spectacle lens design data and method for manufacturing a spectacle lens |
WO2024168652A1 (en) | 2023-02-16 | 2024-08-22 | Carl Zeiss Vision International Gmbh | Digital twin of a spectacle lens and spectacle lens |
EP4417404A1 (en) | 2023-02-17 | 2024-08-21 | Carl Zeiss Vision International GmbH | Method of manufacturing a coated spectacle lens comprising structures |
DE102023110431B3 (de) | 2023-04-24 | 2024-10-10 | Rodenstock Gmbh | Reduktion der Progression von Myopie mit angepasstem Wirkungsbereich, Verfahren, Serie von Brillengläsern, Vorrichtung, Computerprogrammerzeugnis sowie Verwendung |
CN116360115B (zh) * | 2023-05-31 | 2023-09-15 | 杭州光粒科技有限公司 | 一种近眼显示设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090153795A1 (en) * | 2007-12-14 | 2009-06-18 | Blum Ronald D | Multiple layer multifocal composite lens |
US20100201941A1 (en) * | 2009-02-12 | 2010-08-12 | Pixeloptics Inc. | Ophthalmic lenses with aspheric optical features |
US20120062836A1 (en) * | 2010-09-09 | 2012-03-15 | Tse Yan Yin | Method and system for retarding the progression of myopia |
US20160306192A1 (en) * | 2015-04-15 | 2016-10-20 | Vision Ease, Lp | Ophthalmic Lens With Graded Microlenses |
US20160377884A1 (en) * | 2015-06-23 | 2016-12-29 | Johnson & Johnson Vision Care, Inc. | Contact lens comprising non-coaxial lenslets for preventing and/or slowing myopia progression |
US20170131567A1 (en) * | 2015-11-06 | 2017-05-11 | Hoya Lens Thailand Ltd. | Spectacle Lens |
US20170184875A1 (en) * | 2014-03-24 | 2017-06-29 | Menicon Singapore Pte Ltd. | Apparatus and methods for controlling axial growth with an ocular lens |
Family Cites Families (126)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1955047A (en) | 1931-12-03 | 1934-04-17 | Howard D Beach | Spectacle lens |
US3902693A (en) | 1973-03-12 | 1975-09-02 | American Optical Corp | Mold for casting lenses |
GB2129155B (en) * | 1982-10-13 | 1987-05-20 | Ng Trustees & Nominees Ltd | Bifocal contact lenses |
US5017000A (en) | 1986-05-14 | 1991-05-21 | Cohen Allen L | Multifocals using phase shifting |
US4981342A (en) * | 1987-09-24 | 1991-01-01 | Allergan Inc. | Multifocal birefringent lens system |
US5798027A (en) | 1988-02-08 | 1998-08-25 | Optical Coating Laboratory, Inc. | Process for depositing optical thin films on both planar and non-planar substrates |
US5359440A (en) | 1989-10-23 | 1994-10-25 | Sharp Kabushiki Kaisha | Image display apparatus with microlens plate having mutually fused together lenses resulting in hexagonal shaped microlenses |
AU7130391A (en) | 1990-03-08 | 1991-09-12 | Breger, Joseph Laurence | Multifocal simultaneous vision lenses |
US5112351A (en) | 1990-10-12 | 1992-05-12 | Ioptex Research Inc. | Multifocal intraocular lenses |
EP0750750B1 (de) | 1994-03-17 | 2001-06-27 | Bifocon Optics Forschungs- Und Entwicklungs Gmbh | Zonenlinse |
US5517260A (en) | 1994-03-28 | 1996-05-14 | Vari-Site, Inc. | Ophthalmic lens having a progressive multifocal zone and method of manufacturing same |
US5507806A (en) | 1994-05-13 | 1996-04-16 | Pharmacia Iovision, Inc. | Multi-faceted intraocular lens |
US5652638A (en) | 1995-05-04 | 1997-07-29 | Johnson & Johnson Vision Products, Inc. | Concentric annular ring lens designs for astigmatism |
US5864379A (en) * | 1996-09-27 | 1999-01-26 | Dunn; Stephen A. | Contact lens and process for fitting |
US6045578A (en) | 1995-11-28 | 2000-04-04 | Queensland University Of Technology | Optical treatment method |
US5753092A (en) | 1996-08-26 | 1998-05-19 | Velocidata, Inc. | Cylindrical carriage sputtering system |
FR2753805B1 (fr) | 1996-09-20 | 1998-11-13 | Essilor Int | Jeu de lentilles ophtalmiques multifocales progressives |
US6129042A (en) | 1996-11-08 | 2000-10-10 | Coburn Optical Industries, Inc. | Process and machine for coating ophthalmic lenses |
US6030077A (en) | 1998-03-11 | 2000-02-29 | Menicon Co., Ltd. | Multifocal ocular lens having intermediate region with continuously varying optical power |
US6343861B1 (en) * | 1998-06-12 | 2002-02-05 | Sola International Holdings, Ltd. | Myopia lens |
EP1103014A4 (en) | 1998-08-06 | 2006-09-06 | John B W Lett | ASPHERIC MULTIFOCAL LENSES |
US7281795B2 (en) | 1999-01-12 | 2007-10-16 | Calhoun Vision, Inc. | Light adjustable multifocal lenses |
US6258218B1 (en) | 1999-10-22 | 2001-07-10 | Sola International Holdings, Ltd. | Method and apparatus for vacuum coating plastic parts |
US6554979B2 (en) | 2000-06-05 | 2003-04-29 | Applied Materials, Inc. | Method and apparatus for bias deposition in a modulating electric field |
US6582076B1 (en) * | 2000-08-30 | 2003-06-24 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lenses useful in correcting astigmatism and presbyopia |
US6554425B1 (en) * | 2000-10-17 | 2003-04-29 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lenses for high order aberration correction and processes for production of the lenses |
EP1366388A4 (en) | 2001-02-07 | 2007-08-29 | Corning Prec Lens Inc | SCREEN WITH HIGH CONTRAST AND RANDOM MICROLINE ARRAY |
US6752499B2 (en) | 2001-07-11 | 2004-06-22 | Thomas A. Aller | Myopia progression control using bifocal contact lenses |
US6712466B2 (en) | 2001-10-25 | 2004-03-30 | Ophthonix, Inc. | Eyeglass manufacturing method using variable index layer |
US20030117577A1 (en) | 2001-12-20 | 2003-06-26 | Jones Larry G. | Multifocal ophthalmic lenses |
US6654174B1 (en) | 2002-05-08 | 2003-11-25 | Pin Chien Huang | Micro lens systems and articles thereof |
US7437980B2 (en) | 2002-05-29 | 2008-10-21 | Massachusetts Institute Of Technology | Flux-biased electromagnetic fast tool servo systems and methods |
GB0222331D0 (en) | 2002-09-26 | 2002-10-30 | Teer Coatings Ltd | A method for depositing multilayer coatings with controlled thickness |
US6802607B2 (en) | 2002-10-31 | 2004-10-12 | Johnson & Johnson Vision Care, Inc. | Progressive cylinder ophthalmic lenses |
US20040141150A1 (en) | 2003-01-21 | 2004-07-22 | Roffman Jeffrey H. | Hybrid multifocal contact lenses |
US7101042B2 (en) * | 2003-08-12 | 2006-09-05 | S.I.B. Investments Llc | Multifocal contact lens |
ZA200604246B (en) * | 2003-11-19 | 2007-10-31 | Vision Crc Ltd | Methods and apparatus for altering relative curvature of field and positions of peripheral, off-axis focal positions |
US7503655B2 (en) | 2003-11-19 | 2009-03-17 | Vision Crc Limited | Methods and apparatuses for altering relative curvature of field and positions of peripheral, off-axis focal positions |
US8306853B2 (en) | 2004-02-17 | 2012-11-06 | Colts Laboratories | Methods for testing ophthalmic lenses |
JP4386753B2 (ja) | 2004-02-19 | 2009-12-16 | キヤノンアネルバ株式会社 | ウェハーステージ及びプラズマ処理装置 |
KR100927561B1 (ko) | 2004-08-30 | 2009-11-23 | 가부시키가이샤 알박 | 성막 장치 |
GB0421389D0 (en) | 2004-09-25 | 2004-10-27 | Applied Multilayers Ltd | Material deposition apparatus and method |
US7506983B2 (en) * | 2004-09-30 | 2009-03-24 | The Hong Kong Polytechnic University | Method of optical treatment |
GB0503401D0 (en) | 2005-02-18 | 2005-03-30 | Applied Multilayers Ltd | Apparatus and method for the application of material layer to display devices |
WO2006099012A2 (en) | 2005-03-09 | 2006-09-21 | Walman Optical Company, The | Method and apparatus for coating optics |
WO2007002797A2 (en) | 2005-06-29 | 2007-01-04 | Reflexite Corporation | Method and apparatus for aperture sculpting in a microlens array film |
EP1934648B1 (en) * | 2005-10-12 | 2016-08-03 | Carl Zeiss Vision Australia Holdings Ltd. | Ophthalmic lens element for myopia correction |
WO2007061389A1 (en) | 2005-11-28 | 2007-05-31 | Nanyang Optical Co. Pte Ltd | Auxiliary lenses for prescription lenses and method for managing myopia |
EP1964630A1 (en) * | 2005-12-22 | 2008-09-03 | Hoya Corporation | Lens surface cutting device, lens surface cutting method of spectacles, and lens of spectacles |
PT1976455T (pt) | 2006-01-12 | 2018-04-26 | Holden Brien Vision Inst | Método e aparelho para o controlo da posição da imagem periférica para reduzir a progressão da miopia |
FR2898993B1 (fr) * | 2006-03-24 | 2008-08-01 | Essilor Int | Procede de determination d'une lentille ophtalmique progressive |
CA2653286C (en) | 2006-06-08 | 2016-01-05 | Vision Crc Limited | Means for controlling the progression of myopia |
CN200956072Y (zh) * | 2006-09-08 | 2007-10-03 | 刘伟中 | 非球面超薄型棱镜式组合透镜眼镜 |
JP2010503877A (ja) * | 2006-09-15 | 2010-02-04 | カール ツァイス ビジョン オーストラリア ホールディングス リミテッド | 眼科用レンズ素子 |
US7740354B2 (en) * | 2006-10-25 | 2010-06-22 | Volk Donald A | Multi-layered gradient index progressive lens |
FR2912820B1 (fr) | 2007-02-15 | 2009-05-15 | Essilor Int | Realisation d'un element ophtalmique adapte pour les visions foveale et peripherique |
WO2008111856A1 (en) * | 2007-03-09 | 2008-09-18 | Auckland Uniservices Limited | Contact lens and method |
US7978411B2 (en) | 2007-05-08 | 2011-07-12 | Micron Technology, Inc. | Tetraform microlenses and method of forming the same |
US7637612B2 (en) | 2007-05-21 | 2009-12-29 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lenses for prevention of myopia progression |
US8690319B2 (en) | 2007-05-21 | 2014-04-08 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lenses for prevention of myopia progression |
FR2916864B1 (fr) | 2007-05-31 | 2010-01-08 | Essilor Int | Verre ophtalmique progressif de correction de myopie et procede de realisation d'un tel verre |
SE533395C2 (sv) | 2007-06-08 | 2010-09-14 | Sandvik Intellectual Property | Sätt att göra PVD-beläggningar |
US8317321B2 (en) | 2007-07-03 | 2012-11-27 | Pixeloptics, Inc. | Multifocal lens with a diffractive optical power region |
TWI467266B (zh) * | 2007-10-23 | 2015-01-01 | Vision Crc Ltd | 眼科鏡片元件 |
WO2009100257A2 (en) | 2008-02-05 | 2009-08-13 | Laser Energetics, Inc. | Compound micro lens implant |
US7701636B2 (en) | 2008-03-06 | 2010-04-20 | Aptina Imaging Corporation | Gradient index microlenses and method of formation |
KR20160149325A (ko) * | 2008-04-18 | 2016-12-27 | 노파르티스 아게 | 근시 제어 수단 |
US7905595B2 (en) * | 2008-04-28 | 2011-03-15 | Crt Technology, Inc. | System and method to treat and prevent loss of visual acuity |
US8684520B2 (en) | 2008-08-11 | 2014-04-01 | Novartis Ag | Lens design and method for preventing or slowing the progression of myopia |
CN201614406U (zh) | 2008-08-27 | 2010-10-27 | 梯尔涂层有限公司 | 沉积材料形成镀层的设备 |
US8922898B2 (en) * | 2008-09-04 | 2014-12-30 | Innovega Inc. | Molded lens with nanofilaments and related methods |
FR2936879B1 (fr) * | 2008-10-07 | 2011-03-11 | Essilor Int | Verre ophtalmique corrigeant la vision foveale et la vision peripherique. |
ES2732434T3 (es) | 2008-12-22 | 2019-11-22 | Medical College Of Wisconsin Inc | Aparato para limitar el crecimiento de la longitud del ojo |
ES2345027B1 (es) * | 2009-03-12 | 2011-09-30 | Universidad De Murcia | Dispositivo de correccion optica de refraccion en la retina periferica de manera asimetrica para el control de la progresion de la miopia. |
EP2415588A4 (en) | 2009-03-31 | 2016-11-09 | Hoya Corp | METHOD FOR PRODUCING A GLASS OF GLASS WITH PROGRESSIVE PERFORMANCE |
JP2010252277A (ja) | 2009-04-20 | 2010-11-04 | Panasonic Corp | 固体撮像装置及び電子カメラ |
JP2013501963A (ja) * | 2009-10-22 | 2013-01-17 | クーパーヴィジョン インターナショナル ホウルディング カンパニー リミテッド パートナーシップ | 近視または遠視の進行を阻止または遅鈍するコンタクトレンズセットおよびその方法 |
CA2791748A1 (en) * | 2010-03-03 | 2011-09-09 | Brien Holden Vision Institute | Corneal remodelling contact lenses and methods of treating refractive error using corneal remodelling |
ES2688453T3 (es) * | 2010-03-03 | 2018-11-02 | Brien Holden Vision Institute | Lentes de contacto para ojos miopes y métodos para tratar la miopía |
FR2960305B1 (fr) * | 2010-05-21 | 2013-03-01 | Essilor Int | Realisation d'un composant optique transparent a structure cellulaire |
TW201219842A (en) | 2010-06-25 | 2012-05-16 | Pixeloptics Inc | High performance, low cost multifocal lens having dynamic progressive optical power region |
US8113655B1 (en) * | 2010-07-22 | 2012-02-14 | Albert Tyrin | Training method for accommodative and vergence systems, and multifocal lenses therefor |
JP2013537317A (ja) | 2010-09-13 | 2013-09-30 | ザ ホンコン ポリテクニック ユニヴァーシティー | 近視の進行を遅らせる方法及びシステム |
WO2012122411A1 (en) | 2011-03-08 | 2012-09-13 | Pixeloptics, Inc. | Advanced electro-active optic device |
WO2012138426A2 (en) | 2011-04-04 | 2012-10-11 | Elenza, Inc. | An implantable ophthalmic device with multiple static apertures |
US10014163B2 (en) | 2011-06-07 | 2018-07-03 | Vision Ease, Lp | Application of coating materials |
US9184199B2 (en) | 2011-08-01 | 2015-11-10 | Lytro, Inc. | Optical assembly including plenoptic microlens array |
GB201115124D0 (en) * | 2011-09-01 | 2011-10-19 | Crosby David | Improved adjustable refractive optical device for context specific use |
IN2014CN03689A (zh) * | 2011-11-16 | 2015-07-03 | Essilor Internat Cie Générale Doptique | |
TWI664968B (zh) * | 2012-03-15 | 2019-07-11 | 標誌製藥公司 | 使用tor激酶抑制劑之癌症治療 |
CN102692730B (zh) * | 2012-06-15 | 2013-12-04 | 戴明华 | 控制离焦及眼屈光度的多元镜片及其应用 |
US8817167B2 (en) | 2012-07-13 | 2014-08-26 | Google Inc. | Imaging device with a plurality of depths of field |
JP6145990B2 (ja) | 2012-10-29 | 2017-06-14 | セイコーエプソン株式会社 | マイクロレンズアレイ基板の製造方法 |
TWI507763B (zh) | 2012-11-22 | 2015-11-11 | Control the growth of the optical axis of the lens | |
DE102012023478A1 (de) | 2012-11-28 | 2014-05-28 | Technische Universität Ilmenau | Vorrichtung zum Manipulieren einer Bildinformation und deren Verwendung |
CN103926710B (zh) * | 2013-01-15 | 2015-11-04 | 九扬贸易有限公司 | 利用色像差来控制近视并兼具美容的隐形眼镜 |
US8998408B2 (en) * | 2013-01-30 | 2015-04-07 | Johnson & Johnson Vision Care, Inc. | Asymmetric lens design and method for preventing and/or slowing myopia progression |
US9740024B2 (en) | 2013-02-20 | 2017-08-22 | Essilor International (Compagnie Generale D'optique) | Pair of progressive ophthamlic lenses |
US9658469B2 (en) | 2013-03-15 | 2017-05-23 | Johnson & Johnson Vision Care, Inc. | Ophthalmic devices incorporating metasurface elements |
TWI493241B (zh) * | 2013-05-24 | 2015-07-21 | Hiline Optical Co Ltd | 鏡片裝置及視力控制方法 |
FR3008196B1 (fr) * | 2013-07-08 | 2016-12-30 | Essilor Int | Procede de fabrication d'au moins une lentille ophtalmique |
US9753309B2 (en) * | 2013-11-04 | 2017-09-05 | Myopiaok Limited | Contact lens and method for prevention of myopia progression |
CN104678572B (zh) | 2013-11-29 | 2018-04-27 | 豪雅镜片泰国有限公司 | 眼镜片 |
IN2014MU00194A (zh) * | 2014-01-21 | 2015-08-28 | Wockhardt Ltd | |
JP6675318B2 (ja) * | 2014-04-01 | 2020-04-01 | エシロール・アンテルナシオナル | 補助画像を出力するように構成された多焦点眼鏡レンズ |
US9638936B2 (en) * | 2014-08-20 | 2017-05-02 | Johnson & Johnson Vision Care, Inc. | High plus treatment zone lens design for preventing and/or slowing myopia progression |
US20170115509A1 (en) * | 2014-08-20 | 2017-04-27 | Johnson & Johnson Vision Care, Inc. | High plus center treatment zone lens design and method for preventing and/or slowing myopia progression |
US10061143B2 (en) * | 2014-08-29 | 2018-08-28 | Johnson & Johnson Vision Care, Inc. | Multifocal lens design for preventing and/or slowing myopia progression |
EP3241064A1 (en) | 2014-12-31 | 2017-11-08 | Essilor International (Compagnie Générale D'Optique) | A spectacle ophthalmic lens intended to be mounted on a spectacle frame |
EP3271779B1 (en) | 2015-03-18 | 2024-08-14 | Essilor International | A method for determining an ophthalmic lens having unwanted astigmatism |
US10267956B2 (en) | 2015-04-14 | 2019-04-23 | California Institute Of Technology | Multi-wavelength optical dielectric metasurfaces |
US11061255B2 (en) * | 2015-06-23 | 2021-07-13 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lens comprising lenslets for preventing and/or slowing myopia progression |
CN106405867A (zh) * | 2015-07-28 | 2017-02-15 | 亨泰光学股份有限公司 | 隐形眼镜及其加工方法 |
US9977257B2 (en) * | 2016-03-22 | 2018-05-22 | Johnson & Johnson Vision Care, Inc. | Multifocal lens design and method for preventing and/or slowing myopia progression |
WO2017176921A1 (en) | 2016-04-05 | 2017-10-12 | President And Fellows Of Harvard College | Meta-lenses for sub-wavelength resolution imaging |
US20190137786A1 (en) * | 2016-06-07 | 2019-05-09 | Mackay Medical Foundation The Presbyterian Church in Taiwan Mackay Memorial | Opthalmic lenses and methods of manufacturing the same |
EP3273292A1 (de) * | 2016-07-19 | 2018-01-24 | Carl Zeiss Vision International GmbH | Brillenglas und verfahren zu dessen herstellung |
SG11201900867UA (en) * | 2016-08-01 | 2019-02-27 | Jay Neitz | Ophthalmic lenses for treating myopia |
AU2017351635C1 (en) * | 2016-10-25 | 2023-08-03 | Brien Holden Vision Institute Limited | Devices, systems and/or methods for myopia control |
IL307294A (en) * | 2017-01-27 | 2023-11-01 | Magic Leap Inc | Diffraction gratings produced using a surface cell with differently oriented nanobeams |
CN107212949B (zh) | 2017-07-12 | 2019-05-14 | 无锡蕾明视康科技有限公司 | 一种多焦点人工晶状体 |
US10901237B2 (en) * | 2018-01-22 | 2021-01-26 | Johnson & Johnson Vision Care, Inc. | Ophthalmic lens with an optically non-coaxial zone for myopia control |
US10884264B2 (en) * | 2018-01-30 | 2021-01-05 | Sightglass Vision, Inc. | Ophthalmic lenses with light scattering for treating myopia |
EP3759544A1 (en) * | 2018-03-01 | 2021-01-06 | Essilor International | Lens element |
US10921612B2 (en) * | 2018-03-29 | 2021-02-16 | Reopia Optics, Llc. | Spectacles and associated methods for presbyopia treatment and myopia progression control |
EP4242735A3 (en) * | 2018-04-26 | 2023-11-22 | Essilor International | Lens element |
-
2019
- 2019-03-01 EP EP19707812.4A patent/EP3759544A1/en active Pending
- 2019-03-01 US US16/976,662 patent/US11567344B2/en active Active
- 2019-03-01 RU RU2020131365A patent/RU2765344C1/ru active
- 2019-03-01 DE DE202019005795.1U patent/DE202019005795U1/de active Active
- 2019-03-01 JP JP2020545586A patent/JP7532256B2/ja active Active
- 2019-03-01 CN CN202111314339.5A patent/CN113960808B/zh active Active
- 2019-03-01 US US16/976,654 patent/US11899286B2/en active Active
- 2019-03-01 CN CN201980004568.1A patent/CN111095082B/zh active Active
- 2019-03-01 WO PCT/EP2019/055213 patent/WO2019166653A1/en active Application Filing
- 2019-03-01 CN CN201980004572.8A patent/CN111095084A/zh active Pending
- 2019-03-01 KR KR1020207024528A patent/KR20200124234A/ko not_active Application Discontinuation
- 2019-03-01 KR KR1020207024529A patent/KR20200124235A/ko not_active Application Discontinuation
- 2019-03-01 HU HUE19707810A patent/HUE062437T2/hu unknown
- 2019-03-01 ES ES19707809T patent/ES2973511T3/es active Active
- 2019-03-01 SG SG11202008010SA patent/SG11202008010SA/en unknown
- 2019-03-01 CN CN202220219624.2U patent/CN217085443U/zh active Active
- 2019-03-01 CN CN202111314506.6A patent/CN113960809A/zh active Pending
- 2019-03-01 SG SG11202007813SA patent/SG11202007813SA/en unknown
- 2019-03-01 CN CN202220350815.2U patent/CN217689666U/zh active Active
- 2019-03-01 BR BR112020017312-6A patent/BR112020017312B1/pt active IP Right Grant
- 2019-03-01 CN CN201980005176.7A patent/CN111226161B/zh active Active
- 2019-03-01 CN CN201980004571.3A patent/CN111095083B/zh active Active
- 2019-03-01 DE DE202019005771.4U patent/DE202019005771U1/de active Active
- 2019-03-01 KR KR1020207024530A patent/KR20200123141A/ko not_active Application Discontinuation
- 2019-03-01 EP EP19708842.0A patent/EP3759548B1/en active Active
- 2019-03-01 WO PCT/EP2019/055216 patent/WO2019166654A1/en active Application Filing
- 2019-03-01 EP EP19707809.0A patent/EP3759545B1/en active Active
- 2019-03-01 JP JP2020545590A patent/JP7418339B2/ja active Active
- 2019-03-01 BR BR112020017586-2A patent/BR112020017586B1/pt active IP Right Grant
- 2019-03-01 CN CN202122895458.6U patent/CN216561274U/zh active Active
- 2019-03-01 US US16/976,954 patent/US11852904B2/en active Active
- 2019-03-01 WO PCT/EP2019/055220 patent/WO2019166657A1/en active Application Filing
- 2019-03-01 JP JP2020545548A patent/JP7466450B2/ja active Active
- 2019-03-01 RU RU2020131393A patent/RU2769091C2/ru active
- 2019-03-01 RU RU2020131333A patent/RU2757820C1/ru active
- 2019-03-01 CN CN202210386647.7A patent/CN114545660B/zh active Active
- 2019-03-01 DE DE212019000202.1U patent/DE212019000202U1/de active Active
- 2019-03-01 WO PCT/EP2019/055217 patent/WO2019166655A1/en active Application Filing
- 2019-03-01 BR BR112020017525-0A patent/BR112020017525B1/pt active IP Right Grant
- 2019-03-01 CN CN202210386377.XA patent/CN114660687A/zh active Pending
- 2019-03-01 RU RU2020130029A patent/RU2757349C1/ru active
- 2019-03-01 CA CA3155413A patent/CA3155413C/en active Active
- 2019-03-01 DE DE212019000204.8U patent/DE212019000204U1/de active Active
- 2019-03-01 DE DE202019005799.4U patent/DE202019005799U1/de active Active
- 2019-03-01 CN CN201990000358.0U patent/CN216310444U/zh active Active
- 2019-03-01 WO PCT/EP2019/055222 patent/WO2019166659A1/en active Application Filing
- 2019-03-01 CA CA3092605A patent/CA3092605C/en active Active
- 2019-03-01 SG SG11202008023XA patent/SG11202008023XA/en unknown
- 2019-03-01 KR KR1020227011719A patent/KR102481762B1/ko active IP Right Grant
- 2019-03-01 DE DE202019005772.2U patent/DE202019005772U1/de active Active
- 2019-03-01 CA CA3092609A patent/CA3092609C/en active Active
- 2019-03-01 SG SG11202008011VA patent/SG11202008011VA/en unknown
- 2019-03-01 CA CA3092428A patent/CA3092428C/en active Active
- 2019-03-01 EP EP23162108.7A patent/EP4220283A1/en active Pending
- 2019-03-01 DE DE212019000205.6U patent/DE212019000205U1/de active Active
- 2019-03-01 EP EP21209355.3A patent/EP4020065A1/en active Pending
- 2019-03-01 CA CA3092607A patent/CA3092607C/en active Active
- 2019-03-01 EP EP19707810.8A patent/EP3759546B1/en active Active
- 2019-03-01 KR KR1020207024531A patent/KR20200124236A/ko not_active Application Discontinuation
- 2019-03-01 EP EP24154646.4A patent/EP4339695A3/en active Pending
- 2019-03-01 EP EP19707811.6A patent/EP3759547A1/en active Pending
- 2019-03-01 HU HUE19707809A patent/HUE065624T2/hu unknown
- 2019-03-01 SG SG11202008022SA patent/SG11202008022SA/en unknown
- 2019-03-01 CN CN202123299149.9U patent/CN216561273U/zh active Active
- 2019-03-01 RU RU2020131348A patent/RU2768515C1/ru active
- 2019-03-01 JP JP2020545568A patent/JP7155275B2/ja active Active
- 2019-03-01 KR KR1020207024532A patent/KR20200124237A/ko not_active Application Discontinuation
- 2019-03-01 US US16/976,595 patent/US20210048689A1/en active Pending
- 2019-03-01 CA CA3092418A patent/CA3092418A1/en active Pending
- 2019-03-01 JP JP2020545545A patent/JP7154306B2/ja active Active
- 2019-03-01 CN CN202021364080.6U patent/CN213122475U/zh active Active
- 2019-03-01 PL PL19707809.0T patent/PL3759545T3/pl unknown
-
2020
- 2020-08-19 CO CONC2020/0010242A patent/CO2020010242A2/es unknown
- 2020-08-25 CO CONC2020/0010439A patent/CO2020010439A2/es unknown
- 2020-08-25 CO CONC2020/0010432A patent/CO2020010432A2/es unknown
- 2020-08-28 CO CONC2020/0010799A patent/CO2020010799A2/es unknown
- 2020-09-23 CO CONC2020/0011713A patent/CO2020011713A2/es unknown
- 2020-12-22 US US17/130,979 patent/US10962804B1/en active Active
- 2020-12-23 US US17/133,349 patent/US11067832B2/en active Active
- 2020-12-23 US US17/131,855 patent/US11079612B2/en active Active
- 2020-12-28 US US17/134,606 patent/US10948744B1/en active Active
- 2020-12-28 US US17/134,600 patent/US20210116722A1/en not_active Abandoned
-
2021
- 2021-03-15 US US17/200,950 patent/US11073704B2/en active Active
- 2021-06-21 US US17/353,545 patent/US11385475B2/en active Active
- 2021-06-21 US US17/353,468 patent/US11353721B2/en active Active
- 2021-11-24 US US17/456,454 patent/US11385476B2/en active Active
- 2021-11-24 US US17/534,864 patent/US11442290B2/en active Active
-
2022
- 2022-04-15 JP JP2022067659A patent/JP2022093412A/ja active Pending
- 2022-10-05 JP JP2022161057A patent/JP7472225B2/ja active Active
- 2022-11-11 US US17/985,609 patent/US12085784B2/en active Active
-
2023
- 2023-01-05 JP JP2023000638A patent/JP2023033375A/ja active Pending
-
2024
- 2024-04-10 JP JP2024063599A patent/JP2024083545A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090153795A1 (en) * | 2007-12-14 | 2009-06-18 | Blum Ronald D | Multiple layer multifocal composite lens |
US20100201941A1 (en) * | 2009-02-12 | 2010-08-12 | Pixeloptics Inc. | Ophthalmic lenses with aspheric optical features |
US20120062836A1 (en) * | 2010-09-09 | 2012-03-15 | Tse Yan Yin | Method and system for retarding the progression of myopia |
US20170184875A1 (en) * | 2014-03-24 | 2017-06-29 | Menicon Singapore Pte Ltd. | Apparatus and methods for controlling axial growth with an ocular lens |
US20160306192A1 (en) * | 2015-04-15 | 2016-10-20 | Vision Ease, Lp | Ophthalmic Lens With Graded Microlenses |
US20160377884A1 (en) * | 2015-06-23 | 2016-12-29 | Johnson & Johnson Vision Care, Inc. | Contact lens comprising non-coaxial lenslets for preventing and/or slowing myopia progression |
US20170131567A1 (en) * | 2015-11-06 | 2017-05-11 | Hoya Lens Thailand Ltd. | Spectacle Lens |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111226161B (zh) | 镜片元件 | |
CN118550101A (zh) | 镜片元件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |