KR20200124237A - 렌즈 요소 - Google Patents

렌즈 요소 Download PDF

Info

Publication number
KR20200124237A
KR20200124237A KR1020207024532A KR20207024532A KR20200124237A KR 20200124237 A KR20200124237 A KR 20200124237A KR 1020207024532 A KR1020207024532 A KR 1020207024532A KR 20207024532 A KR20207024532 A KR 20207024532A KR 20200124237 A KR20200124237 A KR 20200124237A
Authority
KR
South Korea
Prior art keywords
optical
lens
optical elements
lens element
optical element
Prior art date
Application number
KR1020207024532A
Other languages
English (en)
Inventor
마티유 기요
브후노 페르미지에
소 질 르
마히우 펠루
Original Assignee
에씰로 앙터나시오날
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP18305436.0A external-priority patent/EP3553594B1/en
Priority claimed from EP18305526.8A external-priority patent/EP3561578A1/en
Application filed by 에씰로 앙터나시오날 filed Critical 에씰로 앙터나시오날
Publication of KR20200124237A publication Critical patent/KR20200124237A/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/022Ophthalmic lenses having special refractive features achieved by special materials or material structures
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • G02C7/063Shape of the progressive surface
    • G02C7/066Shape, location or size of the viewing zones
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power
    • G02C7/063Shape of the progressive surface
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/086Auxiliary lenses located directly on a main spectacle lens or in the immediate vicinity of main spectacles
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/20Diffractive and Fresnel lenses or lens portions
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/24Myopia progression prevention

Abstract

착용자의 눈의 전방에 착용되도록 의도된 렌즈 요소로서, - 상기 착용자의 눈에 대한 처방에 기초하는 굴절력을 갖는 굴절 영역; 및 - 복수의 적어도 2개의 연속적 광학 요소를 포함하며, 적어도 하나의 광학 요소는 눈의 이상 굴절의 진행을 둔화시키기 위해, 착용자의 눈의 망막에 상을 집속하지 않는 광학 기능을 갖는다.

Description

렌즈 요소
본 발명은 근시 또는 원시와 같은 눈의 이상 굴절의 진행을 억제시키거나 감소시키기 위해 사람의 눈의 전방에 착용되도록 의도된 렌즈 요소(lens element)에 관한 것이다.
근시안은 눈이 이의 망막 앞에 원거리 물체를 집속(focus)한다는 점을 특징으로 한다. 근시는 일반적으로 오목 렌즈를 사용하여 보정되며, 원시는 일반적으로 볼록 렌즈를 사용하여 보정된다.
통상적인 단초점 광학 렌즈를 사용하여 보정되는 경우, 일부 사람들, 특히 어린이는 근거리로 떨어져서 위치되는(즉, 근거리 시력 조건에서) 물체를 주시할 때 부정확하게 집속하는 것으로 확인되었다. 원거리 시력이 보정되는 근시 어린이에 의한 이러한 집속 장애로 인해, 가까운 물체의 상이 그의 망막 뒤에도 형성되며, 심지어 중심와(foveal) 영역에도 형성된다.
이러한 집속 장애는 이러한 사람들의 근시 진행에 영향을 줄 수 있다. 상기 사람들의 대부분의 경우, 근시 장애는 시간이 지남에 따라 증대되는 경향이 있음을 알 수 있다.
중심와 시력은 눈으로 바라보는 물체의 상이 망막의 중앙 구역(중심와 구역으로 지칭됨)에 형성되는 관찰 조건에 해당한다.
주변 시력은 바라보는 물체에 대해 측방향으로 오프셋되는 장면의 요소의 인식에 해당하며, 상기 요소의 상은 중심와 구역으로부터 떨어진 망막의 주변 부분 상에 형성된다.
굴절 이상의 대상자에게 제공되는 안구 보정은 일반적으로 대상자의 중심와 시력을 위해 맞춰진다. 그러나, 알려진 바와 같이, 중심와 시력을 위해 결정되는 보정에 비해, 주변 시력을 위한 보정은 감소되어야 한다. 특히, 원숭이를 대상으로 수행된 연구는, 중심와 구역으로부터 떨어져서 발생하는, 망막 뒤에서의 광의 강한 디포커싱으로 인해, 안구가 신장될 수 있으므로, 근시 장애가 증가할 수 있음을 제시하였다.
따라서, 근시 또는 원시와 같은 눈의 이상 굴절의 진행을 억제시키거나 적어도 둔화시키는 렌즈 요소가 필요한 것으로 보인다.
이를 위해, 본 발명은 착용자의 눈의 전방에 착용되도록 의도된 렌즈 요소를 제안하고, 렌즈 요소는,
- 상기 착용자의 눈에 대한 처방에 기초하는 굴절력을 갖는 굴절 영역; 및
- 복수의 적어도 2개의 연속적 광학 요소를 포함하며, 적어도 하나의 광학 요소는 눈의 이상 굴절의 진행을 둔화시키기 위해, 착용자의 눈의 망막에 상을 집속하지 않는 광학 기능을 갖는다.
유리하게는, 착용자의 망막에 상을 집속하지 않도록 구성된 광학 요소를 가짐으로써, 눈의 망막이 변형되는(특히 연장되는) 자연적 경향을 감소시킨다. 따라서, 눈의 이상 굴절의 진행이 둔화된다.
또한, 연속적 광학 요소를 가짐으로써, 특히 렌즈 요소 표면의 불연속성 정도를 제한하여 렌즈 요소의 심미감을 개선하는 데 도움이 된다.
또한, 연속적 광학 요소를 가짐으로써, 렌즈 요소의 제조가 더 용이하다.
단독으로 또는 조합하여 고려될 수 있는 추가적인 실시형태에 따라,
- 적어도 2개의 연속적 광학 요소는 독립적이다; 및/또는
- 광학 요소는 0.8 mm 이상 그리고 3.0 mm 이하의 직경을 갖는 원에 내접 가능한 윤곽 형상을 갖는다; 및/또는
- 광학 요소는 망으로 위치된다; 및/또는
- 망은 구조화된 망이다; 및/또는
- 광학 요소는 복수의 동심 링을 따라 위치된다; 및/또는
- 렌즈 요소는 적어도 2개의 연속적 광학 요소 그룹으로 구성된 적어도 4개의 광학 요소를 더 포함한다; 및/또는
- 각각의 연속적 광학 요소 그룹은 동일한 중심을 갖는 적어도 2개의 동심 링으로 구성되며, 각각의 연속적 광학 요소 그룹의 동심 링은, 상기 그룹의 적어도 하나의 광학 요소에 접하는 최소 원에 해당하는 내경, 및 상기 그룹의 적어도 하나의 광학 요소에 접하는 최대 원에 해당하는 외경에 의해 한정된다; 및/또는
- 광학 요소의 동심 링의 적어도 일부, 예를 들어 전부는 상기 광학 요소가 배치된 렌즈 요소의 표면의 광학 중심에 중심을 둔다; 및/또는
- 광학 요소의 동심 링은 9.0 mm 내지 60 mm에 포함되는 직경을 갖는다; 및/또는
- 광학 요소의 2개의 연속적인 동심 링 사이의 거리는 5.0 mm 이상이며, 2개의 연속적인 동심 링 사이의 거리는, 제1 동심 링의 내경과 제2 동심 링의 외경 간의 차에 의해 한정되고, 제2 동심 링은 렌즈 요소의 주변부에 더 가깝다; 및/또는
- 광학 요소는 2개의 동심 링 사이에 반경 방향으로 위치된 광학 요소를 더 포함한다; 및/또는
- 구조화된 망은 정사각형 망, 또는 육각형 망, 또는 삼각형 망, 또는 팔각형 망이다; 및/또는
- 망 구조는 무작위 망이며, 예를 들어 보로노이드 망(Voronoid network)이다; 및/또는
- 광학 요소의 적어도 일부, 예를 들어 전부는 2개의 연속적 광학 요소 간에 불연속적 1차 도함수 및 일정한 광 굴절력을 갖는다; 및/또는
- 광학 요소의 적어도 일부, 예를 들어 전부는 2개의 연속적 광학 요소 간에 연속적 1차 도함수 및 가변 광 굴절력을 갖는다; 및/또는
- 광학 요소 중 적어도 하나, 예를 들어 전부는 표준 착용 조건에서 그리고 주변 시력을 위해, 망막 이외의 위치에 상을 집속하는 광학 기능을 갖는다; 및/또는
- 적어도 하나의 광학 요소는 표준 착용 조건에서 그리고 주변 시력을 위해, 비구면 집속 광학 기능을 갖는다; 및/또는
- 광학 요소 중 적어도 하나는 원기둥 굴절력을 갖고, 원환체 굴절 마이크로렌즈이다; 및/또는
- 광학 요소는, 렌즈의 적어도 하나의 구역을 따라, 광학 요소의 평균 구면이 상기 구역의 지점으로부터 상기 구역의 주변부를 향하여 증가하도록 구성된다; 및/또는
- 광학 요소는, 렌즈의 적어도 하나의 구역을 따라, 광학 요소의 원기둥이 상기 구역의 지점으로부터 상기 구역의 주변부를 향하여 증가하도록 구성된다; 및/또는
- 광학 요소는, 렌즈의 적어도 하나의 구역을 따라, 광학 요소의 평균 구면 및/또는 원기둥이 상기 구역의 중심으로부터 상기 구역의 주변부를 향하여 증가하도록 구성된다; 및/또는
- 굴절 영역은 광학 중심을 포함하며, 광학 요소는, 렌즈의 광학 중심을 통과하는 임의의 구역을 따라, 광학 요소의 평균 구면 및/또는 원기둥이 광학 중심으로부터 렌즈의 주변부를 향하여 증가하도록 구성된다; 및/또는
- 굴절 영역은 원거리 시력 기준점, 근거리 시력 기준점, 그리고 원거리 및 근거리 시력 기준점을 연결하는 자오선을 포함하며, 광학 요소는, 렌즈의 임의의 수평 구역을 따라 표준 착용 조건에서, 광학 요소의 평균 구면 및/또는 원기둥이 자오선과 상기 수평 구역의 교차점으로부터 렌즈의 주변부를 향하여 증가하도록 구성된다; 및/또는
- 구역을 따르는 평균 구면 및/또는 원기둥 증가 함수는 자오선을 따르는 상기 구역의 위치에 따라 상이하다; 및/또는
- 구역을 따르는 평균 구면 및/또는 원기둥 증가 함수는 비대칭적이다; 및/또는
- 광학 요소는, 표준 착용 조건에서 적어도 하나의 구역이 수평 구역이도록 구성된다; 및/또는
- 광학 요소의 평균 구면 및/또는 원기둥은 상기 구역의 제1 지점으로부터 상기 구역의 주변부를 향하여 증가하며, 상기 구역의 제2 지점으로부터 상기 구역의 주변부를 향하여 감소하고, 제2 지점은 제1 지점보다 상기 구역의 주변부에 더 가깝다; 및/또는
- 적어도 하나의 구역을 따르는 평균 구면 및/또는 원기둥 증가 함수는 가우스 함수이다; 및/또는
- 적어도 하나의 구역을 따르는 평균 구면 및/또는 원기둥 증가 함수는 이차 함수이다; 및/또는
- 광학 요소는, 각각의 광학 요소를 통과하는 광선의 평균 초점거리(mean focus)가 망막까지 동일 거리에 있도록 구성된다; 및/또는
- 굴절 영역은 복수의 광학 요소로서 형성된 영역 이외의 영역으로 형성된다; 및/또는
- 2 내지 4 mm에 포함되는 반경을 갖고, 표준 착용 조건에서 똑바로 응시하는 사용자의 동공을 향하는 프레이밍 기준점(framing reference)과 상기 반경 + 5 mm 이상으로 거리를 두고 위치된 기하학적 중심을 포함하는 모든 원형 구역에 대해, 상기 원형 구역 내부에 위치된 광학 요소의 부분의 면적의 합과 상기 원형 구역의 면적 사이의 비율은 20% 내지 70%에 포함된다; 및/또는
- 광학 요소의 적어도 일부, 예를 들어 전부는 안구 렌즈의 전면 표면 상에 위치된다; 및/또는
- 광학 요소의 적어도 일부, 예를 들어 전부는 안구 렌즈의 후면 표면 상에 위치된다; 및/또는
- 광학 요소의 적어도 일부, 예를 들어 전부는 안구 렌즈의 전면 표면과 후면 표면 사이에 위치된다; 및/또는
- 광학 요소 중 적어도 하나는 다초점 굴절 마이크로렌즈이다; 및/또는
- 적어도 하나의 다초점 굴절 마이크로렌즈는 원기둥 굴절력을 포함한다; 및/또는
- 적어도 하나의 다초점 굴절 마이크로렌즈는 임의의 회전 대칭을 갖거나 갖지 않는 비구면 표면을 포함한다; 및/또는
- 광학 요소 중 적어도 하나는 원환체 굴절 마이크로렌즈이다; 및/또는
- 적어도 하나의 다초점 굴절 마이크로렌즈는 원환체 표면을 포함한다; 및/또는
- 광학 요소 중 적어도 하나는 복굴절 재료로 제조된다; 및/또는
- 광학 요소 중 적어도 하나는 회절 렌즈이다; 및/또는
- 적어도 하나의 회절 렌즈는 메타표면(metasurface) 구조를 포함한다; 및/또는
- 적어도 하나의 광학 요소는 사람의 눈의 망막의 전방에 초곡면(caustic)을 생성하도록 구성된 형상을 갖는다; 및/또는
- 적어도 하나의 광학 요소는 다초점 이원 구성 요소이다; 및/또는
- 적어도 하나의 광학 요소는 픽셀화(pixelated) 렌즈이다; 및/또는
- 적어도 하나의 광학 요소는 π-프레넬 렌즈이다; 및/또는
- 적어도 일부, 예를 들어 모든 광학 기능은 고차 광학 수차를 포함한다; 및/또는
- 렌즈 요소는, 굴절 영역을 갖는 안구 렌즈, 및 렌즈 요소가 착용될 때 안구 렌즈에 착탈식으로 부착되도록 적응된 광학 요소를 갖는 클립 고정식 물체(clip-on)를 포함한다; 및/또는
- 굴절 영역은 표준 착용 조건에서 그리고 중심와 시력을 위해, 제1 광 굴절력과 상이한 제2 광 굴절력을 착용자에게 제공하도록 추가로 구성된다; 및/또는
- 제1 광 굴절력과 제2 광 굴절력 간의 차는 0.5 D 이상이다; 및/또는
- 적어도 하나의, 예를 들어 적어도 70%의, 예를 들어 모든 광학 요소는 광학 렌즈 제어기에 의해 활성화될 수 있는 능동 광학 요소이다; 및/또는
- 능동 광학 요소는 가변 굴절률을 갖는 재료를 포함하며, 가변 굴절률의 값은 광학 렌즈 제어기에 의해 제어된다.
본 발명의 내용에 포함됨.
이제 본 발명의 제한적이지 않은 실시형태가 첨부된 도면을 참조하여 설명될 것이며, 첨부된 도면으로서:
도 1은 본 발명에 따른 렌즈 요소의 평면도이다;
도 2는 본 발명에 따른 렌즈 요소의 전반적인 측면도이다;
도 3은 프레넬 높이 프로파일의 일 실시예를 나타낸다;
도 4는 회절 렌즈 반경 방향 프로파일의 일 실시예를 나타낸다;
도 5는 π-프레넬 렌즈 프로파일을 도시한다;
도 6a 내지 도 6c는 본 발명의 이원 렌즈 실시형태를 도시한다;
도 7a는 TABO 규정으로 렌즈의 비점수차 축(
Figure pct00001
)을 도시한다;
도 7b는 비구면 표면을 특성화하기 위해 사용되는 규정으로 원기둥 축(
Figure pct00002
)을 도시한다;
도 8 및 도 9는 눈 및 렌즈의 광학계를 개략적으로 도시한다;
도 10 내지 도 14는 본 발명의 상이한 실시형태에 따른 광학 요소의 상이한 구성을 도시한다; 그리고
도 15a 내지 도 16b는 본 발명에 따른 광학 요소 간의 상이한 유형의 접합을 도시한다.
도면의 요소는 간명성 및 명료성을 위해 도시되며, 반드시 일정한 비율로 도시된 것은 아니다. 예를 들어, 도면에서 일부 요소의 치수는 본 발명의 실시형태의 이해를 향상시키도록 돕기 위해 다른 요소에 비해 과장될 수 있다.
본 발명은 착용자의 눈의 전방에 착용되도록 의도된 렌즈 요소에 관한 것이다.
설명의 주의 사항으로서, "상부", "하부", "수평", "수직", "위", "아래", "전면", "후면"과 같은 용어, 또는 상대적 위치를 나타내는 다른 단어가 사용될 수 있다. 이러한 용어는 렌즈 요소의 착용 조건에서 이해되어야 한다.
본 발명의 맥락에서, "렌즈 요소"라는 용어는 특정 안경테에 끼워 맞추기 위해 에징되는 미가공 광학 렌즈 또는 안경 광학 렌즈를 지칭할 수 있거나, 안구 렌즈 및 안구 렌즈 상에 위치되도록 적응된 광학 장치를 지칭할 수 있다. 광학 장치는 안구 렌즈의 전면 또는 후면 표면 상에 위치될 수 있다. 광학 장치는 광학 패치(optical patch)일 수 있다. 광학 장치는 예를 들어 안구 렌즈를 포함하는 안경테 상에 클립 고정되도록 구성된 클립과 같이, 안구 렌즈 상에 착탈식으로 위치되도록 적응될 수 있다.
본 발명에 따른 렌즈 요소(10)는 착용자를 위해 맞춰지며, 상기 착용자의 눈의 전방에 착용되도록 의도된다.
도 1에 도시된 바와 같이, 본 발명에 따른 렌즈 요소(10)는,
- 굴절 영역(12); 및
- 복수의 연속적 광학 요소(14)를 포함한다.
굴절 영역(12)은 표준 착용 조건에서, 특히 중심와 시력을 위해, 상기 착용자의 눈의 이상 굴절을 보정하기 위한 착용자의 처방에 기초하는 제1 광 굴절력을 착용자에게 제공하도록 구성된다.
착용 조건은, 예를 들어, 범초점 각도, 각막 대 렌즈 거리, 동공-각막 거리, 눈의 회전 중심(CRE) 대 동공 거리, CRE 대 렌즈 거리, 및 포위각으로 정의되는, 착용자의 눈에 대한 렌즈 요소의 위치로서 이해되어야 한다.
각막 대 렌즈 거리는 주 위치에서의 눈의 시선축(일반적으로 수평인 것으로 간주됨)을 따라, 각막과 렌즈의 후면 표면 사이의 거리로서, 예를 들어 12 mm와 같다.
동공-각막 거리는 눈의 시선축을 따라, 눈의 동공과 각막 사이의 거리로서, 일반적으로 2 mm와 같다.
CRE 대 동공 거리는 눈의 시선축을 따라, 눈의 회전 중심(CRE)과 각막 사이의 거리로서, 예를 들어 11.5 mm와 같다.
CRE 대 렌즈 거리는 주 위치에서의 눈의 시선축(일반적으로 수평인 것으로 간주됨)을 따라, 눈의 CRE와 렌즈의 후면 표면 사이의 거리로서, 예를 들어 25.5 mm와 같다.
범초점 각도는, 렌즈의 후면 표면과 주 위치에서의 눈의 시선축(일반적으로 수평인 것으로 간주됨) 사이의 교차점에서, 렌즈의 후면 표면에 대한 법선과 주 위치에서의 눈의 시선축 사이의 수직면으로의 각도로서, 예를 들어 -8°와 같다.
포위각은, 렌즈의 후면 표면과 주 위치에서의 눈의 시선축(일반적으로 수평인 것으로 간주됨) 사이의 교차점에서, 렌즈의 후면 표면에 대한 법선과 주 위치에서의 눈의 시선축 사이의 수평면으로의 각도로서, 예를 들어 0°와 같다.
표준 착용 조건의 일 실시예는, -8°의 범초점 각도, 12 mm의 각막 대 렌즈 거리, 2 mm의 동공-각막 거리, 11.5 mm의 CRE 대 동공 거리, 25.5 mm의 CRE 대 렌즈 거리, 및 0°의 포위각으로 정의될 수 있다.
"처방"이라는 용어는, 예를 들어 눈의 전방에 위치된 렌즈를 사용하여, 눈의 시각 장애를 보정하기 위해 안과 의사 또는 검안사에 의해 결정되는, 광 굴절력, 비점수차, 각기둥 편차의 광학 특성 세트를 의미하는 것으로 이해되어야 한다. 예를 들어, 근시안을 위한 처방은 원거리 시력을 위한 축을 사용하는 비점수차 및 광 굴절력의 값을 포함한다.
본 발명은 프로그레시브(progressive) 렌즈에 관한 것은 아니지만, 본 설명에 사용된 표현은 프로그레시브 렌즈에 관한 WO 2016/146590 문헌의 도 1 내지 도 10에 예시되어 있다. 당업자는 의미들을 단초점 렌즈에 맞출 수 있다.
프로그레시브 렌즈는 적어도 하나, 바람직하게는 2개의 비-회전식 대칭 비구면 표면을 포함하며, 예를 들어 이에 제한됨이 없이, 프로그레시브 표면, 퇴행성(regressive) 표면, 원환체 또는 비원환체(atoric) 표면을 포함한다.
알려진 바와 같이, 최소 곡률(
Figure pct00003
)은 비구면 표면 상의 임의의 지점에서 다음의 수식으로 정의된다:
Figure pct00004
여기서,
Figure pct00005
는 미터로 표현되는 국부적 최대 곡률 반경이고,
Figure pct00006
은 디옵터로 표현된다.
유사하게, 최대 곡률(
Figure pct00007
)은 비구면 표면 상의 임의의 지점에서 다음의 수식으로 정의될 수 있다:
Figure pct00008
여기서,
Figure pct00009
은 미터로 표현되는 국부적 최소 곡률 반경이고,
Figure pct00010
는 디옵터로 표현된다.
표면이 국부적으로 구면인 경우, 국부적 최소 곡률 반경(
Figure pct00011
) 및 국부적 최대 곡률 반경(
Figure pct00012
)은 동일하며, 이에 따라 최소 및 최대 곡률(
Figure pct00013
Figure pct00014
)도 동일하다는 것을 알 수 있다. 표면이 비구면인 경우, 국부적 최소 곡률 반경(
Figure pct00015
) 및 국부적 최대 곡률 반경(
Figure pct00016
)은 상이하다.
최소 및 최대 곡률(
Figure pct00017
Figure pct00018
)의 이러한 수식으로부터,
Figure pct00019
Figure pct00020
로 표시되는 최소 및 최대 구면이 고려된 표면의 종류에 따라 추정될 수 있다.
고려된 표면이 물체측 표면(전면 표면으로도 지칭됨)인 경우, 수식은 다음과 같다:
Figure pct00021
Figure pct00022
여기서, n은 렌즈의 구성 성분 재료의 굴절률이다.
고려된 표면이 안구측 표면(후면 표면으로도 지칭됨)인 경우, 수식은 다음과 같다:
Figure pct00023
Figure pct00024
여기서, n은 렌즈의 구성 성분 재료의 굴절률이다.
잘 알려진 바와 같이, 비구면 표면 상의 임의의 지점에서의 평균 구면(
Figure pct00025
)은 다음의 수식으로도 정의될 수 있다:
Figure pct00026
따라서, 평균 구면의 수식은 고려된 표면에 따라 좌우된다:
표면이 물체측 표면인 경우,
Figure pct00027
표면이 안구측 표면인 경우,
Figure pct00028
원기둥(
Figure pct00029
)은 또한 수식
Figure pct00030
에 의해 정의된다.
렌즈의 임의의 비구면 면의 특성은 국부적 평균 구면 및 원기둥으로 표현될 수 있다. 원기둥이 적어도 0.25 디옵터인 경우, 표면은 국부적으로 비구면인 것으로 간주될 수 있다.
비구면 표면의 경우, 국부적 원기둥 축(
Figure pct00031
)이 추가로 정의될 수 있다. 도 7a는 TABO 규정에 정의된 바와 같은 비점수차 축(
Figure pct00032
)을 도시하며, 도 7b는 비구면 표면을 특성화하기 위해 정의된 규정으로 원기둥 축(
Figure pct00033
)을 도시한다.
원기둥 축(
Figure pct00034
)은 기준 축에 대한 그리고 선택된 회전 방향으로의 최대 곡률(
Figure pct00035
)의 배향 각도이다. 위에 정의된 규정에서, 기준 축은 수평이며(이러한 기준 축의 각도는 0°임), 회전 방향은 착용자를 보았을 때, 각각의 눈에 대해 반시계 방향이다(
Figure pct00036
). 따라서, +45°의 원기둥 축(
Figure pct00037
)에 대한 축 값은 착용자를 보았을 때, 우측 상단에 위치된 사분면으로부터 좌측 하단에 위치된 사분면으로 연장되는 비스듬히 배향된 축을 나타낸다.
또한, 프로그레시브 다초점 렌즈는 렌즈를 착용하는 사람의 상황을 고려하여, 광학 특성으로도 정의될 수 있다.
도 8 및 도 9는 눈 및 렌즈의 광학계를 개략적으로 도시하며, 이에 따라 설명에 사용된 정의들을 나타낸다. 보다 정확하게는, 도 8은 시선 방향을 정의하기 위해 사용된 파라미터(α 및 β)를 도시하는 이러한 시스템의 사시도를 나타낸다. 도 9는 파라미터 β가 0인 경우, 착용자의 머리의 전후 방향 축에 평행하고 눈의 회전 중심을 통과하는 수직면으로의 도면이다.
눈의 회전 중심은
Figure pct00038
로 표시된다. 도 9에 점선으로 도시된 축(
Figure pct00039
)은 눈의 회전 중심을 통과하여 착용자의 전방으로 연장되는 수평 축으로서, 즉 주 시선 시야에 해당하는 축(
Figure pct00040
)이다. 이러한 축은 렌즈 상에 존재하는 피팅 크로스(fitting cross)로 지칭되는 지점 상에서 렌즈의 비구면 표면을 절단함으로써, 안경사가 안경테에 렌즈를 위치 설정할 수 있게 한다. 렌즈의 후면 표면과 축(
Figure pct00041
)의 교차 지점은 지점
Figure pct00042
이다.
Figure pct00043
는 후면 표면 상에 위치된 경우 피팅 크로스일 수 있다. 중심(
Figure pct00044
) 및 반경(
Figure pct00045
)의 정점 구면은 수평 축의 지점에서 렌즈의 후면 표면에 접한다. 예를 들어, 25.5 mm의 반경(
Figure pct00046
)의 값이 일반적인 값에 해당하고, 렌즈를 착용할 때 만족스러운 결과를 제공한다.
도 8에서 실선으로 나타낸 주어진 시선 방향은
Figure pct00047
를 중심으로 회전하는 눈의 위치, 및 정점 구면의 지점(
Figure pct00048
)에 해당한다; 각도 β는 축(
Figure pct00049
)을 포함하는 수평면 상의 투영 직선(
Figure pct00050
)과 축(
Figure pct00051
) 사이에 형성된 각도이다; 이러한 각도는 도 3의 도식에서 확인된다. 각도 α는 축(
Figure pct00052
)을 포함하는 수평면 상의 투영 직선(
Figure pct00053
)과 축(
Figure pct00054
) 사이에 형성된 각도이다; 이러한 각도는 도 8 및 도 9의 도식에서 확인된다. 따라서, 주어진 시선 시야는 정점 구면의 지점(
Figure pct00055
) 또는 쌍(α, β)에 해당한다. 하강 시선 각도의 값이 더 양수일수록, 시선은 더 하강하고, 값이 더 음수일수록, 시선은 더 상승한다.
주어진 시선 방향에서, 주어진 물체 거리에 위치된 물체 공간에서의 지점(
Figure pct00056
)의 상은, 시상 및 접선 국부적 초점 길이인 최소 거리 및 최대 거리(
Figure pct00057
Figure pct00058
)에 해당하는 2개의 지점(
Figure pct00059
Figure pct00060
) 사이에 형성된다. 무한대의 물체 공간에서의 지점의 상은 지점(
Figure pct00061
)에 형성된다. 거리(
Figure pct00062
)는 렌즈의 후면 관상면에 해당한다.
"에르고라마(Ergorama)"는 물체 지점의 일반적인 거리를 각각의 시선 방향과 연관시키는 함수이다. 전형적으로, 주 시선 방향을 따르는 원거리 시력에서, 물체 지점은 무한대에 있다. 근거리 시력에서, 비강 측을 향하여 절대값으로 약 35°의 각도(α) 및 약 5°의 각도(β)에 본질적으로 해당하는 시선 방향을 따라, 물체 거리는 약 30 내지 50 cm이다. 에르고라마의 가능한 정의에 관한 보다 자세한 사항에 대해, 미국 특허 US-A-6,318,859를 고려할 수 있다. 이 문헌은 에르고라마, 이의 정의 및 이의 모델링 방법을 기술한다. 본 발명의 방법에서, 지점은 무한대에 있을 수 있거나 무한대에 있지 않을 수 있다. 에르고라마는 착용자의 굴절 이상 또는 착용자의 가산값(addition)의 함수일 수 있다.
이러한 요소들을 사용하여, 각각의 시선 방향에서, 착용자의 광 굴절력 및 비점수차를 정의하는 것이 가능하다. 에르고라마에 의해 주어진 물체 거리의 물체 지점(
Figure pct00063
)은 시선 방향(α, β)에 대해 고려된다. 물체 근접도(
Figure pct00064
)는 물체 공간에서 해당 광선을 통한 지점(
Figure pct00065
)에 대해, 정점 구면의 지점(
Figure pct00066
)과 지점(
Figure pct00067
) 사이의 거리(
Figure pct00068
)의 역수로 정의된다:
Figure pct00069
이것은 에르고라마의 결정을 위해 사용되는, 정점 구면의 모든 지점에 대한 얇은 렌즈 근사치 내의 물체 근접도를 계산할 수 있게 한다. 실제 렌즈의 경우, 물체 근접도는 해당 광선을 통한 물체 지점과 렌즈의 전면 표면 사이의 거리의 역수로 간주될 수 있다.
동일한 시선 방향(α, β)의 경우, 주어진 물체 근접도를 갖는 지점(
Figure pct00070
)의 상은 최소 및 최대 초점 거리(시상 및 접선 초점 거리)에 각각 해당하는 2개의 지점(
Figure pct00071
Figure pct00072
) 사이에 형성된다. 수치
Figure pct00073
은 지점(
Figure pct00074
)의 상 근접도로 지칭된다:
Figure pct00075
따라서, 얇은 렌즈의 경우와 유사하게, 이는 주어진 시선 방향에 대해 그리고 주어진 물체 근접도에 대해, 즉 해당 광선을 통한 물체 공간의 지점에 대해, 광 굴절력(
Figure pct00076
)을 상 근접도와 물체 근접도의 합으로 정의될 수 있다.
Figure pct00077
동일한 표기법을 사용하여, 모든 시선 방향에 대해 그리고 주어진 물체 근접도에 대해, 비점수차(
Figure pct00078
)가 다음과 같이 정의된다:
Figure pct00079
이러한 정의는 렌즈에 의해 생성되는 광선의 비점수차와 일치한다. 그 정의는 주 시선 방향으로 비점수차의 통상적인 값을 제공한다는 것을 알 수 있다. 일반적으로 축으로 지칭되는 비점수차 각도는 각도(
Figure pct00080
)이다. 각도(
Figure pct00081
)는 눈과 관련된 안경테
Figure pct00082
에서 측정된다. 이는 평면
Figure pct00083
에서의 방향(
Figure pct00084
)과 관련하여 사용되는 규정에 따라, 상(
Figure pct00085
또는
Figure pct00086
)이 형성되는 각도에 해당한다.
따라서, 착용 조건에서, 렌즈의 광 굴절력 및 비점수차에 대한 가능한 정의는, B. Bourdoncle 등의 "프로그레시브 안구 렌즈를 통한 광선 추적"이라는 명칭의 논문(1990년 국제 렌즈 설계 컨퍼런스, D. T. Moore ed., Proc. Soc. Photo. Opt. Instrum. Eng.)에 설명된 바와 같이 계산될 수 있다.
굴절 영역(12)은 특히 중심와 시력을 위해, 착용자의 처방에 기초하는 제1 광 굴절력과 상이한 제2 광 굴절력을 착용자에게 제공하도록 추가로 구성될 수 있다.
본 발명의 의미에서, 2개의 광 굴절력 간의 차가 0.5 D 이상인 경우, 2개의 광 굴절력은 상이한 것으로 간주된다.
사람의 눈의 이상 굴절이 근시에 해당하는 경우, 제2 광 굴절력은 제1 광 굴절력보다 더 크다.
사람의 눈의 이상 굴절이 원시에 해당하는 경우, 제2 광 굴절력은 제1 광 굴절력보다 더 작다.
바람직하게는, 굴절 영역은 복수의 광학 요소로서 형성된 영역 이외의 영역으로 형성된다. 즉, 굴절 영역은 복수의 광학 요소에 의해 형성된 영역에 대한 상보적 영역이다.
굴절 영역은 광 굴절력의 연속적인 변화를 가질 수 있다. 예를 들어, 광학 영역은 프로그레시브 가산 설계를 가질 수 있다.
굴절 영역의 광학 설계는,
- 광 굴절력이 음수인 피팅 크로스;
- 렌즈 요소가 착용자에 의해 착용되어 있는 경우, 굴절 영역의 측두 측으로 연장되는 제1 구역을 포함할 수 있다. 제1 구역에서, 측두 측을 향해 이동할 때 광 굴절력이 증가하고, 렌즈의 코 측에 걸쳐서, 안구 렌즈의 광 굴절력은 피팅 크로스에서와 실질적으로 동일하다.
이러한 광학 설계는 WO 2016/107919에 보다 상세하게 개시되어 있다.
대안적으로, 굴절 영역에서의 광 굴절력은 적어도 하나의 불연속부를 포함할 수 있다.
도 1에 도시된 바와 같이, 렌즈 요소는 5개의 상보적 구역으로 분할될 수 있으며, 5개의 상보적 구역은, 제1 굴절력과 동일한 광 굴절력을 갖는 중앙 구역(16), 및 45°로 있는 4개의 사분면(Q1, Q2, Q3, Q4)이고, 사분면 중 적어도 하나는 광 굴절력이 제2 광 굴절력과 동일한 적어도 하나의 지점을 갖는다.
본 발명의 의미에서, "45°로 있는 사분면"은 도 1에 도시된 TABO 규정에 따라, 45°/225° 및 135°/315° 방향으로 배향된 90°의 동일 각도 사분면으로 이해되어야 한다.
바람직하게는, 중앙 구역(16)은 표준 착용 조건에서 똑바로 응시하는 착용자의 동공을 향하는 프레이밍 기준점을 포함하며, 4 mm 이상 그리고 22 mm 이하의 직경을 갖는다.
본 발명의 일 실시형태에 따라, 적어도 하부 사분면(Q4)은 이상 굴절을 보정하기 위한 처방에 해당하는 제1 광 굴절력과 상이한 중앙 시력을 위한 제2 광 굴절력을 갖는다.
예를 들어, 굴절 영역은 프로그레시브 가산 시력 보정 기능을 갖는다. 프로그레시브 가산 시력 보정 기능은 상부 사분면(Q2)과 하부 사분면(Q4) 사이로 연장될 수 있다.
유리하게는, 이러한 구성은 렌즈의 가산으로 인해, 예를 들어 사람이 근거리 시력 거리로 볼 때 원근 조절 지연을 보정할 수 있게 한다.
일 실시형태에 따라, 측두 사분면(Q3) 및 코 사분면(Q1) 중 적어도 하나는 제2 광 굴절력을 갖는다. 예를 들어, 측두 사분면(Q3)은 렌즈의 편심률에 따른 굴절력의 변화를 갖는다.
유리하게는, 이러한 구성은 수평 축으로 훨씬 더 많은 영향을 주면서, 주변 시력의 이상 굴절 제어의 효율을 증가시킨다.
일 실시형태에 따라, 4개의 사분면(Q1, Q2, Q3 및 Q4)은 동심 굴절력 진행을 갖는다.
도 1에 도시된 바와 같이, 복수의 광학 요소(14)는 연속적인 적어도 2개의 광학 요소를 포함한다.
본 발명의 의미에서, 렌즈 요소의 표면 상에 위치된 2개의 광학 요소는, 2개의 광학 요소를 연결하는 상기 표면에 의해 지지되는 경로가 있는 경우, 그리고 상기 경로를 따라, 광학 요소가 위치된 기저 표면에 도달하지 않는 경우 연속적이다.
적어도 2개의 광학 요소가 위치된 표면이 구면인 경우, 기저 표면은 상기 구면 표면에 해당한다. 즉, 구면 표면 상에 위치된 2개의 광학 요소는, 상기 구면 표면에 의해 지지되고 이들을 연결하는 경로가 있는 경우, 그리고 상기 경로를 따라 구면 표면에 도달하지 않을 수 있는 경우 연속적이다.
적어도 2개의 광학 요소가 위치된 표면이 비구면인 경우, 기저 표면은 상기 비구면 표면에 최적합한 국부적 구면 표면에 해당한다. 즉, 비구면 표면 상에 위치된 2개의 광학 요소는, 상기 비구면 표면에 의해 지지되고 이들을 연결하는 경로가 있는 경우, 그리고 상기 경로를 따라, 비구면 표면에 최적합한 구면 표면에 도달하지 않을 수 있는 경우 연속적이다.
유리하게는, 연속적 광학 요소를 가짐으로써, 렌즈 요소의 심미감을 개선하는 데 도움이 되며, 제조하기에 더 용이하다.
복수의 광학 요소(14) 중 적어도 하나, 바람직하게는 모든 광학 요소는 특히 주변 시력을 위해, 그리고 바람직하게는 중앙 및 주변 시력을 위해, 착용자의 눈의 망막에 상을 집속하지 않는 광학 기능을 갖는다.
본 발명의 의미에서, "집속"은 초점면의 지점으로 축소될 수 있는 원형 구역을 갖는 집속 스폿(focusing spot)을 생성하는 것으로 이해되어야 한다.
유리하게는, 광학 요소의 이러한 광학 기능은 주변 시력에서의 착용자의 눈의 망막의 변형을 감소시킴으로써, 렌즈 요소를 착용하는 사람의 눈의 이상 굴절의 진행을 둔화시킬 수 있게 한다.
본 발명의 바람직한 실시형태에 따라, 적어도 2개의 연속적 광학 요소는 독립적이다.
본 발명의 의미에서, 2개의 광학 요소는 독립적인 상을 생성하는 경우 독립적인 것으로 간주된다.
특히, "중앙 시력에서" 평행 빔에 의해 조명되는 경우, 각각의 "독립적인 연속적 광학 요소"는 상 공간의 평면 상에 이와 관련된 스폿을 형성한다. 즉, "광학 요소" 중 하나가 보이지 않는 경우, 이러한 광학 요소가 다른 광학 요소에 연속되더라도, 스폿은 보이지 않게 된다.
US 7976158에 개시된 바와 같은 (단일 굴절력을 갖는) 통상적인 프레넬 링의 경우, 상기 프레넬 링은 단일 스폿을 생성하며, 링의 작은 부분이 보이지 않는 경우 단일 스폿의 위치가 변경되지 않는다. 따라서, 프레넬 링은 일련의 "독립적인 연속적 광학 요소"로서 간주될 수 없다.
본 발명의 일 실시형태에 따라, 광학 요소는 특정 크기를 갖는다. 특히, 광학 요소는 0.8 mm 이상 그리고 3.0 mm 이하, 바람직하게는 1.0 mm 이상 그리고 2.0 mm 미만의 직경을 갖는 원에 내접 가능한 윤곽 형상을 갖는다.
본 발명의 실시형태에 따라, 광학 요소는 망으로 위치된다.
광학 요소가 위치되는 망은 도 1 및 도 10 내지 도 13에 도시된 바와 같은 구조화된 망일 수 있다.
도 1 및 도 10 내지 도 12에 도시된 실시형태에서, 광학 요소는 복수의 동심 링을 따라 위치된다.
광학 요소의 동심 링은 환형 링일 수 있다.
본 발명의 일 실시형태에 따라, 렌즈 요소는 적어도 4개의 광학 요소를 더 포함한다. 적어도 4개의 광학 요소는 적어도 2개의 연속적 광학 요소 그룹으로 구성되며, 각각의 연속적 광학 요소 그룹은 동일한 중심을 갖는 적어도 2개의 동심 링으로 구성되고, 각각의 연속적 광학 요소 그룹의 동심 링은 내경 및 외경에 의해 한정된다.
각각의 광학 요소 그룹의 동심 링의 내경은 상기 광학 요소 그룹의 적어도 하나의 광학 요소에 접하는 최소 원에 해당한다. 광학 요소의 동심 링의 외경은 상기 그룹의 적어도 하나의 광학 요소에 접하는 최대 원에 해당한다.
예를 들어, 렌즈 요소는 n개의 광학 요소 링을 포함할 수 있으며,
Figure pct00087
은 렌즈 요소의 광학 중심에 가장 가까운 동심 링의 내경을 나타내고,
Figure pct00088
은 렌즈 요소의 광학 중심에 가장 가까운 동심 링의 외경을 나타내며,
Figure pct00089
은 렌즈 요소의 주변부에 가장 가까운 링의 내경을 나타내고,
Figure pct00090
은 렌즈 요소의 주변부에 가장 가까운 동심 링의 외경을 나타낸다.
광학 요소의 2개의 연속적인 동심 링(i 및 i+1) 사이의 거리(
Figure pct00091
)는 다음과 같이 표현될 수 있다:
Figure pct00092
여기서,
Figure pct00093
는 광학 요소의 제1 링(i)의 외경을 나타내고,
Figure pct00094
은 제1 링에 연속적이고 렌즈 요소의 주변부에 더 가까운 광학 요소의 제2 링(i+1)의 내경을 나타낸다.
본 발명의 다른 실시형태에 따라, 광학 요소는, 광학 요소가 배치된 렌즈 요소의 표면의 광학 중심에 중심을 두고, 각각의 광학 요소의 기하학적 중심을 연결하는 동심 링으로 구성된다.
예를 들어, 렌즈 요소는 n개의 광학 요소 링을 포함할 수 있으며,
Figure pct00095
은 렌즈 요소의 광학 중심에 가장 가까운 링의 직경을 나타내고,
Figure pct00096
은 렌즈 요소의 주변부에 가장 가까운 링의 직경을 나타낸다.
광학 요소의 2개의 연속적인 동심 링(i 및 i+1) 사이의 거리(
Figure pct00097
)는 다음과 같이 표현될 수 있다:
Figure pct00098
여기서,
Figure pct00099
는 광학 요소의 제1 링(i)의 직경을 나타내고,
Figure pct00100
은 제1 링에 연속적이고 렌즈 요소의 주변부에 더 가까운 광학 요소의 제2 링(i+1)의 직경을 나타내며,
여기서,
Figure pct00101
는 광학 요소의 제1 링 상의 광학 요소의 직경을 나타내고,
Figure pct00102
은 제1 링에 연속적이고 렌즈 요소의 주변부에 더 가까운 광학 요소의 제2 링 상의 광학 요소의 직경을 나타낸다. 광학 요소의 직경은 광학 요소의 윤곽 형상이 내접되는 원의 직경에 해당한다.
유리하게는, 렌즈 요소의 광학 중심, 및 광학 요소의 동심 링의 중심은 일치한다. 예를 들어, 렌즈 요소의 기하학적 중심, 렌즈 요소의 광학 중심, 및 광학 요소의 동심 링의 중심은 일치한다.
본 발명의 의미에서, "일치한다"는 용어는 서로 매우 가까운 것으로서, 예를 들어, 1.0 mm 미만으로 떨어진 것으로 이해되어야 한다.
2개의 연속적인 동심 링 사이의 거리(
Figure pct00103
)는 i에 따라 달라질 수 있다. 예를 들어, 2개의 연속적인 동심 링 사이의 거리(
Figure pct00104
)는 2.0 mm 내지 5.0 mm의 범위일 수 있다.
본 발명의 일 실시형태에 따라, 광학 요소의 2개의 연속적인 동심 링 사이의 거리(
Figure pct00105
)는 2.00 mm 초과, 바람직하게는 3.0 mm 초과, 보다 바람직하게는 5.0 mm 초과이다.
유리하게는, 2.00 mm 초과로 광학 요소의 2개의 연속적인 동심 링 사이의 거리(
Figure pct00106
)를 가짐으로써, 이러한 광학 요소 링 사이의 더 넓은 굴절 영역을 관리할 수 있으므로, 더 나은 시력을 제공한다.
1 mm 미만으로 렌즈 요소의 광학 중심과 거리를 두고 위치된 기하학적 중심을 갖고, 9 mm 초과의 내경 및 57 mm 미만의 외경을 갖는 렌즈 요소의 원형 구역을 고려하면, 상기 원형 구역 내부에 위치된 광학 요소의 부분의 면적의 합과 상기 원형 구역의 면적 사이의 비율은 20% 내지 70%, 바람직하게는 30% 내지 60%, 그리고 보다 바람직하게는 40% 내지 50%에 포함된다.
즉, 본 발명자들은, 전술한 비율의 주어진 값으로, 연속적 광학 요소를 동심 링으로 구성하여, 이러한 링이 2.0 mm 초과의 거리만큼 이격됨으로써, 광학 요소가 육각형 망으로 배치되거나 렌즈 요소의 표면 상에 무작위로 배치되는 경우 관리되는 굴절 영역에 비해, 제조하기에 더 용이한 굴절 영역의 환형 구역을 제공할 수 있고, 이에 따라, 눈의 이상 굴절의 더 양호한 보정을 제공하여, 더 나은 시력을 제공할 수 있음을 주시하였다.
본 발명의 일 실시형태에 따라, 렌즈 요소의 모든 광학 요소의 직경(
Figure pct00107
)은 동일하다.
본 발명의 일 실시형태에 따라, i가 렌즈 요소의 주변부를 향하여 증가하는 경우, 2개의 연속적인 동심 링(i 및 i+1) 사이의 거리(
Figure pct00108
)는 증가할 수 있다.
광학 요소의 동심 링은 9 mm 내지 60 mm에 포함되는 직경을 가질 수 있다.
본 발명의 일 실시형태에 따라, 렌즈 요소는, 적어도 2개의 동심 링, 바람직하게는 5개 초과, 보다 바람직하게는 10개 초과의 동심 링으로 배치된 광학 요소를 포함한다. 예를 들어, 광학 요소는 렌즈의 광학 중심에 중심을 둔 11개의 동심 링으로 배치될 수 있다.
도 1에서, 광학 요소는 5개 동심 링의 세트를 따라 위치된 마이크로렌즈이다. 마이크로렌즈의 광 굴절력 및/또는 원기둥은 동심 링을 따르는 이들의 위치에 따라 상이할 수 있다.
도 10에서, 광학 요소는 동심원의 상이한 부채꼴 부분(sector)에 해당한다.
도 11b에서, 광학 요소는 도 11a에 도시된 바와 같은 순수 원기둥 동심 링의 일부에 해당한다. 이러한 실시예에서, 광학 요소는 일정한 굴절력을 갖지만, 가변 원기둥 축을 갖는다.
예를 들어 도 12에 도시된 본 발명의 일 실시형태에 따라, 렌즈 요소는, 2개의 동심 링 사이에 반경 방향으로 위치된 광학 요소(14)를 더 포함할 수 있다. 도 12에 도시된 실시예에서, 단지 4개의 광학 요소만이 2개의 동심 링 사이에 배치되지만, 더 많은 광학 요소가 두 링 사이에 위치될 수 있다.
광학 요소는 정사각형 망, 또는 육각형 망, 또는 삼각형 망, 또는 팔각형 망인 구조화된 망으로 배치될 수 있다.
본 발명의 이러한 실시형태는 광학 요소(14)가 정사각형 망으로 배치된 도 13에 도시된다.
대안적으로, 광학 요소는 도 14에 도시된 바와 같은 보로노이드 망과 같은 무작위 구조 망으로 배치될 수 있다.
유리하게는, 무작위 구조로 배치된 광학 요소를 가짐으로써, 광 산란 또는 회절의 위험을 제한한다.
2개의 연속적 광학 요소 간에 상이한 접합이 가능하다.
예를 들어, 도 15a 및 도 15b에 도시된 바와 같이, 광학 요소의 적어도 일부, 예를 들어 전부는 2개의 연속적 광학 요소 간에 불연속적인 1차 도함수 및 일정한 광 굴절력을 갖는다. 도 15a 및 도 15b에 도시된 실시예에서, teta는 극선 기준점에서의 각좌표이다. 이러한 실시형태에서 알 수 있는 바와 같이, 구면이 없는 연속적 광학 요소 사이에는 영역이 없다.
대안적으로, 도 16a 및 도 16b에 도시된 바와 같이, 광학 요소의 적어도 일부, 예를 들어 전부는 2개의 연속적 광학 요소 간에 연속적인 1차 도함수 및 가변 광 굴절력을 갖는다.
이러한 변형예를 달성하기 위해, 여기서, 하나의 양수 및 하나의 음수인 2개의 일정한 굴절력을 사용할 수 있다. 음수 굴절력의 영역은 양수 굴절력의 영역보다 훨씬 더 작으므로, 전반적으로 양수 굴절력 효과를 갖는다.
도 16a 및 도 16b에 도시된 이러한 실시형태에서 중요한 점은 Z 좌표가 굴절 영역에 비해 항상 양수라는 점이다.
도 2에 도시된 바와 같이, 본 발명에 따른 렌즈 요소(10)는 물체 측을 향하여 볼록 곡면으로 형성된 물체측 표면(F1), 및 물체측 표면(F1)의 곡률과 상이한 곡률을 갖는 오목 표면으로 형성된 안구측 표면(F2)을 포함한다.
본 발명의 일 실시형태에 따라, 광학 요소의 적어도 일부, 예를 들어 전부는 렌즈 요소의 전면 표면 상에 위치된다.
광학 요소의 적어도 일부, 예를 들어 전부는 렌즈 요소의 후면 표면 상에 위치될 수 있다.
광학 요소의 적어도 일부, 예를 들어 전부는 렌즈 요소의 전면 표면과 후면 표면 사이에 위치될 수 있다. 예를 들어, 렌즈 요소는 광학 요소를 형성하는 상이한 굴절률의 구역을 포함할 수 있다.
본 발명의 일 실시형태에 따라, 광학 요소 중 적어도 하나는 주변 시력을 위해, 망막 이외의 위치에 상을 집속하는 광학 기능을 갖는다.
바람직하게는, 광학 요소의 적어도 50%, 예를 들어 적어도 80%, 예를 들어 전부는 주변 시력을 위해, 망막 이외의 위치에 상을 집속하는 광학 기능을 갖는다.
본 발명의 바람직한 실시형태에 따라, 모든 광학 요소는, 적어도 주변 시력을 위해, 각각의 광학 요소를 통과하는 광선의 평균 초점거리가 착용자의 망막까지 동일 거리에 있도록 구성된다.
각각의 광학 요소의 광학 기능, 특히 시력 보정 기능은 특히 주변 시력에서, 착용자의 눈의 망막과 일정한 거리에 초점 상을 제공하도록 최적화될 수 있다. 이러한 최적화는 렌즈 요소 상에서의 이들의 위치에 따라 각각의 광학 요소의 시력 보정 기능의 조정을 필요로 한다.
특히, 본 발명자들은, 주변 시력(동공 중심으로부터 30°)에서 분석된 구면 3D 형상의 마이크로렌즈를 통과하는 광 빔의 스폿 다이어그램이 점이 아닌 것으로 결정하였다.
점을 획득하기 위해, 본 발명자들은, 광학 요소가 원기둥 굴절력을 가져야 하고, 예를 들어 원환체 형상을 가져야 한다고 결정하였다.
본 발명의 일 실시형태에 따라, 광학 요소는, 렌즈의 적어도 하나의 구역을 따라, 광학 요소의 평균 구면이 상기 구역의 지점으로부터 상기 구역의 주변부를 향하여 증가하도록 구성된다.
광학 요소는, 렌즈의 적어도 하나의 구역(예를 들어, 적어도 광학 요소의 평균 구면이 증가하는 구역과 동일한 구역)을 따라, 원기둥이 상기 구역의 지점(예를 들어, 평균 구면에 대한 것과 동일한 지점)으로부터 상기 구역의 주변부를 향하여 증가하도록 추가로 구성될 수 있다.
유리하게는, 렌즈의 적어도 하나의 구역을 따라, 광학 요소의 평균 구면 및/또는 평균 원기둥이 상기 구역의 지점으로부터 상기 구역의 주변부를 향하여 증가하도록 구성된 광학 요소를 가짐으로써, 근시의 경우 망막의 전방에서, 또는 원시의 경우 망막의 후방에서, 광선의 디포커스를 증가시킬 수 있다.
즉, 본 발명자들은, 렌즈의 적어도 하나의 구역을 따라, 광학 요소의 평균 구면이 상기 구역의 지점으로부터 상기 구역의 주변부를 향하여 증가하도록 구성된 광학 요소를 가짐으로써, 근시 또는 원시와 같은 눈의 이상 굴절의 진행을 둔화시키도록 돕는다는 것을 주시하였다.
광학 요소는, 렌즈의 적어도 하나의 구역을 따라, 광학 요소의 평균 구면 및/또는 원기둥이 상기 구역의 중심으로부터 상기 구역의 주변부를 향하여 증가하도록 구성될 수 있다.
본 발명의 일 실시형태에 따라, 광학 요소는, 표준 착용 조건에서 적어도 하나의 구역이 수평 구역이도록 구성된다.
평균 구면 및/또는 원기둥은 적어도 하나의 수평 구역을 따르는 증가 함수에 따라 증가할 수 있으며, 증가 함수는 가우스 함수이다. 가우스 함수는 사람의 망막의 비대칭을 고려하기 위해, 렌즈의 코 부분과 측두 부분 간에 상이할 수 있다.
대안적으로, 평균 구면 및/또는 원기둥은 적어도 하나의 수평 구역을 따르는 증가 함수에 따라 증가할 수 있으며, 증가 함수는 이차 함수이다. 이차 함수는 사람의 망막의 비대칭을 고려하기 위해, 렌즈의 코 부분과 측두 부분 간에 상이할 수 있다.
본 발명의 일 실시형태에 따라, 광학 요소의 평균 구면 및/또는 원기둥은 상기 구역의 제1 지점으로부터 상기 구역의 주변부를 향하여 증가하며, 상기 구역의 제2 지점으로부터 상기 구역의 주변부를 향하여 감소하고, 제2 지점은 제1 지점보다 상기 구역의 주변부에 더 가깝다.
이러한 실시형태는 렌즈 요소의 광학 중심까지의 이들의 반경 방향 거리에 따른 광학 요소의 평균 구면을 제공하는 표 1에 나타낸다.
표 1의 실시예에서, 광학 요소는 329.5 mm의 곡률을 갖는 구면 전면 표면 상에 배치된 마이크로렌즈이며, 렌즈 요소는 1.591의 굴절률을 갖는 광학 재료로 제조되고, 착용자의 처방된 광 굴절력은 6 D이다. 광학 요소는 표준 착용 조건에서 착용되어야 하며, 착용자의 망막은 30°의 각도로 0.8 D의 디포커스를 갖는 것으로 간주된다. 광학 요소는 2 D의 주변 디포커스를 갖는 것으로 결정된다.
Figure pct00109
표 1에 나타낸 바와 같이, 렌즈 요소의 광학 중심에 가깝게 시작하여, 광학 요소의 평균 구면은 상기 구역의 주변부를 향해 증가한 다음, 상기 구역의 주변부를 향해 감소한다.
본 발명의 일 실시형태에 따라, 광학 요소의 평균 원기둥은 상기 구역의 제1 지점으로부터 상기 구역의 주변부를 향하여 증가하며, 상기 구역의 제2 지점으로부터 상기 구역의 주변부를 향하여 감소하고, 제2 지점은 제1 지점보다 상기 구역의 주변부에 더 가깝다.
이러한 실시형태는 국부적 반경 방향에 해당하는 제1 방향(Y), 및 제1 방향에 직교하는 제2 방향(X)에 대해 추정된 원기둥 벡터의 크기를 제공하는 표 2 및 표 3에 나타낸다.
표 2의 실시예에서, 광학 요소는 167.81 mm의 곡률을 갖는 구면 전면 표면 상에 배치된 마이크로렌즈이며, 렌즈 요소는 1.591의 굴절률을 갖는 광학 재료로 제조되고, 착용자의 처방된 광 굴절력은 -6 D이다. 광학 요소는 표준 착용 조건에서 착용되어야 하며, 착용자의 망막은 30°의 각도로 0.8 D의 디포커스를 갖는 것으로 간주된다. 광학 요소는 2 D의 주변 디포커스를 갖는 것으로 결정된다.
표 3의 실시예에서, 광학 요소는 167.81 mm의 곡률을 갖는 구면 전면 표면 상에 배치된 마이크로렌즈이며, 렌즈 요소는 1.591의 굴절률을 갖는 광학 재료로 제조되고, 착용자의 처방된 광 굴절력은 -1 D이다. 광학 요소는 표준 착용 조건에서 착용되어야 하며, 착용자의 망막은 30°의 각도로 0.8 D의 디포커스를 갖는 것으로 간주된다. 광학 요소는 2 D의 주변 디포커스를 갖는 것으로 결정된다.
Figure pct00110
Figure pct00111
표 2 및 표 3에 나타낸 바와 같이, 렌즈 요소의 광학 중심에 가깝게 시작하여, 광학 요소의 원기둥은 상기 구역의 주변부를 향해 증가한 다음, 상기 구역의 주변부를 향해 감소한다.
본 발명의 일 실시형태에 따라, 굴절 영역은 광학 중심을 포함하며, 광학 요소는, 렌즈의 광학 중심을 통과하는 임의의 구역을 따라, 광학 요소의 평균 구면 및/또는 원기둥이 광학 중심으로부터 렌즈의 주변부를 향하여 증가하도록 구성된다.
예를 들어, 광학 요소는 굴절 영역의 광학 중심에 중심을 둔 원을 따라 규칙적으로 분포될 수 있다.
직경 10 mm의 원 상에 있고 굴절 영역의 광학 중심에 중심을 둔 광학 요소는 2.75 D의 평균 구면을 갖는 마이크로렌즈일 수 있다.
직경 20 mm의 원 상에 있고 굴절 영역의 광학 중심에 중심을 둔 광학 요소는 4.75 D의 평균 구면을 갖는 마이크로렌즈일 수 있다.
직경 30 mm의 원 상에 있고 굴절 영역의 광학 중심에 중심을 둔 광학 요소는 5.5 D의 평균 구면을 갖는 마이크로렌즈일 수 있다.
직경 40 mm의 원 상에 있고 굴절 영역의 광학 중심에 중심을 둔 광학 요소는 5.75 D의 평균 구면을 갖는 마이크로렌즈일 수 있다.
상이한 마이크로렌즈들의 원기둥은 사람의 망막의 형상에 기초하여 조정될 수 있다.
본 발명의 일 실시형태에 따라, 굴절 영역은, 원거리 시력 기준점, 근거리 시력 기준점, 그리고 원거리 및 근거리 시력 기준점을 연결하는 자오선을 포함한다. 예를 들어, 굴절 영역은, 그 사람의 처방에 맞춰지거나, 렌즈 요소를 착용하는 사람의 눈의 이상 굴절의 진행을 둔화시키도록 맞춰진 프로그레시브 가산 렌즈 설계를 포함할 수 있다.
바람직하게는, 이러한 실시형태에 따라, 광학 요소는, 렌즈의 임의의 수평 구역을 따라 표준 착용 조건에서, 광학 요소의 평균 구면 및/또는 원기둥이 자오선과 상기 수평 구역의 교차점으로부터 렌즈의 주변부를 향하여 증가하도록 구성된다.
자오선은 주 시선 방향과 렌즈 표면의 교차점의 궤적에 해당한다.
구역을 따르는 평균 구면 및/또는 원기둥 증가 함수는 자오선을 따르는 상기 구역의 위치에 따라 상이할 수 있다.
특히, 구역을 따르는 평균 구면 및/또는 원기둥 증가 함수는 비대칭적이다. 예를 들어, 평균 구면 및/또는 원기둥 증가 함수는 표준 착용 조건에서 수직 및/또는 수평 구역을 따라 비대칭적이다.
본 발명의 일 실시형태에 따라, 광학 요소 중 적어도 하나는 표준 착용 조건에서 그리고 주변 시력을 위해, 비-집속 광학 기능을 갖는다.
바람직하게는, 광학 요소(14)의 적어도 50%, 예를 들어 적어도 80%, 예를 들어 전부는 표준 착용 조건에서 그리고 주변 시력을 위해, 비-집속 광학 기능을 갖는다.
본 발명의 의미에서, "비-집속 광학 기능"은 표준 착용 조건에서 그리고 주변 시력을 위해, 단초점을 갖지 않는 것으로 이해되어야 한다.
유리하게는, 광학 요소의 이러한 광학 기능은 착용자의 눈의 망막의 변형을 감소시킴으로써, 렌즈 요소를 착용하는 사람의 눈의 이상 굴절의 진행을 둔화시킬 수 있게 한다.
비-집속 광학 기능을 갖는 적어도 하나의 광학 요소는 투명하다.
유리하게는, 불연속적 광학 요소는 렌즈 요소 상에서 보이지 않으며, 렌즈 요소의 심미감에 영향을 주지 않는다.
본 발명의 일 실시형태에 따라, 렌즈 요소는, 굴절 영역을 갖는 안구 렌즈, 및 렌즈 요소가 착용될 때 안구 렌즈에 착탈식으로 부착되도록 적응된 복수의 적어도 3개의 광학 요소를 갖는 클립 고정식 물체를 포함할 수 있다.
유리하게는, 사람이 예를 들어 바깥과 같은 원거리 환경에 있는 경우, 사람은 안구 렌즈로부터 클립 고정식 물체를 분리시킬 수 있고, 결국 임의의 적어도 3개의 광학 요소가 없는 제2 클립 고정식 물체로 교체할 수 있다. 예를 들어, 제2 클립 고정식 물체는 태양광 색조를 포함할 수 있다. 또한, 그 사람은 임의의 추가적인 클립 고정식 물체 없이 안구 렌즈를 사용할 수 있다.
광학 요소는 렌즈 요소의 각각의 표면 상에서 독립적으로 렌즈 요소에 추가될 수 있다.
정사각형, 또는 육각형, 또는 랜덤, 또는 기타와 같은 한정된 어레이로 이러한 광학 요소를 추가할 수 있다.
광학 요소는 중심 또는 임의의 다른 영역과 같은 렌즈 요소의 특정 구역을 커버할 수 있다.
본 발명의 일 실시형태에 따라, 렌즈 요소의 광학 중심에 중심을 둔 구역에 해당하는 렌즈의 중앙 구역은 어떠한 광학 요소도 포함하지 않는다. 예를 들어, 렌즈 요소는, 상기 렌즈 요소의 광학 중심에 중심을 두고 어떠한 광학 요소도 포함하지 않는 빈 구역을 포함할 수 있으며, 빈 구역은 9 mm와 같은 직경을 갖는다.
렌즈 요소의 광학 중심은 렌즈의 피팅 지점에 해당할 수 있다.
대안적으로, 광학 요소는 렌즈 요소의 전체 표면 상에 배치될 수 있다.
광학 요소 밀도 또는 굴절력의 양은 렌즈 요소의 구역에 따라 조정될 수 있다. 전형적으로, 예를 들어 망막의 주변 형상으로 인한 주변 디포커스를 보정하기 위해, 근시 제어를 통해 광학 요소의 효과를 증대시키도록, 광학 요소가 렌즈 요소의 주변부에 위치될 수 있다.
본 발명의 바람직한 실시형태에 따라, 렌즈 요소의 모든 원형 구역은 2 내지 4 mm에 포함되는 반경을 갖고, 상기 반경 + 5 mm 이상으로 렌즈 요소의 광학 중심과 거리를 두고 위치된 기하학적 중심을 포함하며, 상기 원형 구역 내부에 위치된 광학 요소의 부분의 면적의 합과 상기 원형 구역의 면적 사이의 비율은 20% 내지 70%, 바람직하게는 30% 내지 60%, 그리고 보다 바람직하게는 40% 내지 50%에 포함된다.
광학 요소는 직접 표면 처리, 성형, 주조 또는 사출, 엠보싱, 막 형성(filming), 또는 포토리소그래피 등과 같은, 상이한 기술을 사용하여 제조될 수 있다.
본 발명의 일 실시형태에 따라, 광학 요소 중 적어도 하나, 예를 들어 전부는 사람의 눈의 망막의 전방에 초곡면을 생성하도록 구성된 형상을 갖는다. 즉, 이러한 광학 요소는, 광속이 집중되는 모든 구역 평면(있는 경우)이 사람의 눈의 망막의 전방에 위치되도록 구성된다.
본 발명의 일 실시형태에 따라, 비구면 광학 기능을 갖는 광학 요소 중 적어도 하나, 예를 들어 전부는 다초점 굴절 마이크로렌즈이다.
본 발명의 의미에서, "다초점 굴절 마이크로렌즈"는, 연속적으로 가변되는 초점 굴절력을 갖는, 이중초점(2개의 초점 굴절력을 가짐), 삼중초점(3개의 초점 굴절력을 가짐) 프로그레시브 가산 렌즈, 예를 들어 비구면 프로그레시브 표면 렌즈를 포함한다.
본 발명의 일 실시형태에 따라, 광학 요소 중 적어도 하나, 바람직하게는 50% 초과, 보다 바람직하게는 80% 초과의 광학 요소는 비구면 마이크로렌즈이다. 본 발명의 의미에서, 비구면 마이크로렌즈는 이들의 표면에 걸쳐서 연속적인 굴절력 전개를 갖는다.
비구면 마이크로렌즈는 0.1 D 내지 3 D에 포함되는 비구면성(asphericity)을 가질 수 있다. 비구면 마이크로렌즈의 비구면성은 마이크로렌즈의 중심에서 측정된 광 굴절력과 마이크로렌즈의 주변부에서 측정된 광 굴절력의 비율에 해당한다.
마이크로렌즈의 중심은 마이크로렌즈의 기하학적 중심에 중심을 둔 구면 영역으로 정의될 수 있으며, 구면 영역은 0.1 mm 내지 0.5 mm에 포함되는 직경, 바람직하게는 2.0 mm와 같은 직경을 갖는다.
마이크로렌즈의 주변부는 마이크로렌즈의 기하학적 중심에 중심을 둔 환형 구역으로 정의될 수 있으며, 환형 구역은 0.5 mm 내지 0.7 mm에 포함되는 내경, 및 0.70 mm 내지 0.80 mm에 포함되는 외경을 갖는다.
본 발명의 일 실시형태에 따라, 비구면 마이크로렌즈는 절대값으로 2.0 D 내지 7.0 D에 포함되는 이들의 기하학적 중심의 광 굴절력을 가지며, 절대값으로 1.5 D 내지 6.0 D에 포함되는 이들의 주변부의 광 굴절력을 갖는다.
광학 요소가 배치된 렌즈 요소의 표면 코팅 전의 비구면 마이크로렌즈의 비구면성은, 상기 렌즈 요소의 광학 중심으로부터의 반경 방향 거리에 따라 달라질 수 있다.
추가적으로, 광학 요소가 배치된 렌즈 요소의 표면 코팅 후의 비구면 마이크로렌즈의 비구면성은, 상기 렌즈 요소의 광학 중심으로부터의 반경 방향 거리에 따라 추가로 달라질 수 있다.
본 발명의 일 실시형태에 따라, 적어도 하나의 다초점 굴절 마이크로렌즈는 원환체 표면을 갖는다. 원환체 표면은 이의 곡률 중심을 통과하지 않는 회전 축(결국 무한대에 위치됨)을 중심으로 원 또는 호를 회전시킴으로써 생성될 수 있는 회전 표면이다.
원환체 표면 렌즈는 서로 직각인 2개의 상이한 반경 방향 프로파일을 가지므로, 2개의 상이한 초점 굴절력을 생성한다.
원환체 렌즈의 원환체 및 구면 표면 성분은 단일 지점 초점과 대조적으로, 비점수차 광 빔을 생성한다.
본 발명의 일 실시형태에 따라, 비구면 광학 기능을 갖는 광학 요소 중 적어도 하나, 예를 들어 모든 광학 요소는 원환체 굴절 마이크로렌즈이다. 예를 들어, 원환체 굴절 마이크로렌즈는 0 디옵터(δ) 이상 그리고 +5 디옵터(δ) 이하의 구면 굴절력 값, 및 0.25 디옵터(δ) 이상의 원기둥 굴절력 값을 갖는다.
구체적인 실시형태로서, 원환체 굴절 마이크로렌즈는 순수 원기둥일 수 있으며, 이는 최소 자오선 굴절력이 제로인 반면에, 최대 자오선 굴절력은 정확히 양수로서 예를 들어, 5 디옵터 미만임을 의미한다.
본 발명의 일 실시형태에 따라, 광학 요소 중 적어도 하나, 예를 들어 전부는 복굴절 재료로 제조된다. 즉, 광학 요소는 광의 편광 및 전파 방향에 따라 좌우되는 굴절률을 갖는 재료로 제조된다. 복굴절은 재료에 의해 나타나는 굴절률들 간의 최대 차로서 정량화될 수 있다.
본 발명의 일 실시형태에 따라, 광학 요소 중 적어도 하나, 예를 들어 전부는 불연속적 표면, 예를 들어 프레넬 표면과 같은 불연속부를 갖거나/갖고, 불연속부를 갖는 굴절률 프로파일을 갖는다.
도 3은 본 발명에 사용될 수 있는 광학 요소의 프레넬 높이 프로파일의 일 실시예를 나타낸다.
본 발명의 일 실시형태에 따라, 광학 요소 중 적어도 하나, 예를 들어 전부는 회절 렌즈로 제조된다.
도 4는 본 발명에 사용될 수 있는 광학 요소의 회절 렌즈 반경 방향 프로파일의 일 실시예를 나타낸다.
회절 렌즈 중 적어도 하나, 예를 들어 전부는 WO 2017/176921에 개시된 바와 같은 메타표면 구조를 포함할 수 있다.
회절 렌즈는 프레넬 렌즈일 수 있으며, 도 5에 도시된 바와 같이, 프레넬 렌즈의 위상 함수(
Figure pct00112
)는 공칭 파장으로 π 위상 도약을 갖는다. 위상 도약이 2π의 다중 값인 단초점 프레넬 렌즈와 대조적으로, 명확성을 위하여 이러한 구조에 "π-프레넬 렌즈"라는 명칭을 부여할 수 있다. 위상 함수가 도 5에 표시되는 π-프레넬 렌즈는 주로, 0 δ의 굴절력 및 양의 굴절력(P)(예를 들어, 3 δ)과 관련된 2개의 회절 차수로 광을 회절시킨다.
본 발명의 일 실시형태에 따라, 광학 요소 중 적어도 하나, 예를 들어 전부는 다초점 이원 구성 요소이다.
예를 들어, 도 6a에 도시된 바와 같이, 이원 구조는 주로 -P/2 및 P/2로 표시된 2개의 굴절력을 나타낸다. 이의 굴절력이 P/2인 도 6b에 도시된 바와 같은 굴절 구조와 관련된 경우, 도 6c에 나타낸 최종 구조는 0 δ 및 P의 굴절력을 갖는다. 예시된 사례는 P = 3 δ와 관련된다.
본 발명의 일 실시형태에 따라, 광학 요소 중 적어도 하나, 예를 들어 전부는 픽셀화 렌즈이다. 다초점 픽셀화 렌즈의 일 실시예는 Eyal Ben-Eliezer 등의 APPLIED OPTICS(Vol.44, No. 14, 2005년 5월 10일)에 개시되어 있다.
본 발명의 일 실시형태에 따라, 광학 요소 중 적어도 하나, 예를 들어 전부는 고차 광학 수차를 갖는 광학 기능을 갖는다. 예를 들어, 광학 요소는 제르니케 다항식으로 정의된 연속적 표면으로 구성된 마이크로렌즈이다.
본 발명의 일 실시형태에 따라, 적어도 하나의, 예를 들어 적어도 70%의, 예를 들어 모든 광학 요소는 광학 렌즈 제어기 장치에 의해 자동으로 또는 수동으로 활성화될 수 있는 능동 광학 요소이다.
능동 광학 요소는 가변 굴절률을 갖는 재료를 포함할 수 있으며, 가변 굴절률의 값은 광학 렌즈 제어기 장치에 의해 제어된다.
본 발명은 포괄적인 발명의 개념의 제한 없이 실시형태를 사용하여 위에서 설명되었다.
많은 추가적인 변형 및 변경은 상술한 예시적인 실시형태를 참조할 때 당업자에게 명백해질 것이며, 상술한 예시적인 실시형태는 단지 실시예로서만 주어지고, 첨부된 청구범위에 의해 전적으로 결정되는 본 발명의 범위를 제한하는 것으로 의도되지 않는다.
청구범위에서, "포함하는(comprising)"이라는 단어는 다른 요소 또는 단계를 배제하지 않으며, 부정 관사 "a" 또는 "an"은 복수형을 배제하지 않는다. 단지 서로 상이한 종속 청구항들에 상이한 특징들이 나열된다는 점만으로 이러한 특징들의 조합이 유리하게 사용될 수 없음을 나타내지 않는다. 청구범위에서 임의의 참조 부호는 본 발명의 범위를 제한하는 것으로 해석되어서는 안된다.

Claims (15)

  1. 착용자의 눈의 전방에 착용되도록 의도된 렌즈 요소로서,
    - 상기 착용자의 눈에 대한 처방에 기초하는 굴절력을 갖는 굴절 영역; 및
    - 복수의 적어도 2개의 연속적 광학 요소를 포함하며,
    적어도 하나의 광학 요소는 상기 눈의 이상 굴절의 진행을 둔화시키기 위해, 상기 착용자의 눈의 망막에 상을 집속하지 않는 광학 기능을 갖는,
    착용자의 눈의 전방에 착용되도록 의도된 렌즈 요소.
  2. 제1항에 있어서,
    상기 적어도 2개의 연속적 광학 요소는 독립적인, 렌즈 요소.
  3. 제1항 또는 제2항에 있어서,
    상기 광학 요소는 망으로 위치되는, 렌즈 요소.
  4. 제3항에 있어서,
    상기 망은 구조화된 망인, 렌즈 요소.
  5. 제4항에 있어서,
    상기 광학 요소는 복수의 동심 링을 따라 위치되는, 렌즈 요소.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    2개의 동심 링 사이에 반경 방향으로 위치된 광학 요소를 더 포함하는, 렌즈 요소.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 광학 요소의 적어도 일부, 예를 들어 전부는 2개의 연속적 광학 요소 간에 불연속적인 1차 도함수 및 일정한 광 굴절력을 갖는, 렌즈 요소.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 광학 요소의 적어도 일부, 예를 들어 전부는 2개의 연속적 광학 요소 간에 연속적인 1차 도함수 및 가변 광 굴절력을 갖는, 렌즈 요소.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,
    상기 광학 요소 중 적어도 하나, 예를 들어 전부는 상기 착용자의 망막 이외의 위치에 상을 집속하는 광학 기능을 갖는, 렌즈 요소.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 광학 요소 중 적어도 하나는 원환체 굴절 마이크로렌즈인, 렌즈 요소.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서,
    상기 광학 요소는, 상기 렌즈의 적어도 하나의 구역을 따라, 광학 요소의 평균 구면 및/또는 원기둥이 상기 구역의 중심으로부터 상기 구역의 주변부를 향하여 증가하도록 구성되는, 렌즈 요소.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서,
    상기 굴절 영역은 상기 복수의 광학 요소로서 형성된 영역 이외의 영역으로 형성되는, 렌즈 요소.
  13. 제1항 내지 제12항 중 어느 한 항에 있어서,
    2 내지 4 mm에 포함되는 반경을 갖고, 표준 착용 조건에서 똑바로 응시하는 상기 착용자의 동공을 향하는 프레이밍 기준점과 상기 반경 + 5 mm 이상으로 거리를 두고 위치된 기하학적 중심을 포함하는 모든 원형 구역에 대해, 상기 원형 구역 내부에 위치된 광학 요소의 부분의 면적의 합과 상기 원형 구역의 면적 사이의 비율은 20% 내지 70%에 포함되는, 렌즈 요소.
  14. 제1항 내지 제13항 중 어느 한 항에 있어서,
    상기 렌즈 요소는 적어도 4개의 광학 요소를 더 포함하며,
    상기 광학 요소는 적어도 2개의 연속적 광학 요소 그룹으로 구성되고,
    각각의 연속적 광학 요소 그룹은 동일한 중심을 갖는 적어도 2개의 동심 링으로 구성되며,
    각각의 연속적 광학 요소 그룹의 동심 링은, 상기 그룹의 적어도 하나의 광학 요소에 접하는 최소 원에 해당하는 내경, 및 상기 그룹의 적어도 하나의 광학 요소에 접하는 최대 원에 해당하는 외경에 의해 한정되는, 렌즈 요소.
  15. 제14항에 있어서,
    광학 요소의 2개의 연속적인 동심 링 사이의 상기 거리는 5.0 mm 이상이며,
    2개의 연속적인 동심 링 사이의 상기 거리는 제1 동심 링의 내경과 제2 동심 링의 외경 간의 차에 의해 한정되고,
    상기 제2 동심 링은 상기 렌즈 요소의 주변부에 더 가까운, 렌즈 요소.
KR1020207024532A 2018-03-01 2019-03-01 렌즈 요소 KR20200124237A (ko)

Applications Claiming Priority (17)

Application Number Priority Date Filing Date Title
EP18305217.4 2018-03-01
EP18305216 2018-03-01
EP18305217 2018-03-01
EP18305216.6 2018-03-01
EP18305385.9 2018-03-30
EP18305385 2018-03-30
EP18305384 2018-03-30
EP18305384.2 2018-03-30
EP18305435 2018-04-11
EP18305436.0 2018-04-11
EP18305436.0A EP3553594B1 (en) 2018-04-11 2018-04-11 Lens element
EP18305435.2 2018-04-11
EP18305527.6 2018-04-26
EP18305526.8A EP3561578A1 (en) 2018-04-26 2018-04-26 Lens element
EP18305527 2018-04-26
EP18305526.8 2018-04-26
PCT/EP2019/055222 WO2019166659A1 (en) 2018-03-01 2019-03-01 Lens element

Publications (1)

Publication Number Publication Date
KR20200124237A true KR20200124237A (ko) 2020-11-02

Family

ID=65576373

Family Applications (6)

Application Number Title Priority Date Filing Date
KR1020207024529A KR20200124235A (ko) 2018-03-01 2019-03-01 렌즈 요소
KR1020207024530A KR20200123141A (ko) 2018-03-01 2019-03-01 렌즈 요소
KR1020207024532A KR20200124237A (ko) 2018-03-01 2019-03-01 렌즈 요소
KR1020227011719A KR102481762B1 (ko) 2018-03-01 2019-03-01 렌즈 요소
KR1020207024531A KR20200124236A (ko) 2018-03-01 2019-03-01 렌즈 요소
KR1020207024528A KR20200124234A (ko) 2018-03-01 2019-03-01 렌즈 요소

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020207024529A KR20200124235A (ko) 2018-03-01 2019-03-01 렌즈 요소
KR1020207024530A KR20200123141A (ko) 2018-03-01 2019-03-01 렌즈 요소

Family Applications After (3)

Application Number Title Priority Date Filing Date
KR1020227011719A KR102481762B1 (ko) 2018-03-01 2019-03-01 렌즈 요소
KR1020207024531A KR20200124236A (ko) 2018-03-01 2019-03-01 렌즈 요소
KR1020207024528A KR20200124234A (ko) 2018-03-01 2019-03-01 렌즈 요소

Country Status (13)

Country Link
US (15) US11567344B2 (ko)
EP (8) EP3759547A1 (ko)
JP (8) JP7418339B2 (ko)
KR (6) KR20200124235A (ko)
CN (14) CN217085443U (ko)
BR (3) BR112020017525B1 (ko)
CA (6) CA3155413C (ko)
CO (5) CO2020010242A2 (ko)
DE (7) DE202019005795U1 (ko)
HU (1) HUE062437T2 (ko)
RU (5) RU2769091C2 (ko)
SG (5) SG11202008023XA (ko)
WO (5) WO2019166654A1 (ko)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115185103A (zh) 2016-08-01 2022-10-14 华盛顿大学 用于治疗近视的眼科镜片
CN110914743B (zh) 2017-05-08 2021-08-13 视窗视觉公司 用于降低近视的接触镜片及用于制造该接触镜片的方法
US10901237B2 (en) 2018-01-22 2021-01-26 Johnson & Johnson Vision Care, Inc. Ophthalmic lens with an optically non-coaxial zone for myopia control
US10884264B2 (en) 2018-01-30 2021-01-05 Sightglass Vision, Inc. Ophthalmic lenses with light scattering for treating myopia
CN217085443U (zh) * 2018-03-01 2022-07-29 依视路国际公司 镜片元件
WO2021069443A1 (en) * 2019-10-07 2021-04-15 Essilor International Characterizing an optical element
EP3812142A1 (de) 2019-10-23 2021-04-28 Carl Zeiss Vision International GmbH Verfahren zur herstellung eines brillenglases sowie ein erzeugnis umfassend ein brillenglas
WO2021131454A1 (ja) * 2019-12-27 2021-07-01 ホヤ レンズ タイランド リミテッド 眼鏡レンズ
CN115053171A (zh) * 2020-03-09 2022-09-13 豪雅镜片泰国有限公司 眼镜镜片
WO2021186873A1 (ja) * 2020-03-17 2021-09-23 ホヤ レンズ タイランド リミテッド 眼鏡レンズ
US20230113340A1 (en) 2020-04-14 2023-04-13 Essilor International Compound microlens design for hyperopic peripheral defocus reduction
GB2611462A (en) 2020-05-19 2023-04-05 Sightglass Vision Inc Ophthalmic lenses, methods of manufacturing the ophthalmic lenses, and methods of dispensing eye care products including the same
CN111694165A (zh) * 2020-07-09 2020-09-22 上海万明眼镜有限公司 一种多功能改善镜片及其制备方法
EP4185919A1 (en) 2020-07-23 2023-05-31 Essilor International Optical deficiency monitoring equipment comprising a pair of eyeglasses
EP3943240A1 (en) 2020-07-24 2022-01-26 Essilor International Centering apparatus and process
WO2022031298A1 (en) * 2020-08-07 2022-02-10 Carl Zeiss Vision International Gmbh Progressive addition lens for myopia control and method of manufacturing the same
TW202207889A (zh) * 2020-08-26 2022-03-01 泰國商豪雅鏡片泰國有限公司 眼鏡鏡片、其設計方法及其設計系統
CN112162415A (zh) * 2020-09-25 2021-01-01 江苏淘镜有限公司 一种抗疲劳高清树脂镜片的制造工艺
US11126012B1 (en) 2020-10-01 2021-09-21 Michael Walach Broadview natural addition lens
EP3988289A1 (en) 2020-10-23 2022-04-27 Carl Zeiss Vision International GmbH Method of manufacturing a spectacle lens
EP3988288A1 (en) 2020-10-23 2022-04-27 Carl Zeiss Vision International GmbH Method of manufacturing a spectacle lens
EP3988290A1 (en) 2020-10-23 2022-04-27 Carl Zeiss Vision International GmbH Method for manufacturing a spectacle lens
EP4006627B1 (en) 2020-11-26 2023-07-12 Carl Zeiss Vision International GmbH Spectacle lens design, spectacle lens kit and method of manufacturing a spectacle lens
EP4006624B1 (en) 2020-11-26 2024-04-24 Carl Zeiss Vision International GmbH Spectacle lens design, method of manufacturing a spectacle lens and method of providing a spectacle lens for at least retarding myopia progression
EP4006626A1 (en) 2020-11-26 2022-06-01 Carl Zeiss Vision International GmbH Spectacle lens design, spectacle lens kit and method of manufacturing a spectacle lens
CN116963869A (zh) 2021-03-09 2023-10-27 依视路国际公司 用于自动地对眼科镜片进行定心的方法
CN113050203B (zh) * 2021-03-12 2022-08-09 中国科学院上海光学精密机械研究所 一种超表面稀疏孔径透镜
BR112023023167A2 (pt) 2021-05-07 2024-01-30 Essilor Int Método de revestimento de lentes com lenslets com controle melhorado no deslocamento de potência
EP4089473A1 (en) 2021-05-10 2022-11-16 Carl Zeiss Vision International GmbH Spectacle lens design, spectacle lens kit, method of manufacturing a spectacle lens and method of providing a spectacle lens design
CN113253481B (zh) * 2021-05-10 2022-11-15 苏州大学 一种具有隐形微结构的眼镜片
EP4094932A1 (en) 2021-05-26 2022-11-30 Essilor International Composite mold for manufacturing a microstructured thermoset article, manufacturing method and method for obtaining the mold
EP4105010A1 (en) 2021-06-18 2022-12-21 Essilor International Method for coating lenses with lenslets with an improved control on power shift
EP4108438A1 (en) 2021-06-25 2022-12-28 Essilor International Method for manufacturing a lens element
WO2023275189A1 (en) * 2021-06-30 2023-01-05 Essilor International Lens element
EP4119321A1 (en) 2021-07-13 2023-01-18 Essilor International Method for fabricating microstructured inserts for injection molding
WO2023001780A1 (en) 2021-07-19 2023-01-26 Essilor International Mold for manufacturing a thermoset optical article, method for manufacturing the mold and method for manufacturing the thermoset optical article
EP4122687A1 (en) 2021-07-19 2023-01-25 Essilor International Composite mold insert for fabricating microstructured lenses
EP4122689A1 (en) 2021-07-20 2023-01-25 Essilor International Low thermal conductivity metal insert with surface microstructures
JP7177959B1 (ja) 2021-09-15 2022-11-24 ホヤ レンズ タイランド リミテッド 眼鏡レンズ
JP2023042948A (ja) 2021-09-15 2023-03-28 ホヤ レンズ タイランド リミテッド 眼鏡レンズ
EP4163706A1 (en) 2021-10-05 2023-04-12 Essilor International Lens element
EP4163705A1 (en) 2021-10-05 2023-04-12 Essilor International Lens element with improved visual performance
WO2023072930A1 (en) * 2021-10-26 2023-05-04 Essilor International Lens element
WO2023088588A1 (en) 2021-11-18 2023-05-25 Essilor International A method for determining an ophthalmic lens adapted to slow down the progression of a vision impairment
EP4187311A1 (en) 2021-11-26 2023-05-31 Essilor International Computer-implemented method, apparatus, system and computer program for providing a user with a representation of an effect of a sightedness impairment control solution
TW202335652A (zh) 2021-12-15 2023-09-16 美商賽特眼鏡視光有限公司 於眼用鏡片上形成特徵之自動化方法
EP4197766A1 (en) * 2021-12-16 2023-06-21 Essilor International Method for microforming microstructured films and lenses
EP4197764A1 (en) 2021-12-16 2023-06-21 Essilor International Method for encapsulating a microstructured lens by coating transfer
EP4197765A1 (en) 2021-12-16 2023-06-21 Essilor International Method for encapsulating a microstructured lens by pipc
JP2023092251A (ja) * 2021-12-21 2023-07-03 ホヤ レンズ タイランド リミテッド 眼鏡レンズ、および眼鏡レンズの設計方法
WO2023152338A1 (en) 2022-02-14 2023-08-17 Essilor International Method for manufacturing a spectacle lens
WO2023155984A1 (en) 2022-02-16 2023-08-24 Carl Zeiss Vision International Gmbh Spectacle lens to reduce the progression of myopia
WO2023175193A2 (en) 2022-03-18 2023-09-21 Carl Zeiss Vision International Gmbh Coated lens and method for manufacturing the same
WO2023180403A1 (en) * 2022-03-25 2023-09-28 Essilor International Lens element
CN117136292A (zh) 2022-03-27 2023-11-28 依视路国际公司 用于表征镜片元件的至少一部分的方法
WO2023203244A1 (en) 2022-04-21 2023-10-26 Essilor International Lens with improved visual performance
CN114911070B (zh) 2022-04-29 2023-10-03 麦得科科技有限公司 用于防近视发展的眼用透镜和使用其的眼镜
WO2023213669A1 (en) * 2022-05-03 2023-11-09 Essilor International Optical lens intended to be worn by a wearer
DE102022111995B4 (de) * 2022-05-12 2024-01-18 Rodenstock Gmbh Brillengläser zur Reduzierung der Progression von Myopie sowie Verfahren zur individuellen Brechnung oder Herstellung
CN114895483B (zh) * 2022-05-19 2024-04-16 苏州大学 一种叠加周边离散顺规散光眼镜片及其设计方法
EP4283382A1 (en) 2022-05-27 2023-11-29 Carl Zeiss Vision International GmbH Stiles-crawford-effect based mechanism and spectacle lens for retinal-region weighted prevention of myopia progression
WO2023237653A1 (en) * 2022-06-09 2023-12-14 Essilor International Optical lens intended to be worn by a wearer
EP4292798A1 (en) 2022-06-14 2023-12-20 Carl Zeiss Vision International GmbH Method of providing refractive microstructures on a surface of a spectacle lens and spectacle lens design
CN115091664A (zh) * 2022-07-15 2022-09-23 西安交通大学 一种对称式复眼结构的防近视眼镜镜片模具的制备方法
WO2024019070A1 (ja) * 2022-07-19 2024-01-25 ホヤ レンズ タイランド リミテッド 眼鏡レンズの設計方法、眼鏡レンズの製造方法、眼鏡レンズ及び眼鏡
WO2024019071A1 (ja) * 2022-07-19 2024-01-25 ホヤ レンズ タイランド リミテッド 眼鏡レンズの設計方法、眼鏡レンズの製造方法、眼鏡レンズ及び眼鏡
JP2024027333A (ja) * 2022-08-17 2024-03-01 東海光学株式会社 屈折異常の進行を抑制するための眼鏡用レンズ
EP4328658A1 (en) 2022-08-26 2024-02-28 Carl Zeiss Vision International GmbH Spectacle lens design and methods to retard and control the progression of myopia
EP4335630A1 (en) 2022-09-07 2024-03-13 Essilor International Method for patterning a mask, method for producing an insert or a mold, and optical article with surface microstructures
EP4349579A1 (en) 2022-10-04 2024-04-10 Essilor International Method for manufacturing an optical device comprising a microstructure, manufacturing system to carry out such a method, and optical device thus obtained
CN116360115B (zh) * 2023-05-31 2023-09-15 杭州光粒科技有限公司 一种近眼显示设备

Family Cites Families (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1955047A (en) 1931-12-03 1934-04-17 Howard D Beach Spectacle lens
US3902693A (en) 1973-03-12 1975-09-02 American Optical Corp Mold for casting lenses
GB2129155B (en) * 1982-10-13 1987-05-20 Ng Trustees & Nominees Ltd Bifocal contact lenses
US5017000A (en) 1986-05-14 1991-05-21 Cohen Allen L Multifocals using phase shifting
US4981342A (en) * 1987-09-24 1991-01-01 Allergan Inc. Multifocal birefringent lens system
US5798027A (en) 1988-02-08 1998-08-25 Optical Coating Laboratory, Inc. Process for depositing optical thin films on both planar and non-planar substrates
US5359440A (en) 1989-10-23 1994-10-25 Sharp Kabushiki Kaisha Image display apparatus with microlens plate having mutually fused together lenses resulting in hexagonal shaped microlenses
AU7130391A (en) 1990-03-08 1991-09-12 Breger, Joseph Laurence Multifocal simultaneous vision lenses
US5112351A (en) 1990-10-12 1992-05-12 Ioptex Research Inc. Multifocal intraocular lenses
ATE202637T1 (de) 1994-03-17 2001-07-15 Bifocon Optics Forsch & Entw Zonenlinse
US5517260A (en) 1994-03-28 1996-05-14 Vari-Site, Inc. Ophthalmic lens having a progressive multifocal zone and method of manufacturing same
US5507806A (en) 1994-05-13 1996-04-16 Pharmacia Iovision, Inc. Multi-faceted intraocular lens
US5652638A (en) 1995-05-04 1997-07-29 Johnson & Johnson Vision Products, Inc. Concentric annular ring lens designs for astigmatism
US5864379A (en) * 1996-09-27 1999-01-26 Dunn; Stephen A. Contact lens and process for fitting
US6045578A (en) 1995-11-28 2000-04-04 Queensland University Of Technology Optical treatment method
US5753092A (en) 1996-08-26 1998-05-19 Velocidata, Inc. Cylindrical carriage sputtering system
FR2753805B1 (fr) 1996-09-20 1998-11-13 Essilor Int Jeu de lentilles ophtalmiques multifocales progressives
US6129042A (en) 1996-11-08 2000-10-10 Coburn Optical Industries, Inc. Process and machine for coating ophthalmic lenses
US6030077A (en) 1998-03-11 2000-02-29 Menicon Co., Ltd. Multifocal ocular lens having intermediate region with continuously varying optical power
US6343861B1 (en) * 1998-06-12 2002-02-05 Sola International Holdings, Ltd. Myopia lens
WO2000008516A1 (en) 1998-08-06 2000-02-17 Lett John B W Multifocal aspheric lens
US7281795B2 (en) 1999-01-12 2007-10-16 Calhoun Vision, Inc. Light adjustable multifocal lenses
US6258218B1 (en) 1999-10-22 2001-07-10 Sola International Holdings, Ltd. Method and apparatus for vacuum coating plastic parts
US6554979B2 (en) 2000-06-05 2003-04-29 Applied Materials, Inc. Method and apparatus for bias deposition in a modulating electric field
US6582076B1 (en) * 2000-08-30 2003-06-24 Johnson & Johnson Vision Care, Inc. Ophthalmic lenses useful in correcting astigmatism and presbyopia
US6554425B1 (en) * 2000-10-17 2003-04-29 Johnson & Johnson Vision Care, Inc. Ophthalmic lenses for high order aberration correction and processes for production of the lenses
AU2002258402A1 (en) 2001-02-07 2002-10-08 Corning Incorporated High-contrast screen with random microlens array
US6752499B2 (en) 2001-07-11 2004-06-22 Thomas A. Aller Myopia progression control using bifocal contact lenses
US6712466B2 (en) 2001-10-25 2004-03-30 Ophthonix, Inc. Eyeglass manufacturing method using variable index layer
US20030117577A1 (en) 2001-12-20 2003-06-26 Jones Larry G. Multifocal ophthalmic lenses
US6654174B1 (en) 2002-05-08 2003-11-25 Pin Chien Huang Micro lens systems and articles thereof
US7437980B2 (en) 2002-05-29 2008-10-21 Massachusetts Institute Of Technology Flux-biased electromagnetic fast tool servo systems and methods
GB0222331D0 (en) 2002-09-26 2002-10-30 Teer Coatings Ltd A method for depositing multilayer coatings with controlled thickness
US6802607B2 (en) 2002-10-31 2004-10-12 Johnson & Johnson Vision Care, Inc. Progressive cylinder ophthalmic lenses
US20040141150A1 (en) 2003-01-21 2004-07-22 Roffman Jeffrey H. Hybrid multifocal contact lenses
US7101042B2 (en) * 2003-08-12 2006-09-05 S.I.B. Investments Llc Multifocal contact lens
ATE452611T1 (de) 2003-11-19 2010-01-15 Vision Crc Ltd Geräte zur veränderung der relativen krümmung des felds und der positionen von peripheren achsenverschobenen fokalpositionen
US7503655B2 (en) 2003-11-19 2009-03-17 Vision Crc Limited Methods and apparatuses for altering relative curvature of field and positions of peripheral, off-axis focal positions
US8306853B2 (en) 2004-02-17 2012-11-06 Colts Laboratories Methods for testing ophthalmic lenses
JP4386753B2 (ja) 2004-02-19 2009-12-16 キヤノンアネルバ株式会社 ウェハーステージ及びプラズマ処理装置
DE112005002056B4 (de) 2004-08-30 2021-09-23 Ulvac, Inc. Filmformungsvorrichtung
GB0421389D0 (en) 2004-09-25 2004-10-27 Applied Multilayers Ltd Material deposition apparatus and method
US7506983B2 (en) 2004-09-30 2009-03-24 The Hong Kong Polytechnic University Method of optical treatment
GB0503401D0 (en) 2005-02-18 2005-03-30 Applied Multilayers Ltd Apparatus and method for the application of material layer to display devices
DE602006011439D1 (de) 2005-03-09 2010-02-11 Walman Optical Co Verfahren und vorrichtung zum beschichten von optiken
EP1899759A4 (en) 2005-06-29 2011-05-11 Reflexite Corp NETWORK OF MICROLENSES OF COLLIMATION
KR101302317B1 (ko) 2005-10-12 2013-08-30 칼 자이스 비전 오스트레일리아 홀딩스 리미티드 근시 교정을 위한 안과용 렌즈 부재
WO2007061389A1 (en) * 2005-11-28 2007-05-31 Nanyang Optical Co. Pte Ltd Auxiliary lenses for prescription lenses and method for managing myopia
JP5026987B2 (ja) * 2005-12-22 2012-09-19 Hoya株式会社 眼鏡レンズのレンズ面切削加工装置、レンズ面切削加工方法および眼鏡レンズ
EP3391854A1 (en) 2006-01-12 2018-10-24 Brien Holden Vision Institute Method and apparatus for controlling peripheral image position for reducing progression of myopia
FR2898993B1 (fr) * 2006-03-24 2008-08-01 Essilor Int Procede de determination d'une lentille ophtalmique progressive
CN101467092B (zh) 2006-06-08 2011-01-12 视力Crc有限公司 用于控制近视发展的装置
CN200956072Y (zh) * 2006-09-08 2007-10-03 刘伟中 非球面超薄型棱镜式组合透镜眼镜
AU2007295957B2 (en) * 2006-09-15 2012-06-14 Carl Zeiss Vision Australia Holdings Limited Ophthalmic lens element
US7740354B2 (en) * 2006-10-25 2010-06-22 Volk Donald A Multi-layered gradient index progressive lens
FR2912820B1 (fr) 2007-02-15 2009-05-15 Essilor Int Realisation d'un element ophtalmique adapte pour les visions foveale et peripherique
US7832859B2 (en) * 2007-03-09 2010-11-16 Auckland Uniservices Limited Contact lens and method
US7978411B2 (en) 2007-05-08 2011-07-12 Micron Technology, Inc. Tetraform microlenses and method of forming the same
US7637612B2 (en) 2007-05-21 2009-12-29 Johnson & Johnson Vision Care, Inc. Ophthalmic lenses for prevention of myopia progression
US8690319B2 (en) 2007-05-21 2014-04-08 Johnson & Johnson Vision Care, Inc. Ophthalmic lenses for prevention of myopia progression
FR2916864B1 (fr) 2007-05-31 2010-01-08 Essilor Int Verre ophtalmique progressif de correction de myopie et procede de realisation d'un tel verre
SE533395C2 (sv) 2007-06-08 2010-09-14 Sandvik Intellectual Property Sätt att göra PVD-beläggningar
US8317321B2 (en) 2007-07-03 2012-11-27 Pixeloptics, Inc. Multifocal lens with a diffractive optical power region
TWI467266B (zh) * 2007-10-23 2015-01-01 Vision Crc Ltd 眼科鏡片元件
US7926941B2 (en) 2007-12-14 2011-04-19 Pixeloptics Inc. Multiple layer multifocal composite lens
US20110040377A1 (en) 2008-02-05 2011-02-17 Laser Energies, Inc. Compound micro lens implant
US7701636B2 (en) 2008-03-06 2010-04-20 Aptina Imaging Corporation Gradient index microlenses and method of formation
RU2498367C2 (ru) * 2008-04-18 2013-11-10 Новартис Аг Средство борьбы с миопией
US7905595B2 (en) * 2008-04-28 2011-03-15 Crt Technology, Inc. System and method to treat and prevent loss of visual acuity
US8684520B2 (en) * 2008-08-11 2014-04-01 Novartis Ag Lens design and method for preventing or slowing the progression of myopia
CN201614406U (zh) 2008-08-27 2010-10-27 梯尔涂层有限公司 沉积材料形成镀层的设备
US8922898B2 (en) * 2008-09-04 2014-12-30 Innovega Inc. Molded lens with nanofilaments and related methods
FR2936879B1 (fr) * 2008-10-07 2011-03-11 Essilor Int Verre ophtalmique corrigeant la vision foveale et la vision peripherique.
WO2010075319A2 (en) 2008-12-22 2010-07-01 The Medical College Of Wisconsin, Inc. Method and apparatus for limiting growth of eye length
US9022563B2 (en) * 2009-02-12 2015-05-05 Mitsui Chemicals, Inc. Ophthalmic lenses with aspheric optical features
ES2345027B1 (es) * 2009-03-12 2011-09-30 Universidad De Murcia Dispositivo de correccion optica de refraccion en la retina periferica de manera asimetrica para el control de la progresion de la miopia.
CN102369099B (zh) 2009-03-31 2014-12-03 Hoya株式会社 渐进多焦眼镜镜片的制造方法
JP2010252277A (ja) 2009-04-20 2010-11-04 Panasonic Corp 固体撮像装置及び電子カメラ
WO2011049642A1 (en) 2009-10-22 2011-04-28 Coopervision International Holding Company, Lp Contact lens sets and methods to prevent or slow progression of myopia or hyperopia
WO2011106837A1 (en) * 2010-03-03 2011-09-09 Brien Holden Vision Institute Corneal remodelling contact lenses and methods of treating refractive error using corneal remodelling
MY163628A (en) * 2010-03-03 2017-10-13 Holden Brien Vision Inst Contact lenses for myopic eyes and methods of treating myopia
FR2960305B1 (fr) * 2010-05-21 2013-03-01 Essilor Int Realisation d'un composant optique transparent a structure cellulaire
WO2011163668A2 (en) 2010-06-25 2011-12-29 Pixeloptics, Inc. High performance, low cost multifocal lens having dynamic progressive optical power region
US8113655B1 (en) * 2010-07-22 2012-02-14 Albert Tyrin Training method for accommodative and vergence systems, and multifocal lenses therefor
US8950860B2 (en) 2010-09-09 2015-02-10 The Hong Kong Polytechnic University Method and system for retarding the progression of myopia
CN103097940B (zh) 2010-09-13 2016-02-03 香港理工大学 用以减缓近视发展的方法与系统
CN103596522A (zh) 2011-03-08 2014-02-19 E-视觉智能光学公司 先进的电活性光学装置
WO2012138426A2 (en) 2011-04-04 2012-10-11 Elenza, Inc. An implantable ophthalmic device with multiple static apertures
WO2012168709A2 (en) 2011-06-07 2012-12-13 Power Vision Limited Improvements to the application of coating materials
US9184199B2 (en) 2011-08-01 2015-11-10 Lytro, Inc. Optical assembly including plenoptic microlens array
GB201115124D0 (en) * 2011-09-01 2011-10-19 Crosby David Improved adjustable refractive optical device for context specific use
US20140320803A1 (en) * 2011-11-16 2014-10-30 Essilor International (Compagnie Generale D'optique Method For Providing An Optical System Of An Ophthalmic Spectacle Lens And Method For Manufacturing An Ophthalmic Spectacle Lens
BR112014022697A2 (pt) * 2012-03-15 2020-06-30 Signal Pharmaceuticals, Llc Uso de uma quantidade eficaz de um inibidor de quinase tor,método para melhorar o critério de avaliação de resposta,método para a inibição da fosforilação, método para a inibiçãoda atividade da proteína, método para a medição da inibição dafosforilação, kit
CN102692730B (zh) * 2012-06-15 2013-12-04 戴明华 控制离焦及眼屈光度的多元镜片及其应用
US8817167B2 (en) 2012-07-13 2014-08-26 Google Inc. Imaging device with a plurality of depths of field
JP6145990B2 (ja) 2012-10-29 2017-06-14 セイコーエプソン株式会社 マイクロレンズアレイ基板の製造方法
TWI507763B (zh) 2012-11-22 2015-11-11 Control the growth of the optical axis of the lens
DE102012023478A1 (de) 2012-11-28 2014-05-28 Technische Universität Ilmenau Vorrichtung zum Manipulieren einer Bildinformation und deren Verwendung
US8998408B2 (en) * 2013-01-30 2015-04-07 Johnson & Johnson Vision Care, Inc. Asymmetric lens design and method for preventing and/or slowing myopia progression
BR112015019008A8 (pt) 2013-02-20 2018-08-14 Essilor Int Par de lentes oftálmicas progressivas
US9658469B2 (en) 2013-03-15 2017-05-23 Johnson & Johnson Vision Care, Inc. Ophthalmic devices incorporating metasurface elements
TWI493241B (zh) * 2013-05-24 2015-07-21 Hiline Optical Co Ltd 鏡片裝置及視力控制方法
FR3008196B1 (fr) * 2013-07-08 2016-12-30 Essilor Int Procede de fabrication d'au moins une lentille ophtalmique
US9753309B2 (en) * 2013-11-04 2017-09-05 Myopiaok Limited Contact lens and method for prevention of myopia progression
CN104678572B (zh) 2013-11-29 2018-04-27 豪雅镜片泰国有限公司 眼镜片
WO2015110886A1 (en) * 2014-01-21 2015-07-30 Wockhardt Limited A process for preparation of (2s, 5r)-7-oxo-n-[(3s)-pyrrolidin-3-yloxy]-6-(sulfooxy)-1,6-diazabicyclo [3.2.1]octane-2-carboxamide
SG10201400920RA (en) * 2014-03-24 2015-10-29 Menicon Singapore Pte Ltd Apparatus and methods for controlling axial growth with an ocular lens
KR102299750B1 (ko) * 2014-04-01 2021-09-08 에씰로 앙터나시오날 보충 이미지를 출력하도록 구성되는 다중 초점 안과용 안경 렌즈
US9638936B2 (en) * 2014-08-20 2017-05-02 Johnson & Johnson Vision Care, Inc. High plus treatment zone lens design for preventing and/or slowing myopia progression
US20170115509A1 (en) * 2014-08-20 2017-04-27 Johnson & Johnson Vision Care, Inc. High plus center treatment zone lens design and method for preventing and/or slowing myopia progression
US10061143B2 (en) * 2014-08-29 2018-08-28 Johnson & Johnson Vision Care, Inc. Multifocal lens design for preventing and/or slowing myopia progression
CN107407827B (zh) 2014-12-31 2020-08-04 依视路国际公司 旨在安装在眼镜架上的眼镜眼科镜片
CN107407825B (zh) 2015-03-18 2020-08-18 依视路国际公司 用于确定具有不需要的散光的眼科镜片的方法
US9995859B2 (en) * 2015-04-14 2018-06-12 California Institute Of Technology Conformal optical metasurfaces
BR112017021858A2 (pt) * 2015-04-15 2018-07-10 Vision Ease, Lp lente oftálmica com microlentes graduadas.
US11061255B2 (en) * 2015-06-23 2021-07-13 Johnson & Johnson Vision Care, Inc. Ophthalmic lens comprising lenslets for preventing and/or slowing myopia progression
US10877294B2 (en) 2015-06-23 2020-12-29 Johnson & Johnson Vision Care, Inc. Contact lens comprising non-coaxial lenslets for preventing and/or slowing myopia progression
US10268050B2 (en) * 2015-11-06 2019-04-23 Hoya Lens Thailand Ltd. Spectacle lens
US9977257B2 (en) * 2016-03-22 2018-05-22 Johnson & Johnson Vision Care, Inc. Multifocal lens design and method for preventing and/or slowing myopia progression
SG11201808772WA (en) 2016-04-05 2018-11-29 Harvard College Meta-lenses for sub-wavelength resolution imaging
JP2019518999A (ja) * 2016-06-07 2019-07-04 フェイ‐チュアン チェン 眼用レンズ、および、その製造方法
EP3273292A1 (de) * 2016-07-19 2018-01-24 Carl Zeiss Vision International GmbH Brillenglas und verfahren zu dessen herstellung
CN115185103A (zh) * 2016-08-01 2022-10-14 华盛顿大学 用于治疗近视的眼科镜片
AU2017351635C1 (en) * 2016-10-25 2023-08-03 Brien Holden Vision Institute Limited Devices, systems and/or methods for myopia control
CA3051414A1 (en) * 2017-01-27 2018-08-02 Magic Leap, Inc. Diffraction gratings formed by metasurfaces having differently oriented nanobeams
CN107212949B (zh) 2017-07-12 2019-05-14 无锡蕾明视康科技有限公司 一种多焦点人工晶状体
US10901237B2 (en) * 2018-01-22 2021-01-26 Johnson & Johnson Vision Care, Inc. Ophthalmic lens with an optically non-coaxial zone for myopia control
US10884264B2 (en) * 2018-01-30 2021-01-05 Sightglass Vision, Inc. Ophthalmic lenses with light scattering for treating myopia
CN217085443U (zh) * 2018-03-01 2022-07-29 依视路国际公司 镜片元件
US10921612B2 (en) * 2018-03-29 2021-02-16 Reopia Optics, Llc. Spectacles and associated methods for presbyopia treatment and myopia progression control

Also Published As

Publication number Publication date
US20200409180A1 (en) 2020-12-31
US20210003864A1 (en) 2021-01-07
RU2020131393A (ru) 2022-03-23
BR112020017188A2 (pt) 2020-12-22
DE212019000204U1 (de) 2020-10-07
WO2019166659A1 (en) 2019-09-06
DE202019005771U1 (de) 2022-01-12
EP3759546A1 (en) 2021-01-06
CN114545660A (zh) 2022-05-27
CN113960808A (zh) 2022-01-21
BR112020017525B1 (pt) 2023-12-12
JP2021524051A (ja) 2021-09-09
JP2022179618A (ja) 2022-12-02
US11073704B2 (en) 2021-07-27
US11385475B2 (en) 2022-07-12
JP7155275B2 (ja) 2022-10-18
DE202019005799U1 (de) 2022-03-10
CN111095083A (zh) 2020-05-01
CN111226161B (zh) 2022-05-31
CN216310444U (zh) 2022-04-15
WO2019166659A9 (en) 2019-11-07
WO2019166654A1 (en) 2019-09-06
US10962804B1 (en) 2021-03-30
SG11202008022SA (en) 2020-09-29
CN213122475U (zh) 2021-05-04
RU2757820C1 (ru) 2021-10-21
BR112020017510A2 (pt) 2020-12-22
JP2022093412A (ja) 2022-06-23
EP4020065A1 (en) 2022-06-29
CO2020010242A2 (es) 2021-01-29
JP7154306B2 (ja) 2022-10-17
SG11202008023XA (en) 2020-09-29
EP3759548A1 (en) 2021-01-06
CA3155413A1 (en) 2019-09-06
CN217689666U (zh) 2022-10-28
JP7466450B2 (ja) 2024-04-12
JP2023033375A (ja) 2023-03-10
CA3092605A1 (en) 2019-09-06
CA3092418A1 (en) 2019-09-06
US10948744B1 (en) 2021-03-16
US11852904B2 (en) 2023-12-26
KR20220049606A (ko) 2022-04-21
KR102481762B1 (ko) 2022-12-27
US11442290B2 (en) 2022-09-13
CO2020010432A2 (es) 2021-01-18
SG11202008011VA (en) 2020-09-29
CO2020010439A2 (es) 2021-01-18
CN111226161A (zh) 2020-06-02
US20200393702A1 (en) 2020-12-17
BR112020017586A2 (pt) 2020-12-22
US11385476B2 (en) 2022-07-12
CN111095082B (zh) 2021-11-30
CA3092609C (en) 2023-03-14
BR112020017525A2 (pt) 2020-12-22
CA3092428C (en) 2023-07-04
CN217085443U (zh) 2022-07-29
JP2021526231A (ja) 2021-09-30
KR20200124234A (ko) 2020-11-02
EP3759545B1 (en) 2023-12-20
CA3092428A1 (en) 2019-09-06
JP2021524050A (ja) 2021-09-09
JP2021526230A (ja) 2021-09-30
EP4339695A2 (en) 2024-03-20
WO2019166653A1 (en) 2019-09-06
RU2757349C1 (ru) 2021-10-13
US20230082062A1 (en) 2023-03-16
US20220082858A1 (en) 2022-03-17
US11079612B2 (en) 2021-08-03
US11353721B2 (en) 2022-06-07
DE212019000205U1 (de) 2020-10-07
RU2768515C1 (ru) 2022-03-24
RU2765344C1 (ru) 2022-01-28
CN111095083B (zh) 2021-07-23
US20210311330A1 (en) 2021-10-07
WO2019166655A1 (en) 2019-09-06
EP3759545A1 (en) 2021-01-06
US11067832B2 (en) 2021-07-20
HUE062437T2 (hu) 2023-11-28
CA3092609A1 (en) 2019-09-06
US20210109379A1 (en) 2021-04-15
RU2020131393A3 (ko) 2022-03-23
CN114660687A (zh) 2022-06-24
US20210311331A1 (en) 2021-10-07
CA3092607A1 (en) 2019-09-06
CN113960809A (zh) 2022-01-21
RU2769091C2 (ru) 2022-03-28
JP7418339B2 (ja) 2024-01-19
US20210109378A1 (en) 2021-04-15
CN216561274U (zh) 2022-05-17
KR20200123141A (ko) 2020-10-28
EP3759544A1 (en) 2021-01-06
US20210199990A1 (en) 2021-07-01
CO2020010799A2 (es) 2021-01-18
US11567344B2 (en) 2023-01-31
SG11202008010SA (en) 2020-09-29
US20210048689A1 (en) 2021-02-18
EP3759547A1 (en) 2021-01-06
CA3155413C (en) 2023-08-29
DE212019000202U1 (de) 2020-10-08
US20210116720A1 (en) 2021-04-22
EP4220283A1 (en) 2023-08-02
CN216561273U (zh) 2022-05-17
EP3759546B1 (en) 2023-05-24
CN114545660B (zh) 2024-03-08
SG11202007813SA (en) 2020-09-29
CN111095084A (zh) 2020-05-01
KR20200124236A (ko) 2020-11-02
CA3092605C (en) 2023-06-27
DE202019005772U1 (de) 2022-02-16
BR112020017312B1 (pt) 2023-03-14
US20210116722A1 (en) 2021-04-22
WO2019166657A1 (en) 2019-09-06
JP2021526229A (ja) 2021-09-30
CN111095082A (zh) 2020-05-01
US20220082859A1 (en) 2022-03-17
DE202019005795U1 (de) 2022-03-07
BR112020017586B1 (pt) 2024-01-23
BR112020017312A2 (pt) 2020-12-15
JP7472225B2 (ja) 2024-04-22
CO2020011713A2 (es) 2021-06-30
KR20200124235A (ko) 2020-11-02
US11899286B2 (en) 2024-02-13

Similar Documents

Publication Publication Date Title
JP7472225B2 (ja) レンズ要素
US20210048690A1 (en) Lens element
US20230128895A1 (en) Lens element
TW202004270A (zh) 鏡片元件

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal