TW201219842A - High performance, low cost multifocal lens having dynamic progressive optical power region - Google Patents

High performance, low cost multifocal lens having dynamic progressive optical power region Download PDF

Info

Publication number
TW201219842A
TW201219842A TW100122504A TW100122504A TW201219842A TW 201219842 A TW201219842 A TW 201219842A TW 100122504 A TW100122504 A TW 100122504A TW 100122504 A TW100122504 A TW 100122504A TW 201219842 A TW201219842 A TW 201219842A
Authority
TW
Taiwan
Prior art keywords
lens
region
lens assembly
optical
fluid
Prior art date
Application number
TW100122504A
Other languages
Chinese (zh)
Inventor
Ronald D Blum
William Kokonaski
Original Assignee
Pixeloptics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/050,974 external-priority patent/US8922902B2/en
Application filed by Pixeloptics Inc filed Critical Pixeloptics Inc
Publication of TW201219842A publication Critical patent/TW201219842A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00028Bifocal lenses; Multifocal lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/08Auxiliary lenses; Arrangements for varying focal length
    • G02C7/081Ophthalmic lenses with variable focal length
    • G02C7/085Fluid-filled lenses, e.g. electro-wetting lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/08Series of lenses, lens blanks

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Eyeglasses (AREA)

Abstract

An embryonic optical apparatus including a first lens component including a first surface and a second surface on an opposite side of the first lens component from the first surface, and a second lens component comprising a flexible element, wherein the flexible element of the second lens component comprises a first region that is variably movable towards and away from the first surface, thereby dynamically adjusting an optical power of the embryonic optical apparatus with respect to a light path through the first region and the first surface, and wherein the embryonic optical apparatus is configured such that at least a portion of the second surface is permanently alterable to permanently define an optical power of the first lens at at least a second region of the second surface, the second region being optically aligned with the first region, thereby resulting in a prescription-quality ophthalmic optical apparatus.

Description

201219842 六、發明說明: 本申請案主張2010年6月25曰申請之美國臨時專利申請 案第61/358,447號、2010年7月22日申請之美國臨時專利申 請案第61/366,746號、2010年9月15日申請之美國臨時專利 申請案第61/382,963號及2011年3月18日申請之美國專利申 請案第13/050,974號之優先權權利,此等申請案之全部揭 示内容出於所有目的全文以引用之方式併入本文中。此申 請案亦主張2〇11年3月22曰申請之PCT專利申請案第 PCT/US2011/029419號之優先權權利,該案主張2〇1〇年3月 24曰申§青之美國臨時專利申請案第61,3 17,1〇〇號、2010年4 月22曰申請之美國臨時專利申請案第61/326,7〇3號、2〇1〇 年7月22曰申請之美國臨時專利申請案第61/366 746號、 2010年9月15日申請之美國臨時專利申請案第61/382,963號 及2011年3月18日申請之美國專利申請案第13/〇5〇,974號之 優先權’此等專利申請案之全部揭示内容出於所有目的全 文以引用之方式併入本文中。 【先前技術】 已知包含利用一流體(通常在一隔膜内或與一隔膜接觸) 以調整或改變一鏡片之光學性質的光學器件之例示性動態 鏡片。此等器件通常改變該流體之體積或壓力以致使該隔 膜改變其曲率’因此建立一光學介面,在該介面處具有較 大或較小的折射功率。在此等器件中,流體之體積上的增 加貢獻於正(加)光學功率的增加,且流體之體積上的減小 貢獻於正(加)光學功率之減小及/或減(負)光學功率之增 157229.doc 201219842 加。 然而,此等流體鏡片通常具有使得其等並不理想的缺 點,對於在曰常應用中’諸如在眼鏡、隱形眼鏡、護目鏡 或其他眼科器件中的使用尤為如此。例如,此等類型之流 體鏡片通常需要一較大體積之流體,以有效地將光學功率 增加至遍及一足夠光學區域的期望位準,使得在眼科器件 及其他光學應用中包含此等鏡片較困難。另外’部分由於 可能需要的大量流體,可能花費相當長的時間量來將流體 鏡片之焦點改變至一期望的光學功率量,此係因為此體積 之流體必須位移。 再者,此等類型之流體鏡片對於待定製用於佩戴者或使 用者之各種眼鏡或光學處方的散光矯正通常具有一有限能 力,且為製造商塑邊及/或對於所需之裝配高度亦提供一 有限能力《再者,此等流體鏡片對於已建立之大規模實驗 室提供一有限能力以使用其等當前的設備將鏡片處理成為 適於佩戴者之視覺需要及/或需求之正確處方、形狀、大 小及對準的鏡片。 此外,如上文所提及,光學功率之調整通常係藉由一隔 膜之形狀上的一變化而達成,其較難控制及維持,且在一 些情況中(諸如當建立抛物線或圓柱形狀時),達成期望之 精度位準係極其困難的。此等流體鏡片多數沒有真正的保 障來保證其將重複地切換至一佩戴者之所需光學功率,意 味著流體鏡片可能常超越或低於所需光學功率,若讓佩戴 者僅藉由透過流體鏡片觀看清楚來決定此光學功率,此亦 157229.doc 201219842 可能係佩戴者更喜歡比所需更大之光學加或減光學功率的 情況’且因此使其視力隨時間減弱。 動態鏡片可為流體鏡片、空氣鏡片、隔膜鏡片、機械鏡 片、電子鏡片等等。一動態鏡片之一特定實例係具有提供 動態光學功率的一電活性元件之一電活性鏡片。該電活性 元件埋入一靜態單視或多焦鏡片内。電活性鏡片可具有較 好的視覺效能,且具有一小的外型因數。 【發明内容】 在一例示性實施例中’具有一雛形光 第一鏡片組件,該第一鏡片組件包含—第一表面第 一鏡片組件之與該第一表面相對之一側上的一第二表面。 該雛形光學裝置進一步包括一第二鏡片組件,該第二鏡片 則牛包括-可撓性元件,該第二鏡片組件的至少一部分黏 著至β亥第表面。s亥第二鏡片組件之可撓性元件包括一第 一區域,其可回應於施加至該第一區域的至少一部分之壓 力的一變化而朝向該第一表面及遠離該第一表面可變地移 動’藉此相對於經該第-區域及該第-表面的-光路徑動 態地調整該離形光學裝置的—光學功率,且該雛形光學裝 置經組態使得該第二表面的至少—部分可永久改變,以永 久定義該第-鏡片在該第:表面之至少―第二區域處的一 光學功率’ 4第—區域與該第—區域光學對準,藉此導致 一處方級眼科光學裝置。 在另一例示性實施例中,#有如上文及/或下文所描述 的離形光學裝置,其中該第一鏡片組件係一未完成或半 157229.doc 201219842 成品鏡片毛坯。在另一例示性實施例中,具有如上文及/ 或下文所描述的-離形光學襄置,其中該離形光學裝置經 組態使侍至少該第二表面之可永久改變的該部分係可永久 改變的’使得㈣三區域可變形為處方級眼科靜態遞增添 加功率的一區域。在另一例示性實施例中,具有如上文及/ 或下文所描述的一離形光學裝置,其中該第二表面的至少 一部分經由自由形成、表面加工及/或拋光及/或其等之一 組合而可永久改變,以永久改變該第一鏡片在該第二表面 之至少該第二區域處之添加功率,藉此導致處方級眼科光 學裝置。在另一例示性實施例中,具有如上文及/或下文 所描述的一離形光學裝置,其中該第一區域可回應於施加 於該第一區域之至少一部分的壓力而氣球化,藉此相對於 經該第一區域及該第一表面的一光路徑動態地調整該雛形 光學裝置的一光學功率。 在另一例示性實施例中,具有如上文及/或下文所描述 的一雛形光學裝置,其中該雛形光學裝置進一步包括一通 道,該通道與位於能可變地移動的該第一區域與該第一表 面之間的一第一空間流體連通,該通道經組態以允許流體 經該通道移動,該流體產生施加於碎第一區域之至少一部 分的壓力。在另一例示性實施例中,具有如上文及/或下 文所描述的一離形光學裝置,其中該通道經組態使得一流 體經該通道進入該第一空間中的移動增加施加至該第一區 域之至少一部分的壓力,以使該第一區域移動遠離該第一 表面,且該通道經組態使得該流體經該通道離開該第一空 157229.doc 201219842 間的移動減小施加至該第一區域之至少一部分的壓力,以 使該第一區域朝向該第一表面移動。在另一例示性實施例 中,具有如上文及/或下文所描述的一雛形光學裝置,其 中該通道從該第一鏡片組件的至少一邊緣延伸至該第—區 域。在另一例示性實施例中’具有如上文及/或下文所描 述的一離形光學裝置,其中該通道係藉由該第一表面及該 第二鏡片組件的未經黏著至該第一表面的一表面定義。在 另一例示性實施例中,具有如上文及/或下文所描述的一 雛形光學裝置,其中該通道的遠離該第一區域的一末端經 可開封地密封。 在另一實施例中,具有如上文及/或下文所描述的一雛 形光學裝置,其中該雛形光學裝置經組態使得該第二表面 的至少一部分可永久改變,以永久定義該第一鏡片在該第 一表面的至少一第二區域處的對應於一眼鏡佩戴者的一距 離處方之一光學功率。在另一實施例中,具有如上文及/ 或下文所描述的一離形光學裝置,其中該雛形光學裝置經 組態使得該第二表面的至少一部分可永久改變,以永久定 義該第一鏡片在該第二表面之至少一第二區域處的一正光 學功率。 在另一實施例中,具有一雛形光學裝置,其包括:—第 鏡片、、且件,其包含一第一表面及/或在該第一鏡片組件 之與該第一表面相對之一側上的一第二表面;及一第二鏡 片組件,其包括一可撓性元件,該第二鏡片組件的至少一 部分黏著至該第-表面。該第二鏡片組件之可挽性元件包 157229.doc 201219842 括一第一區域,其可回應於施加至該第—區域之至少一部 分的壓力的一變化而朝向該第一表面及遠離該第一表面可 變地移動,藉此相對於經該第一區域及該第—表面的一光 路徑動態地調整該雛形光學裝置的一光學功率。該離形光 學裝置經組態使得該第一鏡片組件及視需要該第二鏡片組 件的一邊緣之至少一部分可永久移除,藉此導致具有符合 於一眼鏡框架的一周邊的一眼科光學裝置。 在另一例示性實施例中,具有提供一光學裝置的一方 法’其包括獲得一鏡片總成,該鏡片總成包含一第一鏡片 組件,該第一鏡片組件包含一第一表面及在該第一鏡片組 件之與該第一表面相對之一側上的一第二表面。所獲得的 鏡片總成進一步包含一第二鏡片組件,其包括一可撓性元 件,該第二鏡片组件的至少一部分黏著至該第一表面。該 第二鏡片組件的該可撓性元件包括一第一區域,其可回應 於施加至該第一區域的至少一部分的壓力之一變化而朝向 該第一表面及遠離該第一表面可變地移動,藉此相對於經 該第一區域及該第一表面的一光路徑動態地調整該鏡片總 成的一光學功率。該方法進一步包括在獲得該鏡片總成之 前及/或之後判定該光學裝置的一期望光學功率,及在獲 得該鏡片總成之後’永久改變該第二表面,以永久定義該 第一鏡片在該第二表面之至少一第二區域處的光學功率, 該第二區域與該第一區域光學對準’以具有小於期望之添 加功率的一第一添加功率,其中在改變該第二表面之後, 當該第二鏡片組件的該第一區域移動遠離該第一表面而至 157229.doc 201219842 一第一位置時,相對於該第一鏡片組件及該第二鏡片組件 之光路徑的一累積添加功率實質上等於該期望添加功率。 在另一例示性實施例中,具有如上文及/或下文所描述 的獲仵一光學裝置的一方法,其中在改變該第二表面之 後,當該第二鏡片組件經移動以實質上符合於該第一表面 且支撐於該第一表面上時,相對於該第一鏡片組件及該第 二鏡片組件之光路徑的一累積添加功率實質上等於該第一 添加功率。在另一例示性實施例中,具有如上文及/或下 文所描述的獲得一光學裝置的一方法,其中該第一區域之 該第一位置大致對應於該第一區域移動遠離該第一表面之 一最大距離。在另一例示性實施例中,具有如上文及/或 下文所描述的獲得一光學裝置的一方法,其中該鏡片總成 包含一流體通道,其從該鏡片總成之至少一邊緣延伸至該 第一區域。在另一例示性實施例中,具有如上文及/或下 文所描述的獲得一光學裝置的一方法’其中該流體通道係 藉由該第一表面及該第二鏡片組件的未經黏著至該第一表 面的一表面定義。 在另一例示性實施例中,具有如上文及/或下文所描述 的獲得一光學裝置的一方法,其中該通道的遠離該第一區 域的一末端經可開封地密封,該方法進一步包括在改變該 第二表面後將該通道的遠離該第一區域的該末端開封。在 另一例示性實施例中,具有如上文及/或下文所描述的獲 得一光學裝置的一方法,該方法進一步包括在改變該第二 表面之前將該通道的遠離該第一區域的該末端密封,且在 157229.doc 10· 201219842 改變該第二表面之後將該通道的遠離該第一區域的該末端 開封。 在另一例示性實施例中,具有如上文及/或下文所描述 的獲得一光學裝置的一方法’其進一步包括在改變該第二 表面後,將所得之改變的鏡片總成裝配至一眼鏡框架中。 在另一例示性實施例中,具有如上文及/或下文所描述的 獲得一光學裝置的一方法,其進一步包括在改變該第二表 面後,將所得之改變的鏡片總成裝配至包含一流體通道的 一眼鏡框架中,及將該鏡片總成的該流體通道置於與該框 架的一流體通道流體連通。 在另一例示性實施例中,具有一方法,其包括提供一鏡 片總成’該鏡片總成包含一第一鏡片組件,該第一鏡片組 件包含一第一表面及在該第一鏡片組件之與該第一表面相 對之一側上的一第二表面。所提供的鏡片總成進一步包括 一第二鏡片組件’其包括一可撓性元件,該第二鏡片組件 之至少一部分黏著至該第一表面。該第二鏡片組件之該可 撓性元件包括一第一區域,其可回應於施加至該第一區域 之至少一部分的壓力的一變化而朝向該第一表面及遠離該 第一表面可變地移動,藉此相對於經該第一區域及該第一 表面的一光路徑動態地調整該鏡片總成的一光學功率。該 方法進一步包括,在提供該鏡片總成之前及/或之後及/或 提供該鏡片總成之時,提供該第一鏡片組件將以永久定義 該第一鏡片在該第二表面之至少一第二區域處的一光學功 率的-方式永久改變(一指*,該帛二區域與該第一區域 157229.doc • 11 · 201219842 先學對準。在另一例示性實施例中,具有如上文及/或下 文所描述的一方法,其φ坊始y地 、中該鏡片總成包含從該鏡片總成之 至少-邊緣延伸至該第一區域的一流體通道。在另一例示201219842 VI. INSTRUCTIONS: This application claims US Provisional Patent Application No. 61/358,447, filed on Jun. 25, 2010, and U.S. Provisional Patent Application No. 61/366,746, filed on July 22, 2010 The priority rights of the U.S. Patent Application Serial No. 61/382,963, filed on Sep. The entire text is incorporated herein by reference. This application also claims the priority right of PCT Patent Application No. PCT/US2011/029419 filed March 22, 2011, which claims the US Provisional Patent of § § § March 24, 2010 U.S. Provisional Patent Application No. 61,3,1,1, and April 22, 2010, US Provisional Patent Application No. 61/326, No. 7 and No. 2, July 22, 2010 U.S. Patent Application Serial No. 61/366,746, filed on Sep. 15, 2010, and U.S. Patent Application Serial No. No. 13/382,963, filed on Mar. The entire disclosure of these patent applications is hereby incorporated by reference in its entirety for all its purposes. [Prior Art] An exemplary dynamic lens comprising an optical device that utilizes a fluid (usually in a diaphragm or in contact with a diaphragm) to adjust or change the optical properties of a lens is known. Such devices typically change the volume or pressure of the fluid to cause the diaphragm to change its curvature' thus creating an optical interface with greater or lesser refractive power at the interface. In such devices, an increase in the volume of the fluid contributes to an increase in positive (plus) optical power, and a decrease in the volume of the fluid contributes to a decrease in positive (plus) optical power and/or a decrease in (negative) optics. The increase in power is 157229.doc 201219842 plus. However, such fluid lenses typically have disadvantages such that they are not ideal, especially for use in conventional applications such as in glasses, contact lenses, goggles, or other ophthalmic devices. For example, fluid lenses of these types typically require a relatively large volume of fluid to effectively increase optical power to a desired level throughout a sufficient optical area, making it more difficult to include such lenses in ophthalmic devices and other optical applications. . In addition, due to the large amount of fluid that may be required, it may take a considerable amount of time to change the focus of the fluid lens to a desired amount of optical power because the volume of fluid must be displaced. Furthermore, these types of fluid lenses typically have a limited ability for astigmatism corrections to be tailored to the wearer or user for various spectacles or optical prescriptions, and for the manufacturer to trim and/or for the required assembly height. Providing a limited capability "Further, these fluid lenses provide a limited capability for established large-scale laboratories to use their current equipment to process the lens into the correct prescription for the wearer's visual needs and/or needs, Shape, size and alignment of the lens. Moreover, as mentioned above, the adjustment of the optical power is usually achieved by a change in the shape of a diaphragm, which is more difficult to control and maintain, and in some cases (such as when creating a parabolic or cylindrical shape), It is extremely difficult to achieve the desired level of accuracy. Most of these fluid lenses do not have a real guarantee to ensure that they will repeatedly switch to the optical power required by a wearer, meaning that the fluid lens may often exceed or fall below the required optical power, if the wearer only passes the fluid The lens is clearly viewed to determine this optical power, which is also 157229.doc 201219842 It may be that the wearer prefers a larger optical plus or minus optical power than desired' and thus reduces his vision over time. Dynamic lenses can be fluid lenses, air lenses, diaphragm lenses, mechanical lenses, electronic lenses, and the like. A specific example of a dynamic lens is an electroactive lens having an electroactive element that provides dynamic optical power. The electroactive element is embedded in a static single or multi-focal lens. Electroactive lenses can have better visual performance and have a small profile factor. SUMMARY OF THE INVENTION In an exemplary embodiment, 'having a prototype light first lens assembly, the first lens assembly includes a second surface on a side of the first surface first lens assembly opposite the first surface surface. The prototype optical device further includes a second lens assembly, the second lens comprising a flexible member, at least a portion of the second lens assembly being adhered to the surface of the beta. The flexible element of the second lens assembly includes a first region variably facing the first surface and away from the first surface in response to a change in pressure applied to at least a portion of the first region Moving 'by dynamically adjusting the optical power of the exiting optical device relative to the optical path through the first region and the first surface, and the prototype optical device is configured to cause at least a portion of the second surface Permanently changing to permanently define an optical power of the first lens at at least the second region of the first surface to be optically aligned with the first region, thereby resulting in a prescription ophthalmic optical device . In another exemplary embodiment, there is a release optical device as described above and/or below, wherein the first lens assembly is an unfinished or half 157229.doc 201219842 finished lens blank. In another exemplary embodiment, there is a detachment optical device as described above and/or below, wherein the detaching optical device is configured to cause at least the portion of the second surface that is permanently changeable The permanently changeable 'four (three) three-zone can be transformed into a region of the prescription-level ophthalmic static incremental add power. In another exemplary embodiment, there is a release optical device as described above and/or below, wherein at least a portion of the second surface is via free formation, surface processing and/or polishing, and/or one of The combination can be permanently altered to permanently change the added power of the first lens at at least the second region of the second surface, thereby resulting in a prescription-grade ophthalmic optical device. In another exemplary embodiment, there is a release optical device as described above and/or below, wherein the first region is ballooned in response to pressure applied to at least a portion of the first region, thereby An optical power of the prototype optical device is dynamically adjusted relative to a light path through the first region and the first surface. In another exemplary embodiment, there is a prototype optical device as described above and/or below, wherein the prototype optical device further includes a channel associated with the first region variably movable A first space between the first surfaces is in fluid communication, the passage being configured to allow fluid to move through the passage, the fluid creating a pressure applied to at least a portion of the first region of the fracture. In another exemplary embodiment, there is a release optical device as described above and/or below, wherein the channel is configured such that a movement of a fluid into the first space through the channel increases to the first Pressure of at least a portion of a region to move the first region away from the first surface, and the channel is configured such that movement of the fluid away from the first void 157229.doc 201219842 is applied to the channel Pressure of at least a portion of the first region to move the first region toward the first surface. In another exemplary embodiment, there is a prototype optical device as described above and/or below, wherein the channel extends from at least one edge of the first lens assembly to the first region. In another exemplary embodiment, 'having a release optical device as described above and/or below, wherein the channel is non-adhered to the first surface by the first surface and the second lens assembly A surface definition. In another exemplary embodiment, there is a prototype optical device as described above and/or below, wherein an end of the channel remote from the first region is sealably sealed. In another embodiment, there is a prototype optical device as described above and/or below, wherein the prototype optical device is configured such that at least a portion of the second surface is permanently changeable to permanently define the first lens in At least one second region of the first surface corresponds to an optical power of a distance prescription of a spectacle wearer. In another embodiment, there is a release optical device as described above and/or below, wherein the prototype optical device is configured such that at least a portion of the second surface is permanently changeable to permanently define the first lens A positive optical power at at least a second region of the second surface. In another embodiment, there is a prototype optical device comprising: a first lens, and a member comprising a first surface and/or on a side of the first lens assembly opposite the first surface a second surface; and a second lens assembly including a flexible member, at least a portion of the second lens assembly being adhered to the first surface. The second lens assembly of the second lens assembly 157229.doc 201219842 includes a first region that is responsive to a change in pressure applied to at least a portion of the first region toward the first surface and away from the first The surface is variably moved whereby the optical power of the prototype optical device is dynamically adjusted relative to a light path through the first region and the first surface. The release optical device is configured such that at least a portion of an edge of the first lens assembly and optionally the second lens assembly can be permanently removed, thereby resulting in an ophthalmic optical device having a perimeter conforming to a spectacle frame . In another exemplary embodiment, there is a method of providing an optical device that includes obtaining a lens assembly, the lens assembly including a first lens assembly, the first lens assembly including a first surface and a second surface of the first lens assembly on a side opposite the first surface. The lens assembly obtained further includes a second lens assembly including a flexible member with at least a portion of the second lens assembly adhered to the first surface. The flexible element of the second lens assembly includes a first region variably responsive to a change in pressure applied to at least a portion of the first region toward the first surface and away from the first surface Moving, thereby dynamically adjusting an optical power of the lens assembly relative to a light path through the first region and the first surface. The method further includes determining a desired optical power of the optical device before and/or after obtaining the lens assembly, and 'permanently changing the second surface after obtaining the lens assembly to permanently define the first lens at the Optical power at at least a second region of the second surface, the second region being optically aligned with the first region to have a first added power less than a desired added power, wherein after changing the second surface, When the first region of the second lens assembly moves away from the first surface to a first position of 157229.doc 201219842, a cumulative added power relative to the optical paths of the first lens assembly and the second lens assembly Substantially equal to the desired added power. In another exemplary embodiment, there is a method of obtaining an optical device as described above and/or below, wherein after changing the second surface, when the second lens assembly is moved to substantially conform to When the first surface is supported on the first surface, a cumulative added power relative to the optical paths of the first lens assembly and the second lens assembly is substantially equal to the first added power. In another exemplary embodiment, there is a method of obtaining an optical device as described above and/or below, wherein the first position of the first region substantially corresponds to the first region moving away from the first surface One of the largest distances. In another exemplary embodiment, there is a method of obtaining an optical device as described above and/or below, wherein the lens assembly includes a fluid passage extending from at least one edge of the lens assembly to the The first area. In another exemplary embodiment, there is a method of obtaining an optical device as described above and/or below wherein the fluid channel is unbonded to the first surface and the second lens assembly A surface definition of the first surface. In another exemplary embodiment, there is a method of obtaining an optical device as described above and/or below, wherein an end of the channel remote from the first region is sealably sealed, the method further comprising The end of the channel that is remote from the first region is opened after the second surface is changed. In another exemplary embodiment, there is a method of obtaining an optical device as described above and/or below, the method further comprising, prior to changing the second surface, the end of the channel remote from the first region Sealed and the end of the channel remote from the first region is opened after the second surface is changed at 157229.doc 10·201219842. In another exemplary embodiment, there is a method of obtaining an optical device as described above and/or below, which further includes assembling the resulting modified lens assembly to a pair of glasses after changing the second surface In the frame. In another exemplary embodiment, there is a method of obtaining an optical device as described above and/or below, further comprising assembling the resulting modified lens assembly to include one after changing the second surface A lens frame of the fluid channel, and the fluid channel of the lens assembly is placed in fluid communication with a fluid passage of the frame. In another exemplary embodiment, there is a method comprising providing a lens assembly. The lens assembly includes a first lens assembly, the first lens assembly including a first surface and the first lens assembly a second surface on a side opposite the first surface. The lens assembly provided further includes a second lens assembly 'which includes a flexible member to which at least a portion of the second lens assembly is adhered. The flexible element of the second lens assembly includes a first region variably oriented toward and away from the first surface in response to a change in pressure applied to at least a portion of the first region Moving, thereby dynamically adjusting an optical power of the lens assembly relative to a light path through the first region and the first surface. The method further includes providing the first lens assembly to permanently define at least one of the first lens on the second surface before and/or after providing the lens assembly and/or providing the lens assembly An optical power-mode change at the second region (one finger*, the second region is aligned with the first region 157229.doc • 11 · 201219842. In another exemplary embodiment, having the above And/or a method as described hereinafter, wherein the lens assembly includes a fluid passage extending from at least an edge of the lens assembly to the first region.

性實施例申,具有如卜守芬/ + T 韦如上文及/或下文所描述的一方法,其 中該流體通道係藉由句笛 主: 退竹猎由該第一表面及該第二鏡片組件的未經 黏著至該第一表面的一身 ^ 表面疋義。在另一例示性實施例 中、’具有如上文及/或下文所描述的—方法其中該通道 的遠離該第一區域的—末端經可開封地密封。 在另-例示性實施射,具有—光學裝置,其包括:一 低添加功率漸進添加鏡片,其包含一第一曲率半徑,提供 -漸進添加功率至一最大第一添加功率;一隔膜,其㈣ 該低添加功率漸進添加鏡片之一第一表面上,包含一可膨 脹部分,該可膨脹部分可從其中該可膨脹部分具有一第二 曲率半徑的一第—狀態膨脹至其中該可膨脹部分具有一第 二曲率半徑的-第二狀態;及一流體系統,其經組態以使 該可膨脹部分從該第-狀態膨服至該第r狀態及使該可膨 脹部分從該第二狀態收縮至該第一狀態,其中該第二曲率 半徑實質上對應於該第一曲率半徑,使得當該可膨脹部分 在該第一狀態中時,該可膨脹部分及該低添加功率漸進添 加鏡片的一最大累積添加功率約等於該第一添加功率,其 中S亥第三曲率半徑不同於該第一曲率半徑,使得當該可膨 脹部分在該第二狀態中時,該可膨脹部分及該低添加功率 漸進添加鏡片之最大累積添加功率等於該第一添加功率加 上一第二添加功率。在一例示性實施例中,具有如上文及/ 157229.doc -12- 201219842 或下文所詳細描述的一光學裝置’其中該流體系統經組態 以允許一流體移動進入及離開形成於該低添加功率漸進添 加鏡片與該可膨脹部分之間的一空間,以分別使該可膨脹 部分從該第一狀態膨脹至該第二狀態,及使該可膨脹部分 從該第二狀態收縮至該第一狀態。在一例示性實施例中, 具有如上文及/或下文詳細描述的一光學裝置,其中該流 體系統包括一流體通道’其從該低添加功率漸進添加鏡片 之至少一邊緣延伸至該可膨脹部分。在一例示性實施例 中’具有如上文及/或下文所詳細描述的一光學裝置,其 中該流體通道係藉由該低添加功率漸進添加鏡片之該第一 表面及該隔膜定義。 在一例示性實施例中,具有如上文及/或下文所詳細描 述的'一光學裝置’其中該流體系統經組態以加熱該流體, 藉此使該流體膨脹,且因此使該可膨脹部分從該第一狀態 膨脹至該第二狀態,且該流體系統經組態以冷卻該流體, 籍此使該流體收縮’且因此使該可膨脹部分從該第二狀態 收縮至該第一狀態。 在一例示性實施例中’具有眼鏡,其包括如上文及/或 下文所詳細描述的一光學裝置及一眼鏡框架。在一例示性 實施例中’具有如上文及/或下文所描述的目艮鏡,其進一 步包括一控制器,其中控制總成經組態以自動控制該流體 系統,藉此控制該可膨脹部分的膨脹及收縮。在一例示性 實施例中’具有如上文及/或下文所描述的眼鏡,其進一 步包括一微型泵致動器,其經組態以將流體泵送進入位於 157229.doc •13· 201219842 該低添加功率漸進添加鏡片與該隔膜之間的一空間中’以 使該隔膜之該可膨脹部分膨脹。 在一例示性實施例中,具有如上文及/或下文所描述的 眼鏡’其進一步包括一感測器,該感測器經組態以感測眼 鏡的一方向,其中該感測器與該控制器信號通信,其中該 控制器經組態以控制該流體系統,以在從該感測器接收指 示該眼鏡係以指示該眼鏡的佩戴者正執行一近點視覺任務 之一方向而定向的一信號時使該可膨脹部分膨脹至該第二 狀態。在一例示性實施例中,具有如上文及/或下文所描 述的眼鏡’其中該感測器包括一傾斜開關或一加速計之至 少一者。 在另一例示性實施例中,具有一種包括一動態光學鏡片 之器件及/或裝置。一第一裝置包含具有一第一表面及一 第二表面的一第一鏡片組件。該第一裝置進一步包含一第 二鏡片組件,其包括一可撓性元件。該第一裝置亦包含一 流體其可施加於該第一鏡片組件之至少一部分與該第二 鏡片組件之至少一部分之間。該第二鏡片組件之該可撓性 元件包括-第一區域。當在該第一鏡片組件之該第一表面 與該第-區域之間之流體的一量足夠少時,該第一區域使 得其符合於該第一鏡片組件之該第一表面。當在該第一鏡 片組件之該第-表面與該第二鏡片組件之間之流體的一量 足夠多時,該第一區域亦並不符合於該第一鏡片組件之該 第一表面。 在-些實施例中,在上文描述之該第一裝置中,該可撓 157229.doc -14- 201219842 性元件包括-第二區域。當在該可撓性元件之該第一區域 與該第一表面之間之流體足夠少時,該第二鏡片組件之該 可撓性元件之該第一區域可符合於該第一鏡片組件之該第 一表面,而同時當在該第二區域與該第一表面之間之^體 足夠多時,該可撓性元件之該第二區域並不符合於該第一 鏡片組件之該第一表面。在一些實施例中,該第—裝置包 含一儲液器,其可容納不位於該第一鏡片組件與該第二鏡 片。組件之間之流體。在—些實施例中,該流體可由—致動 器施加於該第一鏡片組件與該第二鏡片組件之間。 在一些實施例中,在上文描述之該第一裝置中,該第一 表面進一步包括一第一光學特徵部。較佳地,當在該第一 光學特徵部與該可撓性元件之間之流體的一量足夠少時, 該第一裝置之該可撓性元件之該第一區域符合於該第一光 學特徵π。較佳地,當該第一光學特徵部與該可撓性元件 之該第一區域之間之流體的一量足夠乡_,該第一裝置之 =可撓性元件之該第一區域並不符合於該第一光學特徵 邛。在一些實施例中,該光學特徵部可包括以下之任意 者’或以下之某一組合:一漸進光學功率區域;一雙焦鏡 片,—焦鏡片,-多焦區域;_非球形光學特徵部;一 非球形區域·…旋㈣稱光學特徵部;及—非旋轉對稱光 學特徵部。 在一實施例中,如上文所描述之該第一裝置進一步包 a第冑態光學功率區域。在其中該第一鏡片組件之該 第-表面包含-光學特徵部,且該第—裝置包含—第一動 157229.doc -15- 201219842 態光學功率區域之一 似於Μ > Μ 錢例中流體可具有實質上類 件之折射率的一折射率。較佳地,當該 第光學特徵部與該可撓性元件之今第一 ^ 千之該第一區域之間之該流 °夕時,該流體之折射率使得該第一 部不貢獻㈣第-㈣'光學功㈣域。 先學特徵 在一些實施例中,如上文 鏡片組件之該第一表面定義:之:第一裝置之該第-t , 表面疋義一第一光學功率光闌(power stop)。較佳地,該第一 率。較佳地…率光鬧定義一近視光學功 部之fΑ 兄片組件包括一第一光學特徵 β 1田該第一光學特徵部與該可撓性元件之該 第一區域之間之該流體足夠 U丄 列夕時a亥第一動態光學功率區 域由該第一光學特徵部定義。 在其中上文描述之該第—鞋番h人 咕 區域之-…… 第一動態光學功率 域之二貫施例令,該第一動態光學功率區域係可調错 的。較佳地’當該第-光學特徵部與可撓性元件之該第— 區域之間之流體的-量足夠少時,該動態光學功率 該第一光學功率光閣定義。隨著該第一光學特徵部與該可 撓性元件之該第-區域之間之流體的量增加,該動態光學 功率區域從該第一光學功率光闌處調諧離開。 在其中上文描述之該第—驻罢 …第裝置包含-第-動態光學功率 Q域之一些貫施例中,在該第一鏡片組件與該第二鏡片兔 件之該可撓性元件之該第一區域之間之流體的體積的減小 可增加該動態光學功率區域之一正光學功率。在_些實施 例中,在該第一鏡片組件與該第二鏡片組件之該可挽性元 157229.doc 201219842 件之該第一區域之間之流體的體積的減小可減小該動態光 學功率區域之一正光學功率。 在一些實施例中,在如上文所描述之該第一裝置中,該 第二鏡片組件之至少一部分之形狀係可基於該第一鏡片組 件與該第二鏡片組件之間之流體的量而調整。較佳地,該 第二鏡片組件包括一可撓性隔膜。較佳地,該可撓性隔膜 包括雙轴定向之聚對苯二甲酸乙二醇酯(可依Mylar商標名 購得)或胺基甲酸酯。在一些實施例中,在如上文所描述 之該第一裝置中,該第二鏡片組件之至少一部分係可伸長 的。在一些實施例中,該第二鏡片組件或其之一區域係半 透明的。在一些實施例中,該第二鏡片組件或其之一區域 係透明的。較佳地,第二鏡片元件,或其之一區域透射入 射於一表面的光波之至少85Q/c^更佳地,第二鏡片元件或 其之一區域透射入射於一表面之光波的至少9〇%。 在一些實施例中,在如上文所描述之該第一裝置中,該 第一鏡片組件具有一第一折射率,該第二鏡片組件具有一 第二折射率,且該流體具有一第三折射率。在一些實施例 中,該第一折射率與該第二折射率實質上相同。在一些實 施例中,該第一折射率與第三折射率實質上相同。在一些 實施例中,該第-、該第二及該第三折射率實質上相同。 在-些實施例中,如上文所描述之該第—裝置包含具有 一第一表面及一第二表面的一第三鏡片組件。較佳地,該 第-鏡片組件及該第三鏡片组件經定位使得在該第一鏡片 組件之該第-表面與該第三鏡片組件之該第一表面之間存 157229.doc -17· 201219842 在-間隙。較佳地’當該流體的一量實質上填充該第一鏡 片組件之至少一部分與該第三鏡片組件之至少一部分之間 之間隙時’該第二鏡片組件之至少_部分符合於該第三鏡 片組件之該第-表面之至少一部分。在一些實施例中,該 第三鏡片組件之該第一表面定義一第二光學功率光蘭。在 二實施例中,該第二光學功率光闌係用於一遠視光學功 率〇 本文中描述之實施例允許包括—流體的—動態鏡片解決 上文描述之-些或所有不足。實施例可利用一流體,其可 添加(例如施加)於-第_與—第二鏡片組件之間或自其移 除。該第-鏡片組件可包括具有定義—光學功率之一外部 曲率的—第—表面。該光學功率可具有任意值’包含正 值負值及零值。該第二鏡片組件可包括具有至少一第一 2域的—可撓性元件(例如—隔膜),當該第-表面與該可 =70件之該第一區域之間之流體足夠少時,該第一區域 符s於該第一鏡片組件之外部曲率。 當從第-鏡片組件與可撓性元件之第_區域之間實質上 移除該流體時,該可繞性元件之該第—區域虚 組件接觸及/或符合於唁# /、 ’兄片 丁口 Μ第一鏡片組件之外部曲率 1生時,動態鏡片(或其之-區域)之光學功率可由梦第一 鏡片組件之外部表面之曲 "第 不重要,此係因其實;上曲=即,任何餘留的流體並 並不貝獻於動態光學功率區域, 且該可換性元件之該第—區域實f上符合 = 羊相间的曲率。亦可使用一折射率匹配 157229.doc 201219842 的流體’使得當該第一鏡片組件與該第二鏡片組件之間之 門隙中的流體量足夠多時,在該第一表面上的任何光學特 徵部並不貢獻於該鏡片之光學功率。 因此,雖然包括一流體,實施例可利用該第一鏡片組件 (其可能包含或可能不包含一光學特徵部或多個特徵部)之 外部曲率,而非增加鏡片中之流體的體積,以添加正(加) 光學功率及/或定義近視所需要的光學功率。此外,此外 部曲率可用作—曲率模板,其支配動態鏡片之正(加)光學 功率之動態增加。 【實施方式】 本發明之實施例提供一器件或裝置,其包括一動態鏡 片。本文中描述之一動態鏡片之實施例可利用與多種其他 光學組件組合的—流體,該等光學組件包含ϋ定或剛性光 學組件及—可撓性元件(例如,-可撓性隔膜),以提供使 該鏡片可靠及精確地獲得多重光學功率的能力。該裝置之 實施例可藉此提供傳統動態鏡片m點(例如,對於 -單-鏡片允許多重光學功率),同時提供固定鏡片之一 些優點(例如,允許容易地達成一期望光學功率,且簡單 地製造處方鏡片)。 在此使用之一些術語在下文中 π r又τ以進一步細節描述: 添加功率:對於以一多 夕焦鏡片π晰近距離觀看所需的添 加至遠距離觀看光學功率的光學 妁尤予力率。例如,若一個人具 有-3.00D的一遠距離觀看處 处乃夂用於近距離觀看的一 + 2.00D添加功率,則容隹私 午貝】夕焦鏡片之近距離部分中的實際光學 157229.doc •19- 201219842 功率係-1.00D。添加功率有時稱為正功率。可藉由參考 「近觀看距離添加功率」(其指鏡片之近觀看距離部分中 的添加功率)及「中間觀看距離添加功率」(其指鏡片之中 間觀看距離部分中的添加功率)而進一步區別添加功率。 通常,中間觀看距離添加功率係近觀看距離添加功率的約 50/〇。因此,在上文的實例中,個人對於中間距離觀看具 有+1.00D的添加功率’且在多焦鏡片之中間觀看距離部分 中的實際總光學功率係-2.00D。 約.加上或減去10%(含)。因此,片語「約1〇 mm」可 理解為意味著從9 mm(含)至π mm(含)。 推合區帶(biend z〇ne) ··沿著一鏡月之一周邊邊緣的一光 學功率過渡’藉此光學功率從―第―駐功率跨該播合區 帶連續地過渡至-第二續正功率,或反之亦然。該推合區 帶-般經設計以具有儘可能小的一寬纟。一動態光學器件 的周邊邊緣可包含-摻合區帶,以便減小該動態光學器 件的可見度。-摻合區帶係出於增強外觀原因而利用且亦 於其較高的非預期之散光,通 的一可使用部分。一摻合區帶 利用以增強視覺功能性。由 常不將一摻合區帶視為鏡片 亦稱為一過渡區帶。 等高線圖:從量測及繪製一漸進添加鏡片之非預期散光 光學功率而產生的圖。f高線圖可產生為具有多種散光光 干功率靈敏性’因此提供_漸進添加鏡片在何處擁有非預 期散光且至何種程度的一視覺圖片,作為其光學設計的一 部分。此等圖的分析通常用於量化—隱的通道長度、通 157229.doc •20· 201219842 道寬度、讀取寬度及遠距離寬度。等高線圖亦可稱為非預 期散光功率圖。此等圖亦可用於量測及描繪鏡片之多種部 分中的光學功率》 習知通道長度:由於眼鏡樣式中的審美考慮或趨勢,可 期望具有垂直透視縮短的一鏡片。在此一鏡片中,通道自 然亦係較短的。習知通道長度指在一非透視縮短PAL鏡片 中一通道的長度》此等通道長度通常為(但並不總是)約15 mm或更長。一般而言’一較長的通道長度意味著一較寬 的通道寬度及較少的非預期散光。較長的通道設計通常與 厂柔性」漸進關聯,此係因為在遠距離橋正與近距離矯正 之間的過渡由於光學功率的逐漸增加而較柔和。 動態鏡片:具有可隨電能、機械能或力的施加而改變的 一光學功率之一鏡片。整個鏡片可具有一可改變光學功 率或僅鏡片的一部分、區域或區帶可具有一可改變光學 功率。此一鏡片的光學功率係動態或可調的,使得光學功 率可在兩個或更多個光學功率之間切換。切換可包括從一 光學功率至另一光學功率的一離散變化(諸如從一「關 閉」或非作用狀態至一「開啟」或作用狀態)或其可包括 從-第-光學功率至-第二光學功率的連續變化,諸如藉 由改變至-動態it件之電能0量。㈣光學功率之一者可 為實質上沒有光學功率。動態鏡片的實例包含電活性鏡 片、彎月形鏡片、流體鏡片、具有—個或多個組件的可移 動動態光學器件、玻璃鏡片及具有 』I心的—構件的隔膜 鏡片。-動態鏡片亦可稱為一動態光學器件、—動態光學 157229.doc •21· 201219842 疋件、一動態光學區帶、動態功率區帶或一動態光學區 域。 °。 遠距離參考點:位於可容易地量測鏡片之遠距離處方或 遠距離光學功率的裝配交點上方約3 mm至4 mm的一參 點。 遠距離觀看區帶:一鏡片之部分,其含有允許_使用者 以一遠視距離正確地觀看的一光學功率。 遠距離寬度:在鏡片之遠距離觀看部分内的最窄水平寬 度,其以佩戴者之遠距離觀看光學功率矯正之〇25d内的 一光學功率提供清晰的、通常為面部失真矯正。 遠視距離:當超越桌子邊緣觀看、當開車、當觀看遠處 的山或當觀看電影時(僅舉例而言)一人觀看的距離。此距 離通常(但並不總是)考慮為離眼睛約32英寸或更大,該遠 視距離亦可稱為一遠距離及一遠距離點。 < 裝配交點/裝配點:在一 PAL上的__參考點,其代表在將 鏡片安裝於一眼鏡框帛中且位於佩戴者面部上_,當透過 該鏡片冑直向前看時佩戴者之瞳孔的大致位置。震配交點/ 裝配點通常(但不總是)位於通道起始處垂直上方2 mm至5 麵處。裝配交點通常具有範圍從正好超過+。·。。屈光度至 約+0.12屈光度之一極微量的正光學功率。此點或交^標 記於鏡片表面上,使得其可提供一簡單的參考點,用於量 測及/或再次檢查鏡片相對於佩戴者之瞳孔的裝配。在將 鏡片配給患者/佩戴者時很容易移除該標記。 硬性漸進添加鏡片:在遠距離矯正與近距離場正之間具 I57229.doc •22· 201219842 有一逐漸性較小的較急劇過渡的一漸進添加鏡片。在一硬 性PAL中,非預期之失真可在裝配點下方,且並不展延至 鏡片的周邊。一硬性PAL亦可具有一較短的通道長度及一 較窄的通道寬度…「改進硬性漸進添加鏡片」係一硬性 PAL,其經改進以具有一柔性PAL的有限數目的特性,諸 如一更具逐漸性的光學功率過渡、一更長通道、一更寬通 道,展延至鏡片肖邊中的更多之非預期散光,及裝配點下 方更少的非預期散光。 中間距離觀看區帶:-鏡片之部分,其含有允許一使用 者以一中間觀看距離正確地觀看的一光學功率。 中間觀看距離:當閱讀報紙,當在電腦前工作,當在水 槽中洗碗或當烫平衣服時(僅舉例而言)一人觀看的距離。 此距離通常(但不總是)考慮為離眼睛約16英寸與約32英寸 之間。該中間觀看距離亦可稱為j間距離及—中間距離 〇 鏡片.致使光會聚或發散的任何器件或一器件的部分。 該器件可為靜態的或動態的。—鏡片可為折射性或繞射 性。-鏡片可在-表面或兩個表面上為凹入、凸起或平面 的。一鏡片可為球形、圓柱形、稜鏡或其等之一組合。一 鏡片可由光學玻璃、_或樹脂製成…鏡片亦可稱為一 光學元件、-光學區帶、一光學區域、一光學功率區域或 -光學器件。應指在光學工業中,即使一鏡片具有零 光學功率其亦可稱為一鏡片。 鏡片毛述·由可塑形為一鏡片的光學材料製成的一器 157229.doc •23- 201219842 件。-鏡片毛坯可為完成的’其意味著該鏡片毛坯經塑形 以在兩個外部表面上具有一光學功率。一鏡片毛坯可為半 成品,其意味著該鏡片毛g經塑形以僅在_外部表面上具 有-光學功率…鏡片毛堪可為未完成的,其意味著該鏡 片毛坯未經塑形以在任一外部表面上具有一光學功率。一 未完成或半成品鏡片毛迷的―表面可藉由稱為自由形成的 一製程或藉由更傳統的表面加工及拋光而完成。 低添加功率隱:具有比佩戴者以一近距離清晰觀看所 需更小的近添加功率之一漸進添加鏡片。 多焦鏡:具有多於-個焦點或光學功率的—鏡片。此 等鏡片可為靜態或動態的。靜態多焦鏡片的實例包含—雙 焦鏡片、三焦鏡片或一漸進添加鏡片。動態多焦鏡片之實 例包含電活性鏡片,藉此取決於所❹的電極類型、施加 至該等電極的電壓及在-薄層液晶内改變的折射率,可在 鏡片中建立多種光學功率。多焦鏡片亦可為靜^態的 -組合。例如,-電活性元件可與—靜態球形鏡片、靜態 皁視鏡片、靜態多焦鏡片諸如(僅舉例而言)—漸進添加鏡 片光學連通而使用。在大多數(但非全部)情況中,多焦鏡 片係折射性鏡片。 近距離觀看區帶:一鏡片之部分 1刀 其含有允許一使用者 以一近視距離正確地觀看的—光學功率。 近視距離:當看書時、當穿針引 町〗丨綠時或當閱讀藥瓶上的 說明時(僅舉例而言)一人觀看的 曰 今耵跑離。此距離通常(但並非 、-息疋)考慮為在離眼睛約12英寸與的,Λ 好^ 16央寸之間。該近視 157229.doc •24- 201219842 距離亦可稱為一近距離及一近距離點。 辦公用鏡片/辦公用PAL : —特殊設計的漸進添加鏡片, 其在裝配交點上方提供中間距離視力,提供—較寬的通道 寬度及亦提供一較寬的閱讀寬度。此係藉由—光學設計而 完成’該光學設計使非預期之散光展延於裝配交點上,且 其用主要為中間距離的視力區帶代替遠距離視力區帶。由 於此等特徵’此類型之PAL非常適於案頭工作,但因為該 鏡片未含有遠距離觀看區域,吾人不可開車或用其在辦公 室或家中走動。 眼科鏡片:適用於視力矯正的一鏡片,其包含一護目鏡 鏡片、一隱形鏡片、一眼内鏡片、一角膜鑲嵌體及一角臈 覆蓋體。 光學連通.給定光學功率的兩個或更多個光學器件以一 方式對準使得通過該等對準光學器件的光經歷等於個別元 件之光學功率總和的一組合光學功率的條件。 光學功率光闌:用作為一「光闌」或邊界之一鏡片組件 或表面,其將不允許超過一期望光學功率,或在一最小光 學功率之情況中,該光學光闌將防止光學功率低於該值。 即’在一動態鏡片中,光學功率光闌可定義正(或負)光學 功率之最大量或最小量。此可包括一剛性鏡片組件或其之 :表面。如在本文中使用,術語「曲率模板」指一可撓性 =件(例如,一隔膜)可符合的一鏡片組件之一表面的一曲 率。此曲率可定義一光學功率光闌,且因此提供一光學功 率所需要的精確曲率。 157229.d〇c -25· 201219842 圖案化電極:利用於一電活性鏡片中的電極,使得隨著 對该等電極施加適當電壓,由液晶建立的光學功率繞射性 建立而無關於該等電極之大小、形狀及配置。例如, 可藉由使用同心環形電極在液晶内動態地產生—繞射光學 效應。 像素化電極:利用於一電活性鏡片中可個別地定址的電 極,而無關於電極的大小、形狀及配置。此外,因為該等 電極可個別地定址’任意圖案的電壓可施加至該等電極。 像素化電極可為配置成一笛卡爾(cartesian)陣列的 正方形或矩形,或配置成一六邊形陣列的六邊形。像素化 電極不必為適合於一柵格的規則形狀。例如,像素化電極 可為同心環’前提是每-環可個別定址。同心、像素化電極 可個別地定址以建立一繞射光學效應。 漸進添加式區域:一鏡片的一區域,在該區域的一第— 部分中具有-第—光學功率,及在該區域之—第二部分令 具有-第二光學功率’丨中在其等之間存在光學功率上的 一連續變化。例如,-鏡片之—區域可在該區域的一末端 處具有一遠視距離光學功率。光學功率可跨該區域在正功 率上連續增加至-中間觀看距離光學功率,且接著在該區 域的相對末端處增加至一近視距離光學功率。在光學功率 達到-近視距離光學功率之後,該光學功率可以使得此漸 進添加式區域之光學功率過渡返回至遠視距離光學功率的 -方式減小…漸進添加式區域可在_鏡片的一表面上, 或嵌入-鏡片中。當-漸進添加式區域在表面上且包括一 I57229.doc -26 - 201219842 表面拓撲時,稱其為一漸進添加式表面β 閱讀寬度:在鏡片之近距離觀看部分内的最窄水平寬 度’其以佩戴者之近距離觀看光學功率矯正的〇.25D内的 一光學功率提供清晰的、通常無失真的矯正。 短通道長度:由於眼鏡樣式中的審美考慮或趨勢,可期 望具有垂直透視縮短的一鏡片。在此一鏡片中,通道自然 亦係較短的。短通道長度指在一透視縮短pAL鏡片中的一 通道的長度。此等通道長度通常(但不總是)在約u瓜瓜與 約15 mm之間。一般而言,一較短的通道長度意味著—較 窄的通道寬度及較多非預期散光。較短的通道設計通常與 「硬性」漸進關聯,此係因為在遠距離矯正與近距離矯正 之間的過渡由於光學功率上的較急劇增加而較具硬性。 柔性漸進添加鏡片:在遠距離矯正與近距離矯正之間具The embodiment has a method as described above and/or described below, wherein the fluid channel is by the whistle: the first surface and the second lens assembly A surface that has not been adhered to the first surface has a surface defect. In another exemplary embodiment, 'having the method as described above and/or below, wherein the end of the channel remote from the first region is hermetically sealed. In another exemplary embodiment, there is an optical device comprising: a low added power progressive addition lens comprising a first radius of curvature providing a progressive addition power to a maximum first added power; a diaphragm, (iv) The first surface of the low added power progressive addition lens includes an expandable portion expandable from a first state in which the expandable portion has a second radius of curvature to wherein the expandable portion has a second radius of curvature - a second state; and a fluid system configured to expand the expandable portion from the first state to the rth state and to contract the expandable portion from the second state Up to the first state, wherein the second radius of curvature substantially corresponds to the first radius of curvature such that when the expandable portion is in the first state, the expandable portion and the low added power progressively add one of the lenses The maximum cumulative added power is approximately equal to the first added power, wherein the third radius of curvature is different from the first radius of curvature such that when the expandable portion is in the second state The maximum cumulative power of the expandable portion and the low added power progressive addition lens is equal to the first added power plus a second added power. In an exemplary embodiment, having an optical device as described above and/or 157229.doc -12-201219842 or as described in detail below, wherein the fluid system is configured to allow a fluid to move into and out of the low addition The power progressively adds a space between the lens and the expandable portion to respectively expand the expandable portion from the first state to the second state, and to contract the expandable portion from the second state to the first state status. In an exemplary embodiment, there is an optical device as described above and/or in detail below, wherein the fluid system includes a fluid channel that extends from at least one edge of the low added power progressive addition lens to the expandable portion . In an exemplary embodiment, ' has an optical device as described in detail above and/or below, wherein the fluid channel is defined by the first surface of the progressive addition lens and the diaphragm by the low added power. In an exemplary embodiment, having an 'one optical device' as described above and/or in the following, wherein the fluid system is configured to heat the fluid, thereby expanding the fluid, and thus the expandable portion Expanding from the first state to the second state, and the fluid system is configured to cool the fluid, thereby causing the fluid to contract 'and thereby contracting the expandable portion from the second state to the first state. In an exemplary embodiment, there is a lens comprising an optical device and a spectacle frame as described above and/or below. In an exemplary embodiment, 'having a mirror as described above and/or below, further comprising a controller, wherein the control assembly is configured to automatically control the fluid system, thereby controlling the expandable portion Expansion and contraction. In an exemplary embodiment, 'the spectacles as described above and/or below, further comprising a micropump actuator configured to pump fluid into the 157229.doc •13·201219842 the low The addition of power progressively adds a space between the lens and the membrane to expand the expandable portion of the membrane. In an exemplary embodiment, there is a spectacles as described above and/or below which further includes a sensor configured to sense a direction of the spectacles, wherein the sensor is Controller signal communication, wherein the controller is configured to control the fluid system to be oriented upon receiving a direction from the sensor indicating that the pair of glasses is indicating that the wearer of the glasses is performing a near-point vision task The swellable portion expands to the second state upon a signal. In an exemplary embodiment, there are glasses as described above and/or below wherein the sensor comprises at least one of a tilt switch or an accelerometer. In another exemplary embodiment, there is a device and/or device that includes a dynamic optical lens. A first device includes a first lens assembly having a first surface and a second surface. The first device further includes a second lens assembly including a flexible member. The first device also includes a fluid that can be applied between at least a portion of the first lens assembly and at least a portion of the second lens assembly. The flexible element of the second lens assembly includes a first region. The first region conforms to the first surface of the first lens assembly when an amount of fluid between the first surface of the first lens assembly and the first region is sufficiently small. The first region also does not conform to the first surface of the first lens assembly when an amount of fluid between the first surface of the first lens assembly and the second lens assembly is sufficient. In some embodiments, in the first device described above, the flexible 157229.doc -14 - 201219842 sexual element comprises - a second region. The first region of the flexible member of the second lens assembly can conform to the first lens assembly when fluid between the first region of the flexible member and the first surface is sufficiently small The first surface, and at the same time, when the body between the second region and the first surface is sufficiently large, the second region of the flexible member does not conform to the first of the first lens assembly surface. In some embodiments, the first device includes a reservoir that can accommodate the first lens assembly and the second lens. The fluid between the components. In some embodiments, the fluid can be applied between the first lens component and the second lens component by an actuator. In some embodiments, in the first device described above, the first surface further includes a first optical feature. Preferably, when the amount of fluid between the first optical feature and the flexible element is sufficiently small, the first region of the flexible element of the first device conforms to the first optical Characteristic π. Preferably, when the amount of fluid between the first optical feature and the first region of the flexible element is sufficient, the first device = the first region of the flexible element is not Compliance with the first optical characteristic 邛. In some embodiments, the optical feature can comprise any one of the following or a combination of: a progressive optical power region; a bifocal lens, a focal lens, a multifocal region; a non-spherical optical feature ; an aspherical area · ... (4) called optical features; and - non-rotationally symmetric optical features. In an embodiment, the first device further includes a second optical power region as described above. The first surface of the first lens assembly includes an optical feature, and the first device includes - one of the first dynamic 157229.doc -15 - 201219842 optical power regions is similar to Μ > The fluid can have a refractive index that is substantially the refractive index of the member. Preferably, when the first optical characteristic portion and the first region of the first flexible element of the flexible element are in the flow, the refractive index of the fluid is such that the first portion does not contribute (four) - (iv) 'Optical work (four) domain. Pre-learning feature In some embodiments, the first surface of the lens assembly is as defined above: the first-t of the first device, the surface is a first optical power stop. Preferably, the first rate. Preferably, the rate of ambiguity defines a myopic optical component that includes a first optical feature β 1 and the fluid between the first optical feature and the first region of the flexible component is sufficient The first dynamic optical power region is defined by the first optical characteristic portion. In the first embodiment of the first dynamic optical power domain, the first dynamic optical power region is erroneous. Preferably, the dynamic optical power is defined by the first optical power when the amount of fluid between the first optical feature and the first region of the flexible member is sufficiently small. As the amount of fluid between the first optical feature and the first region of the flexible element increases, the dynamic optical power region is tuned away from the first optical power stop. In some embodiments in which the first apparatus described above includes a first dynamic optical power Q domain, the flexible component of the first lens component and the second lens rabbit component A decrease in the volume of the fluid between the first regions increases the positive optical power of one of the dynamic optical power regions. In some embodiments, a reduction in volume of fluid between the first lens component and the first region of the second lens component of the ligament element 157229.doc 201219842 may reduce the dynamic optics One of the power regions is positive optical power. In some embodiments, in the first device as described above, the shape of at least a portion of the second lens assembly is adjustable based on the amount of fluid between the first lens assembly and the second lens assembly. . Preferably, the second lens assembly comprises a flexible membrane. Preferably, the flexible membrane comprises biaxially oriented polyethylene terephthalate (available under the trade name Mylar) or a urethane. In some embodiments, in the first device as described above, at least a portion of the second lens assembly is extensible. In some embodiments, the second lens component or one of its regions is translucent. In some embodiments, the second lens component or one of its regions is transparent. Preferably, the second lens element, or a region thereof, transmits at least 85Q/c^ of the light wave incident on a surface, and the second lens element or a region thereof transmits at least 9 of the light waves incident on a surface 〇%. In some embodiments, in the first device as described above, the first lens assembly has a first index of refraction, the second lens assembly has a second index of refraction, and the fluid has a third index of refraction rate. In some embodiments, the first index of refraction is substantially the same as the second index of refraction. In some embodiments, the first index of refraction is substantially the same as the third index of refraction. In some embodiments, the first, second, and third refractive indices are substantially the same. In some embodiments, the first device as described above includes a third lens assembly having a first surface and a second surface. Preferably, the first lens assembly and the third lens assembly are positioned such that between the first surface of the first lens assembly and the first surface of the third lens assembly 157229.doc -17· 201219842 In- gap. Preferably 'when an amount of the fluid substantially fills a gap between at least a portion of the first lens component and at least a portion of the third lens component, at least a portion of the second lens component conforms to the third At least a portion of the first surface of the lens assembly. In some embodiments, the first surface of the third lens assembly defines a second optical power light blue. In a second embodiment, the second optical power diaphragm is used for a far vision optical power. The embodiments described herein allow for the inclusion of a fluid-dynamic lens to address some or all of the deficiencies described above. Embodiments may utilize a fluid that may be added (e.g., applied) between or removed from the -th and - second lens assemblies. The first lens assembly can include a first surface having a defined external curvature of optical power. The optical power can have any value 'containing a positive negative value and a zero value. The second lens assembly can include a flexible member (eg, a diaphragm) having at least a first 2 domain, when the fluid between the first surface and the first region of the 70 member is sufficiently small, The first region symbol s is external to the curvature of the first lens assembly. When the fluid is substantially removed from between the first lens assembly and the first region of the flexible member, the first region virtual component of the flexible member contacts and/or conforms to 唁# /, ' When the external curvature of the first lens assembly of Dingkouyu is born, the optical power of the dynamic lens (or its region) can be changed from the outer surface of the first lens component to the first part of the lens. = that is, any remaining fluid is not present in the dynamic optical power region, and the first region of the interchangeable element conforms to the curvature of the sheep phase. A refractive index matching 157229.doc 201219842 fluid can also be used such that when the amount of fluid in the gate gap between the first lens component and the second lens component is sufficient, any optical features on the first surface The part does not contribute to the optical power of the lens. Thus, while including a fluid, embodiments may utilize the external curvature of the first lens assembly (which may or may not include an optical feature or features) rather than increasing the volume of fluid in the lens to add Positive (plus) optical power and / or optical power required to define myopia. In addition, the additional curvature can be used as a template of curvature that governs the dynamic increase in positive (plus) optical power of the dynamic lens. [Embodiment] Embodiments of the present invention provide a device or device that includes a dynamic lens. One embodiment of a dynamic lens described herein may utilize a fluid that is combined with a variety of other optical components, including a sturdy or rigid optical component and a flexible component (eg, a flexible diaphragm) to Provides the ability to reliably and accurately obtain multiple optical powers for the lens. Embodiments of the device may thereby provide a conventional dynamic lens m-point (e.g., for a single-lens to allow multiple optical powers) while providing some of the advantages of a fixed lens (e.g., allowing a desired optical power to be easily achieved, and simply Manufacture prescription lenses). Some of the terms used herein are π r and τ are described in further detail below: Adding Power: The optical power ratio required to view the optical power at a distance for viewing at a close distance of a multi-element lens. For example, if a person has a distance of -3.00D for viewing at a distance of + + 2.00D for close-up viewing, then the actual optical 157229 in the close-range portion of the octagonal lens. Doc •19- 201219842 Power System -1.00D. Adding power is sometimes referred to as positive power. It can be further distinguished by referring to "adding power in the near viewing distance" (which refers to the added power in the near viewing distance portion of the lens) and "adding power in the intermediate viewing distance" (which refers to the added power in the middle viewing distance portion of the lens). Add power. Typically, the intermediate viewing distance adds power to approximately 50/〇 of the added power of the near viewing distance. Thus, in the above example, the individual has an added power of +1.00 D for intermediate distance viewing and an actual total optical power of -2.00D in the distance portion in the middle of the multifocal lens. Add or subtract 10% (inclusive). Therefore, the phrase "about 1 mm" can be understood to mean from 9 mm (inclusive) to π mm (inclusive). Biend z〇ne · · an optical power transition along one of the peripheral edges of a mirror month 'by this optical power continuously transitions from the first to the resident power zone to the second - to the second Continue positive power, or vice versa. The push zone is designed to have as small a width as possible. The peripheral edge of a dynamic optical device can include a blending zone to reduce the visibility of the dynamic optical device. - The blend zone is utilized for enhanced appearance and also a higher undesired astigmatism, a usable portion of the pass. A blending zone is utilized to enhance visual functionality. A blend zone is often referred to as a lens and is also referred to as a transition zone. Contour map: A graph produced by measuring and plotting the unintended astigmatism optical power of a progressive addition lens. The f-line graph can be produced with a variety of astigmatic light dry power sensitivities' thus providing a visual picture of where the progressive addition lens has unpredicted astigmatism and to what extent as part of its optical design. The analysis of these graphs is typically used for quantification—the hidden channel length, the 157229.doc •20·201219842 track width, the read width, and the long distance width. Contour maps can also be referred to as unpredicted astigmatism power maps. These figures can also be used to measure and characterize optical power in various portions of the lens. Conventional channel length: Due to aesthetic considerations or trends in the style of the lens, a lens with a vertical perspective shortening can be desired. In this lens, the channel is naturally shorter. Conventional channel length refers to the length of a channel in a non-perspective shortened PAL lens. These channel lengths are typically (but not always) about 15 mm or longer. In general, a longer channel length means a wider channel width and less unwanted astigmatism. Longer channel designs are often progressively associated with plant flexibility because the transition between long-distance bridge and near-distance correction is softer due to the gradual increase in optical power. Dynamic lens: A lens that has an optical power that can change with the application of electrical energy, mechanical energy or force. The entire lens can have a changeable optical power or only a portion, region or zone of the lens can have a changeable optical power. The optical power of such a lens is dynamic or tunable such that optical power can be switched between two or more optical powers. The switching may include a discrete change from one optical power to another optical power (such as from a "off" or inactive state to an "on" or active state) or it may include from -first optical power to -second A continuous change in optical power, such as by changing the amount of electrical energy to a dynamic one. (4) One of the optical powers may be substantially free of optical power. Examples of dynamic lenses include electroactive lenses, meniscus lenses, fluid lenses, movable dynamic optics having one or more components, glass lenses, and diaphragm lenses having "I-heart" members. - Dynamic lenses can also be referred to as a dynamic optics, dynamic optics 157229.doc • 21· 201219842 components, a dynamic optical zone, a dynamic power zone or a dynamic optical zone. °. Remote reference point: A point approximately 3 mm to 4 mm above the assembly intersection where the remote prescription or remote optical power of the lens can be easily measured. Remote viewing zone: A portion of a lens that contains an optical power that allows the user to view correctly at a distance from the distance. Long-distance Width: The narrowest horizontal width within the viewing portion of the lens at a distance, which provides a clear, usually facial distortion correction, at an optical power within 25 days of the wearer's long-range viewing of optical power correction. Far-sight distance: When viewed beyond the edge of the table, when driving, when watching a distant mountain, or when watching a movie (for example only) the distance viewed by one person. This distance is usually (but not always) considered to be about 32 inches or more from the eye, and the distance may also be referred to as a long distance and a long distance point. < Assembly Intersection/Assembly Point: __ reference point on a PAL, which represents the mounting of the lens in a frame of the eyeglasses on the wearer's face, when the wearer is looking straight through the lens The approximate location of the pupil. The seismic coordination point/assembly point is usually (but not always) located 2 mm to 5 degrees vertically above the beginning of the channel. Assembly intersections usually have a range from just over +. ·. . The diopter is a very small amount of positive optical power of about +0.12 diopters. This point or mark is recorded on the surface of the lens such that it provides a simple reference point for measuring and/or re-inspecting the assembly of the lens relative to the wearer's pupil. This mark is easily removed when the lens is dispensed to the patient/wearer. Rigid progressive addition of lenses: between long-distance correction and close-range field I57229.doc •22· 201219842 There is a progressively smaller, more rapid transition of a progressive addition lens. In a rigid PAL, unintended distortion can be below the assembly point and does not extend to the perimeter of the lens. A rigid PAL can also have a shorter channel length and a narrower channel width. "Improved rigid progressive addition lens" is a rigid PAL that is modified to have a limited number of characteristics of a flexible PAL, such as a more A gradual optical power transition, a longer channel, a wider channel, more unintended astigmatism in the rim of the lens, and less unintended astigmatism below the assembly point. Intermediate distance viewing zone: - A portion of the lens that contains an optical power that allows a user to properly view at an intermediate viewing distance. Middle viewing distance: When reading newspapers, when working in front of a computer, when washing dishes in a tank or when ironing clothes (for example only) the distance that one person views. This distance is usually (but not always) considered to be between about 16 inches and about 32 inches from the eye. The intermediate viewing distance may also be referred to as the inter-j distance and the intermediate distance 〇 lens. Any device or portion of a device that causes the light to converge or diverge. The device can be static or dynamic. - The lens can be refractive or diffractive. - The lens may be concave, convex or planar on the - surface or both surfaces. A lens can be a combination of a sphere, a cylinder, a crucible, or the like. A lens can be made of optical glass, or resin. The lens can also be referred to as an optical element, an optical zone, an optical zone, an optical power zone, or an optical component. It should be noted that in the optical industry, even if a lens has zero optical power it can be referred to as a lens. Lens Caption · A device made of optical material that can be shaped into a lens 157229.doc •23- 201219842 pieces. - The lens blank can be finished' which means that the lens blank is shaped to have an optical power on both outer surfaces. A lens blank can be a semi-finished product, which means that the lens hair g is shaped to have only - optical power on the outer surface - the lens hair can be unfinished, which means that the lens blank is not shaped There is an optical power on an external surface. The "surface" of an unfinished or semi-finished lens can be accomplished by a process known as free formation or by more conventional surface processing and polishing. Low added power: A progressive addition of the lens with one of the near added power required for a closer viewing by the wearer at a close distance. Multifocal mirror: A lens with more than one focus or optical power. These lenses can be static or dynamic. Examples of static multifocal lenses include a bifocal lens, a trifocal lens, or a progressive addition lens. Examples of dynamic multifocal lenses include electroactive lenses whereby a variety of optical powers can be established in the lens depending on the type of electrode being applied, the voltage applied to the electrodes, and the refractive index that changes within the -lamellar liquid crystal. Multifocal lenses can also be static-combined. For example, the electroactive element can be used in optical communication with a static spherical lens, a static soap lens, a static multifocal lens such as, by way of example only, a progressive addition lens. In most, but not all, cases, multifocal lenses are refractive lenses. Close-range viewing zone: part of a lens 1 knife that contains optical power that allows a user to properly view at a near vision distance. Myopia distance: When reading a book, when wearing a needle, or when reading a prescription on a vial (for example only), one person watching 耵 耵 耵 。. This distance is usually (but not, - interest) considered to be about 12 inches from the eye, and between 央 and 16 inches. The myopia 157229.doc •24- 201219842 The distance can also be called a close distance and a close distance point. Office Lens/Office PAL: - A specially designed progressive addition lens that provides intermediate distance vision above the assembly intersection, providing a wider channel width and a wider reading width. This is accomplished by an optical design that extends unintended astigmatism over the assembly intersection and replaces the distance vision zone with a predominantly intermediate distance vision zone. Because of this feature, this type of PAL is very suitable for desk work, but because the lens does not contain a distant viewing area, we cannot drive or use it to walk around in the office or at home. Ophthalmic lens: A lens suitable for vision correction comprising a goggle lens, a contact lens, an intraocular lens, a corneal inlay and a corner covering. Optically communicating. Two or more optics of a given optical power are aligned in a manner such that light passing through the alignment optics experiences a combined optical power equal to the sum of the optical powers of the individual components. Optical power stop: used as a "light" or boundary lens assembly or surface that will not allow more than a desired optical power, or in the case of a minimum optical power, the optical stop will prevent low optical power At this value. That is, in a dynamic lens, the optical power pupil can define the maximum or minimum amount of positive (or negative) optical power. This may include a rigid lens assembly or its: surface. As used herein, the term "curvature template" refers to a curvature of a surface of a lens component that a flexible member (e.g., a diaphragm) can conform to. This curvature defines an optical power pupil and thus provides the exact curvature required for an optical power. 157229.d〇c -25· 201219842 Patterned electrode: used in an electrode in an electroactive lens such that as a suitable voltage is applied to the electrodes, the optical power diffraction established by the liquid crystal is established without regard to the electrodes Size, shape and configuration. For example, the optical effect can be dynamically generated in the liquid crystal by using a concentric ring electrode. Pixelated electrodes: electrodes that can be individually addressed in an electroactive lens, regardless of the size, shape, and configuration of the electrodes. Moreover, because the electrodes can be individually addressed, the voltage of any pattern can be applied to the electrodes. The pixelated electrodes may be square or rectangular configured as a Cartesian array, or hexagons configured as a hexagonal array. The pixelated electrodes do not have to be in a regular shape suitable for a grid. For example, the pixelated electrodes can be concentric rings' provided that each ring can be individually addressed. Concentric, pixelated electrodes can be individually addressed to create a diffractive optical effect. a progressive addition region: an area of a lens having a -th optical power in a first portion of the region, and a second portion having a second optical power in the region There is a continuous change in optical power between. For example, the -lens-area may have a far vision distance optical power at one end of the area. The optical power can be continuously increased over the positive power to the intermediate viewing distance optical power and then increased to a near vision optical power at the opposite end of the region. After the optical power reaches the near-vision distance optical power, the optical power can cause the optical power transition of the progressive addition region to return to the far vision distance optical power - the mode is reduced... the progressive addition region can be on a surface of the lens Or embedded in the lens. When the progressive addition region is on the surface and includes an I57229.doc -26 - 201219842 surface topology, it is referred to as a progressive addition surface β reading width: the narrowest horizontal width in the close portion of the lens. An optical power within the 〇.25D of the optical power correction is viewed at close range of the wearer to provide a clear, usually distortion-free correction. Short channel length: Due to aesthetic considerations or trends in the style of the glasses, a lens with a shortened vertical perspective can be expected. In this lens, the passage is naturally shorter. The short channel length refers to the length of one channel in a perspective shortened pAL lens. These channel lengths are usually (but not always) between about guagua and about 15 mm. In general, a shorter channel length means a narrower channel width and more unintended astigmatism. Shorter channel designs are often associated with a "hard" progressive approach because the transition between long range correction and close range correction is more robust due to the sharp increase in optical power. Flexible progressive addition of lenses: between long range correction and close range correction

有一較具逐漸性過渡的一漸進添加鏡片。在一柔性PAL 中非預期之失真可在裝配點上方,且展延至鏡片的周 邊。-柔性PAL亦可具有一較長的通道長度及一較寬的通 道寬度。一「改進柔性漸進添加鏡片」係一柔性PAL,其 經改進以具有一硬性PAL之有限數目的特性,諸如一更急 劇的光學功率過渡、一更短通道、一更窄通道、推進至鏡 片的觀看刀中的更多非預期散光,及裝配點下方更多的 非預期散光》 靜〜、鏡片|有不可隨電能、機械能或力的施加而改變 的一光學功率的一鏡片。靜態鏡片的實例包含球形鏡片、 圓柱鏡片、漸進添加鏡片、雙焦及三焦鏡片…靜態鏡片 157229.doc •27· 201219842 亦可稱為-固定鏡片。一鏡片可包括為靜態的一部分,其 可稱為一靜態功率區帶、片段或區域。 非預期散光:在一漸進添加鏡片内發現的非預期像差、 失真或散光’其等並非為患者的處方視力矯正的一部分, 而是由於觀看區帶之間的光學功率的平滑梯度而在一pal 之光學設計中為固有的。儘管一鏡片可跨鏡片之多種屈光 功率之不同區域具有非預期散光’在鏡片中之非預期散光 T般指在鏡片中發現的最大非預期散光。非職散光亦可 才曰位於一鏡片之與鏡片整體相對的一特定部分内的非預期 散光。在此一情況中,使用限定語言指示僅在所考慮之鏡 片之特定部分内的非預期散光。 另外,如在本文中所使用,當參考一流體使用術語「足 夠少」時,其指流體位於一鏡片組件之一第一表面與可撓 性元件(例如,一隔膜)之一第一區域之間時的—量,該流 體里並不實質上影響該可撓性元件之該第一區域之形狀, 使得該可撓性元件之該第一區域可實質上符合於該鏡片組 件之該第一表面。該流體亦並不明顯地影響裝置之光學功 率。此術語意味著涵蓋以下事實,即,實際上幾乎不可能 從任何裝置(或其一間隙/腔室)移除所有流體微粒,且因此 可能一最小量之流體微粒可仍然存在於該第—鏡片組件與 該可撓性元件之該第一區域之間之區域中(例如,一些殘 留物可保留於至少該等表面上)。然而,當稱為「足夠 少」時’該流體量對裝置之功能係無實質意義的。 相反’如在本文中所使用之術語「足夠多」(或「足夠 157229.doc •28- 201219842 南」)指足夠「碑芸 流體量(即,該汽體表面及,或其一光學特徵部的 該流體與-鏡片Ζτ折之一部分光學連通),使得當 — 片、,件折射率匹配時,鏡片表面之部分並不 實2上添加(正或負)光學功率至一光學動態區域。因此, 上可具有不「遮蓋」該鏡片之該部分的一較小量 之=體(或流體殘留物),如在本文中所使用。 實施例提供一動態鏡片,該動態鏡片包括可解決/滿足 上文所提之-些或所有明顯未滿足之需要的一流體。雖缺 在本文中揭示之實施例利用一流體,一第-鏡片組件之一 第一鏡片表面(其可為剛性,且其可包含或可不包含一光 子特徵)之外部曲率(_可撓性元件(例如,—隔膜)之一 第區域在曲率上符合於該外部曲率且並非增加之流體 積)可添加正(加)光學功率及/或近視矯正所需之光學功 率。在一些實施例中,該可撓性元件之該第_區域僅包括 該可撓性70件之一部分。在一些實施例中,該可挽性元件 可包括整個可撓性元件。在一些實施例中,該第_區域可 包括可能實體連接或可能不實體連接的該可挽性元件之多 個部分(例如,該可撓性元件之一連續區域)。 相較於至少-些電活性鏡片’如本文中所揭示之動態鏡 月的至少一些實施例及其變動在外觀上吸W人,具 的功能,在人體工程學上更可令人接受(例如,該等鏡片 並不太厚或太重),且製造較不昂責。在這點上,雖然電 隸鏡片可具有良好的視覺效能,具有—小的外型因數, 但是’當嘗試大批量地擴大製造時,其等可為製作相對昂 157229.doc •29- 201219842 貴的鏡片。相應地’至少當相較於一些電活性鏡片時,如 本文中所揭示的動態鏡片的至少-些實施例及其變動可以 -合理成本製造為具有—合理外型因數,且對於許多、大 多數及/或所有處方及非處方光學功率提供一上等品質的 視力矯正。 在實施例中’如本文中所揭示之動態鏡片及其變動可 用於以不同於靜態多焦鏡片的一方式橋正視力。與靜態鏡 片(單視或多焦)不同,如本文中所揭示之動態鏡片之至少 一些實施例及其變動將允許對於佩戴者而言,比一靜態鏡 片更接近於正常視力效能。即,因為人眼用作為一動態鏡 片系統,且並非-靜態鏡片系統,此等動態鏡片更接近人 眼的功能。 在一些實施例中,鏡片之前表面(例如,圖丨中之表面 11 ’其係第一鏡片組件之遠離觀看者之表面)係可用作支 配或以別的方式影響正(加)光學功率之動態增加的一曲率 模板的第一表面。在一些實施例中,#可挽性元件5位於 鏡片之最接近眼睛之側上時,一背表面(例如,圖丨中之表 面12,其係第-鏡片組件之較接近於觀看者之表面)係可 用作一曲率模板的第一表面。在此等實施例中,前表面 (例如,圖!中之表面⑴係第二表面,其可為相對於包括可 撓性元件之該鏡片之侧的凸起表面。 如上文所提及,習知流體鏡片提供壓於—隔膜上之流體 體積的增加,以致使正(加)光學功率的增加。若此體積增 加太大或太小,該正(加)光學功率對於佩戴者所需之近焦曰/ 157229.doc -30- 201219842 近視續正可能為較不理想。相反,在本文中教示之至少— 二貫施例提供一曲率模板,以便允許一精確光學功率光 閣’其將不允許一動態鏡片對佩戴者之近點聚焦或近點視 力矯正^供不正確的光學功率。因此,實施例可使得每當 需要近點光學功率/近視矯正時,動態鏡片可提供佩戴者 所需之精確及適當的光學功率。 些實施例中,該動態鏡片亦可包含一遮蓋體(例 如,—第三鏡片組件,諸如圖16中之32 蓋鏡片亦可用作-曲率模板,其提供一光學功率光闌= 確保精確地達成一遠視光學功率。在一些實施例中,一遮 蓋體可用作遠視曲率模板,且一鏡片組件之第一表面(例 如’圖1中之表面11)(其可包含或可不包含一光學特徵部) 可藉由提供近視光學功率的一光學功率光閣而用作近視曲 率模板(且可包含或亦可不包含—中間曲率模板第一表 :亦可提供一中間視力光學功率。因此,在一些實施例 ,:聚焦於一遠視物件,且切換焦點至一中間距離物件 且接著切換焦點至-近視物件或其等之任意組合時,可重 複及精確達成遠視光學功率、中間光學功率(當期望時)及 近視光學功率。此部分係由於眘 ^, 於貫施例並不依賴於每次使用 ::的流體量改變一隔膜之形狀,因為第一鏡片組件及/ 鏡月組件之第-表面用作期望之矯正之光學功率光 閉。然而應注意,本文中之動態鏡片之 = 丄姐 手從(學功率光闌處調諧離 開,或在光學功率光闌之間調諧。 I57229.doc • 31 * 201219842 因此提供包括一動態光學鏡片之一光學器件及/或裝 置。一第一光學裝置包含具有一第一表面及一第二表面的 一第一鏡片組件。該第一鏡片組件可為剛性;即,其可由 材料製成’使得其表面之曲率及形狀並不變化。可使用 具有此等特徵的任何材料,包含玻璃、塑膠及/或任何其 他透明剛性材料。該第一表面及/或該第二表面可諸如自 由形成或數位表面加工而完成。 第一裝置進一步包含一第二鏡片組件,該第二鏡片組件 包括一可撓性元件。該可撓性元件可包括一隔膜。在一些 實施例中,該第二鏡片組件可包括一可撓性組件及一剛性 組件兩者。該可撓性元件可包括任何材料,包含雙軸定向 之聚對苯二甲酸乙二醇酯(可依MyUr商標名購得)或胺基甲 酸酯。然而,可使用任何適宜材料,使得該第二鏡片組件 之一第一區域可符合於該第一鏡片組件之該第—表面及/ 或可不符合於該表面,如當該可撓性元件自該第—表面起 泡的情況中,如下文中詳細描述。在一些實施例中,在如 上文描述之該第一光學裝4中’該第二鏡片組件(及/或該 第一區域)亦可為可伸長的。此可允許該第二元件(及/或該 區域)保持某一結構,同時仍然符合於該第一鏡片組件2 該第-表面及/或自該第一表面起泡。當在該區域中流體 足夠少時’符合於該第-表面的能力可導致其上的光學特 徵部定義該鏡片之-光學功率。,因為該可撓性元件之 該第一區域並不維持其自身曲率,且符合於該第一表 曲率’該第-表面之曲率藉此可^該鏡^光學功率面。之 I57229.doc -32· 201219842 在些實施例中’該第二鏡片組件之該可挽性元件或其 之一區域係半透明的。在一些實施例中,該可撓性元件或 其之一區域係透明的。對於其中使用者將在日常使用中利 用鏡片(諸如在一護目鏡中)之應用中,一透明可撓性元件 可為較佳的,因為該鏡片將允許該使用者在不受此鏡片組 件阻礙的情況下觀看物件。較佳地,該第二鏡片元件或其 之一區域透射入射於一表面之光波的至少85。/(^更佳地, 該第一鏡片元件或其之一區域透射入射於一表面之光波的 至;90 /0。期望該可撓性元件並非不必要地抑制光波之傳 播,使得該動態鏡片或其之一區域可使用於高光以及低光 環境中。 該第一鏡片組件及該第二鏡片組件經定位使得在該兩個 組件之至少一部分之間可建立一間隙或腔室。在一些實施 例中’該可挽性元件之-部分可永久黏著至該第一鏡片組 件之該第一表面。此可繞一動態光學區域建立一密封,其 中:改變光學功率。在一些實施例中,該第二鏡片組件可 黏著至該第-裝置之—固定部分而,此可能並非較佳 的’因為其可抑制將該鏡片塑形進入至不同式樣之框架的 能力。 該第—裝置亦包含可施加於該第一鏡片㈣之至少一部 分與該第二鏡片組件之至少—部分之間(例如在上文描述 之該間隙”的-流體。該流體可為任何成分,且亦可包 含其他形式之物質,諸如氣體及/或凝膠體。該流體可具 有任何折射率u在-些實施例中,該流體較佳地與第 157229.doc •33- 201219842 在本文中所使用 上類似。例如, 之術语「折射 折射率可彼此 一鏡片組件折射率匹配β如 率匹配」意味著折射率實質 差0.05單位内。 在該第一裝置φ,& 第矣而伽 文所提,當該第一鏡片組件之該 量足夠少時,該第二鏡片==域之間之流體的— 於該第-鏡片組件之該第一 可:括符合 「屈鈎+ 第—區域,其中術語 1可接二定義。βΡ,當位於該第-鏡片組件與 (:實質上=之該第一區域之間之間隙中之該流體被移除 一 移除)時,該可撓性元件之該第-區域可與該第 且件之該第一表面接觸及/或符合於該第-鏡片組 第—表面。以此方式,該可撓性元件之該第-區域 知取該第—表Μ其上之任何光學特徵部之形式。若該可 撓性元件及該鏡片組件之折射率實質上㈣,靠光學區 域可具有由該第一鏡片組件之該第一表面定義的一光學功 率。以此方式,實施例提供__致地且可靠地返回由該第一 表面定義之光學功率的能力。 在該第-裝置中,當在該裝置之某些區域中該第一鏡片 組件之該第一表面與該第二鏡片組件之該第一區域之間之 流體的-量足夠多時’該第二鏡片組件之該可撓性元件之 該第一區域亦並不符合於該第一鏡片組件之該第一表面。 即,當該流體施加於或位於該第一鏡片組件與該可撓性元 件之該第一區域之間之該間隙或腔室中時,該可撓性元件 之s亥第一區域可藉由該流體位移(或以別的方式從該第一 157229.doc -34· 201219842 2面處移動離開),使得其不再與該第一表面接觸及/或符 合於該第一表面。此可因此對該動態鏡片提供改變一特定 區域之光學功率的能力。在其中該流體與該第一鏡片組件 折射率匹配之實施例中,第一鏡片表面之一光學特徵部或 曲率可能不再貢獻於流體足夠多之任何區域中的光學功 率〇 在一些實施例中,在上文描述之該第一裝置中,該可撓 性70件進一步包括一第二區域。當該可撓性元件之該第一 區域與該第一表面之間之流體足夠少時,該第二鏡片組件 之該可撓性元件之該第一區域可符合於該第一鏡片組件之 該第一表面,而同時當該第二區域與該第一表面之間之流 體足夠多時,該可撓性元件之該第二區域並不符合於該第 一鏡片組件之該第一表面。即,該裝置及該第一表面可使 得隨著該流體從第一鏡片組件與第二鏡片組件之間移除或 位移,該第一表面之不同部分可不再由該流體遮蓋,且藉 此該可撓性元件之一區域或多個區域可黏著及/或符合於 該等表面。同時,可能具有該可撓性元件之其他區域及該 第一表面之部分,其中該流體保持足夠多,使得該可撓性 π件之此等區域並不符合於該光學表面之該等部分。此可 提供在不同區域中具有不同光學功率的動態鏡片之實施 例,且可為使用者提供在任一時間(或同時)選擇施加哪一 力率的此力。此一貫施例之一實例展示於圖13及圖14中’ 其將在下文中更詳細描述。 在些實施例中,該第一裝置包含一儲液器,其可容納 157229.doc -35· 201219842 並不位於該第—與該第二鏡片組件之間之流體。該儲液器 可包括任何材料,且可位於該第一裝置之其他組件内。例 々對於該第-裝置包括護目鏡之實施例,該儲液器可位 於框架中、鼻橋接件中等等。該儲液ϋ可位於任何適宜位 置,只要該流體可進入該儲液器且從該儲液器處釋放。此 外,該裝置可包括多個儲液器。 在些實施例中,該流體可由一致動器施加於第一鏡片 二件與第二鏡片組件之間。該致動器可包括用於施加及/ 或位移或移除流體的任何類型之器件,包含例如機械式 (例如’彈簧負載)操作、手動操作、電或機電移動或調整 以移動該流體之放置的一注射器、柱塞、《。該致動器可 位於任何適宜位置’且通常與-儲液器及第-鏡片組件與 第二鏡片組件之間之間隙兩者(及/或至任一者的一通道)連 通。 在一些實施例中,在上文描述之該第一裝置中,該第一 進步包括一第一光學特徵部。一光學特徵部可為改 變忒動態鏡片之光學功率之任何東西,舉例而言包含以下 之任何者或以下之某一組合:一漸進光學功率區域·一雙 …、兄片,二焦鏡片,一多焦區域;一非球形光學特徵 ,一非球形區域;一旋轉對稱光學特徵部;及一非旋轉 對稱光學特徵部。藉由將該光學特徵部包含於該第一鏡片 組件之該第一表面上,其允許該動態鏡片之實施例具有一 預定光學光闌,其在該區域中具有可容易地返回及施加之 一光學功率。此外,該第一表面可具有位於不同區域上的 157229.doc -36· 201219842 多個光學特徵部。較佳地,在一些實施例中,當該第一光 學特徵部與該可撓性元件之該第—區域之間之流體的一量 足夠少時,該第一裝置之該可撓性元件之一第一區域符合 於該第光學特徵部。在此等實施例中,當該流體從該第 -鏡片、组#與該可橈性隔狀該第—區域《間充分地移除 時,該第一表面藉此用作該光學功率光闌。 此外,在一些實施例中,當該第一光學特徵部與該可撓 性70件之該第一區域之間之流體的一量足夠多時,該第一 裝置之該可撓性元件之該第一區域並不符合於該第一光學 特徵。P。出於上文描述之相同理由,此可為較佳的,因為 當添加該流體且足夠多時,此提供允許該光學特徵部不再 定義或貢獻於一區域之光學功率的動態性質。因此,在實 施例中,取決於該可撓性元件與該第一鏡片組件之間之流 體,該鏡片對該鏡片之相同區域提供多重光學功率。 在一些實施例中,如上文所描述之該第一裝置進一步包 含一第一動態光學功率區域。該動態光學功率區域指該鏡 片的具有可改變的一光學功率之一部分。例如,在一些實 施例中,該等動態光學功率區域與該第一鏡片組件之該第 一表面上的一光學特徵部重合。隨著遮蓋與該動態光學區 域光學連通之該第一鏡片表面之流體的量改變,亦可改變 该動態光學功率區域之光學功率。在一些實施例中,當該 可撓性元件之該第一區域與該第一鏡片組件之間之該流體 足夠少時,該動態光學功率區域可由該第一鏡片組件之該 第一表面定義。 157229.doc •37· 201219842 在其中該第-鏡片組件之該第一表面包含一光學特徵 部’且該第-裝置包含一第一動態光學功率區域之一些實 施例中,該流體可具有實質上類似於該第一鏡片組件:折 射率之-折射率。在此等實施例中,當該第一光學特徵部 與該可撓性元件之該第一區域之間之流體的—量足夠多 時,該流體之該折射率較佳使得該第一光學特徵部並 獻於該第-動態光學功率區域。此可使得當該第—表面與 該可撓性7L件之該第-區域之間之流體足夠少時,在該於 片組件之該第一表面上的光學特徵部貢獻於或定義光學: 而當該流體增加至足夠多位準時,相同的特徵部並不 貝獻於相同區域之光學性質。此可部分歸因於以下事實, 即:該流體及該第-鏡片組件具有實質上相同的折射率, 且藉此任何光學特徵部可基本 罩或隱藏。 由Μ域令的額外流體遮 2些實施例中’如上文描述之該第—裝置之該第一鏡 ^组件之該第-表面定義一第一光學功率光閣,其可用於 近視光學㈣。即,該第—表面可使得其為—觀看者提 供對應於接近㈣看者(即’相距一較短距離)之物件的橋 Π 卜中Γ些實施例中,該第-表面可為-光學功率 2闌’其中虽該可撓性隔膜之該第一區域與該第—鏡片組 件之該第一表面之間之流體足 ' 或貢獻於該鏡片之光與功车曰* 該第一表面可定義 該區域。在其額外正功率可添加至 -此實施例中: 件包括一第一光學特徵部之 — 虽該第一光學特徵部與該可撓性元件之該 157229.doc -38- 201219842 n之間之流體足夠少時’該第-動態光學功率區域 由該第一光學特徵部定義。即,用於兮壯$ ^ 我即用於該裝置之該區域之光 子功率光闌可由該第一鏡片組件 徵部定義… 件之6亥第'表面上之光學特 在其中如上文描述之該第—裝置包含—第—動態光學功 率區域之-些實施例中,該第一動態光學功率區域可為可 調諧的。本文中所使用之術語「可調諸」意味著可將光學 功率從一值(可能連續地)改變為另一值。在一些實施例 中,當該第-光學特徵部與該可撓性元件之該第一區域之 間之流體的一量足夠少時,該動態光學功率區域由該第一 光學功率光閣定義。隨著該第一光學特徵部與該可挽性元 件之該第-區域之間之流體的量增加,該動態光學功率區 域從該第-光學功率光闌處調諸離開。此可能係因為該可 撓性元件之該第一區域之形狀可繼續改變且符合於該第— 表面之一光學特徵部之不同«。當言亥流體之量足夠少 時,此可藉此以-連續方式將該鏡片之該區域之光學功率 從一第一光學功率改變至由該第一表面定義之光學功率光 闌。 在其中上文描述之該第一裝置包含一第一動態光學功率 區域之一些實施例中,在該第一鏡片組件與該第二鏡片組 件之該可撓性70件之該第一區域之間之流體體積的減小可 增加該動態光學功率區域之一正光學功率。此可再次部分 地由該第-表面之形狀引起’該第一表面包括添加正光學 功率的一光學特徵部或曲率,且因此流體(其可折射率匹 157229.doc •39- 201219842 配於該第一鏡片組件)之減少使此等特徵部暴露,其接著 可貝獻(即,添加正光學功率)於該區域之光學功率。在一 些實施例中,該第一鏡片組件與該第二鏡片組件之該可撓 性兀件之該第-區域之間之流體體積的減小可減小該動態 光學功率區域之-正光學功率。出於相同理由,當該折射 率匹配之流體被移除或位移時,該第一鏡片組件之該第一 表面可提供-負光學功率’其貢獻於該鏡片之_區域之光 學功率。 在一些實施例中,在如上文所描述之該第一裝置中,該 第二鏡片組件之形狀係可基於該第一鏡片組件與該第二鏡 片組件之間之流體的量而調整。如上文所提及,該第二鏡 片組件可包括-可撓性元件,其可為n該可換^ 件可基於該流體之量及,或施加於該可撓性元件之壓力而 改變形狀。此外’如上文所描述,該可撓性元件之該第一 區域可符合於該第一鏡片組件之 x 坚貫孢例 八师地心级弟 机且甲,言 -鏡片組件具有一第一折射率’該第二鏡片組件具有-二折射率’且該流體具有-第三折射率。在―些、實肩 中’該第-折射率與該第二折射率實質上相同。即,言 一鏡片組件及該流體可為折射率匹配,使得在該兩個& 之間傳播的光實質上不折射。#具有足夠多量的流體这 表面時,此可允許該第一表面之該等光學特徵部被^ 隱藏(即,其等並不貢獻於光學功率卜在一些實施例寸 157229.doc •40- 201219842 該第一折射率與該第三折射率實質上相同。即,該第一鏡 片組件及該第二鏡片組件(及/或該第二鏡片組件之該可撓 性組件)可為折射率匹配。此可防止進入該鏡片之任何光 在該可撓性元件與該第一鏡片表面之間的介面處折射,此 可藉此影響該裝置之該區域之光學功率。在一些實施例 中,該第一、該第二及該第三折射率實質上相同。此可為 較佳的,使得在該第一表面上的一光學特徵部可對應於一 佩戴者所需要之一矯正光學功率,且將不會有起因於必須 導致該裝置之設計中之此等組件之純者之介面的任何額 外光學功率。此可導致可更容易設計以在__些實施例中不 提供光學功率之一裝置(例如,當該第一表面或其之一部 分由該流體遮蓋時)’可期望一觀看者不需要針對某些距 離處之物件的矯正,因為不需要對該等組件之介面處的折 射作矯正。 在一些實施例_,如上文所描述之該第—裝置包含一第 三鏡片組件,其具有一第一表面及一第二表面。該第三鏡 片組件可為-遮蓋鏡片,其可用於保護該可撓性隔膜。較 佳地’該第-鏡片組件及該第三鏡片組件經^位使得在該 第一鏡片組件之該第一表面與該第三鏡片組件之一第一表 面之間存在-間隙。在__些實施例中,該第二鏡片組件可 實質上位於第一鏡片組件與第三鏡片組件之間之此間隙 中。較佳地,當流體之-量實質上填充該第―鏡以且件之 至少一部分與該第三鏡片組件之至少—部分之間之間隙 時,該第二鏡片牛之至少-部分符合於該第三鏡片組件 157229.doc •41. 201219842 之該第一表面之至少一部分。即,當流體施加於該第一鏡 片組件與該可撓性元件之間時,該第三鏡片組件定義該可 挽性元件可膨脹所達的最大位置。在一些實施例中,該第 二鏡片組件之該第一表面定義一第二光學功率光闌。在一 些實施例中,該第二光學功率光闌係用 即,該第三鏡片組件可具有一光學特徵部 可撓性元件之-區域符合於該表面時,一動態光學區域提 供一佩戴者之遠視矯正所需要的光學功率。此提供一動態 鏡片可矯正近視及遠視兩者的優點。此外,藉由對於每一 者(由一固定或剛性鏡片組件定義)提供一光學功率光闌, 該裝置提供可靠方式以一致且精確地返回期望之光學功 率。 例示性實施例 將參考圖1描述一例示性實施例,圖j繪示一鏡片1〇〇之 一側視圖。此係僅出於描述性目的,且藉此並非限制性 的。如在本文中所使用,如現將詳細描述,「鏡片丨〇〇」係 包含一鏡片組件及其他組件的一光學裝置的簡稱。 該鏡片100可包括一第一鏡片組件1〇及一第二鏡片組件 5。該第二鏡片組件5可更接近於用該鏡片1〇〇觀察或觀看 的一物件而定位(使得例如該第一鏡片組件1〇定位於更接 近該鏡片100之一使用者),一流體(或液體或凝膠體等 等)20可定位於該第一鏡片組件1〇與該第二鏡片組件5之 間。該第一鏡片組件10可為一固體鏡片,其包括具有一均 勻折射率之一材料。在一些實施例中,該流體2〇可具有約 157229.doc •42· 201219842 等於或實質上等於該第一鏡片組件10之折射率的一折射 率。 該第一鏡片、组件1〇可包括一第一表面„(鄰近於該流體 20之該第一鏡片組件10之表面)及一第二表面12(並不鄰近 該流體20之該第一鏡月組件1〇之表面)。該第一鏡片組件 1〇之第一表面11及第二表面12之各者可具有任何形狀或曲 率(包含凹入、凸起及/或一平坦曲率(例如,約等於無窮大 的半徑))。此外,任何光學特徵部—例如,一漸進光學功 率區域、-雙焦鏡H鏡片或其他多焦區域、一非球 形光學特徵部、一非球形區域、一旋轉對稱《學特徵部 (包含旋轉對稱非球形區域)、一非旋轉對稱光學特徵部(包 含非旋轉對稱非球形區域),或其任何組合—可定位於該 第一鏡片組件10之該第一表面u或該第二表面12之任何部 分上。 該第二鏡片組件5可包括一可撓性元件,諸如一可撓性 隔膜。該第二鏡片組件5亦可為可伸長的。相應地,該第 鏡片、及件5之形狀可基於定位於該第一鏡片組件與該 第二鏡片組件5之間之流體2〇之體積而動態地調整。明確 言之,隨著流體20之量或體積減小,該第二鏡片組件s(或 其之部分)可朝向該第一鏡片組件10之該第一表面“而 漸漸移動《最終,該第二鏡片組件5之一區域可與該第— 鏡片組件10接觸及/或符合於該第一鏡片組件10之形狀。 十應地k著流體之量或體積增加,該第二鏡片組件5 可移動遠離該第—鏡片組件10之該第-表面11。該第二鏡 I57229.doc •43- 201219842 片組件5之該可撓性元件(或其之區域)可為一材料,諸如 (但不限於)雙軸定向之聚對苯二曱酸乙二醇酯(可依Mylar 商標名購得)或胺基甲酸酯,且在一些實施例中可為半透 明或透明的。 隨著該第二鏡片組件5之形狀動態地調整,在該鏡片1〇〇 之一個或多個區域中之光學功率可變化或調整。當該流體 20(在此實施例中,該流體與該第一組件折射率匹配)分離 該第一鏡片組件10及該第二鏡片組件5,由該流體2〇遮蓋 之該第一鏡片組件10之該第一表面u之一部分上的任何光 學特徵部將不貢獻於由該鏡片100提供之光學功率。如上 文所提,此係因為該流體20具有約匹配於該第一鏡片組件 10之折射率的一折射奉。當分離該第一鏡片組件1〇及該第 二鏡片組件5之流體20之量實質上較低時,則該第二鏡片 組件5(或其之一區域)可符合於該第一鏡片組件1〇之該第一 表面11之形狀◊繼而,在該第一鏡片組件1〇之該第一表面 11之一部分上之任何光學特徵部可貢獻於該鏡片1〇〇之多 種部分中提供之一動態光學功率。更明確言之,可由該流 體20遮蓋及不由該流體20遮蓋之該第一鏡片組件1〇之該第 一表面11上的任何光學特徵部可貢獻於由該鏡片1〇〇提供 之一動態光學功率《如上文所提,此一區域可考慮為鏡片 100之一動態光學功率區域。該鏡片1〇〇之一動態光學功率 區域可為任何形狀或大小,且當不再由該流體2〇遮蓋時, 可貢獻任何期望光學功率。此外,該鏡片1〇〇之一動態光 學功率區域可放置為與該鏡片1〇〇之一個或多個額外光學 157229.doc • 44 - 201219842 特徵部(例如’定位於該第一鏡片組件10之該第二表面l2 上的光學特徵部)光學連通。以此方式,該鏡片之一 動態光學功率區域可對該鏡片100之一區域貢獻一總期望 光學功率的一部分(例如,該鏡片100之一總添加功率之一 第一部分)。 該流體20可由任何適宜方法及機構移動。舉例而言,該 第一鏡片組件10之移動可位移該流體2〇。若該第一鏡片組 件1〇朝向該第二鏡片組件5移動,則該流體20可被迫從分 離該第一鏡片組件10及該第二鏡片組件5之區域中出去。 若該第一鏡片组件10從該第二鏡片组件5處移動離開,則 該流體20可被允許或被迫進入分離該第一鏡片組件1〇及該 第二鏡片組件5之該區域中。在一些實施例中,一致動器 可將該流體泵送進入該第一鏡片組件j 〇與該第二鏡片組件 5之間之一區域中及泵送出該區域。此一致動器可例如(在 包括護目鏡之實施例中)定位於容置該鏡片1〇〇之一鏡片框 架之一撐邊器中。然而’該致動器可位於任何適宜位置。 該流體20可排空(即’移除或位移)至一腔室或儲液器, 其可相對於該鏡片100定位於多種位置中。舉例而言,且 如圖1中所展示’該流體20可排空至一個或多個儲液器 25。作為一額外實例,該流體可被泵送進入定位於容置該 鏡片100之一鏡片框架之一撐邊器内的一健液器中。 如上文所提,描繪於圖1中之例示性鏡片100僅係例證性 的,且並不意味著限制性。如圖1中所展示,該流體20描 繪為將該第一鏡片組件10之整個第一表面η從包括一可撓 157229.doc •45· 201219842 性元件之整個第二鏡片組件5處分離(即,如所描繪,該流 體可遮蓋該第一鏡片組件ίο之大約整個第—表面η),但 實施例並不受此限制。即’在一些實施例中,一動態鏡片 100之流體20可僅定位於該第一鏡片組件1〇與該第二鏡片 組件5之選擇部分之間。對於其中分離該第一鏡片組件1〇 及該第二鏡片組件5之流體20之量經允許為足夠少的該鏡 片100之部分’該可撓性元件5之該區域可大致符合於該第 一鏡片組件10之該第一表面11之該部分。此外,在一些實 施例中,該可撓性元件5之部分可黏著附接至該第一鏡片 組件10之該第一表面Η。再者,一些實施例可包括處於圖 1中繪示之交替位置的一可撓性元件s及一鏡片組件1〇。 即,該可撓性元件5定位於更接近該鏡片1〇〇的一使用者, 且該第一鏡片組件10定位於遠離該使用者。在此等實施例 中,定位於該鏡片組件10之該第二表面12上的光學特徵部 將基於使該可撓性隔膜5之區域從該鏡片組件1〇分離的流 體20的存在或不存在而被暴露或遮蓋。 實施例提供一動態鏡片,其可藉由以一大約折射率匹配 之流體暴露或遮蓋一鏡片組件之一表面之光學特徵部而動 態地調整由該動態鏡片之一個或多個光學區域提供之整體 光學功率。實施例可用於形成任何可變光學功率鏡片;該 鏡片之光學功率可隨空間及/或隨時間改變。 現將更詳細描述圖式。該等圖式提供為一動態鏡片之實 施例及/或操作之實例。該等圖式及在本文中之描述係出 於例證之目的,且並不意欲為限制性的。 157229.doc •46· 201219842 圖1至圖3展示一動態鏡片之一例示性實施例之操作。例 不性鏡片100在圖i中展示為在該可撓性元件5與該第一鏡 片組件10之該第一表面u之間具有足夠多量之流體2〇,使 得該可撓性元件5並不符合於該第一表面^。在圖2中鏡 片100展示為僅具有該可撓性元件s及該第一表面U之一部 分,其間具有足夠多量之流體。在圖3中,鏡片1〇〇展示為 在該可撓性元件5與該第一鏡片組件10之該第一表面 大部分之間具有足夠少量的流體2〇。此等例示性實施例之 各者將更詳細描述如下。 參考圖1,展示一動態鏡片之一例示性實施例之一截 面。該鏡片100描繪為處於一大致「第一」或「開始」狀 態。在此實施例中,該流體20將一第一鏡片組件10之整個 第一表面11從包括一可撓性元件5(例如,一可撓性隔膜)之 一第二鏡片组件分離《然而,如上文所描述,在一些實施 例中,該流體可僅將該第一鏡片組件J 〇之一部分與該第二 鏡片組件之該可撓性元件5分離。在此例示性實施例中, 該流體20及該可撓性元件5可具有實質上匹配該第一鏡片 組件10之折射率的一折射率。如上文所提,「實質上匹 配」意味著在兩個組件之折射率上沒有明顯差異,例如, 該等折射率差0.05單位之内。儘管將參考其中折射率實質 上相同的情況描述此例示性實施例,應理解,在一些實施 例中,此等組件之一者或多者之折射率可彼此不同,此將 在下文中更詳細討論。 在如圖1中所描繪之此第一狀態中(且繼續其中流體及第 157229.doc -47- 201219842 一鏡片組件之折射率實皙卜如 千耳質上相同之實施例),該第一鏡片 組件10之該第一表面11之弁m μ,, Λη 之九予特徵部可能不貢獻於由該鏡 片100提供之光學功率4係因為在該第—表面11(及其上 的任何光學特徵部)與該可撓性_5之間之流㈣之量足 夠多,以便遮蓋該等特徵部。如圖!中所描I會,該鏡片刚 繪不為處於第一狀態中的一單視鏡片(例如,平面鏡片卜 即,該可撓性元件5之曲率與表面12之曲率大約相同,使 得該鏡片m並不具有—光學功率。因此,光線m(其等 在與該鏡片之入射點處平行)從該鏡片處實質上平行射 出。然而應理解,在其他實施例中,該鏡片100(或其之區 域)在此第一狀態中可具有不同的光學功率及/或光學性 質。例如’該第一鏡片組件10之該第二表面12(例如,背 表面)可包括任何光學特徵部(例如,—多焦區域,諸如一 漸進光學功率區域)使得該鏡片100在該第一狀態中提供一 個或多個光學功率。如所描繪,在圖1中之此第一狀態綠 示其中該表面11並不貢獻於光學功率的一實施例。 參考圖2,該例示性鏡片100描繪為在一「第二」或「過 渡」狀態中。明確言之,該流體20之一部分已從該第一鏡 片組件10與該第二鏡片組件5之間之間隙處移除或位移。 如所描繪,隨著該流體20被移除或位移,該第二鏡片組件 之該可撓性元件5之一第一區域201開始改變形狀。隨著該 可撓性元件5之該第一區域201與該第一鏡片組件1〇之該第 一表面11接觸及/或符合於該第一鏡片組件1〇之該第一表 面11’該第一區域201符合於其形狀或曲率。 157229.doc -48· 201219842 在此實施例中,隨著該流體2〇被移除或位移,由該鏡片 100在特疋區域中提供之光學功率可基於該第一鏡片組 件10之該第一表面u之對應部分的形狀而調整或改變。此 係藉由光線202之折射而描繪於圖2中,該等光線2〇2入射 於鏡片100之其中該可撓性元件5之該第一區域已符合於該 第一鏡片組件10之該第一表面n的區域中。相反,光線 203未展示為由該鏡片1〇〇折射,因為在此例示性實施例 中°亥可撓性元件5之第二區域之曲率繼續匹配於表面12 之曲率(即,在此部分中的鏡片繼續為平面)。應理解,隨 著μ體被位移或移除,該鏡片j 〇〇之此部分之光學功率亦 可改變(即,其可連續及/或逐漸變化)直到該鏡片之此區域 的光學功率等於由該第一鏡片组件1〇之該第一表面η提供 之光學功率。 在一些實施例中,該流體20可藉由使用可移動滑件15及 固定部分4G而位移。即’該流體2G可藉由將裝置之滑件15 從一固定部分40移動開而移除,以允許流體施加於該第一 鏡片組件10與第二鏡片組件之間之間隙,或從該間隙處移 除。不在第一鏡片組件1〇與第二鏡片組件5之間之間隙中 的任何流體可儲存或保持於—儲液器25或該鏡^⑽及/或 裝置之其他適宜區域中。’然而,如—般技術者將理解,可 使用任何方法以移除、位移及/或施加該流體至該間隙, 包含使用一致動器、一泵、一閥系統等等。 儘管並未描繪於圖2中,應理解,隨著該流體20從該第 一鏡片組件與該第二鏡片組件5(或其之部分)之間的間隙處 157229.doc •49· 201219842 施加(例如’添峨移除(或㈣的方式㈣),且該可撓 性7"件5開始改變形狀(雖然無須符合於該表面),該區域之 光學功率亦可開始改變。此可以一光學光鬧導致該鏡片之 該區域的一可調譜光學功率,該光學光鬧在該第一表面u 與該可撓性元件5之一區域之間之流體足夠少,使得該鏡 片之该區域之光學功率由該第-表面11及其上之任何光學 特徵部定義。 參考圖3,該例示性鏡片1〇〇描綠為在一大約「最終」或 「第二」I態中。儘管描述為一「第二」狀態,如上文所 提,該例示性鏡片100可能具有無窮多個狀態,因為隨著 流體20自該第一鏡片組件1〇與可撓性元件5之間之間隙移 除(或施加至該間隙),鏡片1〇〇(或其之一區域)之光學功率 可繼續改變。如上文所提,此程序可稱為「調諧」,因為 光學功率可逐漸或系統地改變至接近一光學功率光闌的一 功率’或移動遠離一光學功率光闌。 持續圖3,如所描繪,該流體2〇已大致從該第一鏡片組 件10與S亥第二鏡片組件之該可徺性元件5之間位移或移 除。隨著該第二鏡片組件之該可撓性元件5之額外區域與 該第一鏡片組件10之該第一表面i i接觸及/或符合於該第 一鏡片組件10之該第一表面H,該等額外區域已改變形 狀。如圖3中所展示’由該鏡片1〇〇提供之一光學功率已藉 由使得3亥可撓性隔膜5符合於該第一鏡片組件1 〇之該第一 表面11之形狀而調整。因此,光線3〇1現基於鏡片1〇〇之光 學功率而折射及聚焦’且特定言之,如由該第一鏡片組件 157229.doc -50- 201219842 10之該第一表面11定義。 如圖3中所展示,該鏡片100描繪為一單視鏡片(例如, k供正光學功率)’但實施例並不受此限制。即,該第_ 鏡片組件10之該第一表面11之一部分可包括一多焦區域— 例如’一漸進光學功率區域—使得在該「第二狀態」中之 該鏡片100提供多個光學功率或視力區帶。例如,該第_ 表面11可包括任何期望之光學特徵部(或多個光學特徵 部)。如上文所提,第二表面12亦可具有一光學特徵部或 多個光學特徵部,其貢獻於鏡片100(或其之一區域)之整體 光學功率。 參考圖4 ’該例示性鏡片100以一前視圖展示。如所描 繪,圖4中之該鏡片100對應於如參考圖1描述的「第一」 或「初始」狀態中之鏡片。即,該鏡片1〇0描繪為處於一 狀態中’藉此該第一鏡片組件1〇之該第一表面U與該可挽 性元件5之間之間隙中的流體2〇之量足夠多,使得當該流 體並不折射率匹配時,該第一表面(或其之一部分)並不貢 獻於該例示性鏡片100之一光學功率區域。圖4中亦描繪一 心(體儲液器2 5及繞該專鏡片組件之周邊定位的一固體組件 40 〇 參考圖5 ’該例示性鏡片100以一前視圖展示。如所描 繪’圖5中之該鏡片1〇〇對應於如參考圖2描述的r過渡」 狀態中之鏡片。在此實施例中’展示一區域或區帶3〇,其 區別於該鏡片100之一外部周邊35。該區域3〇可對應於與 該第一鏡片組件10之該第一表面u接觸及/或已符合於該 157229.doc •51 · 201219842 第-鏡片組件ίο之該第一表面u的該可撓性元件5之該第 一區域。即,在該可撓性元件5之該第—區域與該第一表 面11之間之流體20之量在區域30中足夠少,使得該第一表 面η貢獻於及/或定義該光學區域中之鏡片1〇〇^光學功 率。因而,該區域30可提供一光學功率,其自圍繞該區域 30之鏡片之區域35提供之光學功率而變化。該區域3〇可考 慮為該鏡片100之一動態(或可調整)光學功率區域之一部 分,因為隨著該第一表面11與該可撓性元件5之間之流體 的量變化,該區域之該光學功率可朝向由該第一表面^定 義之光學功率光闌調諧,或調諧離開該光學功率光闌。 參考圖6,例示性鏡片1〇〇以一前視圖展示。如所描繪, 圖6中之該例示性鏡片1〇〇對應於如參考圖3描述的「第 」或最終」狀態中之鏡片。該區域30對比於圖5中描 繪之區域30係擴大的,因為如參考圖3描述,此繪示其令 實質上全部流體已從該可撓性元件5與該第一表面U之間 移除或位移之一階段。該區域3〇可再次對應於已與該第一 鏡片組件10之該第一表面n接觸及/或已符合於該第一鏡 片組件10之該第一表面11的該可撓性元件5之該第一區 域。即,在該可撓性元件5之該第一區域與該第一表面„ 之間之流體20之量在區域3〇中足夠少,使得該第一表面^ 貝獻於及/或定義該區域中之鏡片1〇〇之光學功率。因此, 如圖6中所描繪,鏡片1〇〇之該第一表面u之比圖5中更大 的 4为貝獻於一動態光學功率區域。 一般而言,該區域30可為任何大小或形狀’且可提供一 157229.doc -52- 201219842 恆定光學功率或一可變光學功率(具有一對稱或不對稱及 連續或不連續光學功率輪廓p該區域3〇可定位於中央 或位於該鏡片1〇〇之任何區域中。此外,該鏡片可包含多 於一個可調整光學功率區域30,其可實體上分離及/或包 括多個可撓性元件。此外,該區域3〇可包括任何類型之光 學特徵部,包含但不限於:一漸進光學功率區域、一雙焦 鏡片、一二焦鏡片、一多焦區域、一非球形光學特徵部、 一非球形區域、一旋轉對稱光學特徵部;及/或一非旋轉 對稱光學特徵部。 熟習此項技術者將瞭解及理解,一般而言,如在本文令 所提供之一動態鏡片之實施例可對在一「第一」戋「初 始」狀態中的一區域提供一第一或初始光學功率 提供在「過渡」狀態中的過渡光學功率輪廓(例如,可從 一第一狀態調諧至中間狀態,藉此改變該第一鏡片組件ι〇 之該第一表面U之部分與該可撓性元件5之該第—區域之 部分之間之流體20之量),且可基於該第一鏡片組件⑺之 該第一表面11上的光學特徵部之暴露(例如,當該第一表 面11與該可撓性元件5之該第一區域之間之流體2〇之量足 夠^時)對在一「第二」或「最終」狀態中的一區域提 供一第二光學功率輪廓。「第一」、「過渡」及「第二」光 學功率輪料為任何期望之光學功率輪廓。—個或多個表 面或光學特徵部可貢獻於由該鏡〇⑽提供之光學功率輪 廓(例如’兩個或多個表面可藉由與彼此光學連通而提供 該鏡片1GG的-總添加功率)。此外,熟習此項技術者將瞭 157229.doc •53· 201219842 解’可使用不同方法及機構,以位移及儲存使用於本發明 之動態鏡片中之流體,其可包含例如一致動器及/或儲液 器。 在一些實施例中,參考圖1及圖4描述之第一光學功率輪 廊及/或一光學區域可部分由該第一鏡片組件10之該第二 表面12及該可撓性隔膜5決定。如上文所描述,當該流體 20遮蓋该第一鏡片組件1〇之該第一表面n之一個或多個光 學特徵部時’該第—光學功率輪廓可由該鏡片1〇〇提供。 即,該第一光學輪廓可包括一實施例,其中該第一表面u 與該可撓性元件5之間具有足夠多量之流體2〇。 在一些實施例中,參考圖3及圖6描述之「第二」光學功 率輪廓可部分由該第-鏡片組件1〇之該第二表面12及該第 一鏡片組件10之該第一表面11決定。當該第一鏡片組件10 之該第一表面11之一個或多個先前遮蓋之光學特徵部如上 文所描述般暴露時,該第二光學功率輪廓可由該鏡片1〇〇 提供。即,該第二光學輪廊可包括其中在該第一表面“之 至少一部分與該可撓性元件5之間具有足夠少量之流體 2〇’使得該可撓性元件5之一第一區域符合於該第一表面 11的情況。此外’在—些實施例中,在該等第—與第二光 學輪廊之間可存在中間(「過渡」)光學輪廓(參考圖2及圖5 描述),其等可部分由該第一表面u與該可換性元件5之間 之不同量的流體20定義,此導致該可撓性元件5之一不同 2狀及/或該第—表面11(及其上之光學特徵部)之不同部分 貝獻於該鏡片100之動態光學功率區域。 157229.doc -54- 201219842 上文描述之實施例可提供若干優點。例如,此等實施例 之一些之該第一表面11可對該鏡片100之-個或多個光學 區域定義-固定光學功率光闌’可由一使用者精確及重複 地返回該固定光學功率光闌。此係部分由於該鏡片100之 -光學區域之群功率光闌並不是藉由添加__特定量之流 體而定義’但可使用並不變化的一光學表面η而類似於現 有的固定的(即,非動態)鏡片定義。f施例可藉此允許一 使用者快速地將鏡片設定至期望光學功率,例如藉由移除 或位移來自該第-表隨(或其之—部分)與該可撓性元件5 之一第一區域之間的全部(或實質上全部)流體。因此,若 -使用者具有一特定處方’實施例可容易地使得一使用者 設定該鏡片100以提供所需之光學矯正。實施例亦可提供 進-步益處’即’此固定光學特徵部並不始終貢獻於該鏡 片之-區域之光學功率。此可例如允許在一執行實例中相 同光學區域允許一觀看者看較遠的物件,且在另一執行實 例中,相同光學區域可對近視作橋正。可提供任何類型之 橋正。 如上文所提,該可撓性元件5可包括一可撓性隔膜。該 可撓性兀件s可在任何位置黏著或附接至該鏡片1〇〇。例 如,忒可撓性元件5之部分可黏著至以下之任何者或以下 之一些組合:第-表面11之部分、第-光學組件10、鏡片 之-固定部分40、-眼鏡框架,或鏡片1〇〇上的任何其他 適當位置。在-些實施例中,第二鏡片組件可具有固定組 件以及一可撓性元件(諸如一隔膜”在一些實施例中,該 157229.doc •55· 201219842 可撓性7C件5可用一硬塗層/防刮傷塗層、一抗反射塗層及/ 或防污塗層塗佈。在一些實施例中,包括一動態鏡片的 一裝置可不具有鄰近該可撓性元件5之表面且不符合於該 第鏡片組件10之該第一表面11的任何額外光學組件。在 二實施例中,s玄動態鏡片可具有鄰近於該可撓性元件5 之表面且不符合於該第-鏡片組件10之該第-表面u的額 外光學組件’諸如另-鏡片、-動態鏡片、-遮蓋鏡片或 任何其他透明或半透明組件。 在些實施命!中(且如上文所描述),該流體20可折射率 匹配於該鏡片1〇〇之一些或全部其他光學組件。即,諸折 射率可實質上相同。例如’該流體20可具有匹配於該第一 鏡片組件之折射率之約GQ5單位㈣—折射率。該可挽 f生7G件5亦可折射率匹配於該流體2〇及該第一鏡片組件 在一些實施例中’該流體20並不折射率匹配於該第一鏡 片組件10。在此箅音 … 你G寻貫施例中,該鏡片100可仍然以如上文 描述之相同方式^七gg , 乍用,然而,參考圖1至圖6描述之動態鏡 片之該專狀態之各去i g 士 者具有一光學功率,甚至在該第一表 上由該流體20遮蓋之區域中亦如此。例如,在當 s亥第一表面11與該可撓性元件第-區域之間之流體 ιοπ^ 」狀態中,光線並不平行進入該鏡片 100及從該鏡片100平杆 射出,該專光線可基於部分由折射 率 異棱供之該鏡片100之一光學 該第-表面:u可仍…L '然而’ 、、、義一光于功率光闌,可基於該可撓 157229.doc • 56 · 201219842 性疋件5與該第—表面11之間之流體20之量調諧至該光學 功率光闌或調諧離開該光學功率光闌。 在下文中將參考圖7至圖20描述可包括多種特徵部之例 示性動態鏡片之額外實施例。 參考圖7,展示一動態鏡片2〇〇之一實施例。如本文中所 使用,「鏡片200」係一光學裝置的簡稱,其包含至少一鏡 片組件及其他組件’如現將詳細描述。圖7中展示之該鏡 片200可為一鏡片毛坯(例如,一未完成之鏡片毛坯或一半 成品鏡片毛迷)。圖7中展示之鏡片可塑邊或完成以裝配於 一護目鏡框架中(例如,如圖丨丨中所展示,其將在下文中 進一步描述)。持續圖7之描述,該鏡片200之可撓性元件 黏著於除由虛線展示之圓形區域7〇1之外的整個鏡片上。 在此實施例中’動態或可調整功率區域係在虛線内的區域 701。相應地’該區域701係該鏡片200的具有一光學功率 的區域,該光學功率可隨著該鏡片200之流體從此區域中 提取或位移而動態改變。該區域701可定位於該鏡片之一 裝配點702之下’但並不受此限制(即,其可定位於該鏡片 200上的任何處)。該區域7〇1可以該鏡片之幾何中心703為 中心’但再次強調,並不受此限制。此外,本發明之一動 態鏡片200可具有與該鏡片之幾何中心703重合的一裝配點 702,但並不受此限制。 持續圖7中展示之例示性實施例,一接合線704展示黏著 於該鏡片200之可撓性元件之區域(例如,第一區域)與並不 黏著於該鏡片200之可撓性元件之區域701之間之分離。一 157229.doc •57· 201219842 溝渠或溝道705可圍繞未附接之可撓性元件部分之全部或 一部分。在一些實施例中,一溝渠或溝道7〇5可位於該第 一鏡片組件之該第一表面上。該溝渠或溝道7〇5可用於選 路或引導流體在鏡片200中的移動。在一些實施例中,該 溝渠或溝道705可具有一寬度及深度,以在該可撓性元件 隨著流體從該區域701移除或位移而被拉入或以別的方式 女置於該溝渠或溝道705争時’致使該可撓性元件伸長。 該溝渠或溝道705可藉由模具或其他適宜構件而拋光及塑 形’以便減小或消除尖銳邊緣之數目。在一些實施例中, 可利用該溝渠或溝道705以便防止流體再次進入該可撓性 元件與該第一鏡片組件之該第一表面之間的間隙中(例 如,可利用其來形成動態區域7〇1的一密封)^在一些實施 例中,該溝渠或溝道705之直徑可在約10 〇1„1至5〇 mm之範 圍内。較佳地’該溝渠或溝道705之直徑在約2〇 至35 mm之範圍内。 在一些實施例中,該流體可使用一通道7〇6進入及離開 虛線區域701 ^圖7中展示該通道,其從動態功率區域7〇1 水平延伸,但並不受此限制。即,該通道7〇6可從該動態 功率區域701以任何方向或以任何角度延伸(例如,其可以 遠離該動態功率區域701之一微小角度傾斜)^該通道7〇6 可連接至一個或多個儲液器,當未將流體施加於該可撓性 兀件與該第一鏡片組件之該第一表面之間時該等儲液器保 持該流體。 該動態功率區域701及圍繞的溝道70S可為任何大小或形 157229.doc -58 · 201219842 狀° 一般而言’該動態功率區域7〇1及圍繞的溝道705之大 小較佳可為符合任何框架式樣或形狀之尺寸内的一大小。 例如’對於具有約48 mm的一垂直高度的一鏡片框架,該 動態功率區域701及圍繞之溝道705之直徑可具有在43 mm 與44 mm之間的一直徑。例如,對於具有約26 mm之一垂 直南度之一鏡片框架’該動態功率區域7〇1及圍繞之溝道 705之直徑可具有在21瓜瓜與以mm之間的一直徑。 參考圖8,例示性動態鏡片2〇〇以一側視圖展示。永久接 。或黏著至鏡片200之可撓性元件之區域8〇1區別於該可撓 性7G件之區域8〇2,該可撓性元件之該區域8〇2具有可基於 位於可撓性几件之區域8〇2與第一鏡片組件之第一表面之 部分803之間的流體量而調整之一形狀。在一些實施例 中且如圖8中所展示,當該可撓性元件之該區域8〇2與該 第一表面之該部分803之間之流體量足夠多時,在表面8〇3 上的光千特徵部或諸特徵部可能不貢獻於該鏡片2〇〇之 -亥區域之光學功率(例如,當諸折射率匹配時)。隨著該可 撓I·生兀件之該區域802與表面8〇3之間之區域中的流體被移 除或位移’可撓性元件之該區域8G2移動而更接近於該第 之'•亥。卩刀803,且最終符合於該第一表面之該部分 803 〇 參考圖9,展示例示性動態鏡片2GG。圖9中之該例示 鏡片200具有—旋轉對稱非球形添加區帶㈣卜當暴露 ⑴胃折射率匹配的流體之—量足夠少時),展示於S 中之此添加區帶901可提供25〇 D的—添加功率(然而添 157229.doc -59· 201219842 區帶901可具有任何添加功率值)。該旋轉對稱非球形添加 區帶901可具有一旋轉對稱連續光學功率輪廓,在其周邊 902比在其中心具有一更低光學功率。周邊9〇2可具有或可 不具有一光學功率不連續性(例如’其可具有0 25 〇的一光 學不連續性,如圖9中所展示)。在一些實施例中,一動態 鏡片200之一不連續性可為傾斜或下垂的一不連續性。應 理解,一動態鏡片200之一不連續性可為具有任何光學功 率值的一功率不連續性。在一些實施例中,圖9中展示之 該動態鏡片200可提供遠及/或近光學功率,此至少部分係 由於包括一雙焦表面曲率的第一鏡片組件(即,基板)之形 狀。即,例如,當第一鏡片表面之第一表面與可撓性元件 之一區域之間之流體足夠少時,第一鏡片表面上的雙焦表 面曲率可提供近及遠光學功率。 參考圖10,展示該例示性動態鏡片200的一前視圖。在 此實施例中,該動態鏡片200展示為具有一動態功率區域 1001,其具有對應於位於該等第一鏡片組件之第一表面上 的漸進添加式表面的一形狀,當此等組件之間之流體量足 夠少時,該可撓性儿件之一區域可符合於該形狀,使得該 可撓性元件之該區域符合於該漸進添加式表面。在一些實 施例中,當言亥第一鏡片、组件與該可撓性元件之間之流體量 足夠少時.由於該第一表面的漸進曲狀(例如,對該動態 鏡片200的-使用者)而建立遠光學功率、中間光學功率及/ 或近光學功率》 繼續參考圖1〇,類似於圖7, 一接合線1〇〇2展示該可撓 157229.doc -60- 201219842 性元件黏著於該鏡片200之區域(在該接合線1002之外)與該 可撓性元件並不黏著於該鏡片200之區域ι〇〇ι(在該接合線 1002之内)之間的分離。展示於圖丨〇中之該例示性鏡片2〇〇 可使用内部漸進表面(其可例如位於該第一表面上,在該 第一鏡片組件之裝配點1003處或其下方)以提供該鏡片200 之全添加功率^在一些實施例中’内部漸進表面可與該鏡 片之另一光學元件光學連通(例如,在該鏡片之第二(例 如,背)表面上定位的一漸進添加式區域)使得内部漸進表 面提供該鏡片之一總添加功率之一第一分量。即,在一些 貫施例中,漸進表面(其可例如位於一第一鏡片組件之一 第一表面上,例如圖1之表面u)可使得其提供一「全」光 學添加功率或一「部分」光學添加功率。在一些實施例 _,當第一表面提供一部分光學添加功率時,另一漸進表 面可自由形成或以別的方式提供於另一表面上(諸如表面 12,其係最接近佩戴者之眼睛的表面,如圖1中所繪示)以 允許組合添加功率以對佩戴者提供全正添加功率。 在一些實施例中,一動態鏡片200之動態功率區域1〇〇1 可與一個或多個光學元件光學連通,使得該等組合之元件 對一特定視力區帶(例如一中間視力區帶或近視區帶)提供 期望之光學功率。該一個或多個光學元件可包括該動態鏡 片200的一部分(諸如第一鏡片組件之第二表面之一部分)或 可為分離之光學元件。 在一些實施例中,一漸進添加式區域係一非旋轉對稱表 面,其並不添加第一凸起表面曲率的厚度,即使該漸進添 I57229.doc •61 - 201219842 :式區域位於該第一鏡片組件之該第_表面上。在其中一 漸進添加式表面曲率係位 、 μ第一鏡片組件之該第-表面 m 表面u)且其中光學特徵部係 渐進添加式表面區域及/或曲率之光學特徵部之一些實 二例中,-溝道或溝渠咖可沿著該動態光學區域刪之 一=蚊位且在該漸進添加式表面曲率貢獻最大光學添 加功率之點的下方。在―些實施例中(圖1Q中杨示卜节 溝道或溝渠讓「完全」位於該漸進添加式表面貢獻其最 大光學添加功率之點的下方’而在其他實施例中(圖10中 亦未繪示),該溝道或溝渠_「大部分」位於該漸進添 加式表面貢獻其最大光學添加功率之點的下方。「大部 分」意味著該溝道或溝渠之長度的主要部分可位於該漸進 添加式表面貢獻其最大光學添加功率之點的下方。在一些 實施例巾’在該漸進添加式表面貢獻其最A光學添加㈣ 最大值處的點亦可對應於鏡片之總添加功率。 參考圖11,例示性動態鏡片200之四個實例以多種形狀 及大小展示,以適應一較廣範圍之鏡片及框架式樣。即, 在一些實施例中,該動態鏡片200可被插入眼鏡或護目鏡 或與眼鏡或護目鏡搭配使用。在一些實施例中,該動態鏡 片可使用於其他應用中’諸如在一成像裝置、一相機利 用及/或聚焦雷射的任何系統及/或利用鏡片之任何其他光 學系統中。該動態鏡片200可製造為具有任何期望形狀或 大小。圖11中展示之該等實例可為用於一患者之右眼之眼 鏡的鏡片。一般技術者將理解’可使用任何已知方法以塑 157229.doc -62- 201219842 形一鏡片。動態功率區域1101之各者可具有相同的光學特 徵部,而無關於該動態鏡片200之整體形狀。 參考圖1 2,展示定位於一例示性護目鏡框架1200中的例 示性動態鏡片200的一實例。如圖12中所展示,該動態鏡 片200的一通道1201經耦合至定位於該護目鏡框架1200之 一撐邊器中或接近該護目鏡框架1200之一撐邊器的一致動 器1202及儲液器1203 »該致動器1202可使用該通道1201以 將該動態鏡片200之流體泵送進入該儲液器1203及從該儲 液器1203處泵送出,以動態地改變由該動態鏡片200提供 之光學功率。熟習此項技術者將瞭解,可使用多種致動器 以幫助移動或位移該動態鏡片200之流體。例如,在一些 實施例中,該動態鏡片200可使用一機械致動器、電子致 動器、一燃料電池致動器或一手動致動器。致動器亦可為 機械地(例如,彈簧負載)、手動地、電或機電地移動或調 整以移動該動態鏡片200之流體之放置的一注射器、柱 塞、泵。在一些實施例中,該動態鏡片200可具有或連接 至多個致動器1202及/或多個儲液器1203。在一個或多個 致動器1202、一個或多個儲液器1203及一個或多個動態功 率區域1204(即,允許該流體進入及離開每一組件的區域) 之間可形成一氣密性密封,以實現該動態鏡片200之流體 的較好流動。儘管在護目鏡或眼鏡之内文中繪示,應瞭 解’可基於使用動態鏡片200之應用而使用一致動器1202 及儲液器1203之任何組態。 圖12中繪示之實例可為供一患者之右眼使用的鏡片。如 I57229.doc -63- 201219842 上文所提,該動態鏡片200可使用一個或多個儲液器 1203。此外,在護目鏡或框架中使用動態鏡片2〇〇之實施 例並不限制於使該一個或多個儲液器12〇3處於圖12中展示 之位置。例如,一個或多個儲液器1203可定位於容置一動 態鏡片200之一框架之鼻橋接件内。此外,在一些實施例 中,一動態鏡片200可使用相對於該鏡片2〇〇定位於多種位 置中的多個儲液器1203。例如’一第一儲液器可定位於一 撐邊器中,且一第二儲液器可位於一鼻橋接件中。再一次 強調,對於該致動器1202及該儲液器12〇3可使用任何適宜 位置。 參考圖13 ’展示該鏡片1〇〇之一實例性實施例。在此國 解中之例示性鏡片100展示為在第一鏡片組件1〇之第一 ^ 面11(如所展示之前表面)上具有一光學特徵部14。在一座 實施例中,該光學特徵部14可為一恆定光學功率區域(遺 不再由該流體20遮蓋時,使得在該可撓性元件5之一區^ 與該第一表面11之間具有足夠少量的流體2〇)且可具有习 同於該第-表面!!之剩餘部分的一球形或非球形曲率。g 而’在-些實施例中’當該第一表面u不再由該流_ 蓋’使得在該可撓性元件s之一區域與該第一表面… 具有足夠少量之流體20時’該鏡片100可為-多焦鏡片。 如圖13中所展示,該例示性鏡片100係在一第一狀辑 中’其中在該第-表㈣與該可撓性元件5之—區域之^ 具有足夠多量之流體2〇’使得該光學特徵部14並不貢獻龙 動態光學區域之光學功率。因而平行進入該鏡片100之, 157229.doc • 64 - 201219842 線101展示為自該鏡片實質上平行射出。如上文所描述, 在一些實施例中,即使在此第一階段,該鏡片100亦可具 有某一光學功率。 參考圖14,展示於圖13中之鏡片1〇〇之例示性實施例現 以在一第二狀態中而繪示,其中流體20之量足夠少,以便 不再將光學特徵部14從可撓性元件5之一區域分離《因 而’該可撓性元件5之該區域在動態光學功率區域14〇1中 符合於位於該第一鏡片組件10之該第一表面11上之該光學 特徵部14之形狀。如此實施例中所展示’該鏡片100可在 該鏡片100之一下部提供一光學功率,其不同於由該鏡片 100之一上部提供的一光學功率。此在圖14中由光線1402 繪示’該等光線1402在該動態光學功率區域1401中進入該 鏡片且根據由該光學特徵部14定義或貢獻至其的光學功率 而折射。相反,在一不同區域中進入該鏡片1〇〇之光線 1403並不折射。 應注意,雖然可撓性元件5可為可撓性的,其亦可為可 伸長的。即,在一些實施例中,該可撓性元件5係僅為可 撓性的,且在一些實施例中,該可撓性元件5可為可伸長 及可撓性的》當可撓性元件5被伸長及/或彎曲.以符合於表 面11及/或光學特徵部14之形狀時,該伸長可幫助該流體 2〇重新填充該鏡片1G()之腔室(即,在該第—表㈣與該可 撓性元件5之間之間隙),此係在該可撓性元件5被釋放及/ 或不再符合於該第一表面11時。 參考圖15,展示一例示性動態鏡片3〇〇之另一實施例。 157229.doc -65- 201219842 圖15⑷及圖15⑻繪示在—第—狀態(圖i5⑷)及一第二狀 態(圖叫))中的例示性鏡片30〇m5⑷展示當第一 鏡片組件310之第一表面360與—第三鏡片組件32〇之間具 有足夠多量之流體330,使得光學特徵部37〇並不貢獻於該 鏡片300之光學功率(對於該流體33〇之折射率與第一鏡片 組件310及第三鏡片組件320實質上相同之實施例)時的鏡 片300。在所繪示之實施例中,當該流體33〇實質上從腔室 移除時,該鏡片300可使用一多孔插塞3s〇而非一可撓性隔 膜以填充第一鏡片組件310與第三鏡片組件32〇之間之區 域。亦提供一通道340,以移除或位移該流體33(^在此例 示性實施例中,該第三鏡片組件32〇可包括一遮蓋鏡片。 如所繪示,在此例示性實施例中,平行進入該鏡片3⑽的 光線1501從該鏡片300實質上平行射出。 相反,圖15(b)展示在一第二狀態中之例示性鏡片3〇〇 ’ 其中該流體330已從第一鏡片組件31〇與第三鏡片組件32〇 之間之區域處實質上移除。現在空氣填充此區域(空氣可 經該多孔插塞350而進入),且空氣與第一鏡片組件31〇及/ 或第三鏡片組件320之折射率之間的差異連同位於該第一 表面360上之該光學特徵部370之性質可建立一正光學功 率。此由在動態光學區域中進入該鏡片且由該光學功 率折射的光線1502繪示。在此實施例中,當該流體mo被 泵送或以別的方式施加於第一鏡片組件31〇與第三鏡片組 件320之間時,則該光學功率被消除(藉由返回之流體33〇 位移之空氣經過該多孔插塞350)。 157229.doc -66- 201219842 參考圖16,以截面展示例示性鏡片3〇〇之另一實施例之 一分解圖。在此實施例中,該鏡片3〇〇包括一基板31〇(例 如,一第一鏡片組件)、外部剛性蓋32〇(例如,—第三鏡片 組件)、一流體33❶(其可為折射率匹配的)及一可撓性元件 350(例如,一隔膜)。一流體埠34〇(例如,一通道)允許泵 送入及吸出(或任何其他位移方法)流體33〇。該第一鏡片組 件300具有一厚度T1、一内部曲率半徑R1、一外部曲率半 徑R2及一中央外部曲率半徑R3。當R2的值等於R1加T1 時,在該第一鏡片組件3〇〇中實質上存在零光學功率。當 曲率半徑R1相對於曲率半徑R2製成較淺時,更大的正光 學功率添加至該第一鏡片組件3〇(^類似地,當曲率半徑 R2製成比曲率半徑以更陡時,更大的光學功率添加至該 第一鏡片組件300。當曲率半徑R3比曲率半徑ri更陡時, 在曲率半徑R3之區域内(例如,在此實施例中,為動態光 學功率區域)添加正光學功率至第一鏡片組件3〇〇。如圖i 6 中所展示’僅為了方便及更清晰地觀看此等組件之例證性 目的,將流體330、可撓性元件35〇及該第三鏡片組件“ο 放置於遠離該第一鏡片組件300的一距離處。在此實施例 中’此等組件如圖17中所展示被集合在一起。 參考圖1 7,例示性鏡片300以截面圖展示。可撓性元件 350位於(即夾入)第三鏡片組件(例如,一外部剛性蓋)32〇 與第一鏡片組件(例如,一基板)3〇〇之間,其中流體330(其 可折射率匹配)將可撓性元件350按壓抵於該第三鏡片組件 320。該第三鏡片組件320之内部曲率半徑可提供該可撓性 I57229.doc -67- 201219842 元件350之一區域可符合並且提供期望光學效果所需之形 狀。即’該第三鏡片組件320可用作一光學功率光鬧。 在圖17中繪示之實施例中,當該流體33〇折射率匹配, 且該第三鏡片組件320之内部曲率半徑(即,第一表面)及外 4曲率半徑(即’第二表面)之曲率與該第—鏡片組件加之 第二表面380之曲率匹配時,在此總成中存在實質上零光 學功率。在-些實施例中,由該第三鏡片組件32〇建立之 光學功率光鬧可;t義-觀看者之遠視之_光學功率。即, 類似於該第一鏡片組件31〇之第一表面,該第三鏡片組件 320之第一表面可包括任何光學特徵部。因此,當在第一 狀態中時,如圖17中所繪示,該鏡片3〇〇之實施例可對一 觀看者所需之任何處方提供—橋正光學功率,其可部分基 於該第三鏡片組件320之第一表面之曲率。此外,該第三 鏡片組件之外部表面(例如’第二表面)亦可包括可貢獻於 該鏡片30G(或其之-區域)之光學功率的任何光學特徵部及/ 或任何曲率。 包括一第三鏡片組件之實施例亦可防止因流體33〇而使 可撓性元件350過壓為一非期望形狀。該第三鏡片組件320 可在可撓性元件350上進一步提供—保護性層,其可防止 該可撓性元件350被外力損壞。替換該第三鏡片組件32〇亦 可為較容易@,而不需要替換該可撓性元件35〇,藉此減 少維護費用。 參考圖18,圖17中展示之例示性鏡片3〇〇繪示為在一第 狀I、中,其中该流體330已經由通道(例如,埠)34〇而從 157229.doc -68· 201219842 總成移除或位移(例如’吸出)。該可撓性元件350之一區域 被按壓抵於及/或符合於第一鏡片組件31〇之外部形狀。可 允許空氣或流體經一接取埠(未作圖式)而填充該可撓性元 件35〇與該第三鏡片組件32〇之間的空間。在所展示之此實 施例中,在第一鏡片組件310之中央區段(動態光學功率區 域)中,在由曲率半徑R3定義之區域中可建立正光學功 率。在一些實施例中’該第三鏡片組件32〇及在第一或第 二表面上之任何光學特徵部(包含任一表面之曲率)亦可貢 獻於該鏡片100之光學功率。 在一些實施例中,並非經由通道34()「吸出」折射率匹 配之流體330,而是空氣或非折射率匹配之流體可被迫進 入至展示於可撓性元件3 5 〇與該第三鏡片組件3 2 〇之間之間 隙中,以將該流體330從可撓性元件35〇與該第一鏡片組件 310之間之間隙處逐出,迫使其藉由通道34〇之右側上的正 壓力而行經通道340(即,泵送),而非藉由通道340之左側 上之負壓力而行經通道34〇(即,吸出)。此將在下文中參考 圖21而更詳細討論。 參考圖19,展示例示性鏡片300的一實施例。在如圖19 中所展示之此實施例中,該可撓性元件350係最外面的光 學元件,沒有-保護性蓋或其他第三鏡片組件。在所展示 之實施例中’該流體33〇(其可為折射率匹配的)使該可挽性 元件350脹大成為—球形形狀,使得在該總成中不存在光 學功率° # ’可撓性元件350之外部曲率與該第-鏡片組 件310之第二表面(例如,所展示之背表面)之曲率匹配。隨 157229.doc •69· 201219842 著流體330從該可撓性元件35〇與該第一鏡片組件3i〇之間 之間隙處移除,該可撓性元件衫❶之曲率之形狀可開始改 變,藉此改變鏡片300之動態光學功率區域之光學功率(例 如,將鏡片300之光學功率朝向該第一鏡片組件31〇之第一 表面提供之光學功率調諧)。此調諧可持續,直到實質上 全部流體330從間隙移除,且該可撓性元件35〇(或其之一 區域)藉此符合於該第一鏡片组件31〇之第一表面(其藉此用 作光學功率光闌)^ 參考圖20,圖19中展示之例示性鏡片3〇〇繪示為在一第 二狀態中。即,圖20展示在流體33〇已經由通道(即, 埠)340吸出(或以別的方式移除或位移)之後,可撓性元件 350符合於第一鏡片組件31〇之形狀。在此狀態申,在其中 存在較陡曲率半徑之中央區帶(即,動態光學功率區域)中 已建立正光學功率。在-些實施例中,該可撓性元件3S0 亦可為一半剛性材料,其具足夠可撓性以當該流體幻〇被 移除或位移時允許其符合於該第一鏡片組件31〇之形狀, 但有足夠彈性以當該流體33()返回該第一鏡片組件31〇與該 可撓性元件350之間之間隙中時返回其原始球形形狀,不 需要流體330以正壓力使其脹大為該形狀。在—些實施例 中,若該可撓性元件350藉由流體330而過壓’則在該可撓 性凡件350脹大超過正常半徑之區域中可建立一負光學功 率。即,若該可撓性元件3S0過壓,使得其外部表面之曲 率半徑減小,此區域可對鏡片3⑽之光學功率具有影響。 儘管在此實施例中描述例示性鏡片300時,該第—鏡片組 157229.doc 201219842 件310已被描述為具有零光學功率 镑Κέ日杜Unrbi 一疋可期望在該第一 兄片、、件31G中建立_@定正或負光學料, 變内部曲率半徑及外部 、^^由改 & L ι比率而完成。在此等實 施例中,即使在圖19中所繪示之第一 u. ^ ^ . 第狀態中,該鏡片300 將藉此具有某一光學功率。 如上文所提,該可撓性元件可包括—材料,在—些實施 例中(僅舉例而言)該材料可包括雙轴定向之聚對苯二甲酸 乙二醇醋(可依My㈣標名購得)或胺基甲酸自旨。然而存在 -有適w透明度、動性及折射率的許多其他材料,其等可 使用為該可撓性元件。 參考圖21,展示動態鏡片3〇〇之一實施例,與允許空氣 填充曾被折射率匹配之流體33〇佔據之空間不同,可取而 代之將具有一不同折射率之一第二光學流體37〇施加於(例 如,泵送進入)腔中。藉由改變該第二光學流體37〇之折射 率(即,該第二光學流體可具有並不與該第一鏡片組件之 折射率匹配的一折射率可改變鏡片總成之光學功率。 此可允許相同鏡片組件使用於不同鏡片中,該等鏡片之各 者具有一不同光學功率。即’相同鏡片(例如,具有相同 的第一鏡片組件、第二鏡片組件等等)之光學功率可藉由 對第二光學流體選擇一不同折射率而「程式化」。 在一些實施例中,亦可使用一可撓性元件350。該可撓 性元件350可用於使污染物及氣泡不進入流體,且亦可用 於保持兩個光學流體分開。在一些實施例中,可撓性元件 350並不建立鏡片之光學功率,而是與該第一鏡片組件與 157229.doc -71- 201219842 該第一表面360(或缺乏其)處之第二光學流體之間之折射率 差異耦合的第一表面360(連同可位於其上之任何光學特徵 部)之形狀建立該光學功率,該光學功率可藉此由該等流 體之折射率而控制。在一些實施例中,該可撓性元件 亦可具有與該第二光學流體不同的一折射率,其可貢獻於 該鏡片300之光學功率。在一些實施例中,該第二光學流 體370可施加於該可撓性元件35〇與該第三鏡片組件32〇之 間之間隙處。 在操作中,在一些實施例中,該鏡片3〇〇可在一第一狀 態中,其中第一光學流體330實質上填充該第一鏡片組件 310與該可撓性元件350(或其之一區域)之間之間隙。在一 些實施例中,流體330可為折射率匹配於該第一鏡片組 件,如上文所描述,然而,其並不受此限制,且可具有任 何折射率。在此第一狀態中,在一些實施例中,在該可撓 性元件350與該第三鏡片組件32〇之間之該第二光學流體 370之量可足夠少。在一些實施例中,在此例示性第一狀 態中,該可撓性元件350或其之一區域可符合於該第三鏡 片組件320之第一表面(例如,該第三鏡片組件32〇之内部 曲率半徑之曲率,如圖21中所展示),其可對鏡片3⑽提供 一期望光學功率(例如,用於遠視矯正的一光學功率)。 在一過渡狀態中,該第一光學流體33〇(或其之一量)可 從該第一鏡片組件310與該可撓性元件35〇之間之區域位 移。該第二光學流體370可施加於該可撓性元件35〇與該第 二鏡片組件320之間之區域處。在一些實施例中,該第一 157229.doc 72· 201219842 光學流體330可在大約與該第二光學流體370被施加的同時 被位移或移除。在一些實施例中,該第二光學流體370之 施加迫使該第一光學流體330位移,或貢獻於該第一光學 流體330之位移。即,在一些實施例中,該第二光學流體 之施加可對可撓性隔膜350施加壓力,其可繼而將該第一 光學流體330從該可撓性元件350與該第一表面360之間之 區域處位移。 在一些實施例中,在一過渡階段,該鏡片300可在該第 一鏡片組件310與該可撓性元件350之間包括足夠多量之第 一光學流體330,及在該可撓性元件350與該第三鏡片組件 320之間包括足夠多量之第二光學流體370。在一些實施例 中,一過渡階段可對於一佩戴者之視力矯正提供一期望光 學功率。此外,如上文所提,在一些實施例中,該過渡階 段可包括將該鏡片在一第一光學功率與一第二光學功率之 間調諧的能力,其可分別由第一鏡片組件310及第三鏡片 組件320提供。較佳地,該第二光學流體370可具有不同於 該第一光學流體330之折射率的一折射率。在一些實施例 中,該可撓性元件350可具有不同於該第二流體370之折射 率的一折射率。在一些實施例中,該第二光學流體370可 具有與該第一鏡片組件之折射率實質上相同及/或與該第 三鏡片組件320相同之一折射率。如熟習此項技術者將理 解,藉由改變該鏡片300之多種組件及流體之折射率,可 部分基於光波在諸介面處的折射而達成不同光學功率。 在一第二或最終狀態中,在該第一鏡片組件310與該可 157229.doc -73- 201219842 挽性元件350之間之流體之量可足夠少,而在該可撓性元 件35〇與第三鏡片組件320之間之第二光學流體37〇之量可 足夠多。在-些實施例中,該可繞性元件35〇之一區域可 符合於該第一鏡片組件31〇之該第—表面36〇之—部分。在 其t該第二光學流體370之折射率與該第一鏡片組件31〇之 折射率實質上相同之一些實施例中,在該第—鏡片组件 3H)之該第一表面360上提供的任何光學特徵部可被遮罩或 隱藏(即,該第一表面360可並不貢獻於該鏡片3〇〇在動態 光學功率區域中的光學功率卜在其中該第二光學流體37〇 具有與該第三鏡片組件310實質上相同之一折射率的一些 實施例中,該第三鏡片組件320之第一表面上的任何光學 特徵。卩可被遮罩或隱藏(即,該第三鏡片組件之該第一 表面可不貢獻於鏡片動態光學功率區域之光學功率)。 雖然一些實施例已描述及繪示為包括具有一特定光學特 徵部或諸特徵部的兩個光學光闌(例如,圖i6至圖2丨),如 上文所陳述,此僅出於例證性之目的。應理解,該第一鏡 片組件之該第一表面(例如,定義一光學功率光闌的表 面’諸如在所描述之實施例中的表面36〇)之任何及全部表 面的設計可經利用以在包括一第三鏡片組件(例如,如圖 16至圖21中所展示之遮蓋鏡片或頂部蓋32〇)的實施例中提 供任何期望的光學功率。類似地,對於該動態鏡片3〇〇之 其他表面之任何者(例如,該第三鏡片組件32〇之内部曲率 表面)可使用任何及全部表面設計,以提供任何期望之光 學功率’或貢獻於該動態鏡片300之一光學功率。 157229.doc -74- 201219842 如上文所提,圖1至圖21中所繪示及在本文中所描述之 實施例僅出於例證性之目的,且並不意味著為限制性。例 如應理解,圖1至圖21中之實施例的任何者亦可僅在一 動態光學區域中提供一部分正添加功率。在一些實施例 中,一部分添加功率漸進表面亦可自由形成於並不鄰近該 可撓性隔獏之一表面上(例如,圖丨至圖3及圖13至圖丨^中 展示之第二表面12 ;圖15至圖21中展示之表面38〇,或在 一動態鏡片中的任何其他適宜鏡片組件或表面卜其可包 括最接近於一觀看者之眼睛的一鏡片組件之一表面。在一 些實施例中,此允許添加功率組合以對佩戴者提供全正添 加功率。 現將參考圖1中僅出於例證性目的而描述之元件,但所 討論3理可等同地應用於其他實施例。本發明之實施例 可允許藉由自由形成、數位表面加工、習知表面加工及拋 光包括-流體之一鏡片毛坯而將一動態鏡片處理為具有一 特定處方的一定製化鏡片,該特定處方由一眼部護理提供 者對本發明鏡片的-特定患者佩戴者指定或量測。再一次 強調’參考圖1中描述之元件(出於例證性之目的),一動萍 鏡片之實施例可製為使得第一鏡片組件(例如,第一鏡片U 組件:M))可為-半成品鏡片毛述的第—鏡片組件,在該鏡 片毛坯與可撓性元件5相同之側上具有第一表面n之期望 完成曲狀,且在第二表面(例如,如所展示之背表面川上 具有-未完成的表面曲狀。儘管出於例證性目的,期望之 完成曲狀展示於凸起側上,且去6 士、Μ 士 丑禾凡成的表面曲狀展示於該 157229.doc -75- 201219842 第-鏡片組件1〇之該第二表面12上,可反轉實施例,使得 該完成曲狀位於該第二表面12連同可撓性元件5上且該 未完成曲狀可位於第-表面(例如,一前表面)n上。 在一些實施例中,該可撓性元件5可黏著接合至該鏡片 組件10之完成表面(若在兩個表面上完成,則該鏡片組件 10亦可稱為-鏡片毛链,或到堇在—表面上完成且在相對 之表面上未完成,則其可稱為半成品鏡片毛述),遮蓋光 學特徵部14之一區域除外。在—些實施例令,該半成品鏡 片毛料藉由習知支承而支承,且該未完成之表面可自由 形成、數位表面加工或表面加工及抛光為適當曲率,以當 可撓性隔膜5在一鬆弛的非保形狀態中時(例如,圖艸描 述之第-狀態),及亦當可撓性隔膜5(或其之一區域)在一 非鬆弛之保形狀態中時(例如,圖3中描述之第二狀態)將意 欲的處方提供予動態鏡片。以此方式,該動態鏡片之實施 例可例如對-觀看者提供近視及遠視兩者的矯正。此外, 藉由利用該第-鏡片組件之一光學功率光閣及在該第三 鏡片組件處的一第二光學功率光闌(如參考圖17及圖18描 述),在該㈣鏡片t可^地且精確地返回至矯正光學 功率。 實施例可允許一動態鏡片之多焦功率當可撓性元件5在 一非鬆他之保形狀態中時針對近視聚焦(例如,在15,,至 2〇",且更佳在16"至18")。如上文所描述,保形狀態意味 著該可撓性元件5(或其之-區域)大部分符合於該第一表面 U之形狀,該第-表面U可包含光學特徵部14(例如圖13 157229.doc -76- 201219842 及圖14中所展示)。在—些實施例中,當可撓性元件5鬆弛 時,其可對動態鏡片之佩戴者提供光學無窮大(例如f距 離該佩戴者20英尺或更遠)的遠視矯正功率。此係部分可 行的,前提是流體20為折射率匹酉己以便在該隔膜係鬆他且 並不在一保形狀態中時隱藏或遮罩光學特徵部14 ^ 另外,在一些實施例中,取決於該第一表面“及光學特 徵部14(展示於圖13及圖14中)之設計,當可挽性元件以或 其之一區域)在保形非鬆弛狀態中時,近視距離(例如,在 15,’至20"之一距離的物件)及另外在一中間視力距離(例 如’約20"至5英尺)處的物件兩者均聚焦係可能的❶在一 些實施例中,在所有距離(近視距離、中間視力距離及光 學無窮大之遠視)處之物件可同時矯正及聚焦,但在本發 明鏡片之不同區域或區帶中。此可包括在該第一鏡片組件 之第-鏡片表面11之不同位置處利用多個光學特徵部14。 在一些實施例中,當該動態鏡片係在鬆他/非保形狀賤 中時,該動態鏡片可提供用以矯正佩戴者所需之遠視及/ 或中間視力所需之光學功率。此可例如藉由利用自由形成 或數位表面加工於相對於包括可撓性元件5之表面(例如, 該第-鏡片組件10之背表面或第二表面12及/或該第三鏡 片組件之-表面)的鏡片表面上的—部分添加功率漸進添 加式表®而完成。術語部分添加功率漸進添加式表面係並 不提供佩戴者㈣距離清楚地觀看所需之全添加功率之一 漸進添加式表面。在-些實施例中,第一鏡片組件10之外 部表面曲率(例如’該第二表面12)可經製作為當該可挽性 I57229.doc •77· 201219842 元件5(或其之一區域)在鬆弛/非保形狀態中時允許遠 橋正及/或中間視力橋正’且當該可撓性元件5(或其之一區 域)在非㈣/保形狀態中時允許近⑽正…般技術者應 理解,基於在本文中討論之原理,利用例如塑形第一、第 二及/或第三鏡片組件之表面的光學性質或動態鏡片之其 他光學特徵部的光學性質,可在保形及非保形狀態之任何 者中達成近距離、中間距離及遠距離之構正的任何組合。 實施例允許製作-患者之視力橋正所需的任何及所有光 學處=(包含製作球體、圓柱、稜柱等等)。熟習此項技術 者將容i *也自冑此耋十患者/佩戴者提供㈣#之散光靖 正,以及所需要的球形功率,或兩者之一組合。另外,例 如圖11中所展示’動態鏡片可經塑邊及安裝至大多數任何 大小及或形狀的眼鐃框架中。在一些實施例中,該第一鏡 月組件10可由任何材料製成,只要流體2〇之折射率與該第 一鏡片組件10之折射率匹配。例如,該等折射率可實質上 相同(例如’在〇.〇5單位之内)。實施例可藉此允許動態鏡 片的材料獨立性,且因此允許製作一組動態鏡片,每一動 態鏡片對於一給定處方具有不同厚度及或光學性質。即, 例如,該動態鏡片可包括(僅舉例而言):CR 39(折射率 I49)、聚碳酸酷(折射率丨.60)、MR 2〇(折射率丨6〇)、mr 1〇(折射率1.67)及/或Mitsui(折射率1.74)。如光學工業中已 知,此等材料之各者表現某些優點及亦表現某些缺點,且 因此眼部護理提供者可對本發明鏡片的患者或佩戴者指定 及/或推薦其希望該患者或佩戴者擁有的材料組合。在實 157229.doc -78- 201219842 施例中,當對該動態鏡片著色時,可對包括該可撓性隔膜 s的表面添加一遮蓋體。在一些實施例中,一遮蓋體 咖(例如,如圖16中所㈣之該第三鏡片組件)可經硬塗佈 且著色。在並不存在遮蓋體32〇的一些實施例中,可添加 —臨時遮蓋體以防止色彩滲透人該可換性元件5中。該色 彩可接著被吸收至該動態鏡片之該第二表面及/或相對於 可挽性元件5之側中。 如上文所提,本文中作為實例提供之屈光功率、曲率半 徑、任何尺寸及折射率之各者係僅為實例,且並不意欲為 限制性的。本文中揭示之實施例可提供佩戴者之光學需求 所需或所要之任何及全部遠視矯正光學功率及添加光學功 率。此可例如藉由選擇一第一(例如前)表面、一第二(例如 背)表面、任何包含之光學特徵部之外部表面曲狀所需之 適當曲狀,及該第一鏡片組件所需之適當厚度及折射率而 完成。此外且如上文所提’該動態鏡片之實施例可為一鏡 片、在兩側上均完成的一鏡片毛坯或必須自由形成或數位 表面加工之一者的一半成品鏡片毛述,或表面加工及抛光 為一最終完成鏡片。 現將根據一雛形光學裝置、提供及獲得一光學裝置的方 法、及一光學裝置及包括光學裝置之眼鏡及製造眼鏡的方 法描述實施例。應注意,任何此等實施例可整體地或部分 地與上文詳細描述的教示搭配使用。應注意,術語雛形意 為將被改進為一最終狀態之一裝置的狀態,其中熟習此項 技術者可意識到雛形裝置可改進為最終狀態。 157229.doc •79· 201219842 圖22A及圖22B提供當從側面觀看時根據—例示性實施 例的-例示性離形光學裝置/鏡片的—概念性截面示音 圖。在此例示性實施例中,該鏡片的前面係凸起的,且該 鏡片的背部係凹入的。在一例示性實施例中,圖22A中描 繪的鏡片包含呈一可氣球化區域之形式的一動態液體鏡 月,其中圖22B描繪在一膨脹狀態中的可氣球化區域。在 -例示性實施例中,該鏡片之背部的凸起表面可經改變以 具有呈一低功率漸進添加式表面之形式的一漸進區域如 可在圖22B中概念性地看見。現將描述該例示性雛形光學 裝置/鏡片的額外細節。 參考圖22C及圖22D,在-例示性實施例中,具有一離 形光學裝置2200,其包括呈一鏡片毛述221〇之形式的一第 -鏡片組件。該第一鏡片組件可為一未完成的或一半成品 鏡片毛坯(分別為圖22C及圖22D)。參考圖22C,該鏡片毛 述2210匕3第一表面2214(其對應於該鏡片毛述2210的 一前表面),及在該鏡片毛坯221〇之一相對側上的一第二 表面2212(其對應於一背表面),如可在圖22(:中看見。該 前表面係一完成光學裝置之一表面,該表面係當該離形光 學裝置2200完成為一光學裝置且併入眼鏡中時比背表面更 遠離觀看者的表面。如可見,該前表面相對於該鏡片毛坯 2210之前面之前方的一位置為一凸起表面,且圖22(:中描 繪之實施例的背表面係平坦的,而圖22D中描繪之實施例 的背表面相對於該鏡片毛坯221〇之背部之背後的一位置為 一凹入表面。在一例示性實施例中,如將在下文中詳細描 157229.doc -80- 201219842 述’該鏡片毛坯2210可隨後以一永久方式改變,以獲得根 據上文詳細描述的第一鏡片組件丨〇的一鏡片,及/或鏡片 毛埋221 0可對應於圖8之鏡片組件,該可撓性元件位於該 鏡片組件上。鏡片毛坯2210可對應於本文中詳細描述的鏡 片毛坯之任一者或多者及/或可永久改變以獲得本文中詳 細描述的鏡片之任一者或多者及其等之變動。 仍然參考圖22C及圖22D,該離形光學裝置2200進一步 包括一第二鏡片組件2220,其包括一可撓性元件。該第二 鏡片組件2220之至少一部分黏著至該鏡片毛坯221〇之第一 表面2214。參考圖23’其展示圖22C的實施例,該第二鏡 片組件2220之可撓性元件在一延伸狀態中(應注意,若背 表面改變為一凹入形狀,則圖23亦可應用於圖22D之實施 例)。明確言之,可看見該第二鏡片組件222〇包括一第一 區域2222,其可回應於施加至該第一區域2222的至少一部 分的壓力的一變化而朝向第一表面及遠離第一表面可變地 移動,藉此相對於經該第一區域2222及該第一表面2214的 一光路徑2300而動態地調整該離形光學裝置22〇〇的一光學 功率(光路徑2300係僅出於代表性目的而描繪,且並不繪 製以展不動態調整之光學功率的影響如在此及下文中 所描述,所定義的光學功率可為任何光學功率,諸如對於 一近處方、一遠處方等等的光學功率。在一例示性實施例 中,该第二鏡片組件2220對應於可撓性元件5及/或參考圖 8的鏡片2GG之可&性元件及/或鏡片扇的可撓性元件及/或 在本文中詳細描述的任何其他可撓性元件及其等之變動。 157229.doc 201219842 在一些實施例中,該可撓性元件2220係以根據本文中詳細 描述的可撓性元件保持至一鏡片及其之變動的一個或多個 方式的一方式而保持至該第一鏡片組件221 〇。 該雛形光學裝置2200經組態使得該第二表面22 12之至少 一部分可永久改變,以永久定義該第一鏡片221〇在該第二 表面2212之至少一第二區域處之一光學功率,該第二區域 與該第一區域2222光學對準,藉此導致一處方級眼科光學 裝置。(在此應注意,以下實施例主要探討眼科光學裝 置’無論已陳述或未陳述,但以下實施例亦主要探討除了 眼科光學裝置之外的光學裝置圖24描繪此一所得的處 方級光學裝置2200’,其包含改變的第一鏡片組件221〇,。 如可見,改變的第一鏡片組件2210,包含自表面2212改變的 一表面22 12’。在一例示性實施例中’該雛形光學裝置22〇〇 經組態使得該第二表面2212之至少一部分可永久改變,以 永久定義該第一鏡片在該第二表面2212之至少該第二區域 處之對應於一眼鏡佩戴者的一距離處方之一光學功率,及/ 或經組態使得該第二表面2 212之至少一部分可永久改變, 以永久定義該第一鏡片在該第二表面2212之該第二區域處 的一正光學功率。 在一例示性實施例中’該鏡片毛坯221〇係一習知光學半 成品鏡片毛坯或一未完成鏡片毛坯(但在其他實施例中, 其可用一完成的鏡片替代)。可撓性元件2220可為位於該 鏡片毛链22 10之前凸起表面上或以別的方式遮蓋該鏡片毛 述2210之前凸起表面的一透明隔膜222〇。該透明隔膜222〇 157229.doc -82- 201219842 包含可改變的一區域2222,在一例示性實施例中,如上文 所提及’該改變對應於由於施加至隔膜之面對該鏡片毛坯 2210之側面的壓力所致的變形。如將在下文中更詳細描 述’在將該可撓性元件2220保持至該鏡片毛坯2210之後, 該鏡片毛坯2210可隨後經由自由形成、拋光及/或表面加 工及/或其等之一組合或任意其他可令人接受之方法而在 其背表面2212上(對比於圖22C中描繪的表面,該背表面 2212可為一凹入形表面)有目的地改變成為一使用者(諸如 該處方級光學裝置裝配於其中的眼鏡之佩戴者)的一處方 級光學裝置,如在下文中經由實例詳細描述。r處方級光 干裝置」意味者具有一完成品質的一光學裝置,其可依照 由美國相關管理機構為此等光學裝置設定的標準而使用於 一副處方眼鏡中,無論其最終是否如此使用。舉例而言, 假設鏡片毛坯2210可完成為一處方級光學裝置,則此一光 學裝置可使用於一副非處方眼鏡中。改變該鏡片毛坯221〇 可導致擁有具有一球形曲狀(如可基於使用者的視線特性 而期望)、環面曲狀(如可基於使用者的視線特性而期望, 其可例如矯正該使用者的散光)或一球形環面曲狀(如可基 於使用者的視線特性而期望)的一表面的一背部之鏡片。 在些實施例中,改變該背部可提供一低功率漸進添加式 表面,其矯正佩戴者的一些(但並非全部)近功率需求,如 將在下文中更詳細描述。低功率漸進添加鏡片意味著具有 比佩戴者當以距其面部12英寸至18英寸閱讀時,在近處清 晰地觀看所需更小的一添加功率。僅舉例而言,且如將在 157229.doc -83· 201219842 下文中進一步詳細描述,若佩戴者需要+2 50D的一添加功 率’則該低功率漸進添加式鏡片將具有小於+25〇d的一添 力〇功率。 第二鏡片組件2220(其可為一前凸起表面隔膜狀遮蓋體) 提供與背表面22 12及(在該表面改變後)改變之第一鏡片組 件2210,之改變的背表面2212,光學連通的一動態鏡片組 件,該改變的背表面2212,例如為一低功率漸進添加式背表 面〇 在一例示性實施例中,雛形光學裝置2200及所得的光學 裝置2200,之第二鏡片組件2220形成位於半成品鏡片毛坯及 亦最終完成鏡片及任何中間完成的鏡片之前凸起表面上的 一動態流體鏡片。更明確言之,在一例示性實施例中,該 動態流體鏡片包括遮蓋半成品鏡片毛述及最終發明鏡片及 任何中間完成的鏡片之前凸起表面的一隔膜狀遮蓋體。換 句話說,該第一鏡片組件22 10/改變的第一鏡片組件22 1 〇, 之例示性前凸起表面可用能夠至少以一可反轉方式塑形、 改變或以別的方式變形之一透明隔膜2220遮蓋。此等塑 形、改變或變形可經隔膜上的壓力調整而完成,如將在下 文中詳細描述。在一些實施例中,如上文所提,該隔膜、 其效能及/或功能可對應於本文中詳細描述的任何隔膜及 其等之變動。在一些實施例中,該隔膜的塑形、改變或變 形限制於鄰近由該透明隔膜遮蓋之前凸起表面2214且相對 於鄰近該前凸起表面2214之隔膜的總面積為較小的一局部 化區域(例如圖23之區域2222)。在一例示性實施例中,遮 157229.doc -84 - 201219842 蓋該前凸起表面2214的隔臈222〇可為塑膠、橡膠或薄玻璃 隔膜或由此等成分之一者或多者及/或其他成分製成的複 合材料’其可基於該隔膜的一給定區域上的壓力而可反轉 地改變、變形或以別的方式調整。在一例示性實施例中, 所得的光學裝置2200·的動態流體鏡片可對應於本文中詳細 描述的任何此等動態流體鏡片及其等之變動。 在一例示性實施例中,該離形光學裝置2200及所得的光 學裝置2200·包含一鏡片組件2220,該鏡片組件2220可呈如 本文中詳細描述的一隔膜及其變動的形式,具有一第一區 域2222 ’其可回應於施加至該第一區域2222之至少一部分 的壓力而氣球化。此氣球化的一實例在圖23中可見。氣球 化意味著該隔膜的一局部化部分經組態以按類似於一氣球 脹大及縮小的一方式遠離表面2214向外膨脹及朝向表面 2214向内收縮’該隔膜的局部化部分之形狀具有—弓形截 面,其以與一氣球的一部分的一截面在脹大/縮小期間類 似的一方式變化。該隔膜在該第一區域2222處的氣球化相 對於經鏡片組件22 10/改變之鏡片組件221 〇'的第一區域 2222及表面2214的一光路徑動態地調整離形光學裝置的一 光學功率。如將在下文中更詳細描述,可藉由調整位於該 隔膜之可氣球化部分與該鏡片組件22 1 〇/改變之鏡片組件 2210’的表面2214之間在空間231〇中的一流體之一參數(參 考圖23),藉此調整隔膜上的壓力而完成氣球化。 可如下文中進一步詳細描述而完成剛才詳細描述的此壓 力調整。然而,簡言之,在一例示性實施例中,當在空間 157229.doc • 85- 201219842 23 10中流體的量增加時,因為該隔膜222〇上在該局部化區 域2222處的壓力增加’隔膜氣球化而遠離表面2214。此 外’在一例示性實施例中’當在空間23 1〇中流體的量減小 時,因為該隔膜2220上在該局部化區域2222處的壓力減 小’隔膜氣球化而朝向表面2214。應注意,在空間23 10中 完全不存在流體時’雖然體積減小,但是空間23 1〇仍存在 (例如,當隔膜2220實質上完全符合表面2214且位於表面 2214上時)。在一例示性實施例中,對應於該離形光學裝 置2200/光學裝置2220,的一給定設計而將該隔膜222〇上的 壓力減小一特定量可允許該隔膜返回至一原始形狀,其可 例如為保形於鏡片毛坯22 10/改變之鏡片組件221 0,的表面 2 214的凸起形狀的一形狀。在一例示性實施例中,該隔膜 2220上的壓力可藉由氣體(例如,空氣、氮氣、除濕空氣 等等)或液體施加。如本文中使用的術語流體的使用意味 著氣體或液體。在至少一些例示性實施例中,可用於實踐 .至少一些實施例的所有液體及氣體(包含空氣)可適用於產 生/改變該隔膜2220上的壓力。在一些實施例中,該隔膜 2220具有88%或約88%或更大的一透明度/透光率。僅舉例 而言,可利用透明橡膠、尼龍或聚1旨薄膜(mylar)作為該隔 膜2220 〇 如將在下文中進一步詳細描述’在一例示性實施例中, 該隔膜2220上的壓力可藉由加熱流體而增加。本文中詳細 描述的增加該隔膜2220上的壓力以達成膨脹的任何器件、 系統或方法及其變動可實踐於一些實施例中》 157229.doc -86 - 201219842 S亥隔膜2220(其可呈一透明隔膜及/或可撓性隔膜及/或透 明可撓性隔膜遮蓋體的形式,且在下文中將根據一透明隔 膜及/或可撓性隔膜及/或透明可撓性隔膜遮蓋體描述,其 施覆於該鏡片毛坯2210(其可為一靜態半成品鏡片毛坯, 如在本文中所詳細描述))可黏著性接合至該鏡片毛坯 2210(在本文中亦稱為基底鏡片)之表面2214。然而,該透 明隔膜2220的一區域(其具有適當尺寸及形狀,以在作用 於至少該隔膜在區域2222處之局部化部分上的壓力調整之 後允許該局部化區域的所需要形狀及曲率變化(例如,氣 球化))並不接合至該鏡片毛坯22 1〇之表面22 14。由於缺乏 此接合,在一些實施例中,在面對該鏡片毛坯221〇之表面 22 14之該隔膜2220之表面之相對側上的該隔膜2220之在區 域2222處之局部化部分之表面可動態地改變或變形(例 如’氣球化)’如在本文中所詳細描述。用於將該透明隔 膜2220黏著至該鏡片毛坯221〇之前表面2214的黏著劑可在 〇.〇5單位内或在〇.03單位内或在〇 〇1單位内或更小單位内 (或約0.05單位或更小的任何值(例如,約〇〇5單位或更 小’約0.045單位或更小,〇.〇4單位或更小,〇 〇35單位或 更小…0.005單位或更小))折射率匹配於該透明隔膜222〇及/ 或提供於位於該鏡片毛坯221〇之前表面2214之區域與該隔 膜之表面2224之區域之間且其中該透明隔膜222〇並不黏著 性接合的空間23 10令之流體。 應注意,在一例示性實施例中,該隔膜222〇可代替地施 覆於鏡片毛坯2210之背表面,而不是前表面。此背表面可 157229.doc •87- 201219842 為凹入的《在此一實施例中,添加式表面可位於前凸起表 面上。舉例而言,若一低功率漸進添加式表面(如將在下 文中更詳細描述)將添加至該鏡片毛坯22〗〇,此將接著位 於該鏡片毛坯2210之前凸起表面上。 在一例示性實施例中,遮蓋鏡片毛坯221〇之表面2214的 具有一圓形的形狀(例如圓形)且直徑上具有1〇 mm的一大 小之該透明隔膜2220之一區域係未附接/未黏著至該鏡片 毛坯2210之前表面2214。此區域2222形成該離形光學裝置 2200及/或所得之光學裝置22〇〇,的動態光學功率區域。該 透明隔膜2220或至少透明隔膜222〇之並不黏著/未附接至 該鏡片毛坯2210之表面22 14的該部分可為可伸長的/由一 可伸長材料(以至少一彈性方式可伸長,以實踐本發明的 實施例)製成。在一些實施例中,可使用任何形狀及大小 的隔膜/區域2222實踐一些實施例。 在一例示性實施例中,該鏡片毛坯221〇具有接近該前表 面2214的一直徑75 mm。在一些實施例中,可使用任何形 狀及大小的鏡片毛坯2210實踐一些實施例。該鏡片毛坯 22 1 〇可由允許實踐至少一些實施例的任何光學材料製成。 僅舉例而言且並不經由限制,該鏡片毛坯22丨〇可由玻璃、 塑膠及/或橡膠製成。此等材料之各者可具有自1.〇至2.〇折 射率或更高或更低的任何折射率。任何及所有光學等級材 料若允許實踐實施例即可被使用,僅舉例而言且並不限制 地包含CR 39、聚碳酸酯、MR 6、MR 1〇、Mitsui i.74。 如上文所提’該雛形光學裝置2200經組態使得該鏡片毛 157229.doc • 88 · 201219842 坯2210之一表面可有目的地永久改變以定義該鏡片毛坯 2210之一光學功率,藉此獲得一改變的鏡片組件221〇,β此 永久改變可在該隔膜2220附接至該鏡片毛坯2210之後執 行。即’該離形光學裝置2200可以一工業規模製造(例 如,使用可自動化的一高產量生產線),相對於由此生產 之離形光學裝置2 200產生規模經濟及/或一致的及/或可預 知的品質(或具有一必需品質的在統計上可令人接受的數 目)。可在遠離該雛形光學裝置2200定位所在之位置的一 位置處(例如,諸如在相對於個別使用者及/或相對於指定 使用者之眼鏡的特定處方的驗光師而局部定位的一光學儀 器商的設施處)執行該鏡片毛坯2210之表面2212之隨後改 變以獲得定義一光學功率及/或提供對應於例如一個別使 用者之眼鏡處方的添加功率的一定製表面2212,。如在本文 中所使用,一光學儀器商係具有自由形成、表面加工、拋 光及/或研磨一鏡片毛坯(及/或此等方法之一個或多個組 合)的能力之一人或公司。在一例示性實施例中,此允許 一驗光師儲備大量離形光學裝置22〇〇,使得他/她可現場 滿足具有動態功率能力的眼鏡處方,不必等待滿足配予他/ 她及/或使用者的處方之一光學裝置及/或不必對特定處方 分類/用途儲備多個完成鏡片。就這方面,現將描述一例 不性方法,其導致及/或實現提供一光學裝置給一使用 者’諸如其中已組合該光學裝置之眼鏡的佩戴者。應注 意’此時在一些實施例中’本文中詳細描述的任何離形光 學裝置可包含本文中詳細描述的任何光學裝置的一些或所 157229.doc -89· 201219842 有組件及/或特徵部,且可用於從一雛形光學裝置獲得一 光學裝置的任何方法可導致包含本文中詳細描述的任何光 學裝置之一些或所有組件及/或特徵部的一光學裝置。 參考圖25,具有一方法2500,其包括動作2510,其意味 著提供一鏡片總成。該鏡片總成可為如上文所詳細描述的 一雛形光學裝置2200及/或其之變動。在一例示性實施例 中’所提供的鏡片總成包含一第一鏡片組件221〇,其包含 一第一表面2214及在該第一鏡片組件221〇之與該第一表面 2214相對之一侧上的一第二表面2212。在此例示性實施例 中,所提供的鏡片總成進一步包含一第二鏡片組件222〇, 其包括一可撓性元件(例如,如本文中所詳細描述的可撓 性隔膜)’該第二鏡片組件2220之至少一部分黏著至該第 一鏡片組件的第一表面2214。該第二鏡片組件222〇之該可 撓性元件包括一第一區域2222,其可回應於施加至該第一 區域2222之至少一部分的壓力的一變化而朝向及遠離該第 一表面2214可變地移動,藉此相對於經該第一區域2222及 該第一表面2214的一光路徑動態地調整該鏡片總成22〇〇之 « 一光學功率。 在一例示性實施例中,動作2510提供該鏡片總成之動作 包含將該鏡片總成提供給一接受者,舉例而言,諸如一光 學儀器商。可藉由經例如直接製造、特許製造及/或藉由 外包製造及隨後將所獲得的鏡片總成經由例如政府郵政、 合約快遞(例如’ FEDERAL EXPRESSTM&/或較慢速度的 配送方法)及直接快遞(例如’由執行動作2510之動作者擁 157229.doc •90· 201219842 有的快遞)遞送給接受者而獲得該鏡片總成而完成動作 2510。亦可藉由指導或以別的方式使第三方製造或以別的 方式獲得該鏡片總成且指導或以別的方式使該第三方或另 一方將所獲得的鏡片總成遞送給接受者而完成方法25〇〇的 動作2510。即,可在不具有提供給接受者之鏡片總成之所 • 有權(實體上及/或法律上)的情況下執行動作25 1〇。 方法2500亦包含動作2520,其意味著提供所提供之鏡片 總成之至少一組件將永久改變之一指示的動作。在一例示 性貫施例中’動作2520意味著提供一指示,該指示即該第 一鏡片組件2210將以永久定義該第一鏡片在該第一鏡片組 件2210之第二表面2212之至少一第二區域處之一光學功率 的一方式而永久改變’該第二區域與該第一區域2222光學 對準。在進一步討論此方法動作之前,應注意,圖24描繪 在第二表面2212上的第二區域2216處永久改變該鏡片毛述 2210以永久定義該第一鏡片組件/鏡片毛坯2210之第二區 域22 1 6之一光學功率的一例示性結果(導致改變的鏡片 2210')。如圖24中可見,該第二區域2216與該第一區域 2222光學對準。應注意,若改變動作係限制於該第一鏡片 ' 組件2210之表面2212之一子集,該第二區域2216可為一較 . 小區域’例如’諸如圖22D之實施例可為此情況,其中該 第二區域2216對應於位於所得光學裝置之下部上且並不跨 改變之第一鏡片組件221 〇’之全直徑延伸的一低功率漸進添 加式表面。 舉例而言,可藉由例如經由政府郵政、合約快遞(例 157229.doc •91· 201219842 如,federal expresstm&/或較慢速度的配送方法)及 直接快遞(例如,由執行動作2510之動作者擁有的快遞)將 組件可永久改變的指示遞送給鏡片總成之接受者而完成動 作2520。可例如藉由將該指示與所提供之鏡片總成一起提 供而元成動作2520。可例如藉由將該指示發佈於一網站上 及/或經由與另一方(其可能為或可能不為該鏡片總成之接 又者)進行電話及/或視訊通信而完成動作252〇。可例如藉 由廣告而完成動作2520。該指示可為例如用於改變該第二 表面2212之指令的形式,及/或為該第二表面up可改變 的一通知的形式。導致執行指示該組件可永久改變之動作 的任何動作可被執行以實踐動作252〇β應注意,在執行動 作2520中,執行動作252〇的動作者可將或可不將該指示引 導給一特定方。 應進步注意,動作2520可在執行動作25 1〇之前及/或 之後及/或執行動作2510時實踐。 參考圖26,具有提供一光學裝置(例如,所得的處方級 光學裝置2200,)之一方法2600,其包括動作261〇,其意味 著獲得鏡片總成。該鏡片總成可為如上文所詳細描述的 一離形光學裝置2200。在一例示性實施例中,所獲得的鏡 片總成包含一第一鏡片組件2210,其包含一第一表面2214 及在該第一鏡片組件2210之與該第一表面2214相對之一側 上的一第二表面2212。在此例示性實施例中,所提供的鏡 片總成進一步包含一第二鏡片組件2220,其包括一可撓性 兀件(例如’如本文中所詳細描述之可撓性隔膜),該第二 157229.doc 92· 201219842 鏡片組件2220之至少一部分黏著至該第一鏡片組件之第一 表面22 14。該第二鏡片組件2220之可撓性元件包括一第一 區域2222,其可回應於施加至該第一區域2222之至少一部 分的壓力的一變化而朝向及遠離該第一表面2214可變地移 動’藉此相對於經該第一區域2222及該第一表面2214的一 光路徑動態地調整該鏡片總成2200的一光學功率。 在一例示性實施例中,動作2610獲得該鏡片總成之動作 包含直接製造該鏡片總成及/或經由例如政府郵政、合約 快遞(例如,FEDERAL EXPRESSTM&/或較慢速度的配送 方法)等等接收該鏡片總成。There is a progressive addition lens with a gradual transition. Unexpected distortion in a flexible PAL can be above the assembly point and spread to the periphery of the lens. - Flexible PAL can also have a longer channel length and a wider channel width. An "improved flexible progressive addition lens" is a flexible PAL that is modified to have a limited number of characteristics of a rigid PAL, such as a sharper optical power transition, a shorter channel, a narrower channel, and advancement to the lens. See more unintended astigmatism in the knife, and more unintended astigmatism below the assembly point. Static lens, lens | A lens with an optical power that cannot be changed with the application of electrical energy, mechanical energy or force. Examples of static lenses include spherical lenses, cylindrical lenses, progressive addition lenses, bifocal and trifocal lenses...static lenses 157229. Doc •27· 201219842 Also known as - fixed lens. A lens can be included as part of a static, which can be referred to as a static power zone, segment or region. Unexpected astigmatism: Unintended aberrations, distortion, or astigmatism found in a progressively added lens are not part of the patient's prescription vision correction, but rather due to a smooth gradient of optical power between viewing zones. The optical design of pal is inherent. Although a lens can have unintended astigmatism in different regions of the plurality of refractive powers across the lens, the unintended astigmatism in the lens generally refers to the largest undesired astigmatism found in the lens. Inactive astigmatism can also be used to locate undesired astigmatism in a particular portion of a lens that is integral with the lens. In this case, a defined language is used to indicate unintended astigmatism only within a particular portion of the lens under consideration. Further, as used herein, when the term "sufficiently small" is used with reference to a fluid, it is meant that the fluid is located in a first region of one of the lens components and a first region of the flexible member (eg, a diaphragm). The amount of time in which the fluid does not substantially affect the shape of the first region of the flexible member such that the first region of the flexible member substantially conforms to the first portion of the lens assembly surface. The fluid also does not significantly affect the optical power of the device. This term is meant to encompass the fact that it is virtually impossible to remove all fluid particles from any device (or a gap/chamber), and thus a minimum amount of fluid particles may still be present in the first lens. The region between the component and the first region of the flexible element (eg, some residue may remain on at least the surface). However, when referred to as "sufficiently small", the amount of fluid has no substantial effect on the function of the device. Contrary to the term "sufficiently" as used herein (or "enough 157229. Doc •28-201219842 South”) means sufficient “the amount of monumental fluid (ie, the surface of the vapor and/or an optical feature thereof is in optical communication with a portion of the lens), such that When the index of refraction matches, a portion of the surface of the lens does not add (positive or negative) optical power to an optical dynamic region. Therefore, there may be a smaller amount that does not "cover" the portion of the lens. Body (or fluid residue) as used herein. Embodiments provide a dynamic lens that includes a fluid that addresses/satisfies some or all of the apparently unmet needs set forth above. Although the embodiments disclosed herein utilize a fluid, one of the first lens surfaces of the first lens surface (which may be rigid and which may or may not contain a photon feature) has an external curvature (_flexible element) One of the regions (eg, the diaphragm) conforms to the external curvature in curvature and is not an increased flow volume) the optical power required to add positive (plus) optical power and/or myopia correction. In some embodiments, the first region of the flexible element includes only a portion of the flexible 70 piece. In some embodiments, the levisable element can comprise the entire flexible element. In some embodiments, the _ region may include portions of the tractable element (e.g., one continuous region of the flexible element) that may or may not be physically connected. At least some embodiments of the dynamic lens of the present invention as disclosed herein, as well as variations thereof, are ergonomically more acceptable (eg, These lenses are not too thick or too heavy) and are less expensive to manufacture. In this regard, although the lens can have good visual performance, it has a small external factor, but when it is attempted to expand the manufacturing in large quantities, it can be relatively 157,229. Doc •29- 201219842 expensive lenses. Accordingly, at least when compared to some electroactive lenses, at least some embodiments of dynamic lenses as disclosed herein and variations thereof can be manufactured at reasonable cost to have a reasonable profile factor, and for many, most And/or all prescription and over-the-counter optical power provides a superior quality vision correction. In an embodiment, a dynamic lens as disclosed herein and variations thereof can be used to bridge positive vision in a manner different from static multifocal lenses. Unlike static mirrors (single or multi-focal), at least some embodiments of the dynamic lens as disclosed herein and variations thereof will allow for a wearer to be closer to normal vision performance than a static lens. That is, since the human eye is used as a dynamic lens system and is not a static lens system, these dynamic lenses are closer to the function of the human eye. In some embodiments, the front surface of the lens (eg, the surface 11 ' in the figure that is the surface of the first lens assembly that is remote from the viewer) can be used to govern or otherwise affect the positive (plus) optical power. Dynamically increasing the first surface of a curvature template. In some embodiments, the #releasable element 5 is located on the side of the lens closest to the side of the eye, a back surface (eg, surface 12 in the figure, which is closer to the surface of the viewer than the first lens assembly) ) can be used as the first surface of a curvature template. In such embodiments, the front surface (eg, surface (1) in Figure! is a second surface that may be a raised surface relative to the side of the lens that includes the flexible element. As mentioned above, The fluid lens provides an increase in the volume of the fluid on the diaphragm to cause an increase in the positive (plus) optical power. If the volume increase is too large or too small, the positive (plus) optical power is required for the wearer. Anxiety / 157229. Doc -30- 201219842 Myopia renewal may be less than ideal. Rather, at least the second embodiment taught herein provides a curvature template to allow for a precise optical power that will not allow a dynamic lens to focus on the wearer's near point or near point vision correction. Optical power. Thus, embodiments can provide dynamic lenses that provide the precise and appropriate optical power required by the wearer whenever near-point optical power/myopia correction is desired. In some embodiments, the dynamic lens can also include a cover (eg, a third lens assembly, such as the 32 cover lens of FIG. 16 can also be used as a curvature template that provides an optical power stop = ensuring accurate A far vision optical power is achieved. In some embodiments, a mask can be used as a far vision curvature template and a first surface of a lens assembly (eg, 'surface 11 in FIG. 1) (which may or may not include an optical feature) Can be used as a myopia curvature template by providing an optical power light for myopic optical power (and may or may not include - an intermediate curvature template first table: an intermediate vision optical power may also be provided. Therefore, in some Embodiments: When focusing on a far vision object and switching the focus to an intermediate distance object and then switching the focus to any combination of myopic objects or the like, the far vision optical power, intermediate optical power can be repeated and accurately achieved (when desired) And myopic optical power. This part is due to caution, and the application does not depend on the amount of fluid: the amount of fluid changes the shape of a diaphragm, because the first mirror The first surface of the component and / mirror month component is used as the optical power to close the desired correction. However, it should be noted that the dynamic lens of this article = 丄 手 从 ( ( ( ( ( 学 学 学 学 学 学 学 学 学 学 学 学 学 学 学Tuning between 阑. I57229. Doc • 31 * 201219842 An optical device and/or device comprising a dynamic optical lens is therefore provided. A first optical device includes a first lens assembly having a first surface and a second surface. The first lens component can be rigid; that is, it can be made of a material such that the curvature and shape of its surface does not change. Any material having such characteristics can be used, including glass, plastic, and/or any other transparent rigid material. The first surface and/or the second surface can be completed, such as by free formation or digital surface processing. The first device further includes a second lens assembly including a flexible member. The flexible element can include a diaphragm. In some embodiments, the second lens assembly can include both a flexible component and a rigid component. The flexible element can comprise any material, including biaxially oriented polyethylene terephthalate (available under the MyUr brand name) or urethane. However, any suitable material may be used such that a first region of the second lens assembly may conform to the first surface of the first lens assembly and/or may not conform to the surface, such as when the flexible member In the case of the first surface blistering, it is described in detail below. In some embodiments, the second lens assembly (and/or the first region) may also be extensible in the first optical device 4 as described above. This may allow the second component (and/or the region) to retain a structure while still conforming to and/or bubbling from the first surface of the first lens component 2. The ability to conform to the first surface when the fluid is sufficiently small in this region can cause the optical features thereon to define the optical power of the lens. Because the first region of the flexible element does not maintain its own curvature, and conforms to the curvature of the first surface curvature of the first surface, thereby the optical power surface. I57229. Doc-32·201219842 In some embodiments, the region of the second lens component or the region of the second lens assembly is translucent. In some embodiments, the flexible element or one of its regions is transparent. For applications where the user will utilize the lens in everyday use, such as in a goggle, a transparent flexible member may be preferred because the lens will allow the user to be unobstructed by the lens assembly. Watch the object in case. Preferably, the second lens element or a region thereof transmits at least 85 of the light waves incident on a surface. More preferably, the first lens element or a region thereof transmits the light wave incident on a surface; 90 / 0. It is desirable that the flexible element does not unnecessarily suppress the propagation of light waves, such that the dynamic lens Or one of its regions can be used in high light as well as low light environments. The first lens assembly and the second lens assembly are positioned such that a gap or chamber can be established between at least a portion of the two components. In the example, the portion of the disposable element can be permanently adhered to the first surface of the first lens assembly. This creates a seal around a dynamic optical region, wherein: the optical power is varied. In some embodiments, The second lens assembly can be adhered to the fixed portion of the first device, which may not be preferred 'because it inhibits the ability to shape the lens into a different style of frame. The first device also includes an applicable a fluid between at least a portion of the first lens (four) and at least a portion of the second lens component (eg, the gap described above). The fluid can be any component and can also be packaged Other forms of material, such as a gas and / or fluid gel may have any refractive index in the u - some embodiments, the first fluid preferably 157,229. Doc •33- 201219842 is similar in the use of this article. For example, the term "refractive index can be matched to the refractive index match of a lens component by a ratio of β" means that the refractive index is substantially different. Within 05 units. In the first device φ, &; 矣 伽 伽 , , , , , , , , , , , , , , , , , , , , 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当 当The first may include: conforming to the "buckling + first-region, wherein the term 1 may be defined by two. βΡ, when in the gap between the first-lens component and (: substantially = the first region) When the fluid is removed and removed, the first region of the flexible member may be in contact with the first surface of the first member and/or conform to the first surface of the first lens group. The first region of the flexible element is in the form of any optical feature on the first surface. If the refractive index of the flexible element and the lens assembly is substantially (four), the optical region may have An optical power defined by the first surface of the first lens assembly. In this manner, embodiments provide the ability to reliably and reliably return optical power defined by the first surface. In the first device, The first surface of the first lens assembly and the second mirror in certain regions of the device The first region of the flexible member of the second lens assembly also does not conform to the first surface of the first lens assembly when the amount of fluid between the first regions of the assembly is sufficient. When the fluid is applied to or located in the gap or chamber between the first lens assembly and the first region of the flexible member, the first region of the flexible member can be Fluid displacement (or otherwise from the first 157229. Doc -34· 201219842 2 moves away from the face so that it no longer contacts the first surface and/or conforms to the first surface. This may thus provide the dynamic lens with the ability to change the optical power of a particular area. In embodiments in which the fluid is index matched to the first lens component, optical features or curvature of one of the first lens surfaces may no longer contribute to optical power in any region of sufficient fluid, in some embodiments. In the first device described above, the flexible 70 member further includes a second region. When the fluid between the first region of the flexible element and the first surface is sufficiently small, the first region of the flexible member of the second lens assembly can conform to the first lens assembly The first surface, while at the same time the fluid between the second region and the first surface is sufficiently high, the second region of the flexible member does not conform to the first surface of the first lens assembly. That is, the device and the first surface can be such that as the fluid is removed or displaced between the first lens assembly and the second lens assembly, different portions of the first surface can no longer be covered by the fluid, and thereby One or more regions of the flexible element may be adhered to and/or conform to the surfaces. At the same time, it is possible to have other regions of the flexible element and portions of the first surface, wherein the fluid remains sufficiently such that the regions of the flexible π member do not conform to the portions of the optical surface. This can provide an embodiment of a dynamic lens having different optical powers in different regions, and can provide the user with the ability to select which force rate to apply at any time (or at the same time). An example of this consistent embodiment is shown in Figures 13 and 14 'which will be described in more detail below. In some embodiments, the first device includes a reservoir that can accommodate 157,229. Doc -35· 201219842 is not located between the first and the second lens assembly. The reservoir can comprise any material and can be located within other components of the first device. For example, for the embodiment in which the first device includes goggles, the reservoir can be located in the frame, in the nose bridge, and the like. The reservoir can be located at any suitable location as long as the fluid can enter the reservoir and be released from the reservoir. Additionally, the device can include a plurality of reservoirs. In some embodiments, the fluid can be applied between the first lens member and the second lens assembly by an actuator. The actuator can include any type of device for applying and/or displacing or removing fluid, including, for example, mechanical (eg, 'spring loaded) operation, manual operation, electrical or electromechanical movement, or adjustment to move the placement of the fluid. a syringe, plunger, ". The actuator can be located at any suitable location' and is typically in communication with both the reservoir and the gap between the first lens assembly and the second lens assembly (and/or one of the channels). In some embodiments, in the first device described above, the first advancement includes a first optical feature. An optical feature can be anything that changes the optical power of the dynamic lens, for example, including any combination of the following: a progressive optical power region, a pair of ..., a brother, a bifocal lens, a a multifocal region; a non-spherical optical feature, an aspherical region; a rotationally symmetric optical feature; and a non-rotationally symmetric optical feature. By including the optical feature on the first surface of the first lens assembly, it allows the embodiment of the dynamic lens to have a predetermined optical stop in which one of the regions can be easily returned and applied Optical power. In addition, the first surface may have 157229 located on different areas. Doc -36· 201219842 Multiple optical features. Preferably, in some embodiments, when the amount of fluid between the first optical feature and the first region of the flexible element is sufficiently small, the flexible component of the first device A first region conforms to the first optical feature. In such embodiments, the first surface serves as the optical power stop when the fluid is sufficiently removed from the first lens, the group #, and the first region . Moreover, in some embodiments, when the amount of fluid between the first optical feature and the first region of the flexible member 70 is sufficient, the flexible member of the first device The first area does not conform to the first optical characteristic. P. For the same reasons as described above, this may be preferred because when the fluid is added and sufficient, this provides dynamic properties that allow the optical feature to no longer define or contribute to the optical power of a region. Thus, in an embodiment, depending on the fluid between the flexible element and the first lens assembly, the lens provides multiple optical power to the same area of the lens. In some embodiments, the first device further comprises a first dynamic optical power region as described above. The dynamic optical power region refers to a portion of the lens that has a changeable optical power. For example, in some embodiments, the dynamic optical power regions coincide with an optical feature on the first surface of the first lens assembly. The optical power of the dynamic optical power region can also be varied as the amount of fluid covering the first lens surface that is in optical communication with the dynamic optical region changes. In some embodiments, the dynamic optical power region can be defined by the first surface of the first lens assembly when the fluid between the first region of the flexible element and the first lens assembly is sufficiently low. 157229. Doc • 37·201219842 In some embodiments in which the first surface of the first lens assembly comprises an optical feature and the first device comprises a first dynamic optical power region, the fluid may have a substantially similar The first lens assembly: refractive index - refractive index. In such embodiments, when the amount of fluid between the first optical feature and the first region of the flexible member is sufficiently large, the refractive index of the fluid is preferably such that the first optical feature The part is also dedicated to the first dynamic optical power region. This may cause the optical features on the first surface of the sheet assembly to contribute or define optics when the fluid between the first surface and the first region of the flexible 7L member is sufficiently small: When the fluid is increased to a sufficient number of levels, the same features are not imparted to the optical properties of the same region. This can be attributed in part to the fact that the fluid and the first lens assembly have substantially the same refractive index, and whereby any optical features can be substantially masked or hidden. The first surface of the first mirror assembly of the first embodiment of the apparatus as described above defines a first optical power light, which can be used for myopic optics (4). That is, the first surface may be such that the viewer provides a bridge corresponding to an object that is close to the (four) viewer (i.e., 'a short distance apart'). In these embodiments, the first surface may be - optical Power 2阑' wherein the first surface of the first region of the flexible membrane and the first surface of the first lens assembly or the light and the vehicle 贡献* Define this area. At its additional positive power can be added to - in this embodiment: the piece comprises a first optical feature - although the first optical feature and the flexible element are 157229. Doc -38 - 201219842 When the fluid between n is sufficiently small, the first dynamic optical power region is defined by the first optical characteristic. That is, the photon power pupil for the region that is used for the device can be defined by the first lens component portion. The optical layer on the surface of the device is as described above. The first device includes a -first dynamic optical power region - in some embodiments, the first dynamic optical power region can be tunable. As used herein, the term "adjustable" means that optical power can be changed from one value (possibly continuously) to another value. In some embodiments, the dynamic optical power region is defined by the first optical power light when an amount of fluid between the first optical feature and the first region of the flexible member is sufficiently small. As the amount of fluid between the first optical feature and the first region of the levisable component increases, the dynamic optical power region is diverged away from the first optical power stop. This may be because the shape of the first region of the flexible element may continue to change and conform to the difference in optical characteristics of one of the first surfaces. When the amount of fluid is sufficiently small, this can thereby change the optical power of the region of the lens from a first optical power to an optical power pupil defined by the first surface in a continuous manner. In some embodiments in which the first device described above includes a first dynamic optical power region, between the first lens component and the first region of the flexible 70 member of the second lens assembly The reduction in fluid volume increases the positive optical power of one of the dynamic optical power regions. This may again be partially caused by the shape of the first surface. The first surface includes an optical feature or curvature that adds positive optical power, and thus the fluid (which may have a refractive index of 157229. Doc • 39-201219842 The reduction in the first lens assembly exposes these features, which in turn can provide (i.e., add positive optical power) optical power to the region. In some embodiments, a reduction in fluid volume between the first lens assembly and the first region of the flexible member of the second lens assembly reduces positive optical power of the dynamic optical power region . For the same reason, when the refractive index matching fluid is removed or displaced, the first surface of the first lens assembly can provide - negative optical power 'which contributes to the optical power of the region of the lens. In some embodiments, in the first device as described above, the shape of the second lens assembly can be adjusted based on the amount of fluid between the first lens assembly and the second lens assembly. As mentioned above, the second lens assembly can include a flexible member that can be n. The replaceable member can change shape based on the amount of the fluid and the pressure applied to the flexible member. In addition, as described above, the first region of the flexible member can conform to the first lens assembly and the first lens assembly has a first refractive index. The rate 'the second lens component has a -birefringence' and the fluid has a -third index of refraction. In the "some", the first refractive index is substantially the same as the second refractive index. That is, the lens assembly and the fluid can be index matched such that light propagating between the two & is substantially non-refracting. When there is a sufficient amount of fluid on the surface, this allows the optical features of the first surface to be hidden (i.e., they do not contribute to optical power in some embodiments). Doc • 40- 201219842 The first index of refraction is substantially the same as the third index of refraction. That is, the first lens assembly and the second lens assembly (and/or the flexible component of the second lens assembly) can be index matched. This prevents any light entering the lens from being refracted at the interface between the flexible element and the first lens surface, which can thereby affect the optical power of the region of the device. In some embodiments, the first, second, and third refractive indices are substantially the same. This may be preferred such that an optical feature on the first surface can correct optical power corresponding to one of the wearer's needs, and will not result from having to cause such a design in the device. Any additional optical power of the pure interface of the component. This may result in a device that may be more easily designed to provide no optical power in some embodiments (eg, when the first surface or a portion thereof is covered by the fluid), it may be desirable for a viewer not to Correction of objects at these distances does not require correction of the refraction at the interface of the components. In some embodiments, the first device, as described above, includes a third lens assembly having a first surface and a second surface. The third lens assembly can be a cover lens that can be used to protect the flexible membrane. Preferably, the first lens assembly and the third lens assembly are positioned such that there is a gap between the first surface of the first lens assembly and the first surface of the third lens assembly. In some embodiments, the second lens assembly can be located substantially in the gap between the first lens assembly and the third lens assembly. Preferably, when the amount of fluid substantially fills the gap between the first mirror and at least a portion of the third lens assembly, at least a portion of the second lens is conformable to the Third lens assembly 157229. Doc •41.  At least a portion of the first surface of 201219842. That is, when fluid is applied between the first lens assembly and the flexible member, the third lens assembly defines the maximum position at which the expandable member can expand. In some embodiments, the first surface of the second lens assembly defines a second optical power stop. In some embodiments, the second optical power unit is used, that is, the third lens assembly can have an optical characteristic portion of the flexible element. When the area conforms to the surface, a dynamic optical area provides a wearer's The optical power required for hyperopia correction. This provides a dynamic lens that corrects the advantages of both myopia and hyperopia. Moreover, by providing an optical power stop for each (defined by a fixed or rigid lens assembly), the device provides a reliable way to consistently and accurately return the desired optical power. EXEMPLARY EMBODIMENT An exemplary embodiment will be described with reference to Fig. 1, which shows a side view of a lens. This is for illustrative purposes only and is not intended to be limiting. As used herein, as used in the detailed description, "lens" is an abbreviation for an optical device that includes a lens assembly and other components. The lens 100 can include a first lens assembly 1 and a second lens assembly 5. The second lens assembly 5 can be positioned closer to an object viewed or viewed by the lens 1 (such that, for example, the first lens assembly 1 is positioned closer to a user of the lens 100), a fluid ( Or a liquid or gel or the like 20 can be positioned between the first lens component 1 〇 and the second lens component 5. The first lens assembly 10 can be a solid lens comprising a material having a uniform refractive index. In some embodiments, the fluid 2〇 can have about 157,229. Doc • 42· 201219842 A refractive index equal to or substantially equal to the refractive index of the first lens assembly 10. The first lens, assembly 1 can include a first surface „ (adjacent to the surface of the first lens assembly 10 of the fluid 20) and a second surface 12 (the first mirror month that is not adjacent to the fluid 20) Each of the first surface 11 and the second surface 12 of the first lens assembly 1 can have any shape or curvature (including recesses, protrusions, and/or a flat curvature (eg, about a radius equal to infinity)). In addition, any optical features - for example, a progressive optical power region, - a double-focus mirror H lens or other multi-focal region, a non-spherical optical feature, a non-spherical region, a rotational symmetry a feature portion (including a rotationally symmetric non-spherical region), a non-rotationally symmetric optical feature (including a non-rotationally symmetric aspherical region), or any combination thereof - may be positioned on the first surface u of the first lens assembly 10 or The second lens assembly 5 can include a flexible member, such as a flexible diaphragm. The second lens assembly 5 can also be extensible. Accordingly, the first lens And the shape of piece 5 The shape may be dynamically adjusted based on the volume of fluid 2 positioned between the first lens component and the second lens component 5. Specifically, as the amount or volume of fluid 20 decreases, the second lens component The s (or a portion thereof) may be "moving toward the first surface of the first lens assembly 10". Finally, a region of the second lens assembly 5 may be in contact with the first lens assembly 10 and/or conform to The shape of the first lens assembly 10. The second lens assembly 5 can be moved away from the first surface 11 of the first lens assembly 10 by the amount or volume of the fluid. The second mirror I57229. Doc •43- 201219842 The flexible element (or region thereof) of the sheet assembly 5 can be a material such as, but not limited to, biaxially oriented polyethylene terephthalate (available under the Mylar trademark) A commercially available or urethane, and in some embodiments may be translucent or transparent. As the shape of the second lens assembly 5 is dynamically adjusted, the optical power in one or more regions of the lens 1 can be varied or adjusted. When the fluid 20 (in this embodiment, the fluid is index matched to the first component) separates the first lens assembly 10 and the second lens assembly 5, the first lens assembly 10 is covered by the fluid 2 Any optical features on a portion of the first surface u will not contribute to the optical power provided by the lens 100. As mentioned above, this is because the fluid 20 has a refractive index that is approximately matched to the refractive index of the first lens assembly 10. When the amount of the fluid 20 separating the first lens assembly 1 and the second lens assembly 5 is substantially lower, the second lens assembly 5 (or a region thereof) may conform to the first lens assembly 1 The shape of the first surface 11 and then any optical features on a portion of the first surface 11 of the first lens component 1 can contribute to one of the various portions of the lens 1 Optical power. More specifically, any optical feature on the first surface 11 of the first lens component 1 that can be covered by the fluid 20 and not covered by the fluid 20 can contribute to one of the dynamic optics provided by the lens 1 Power "As mentioned above, this region can be considered as one of the dynamic optical power regions of the lens 100. One of the dynamic optical power regions of the lens 1 can be of any shape or size and can contribute any desired optical power when no longer covered by the fluid. In addition, one of the dynamic optical power regions of the lens 1 can be placed with one or more additional optics of the lens 1 157. Doc • 44 - 201219842 Features (e.g., optical features positioned on the second surface 12 of the first lens assembly 10) are in optical communication. In this manner, a dynamic optical power region of the lens can contribute a portion of the total desired optical power to a region of the lens 100 (e.g., one of the total added power of one of the lenses 100). The fluid 20 can be moved by any suitable method and mechanism. For example, movement of the first lens assembly 10 can displace the fluid 2〇. If the first lens assembly 1 is moved toward the second lens assembly 5, the fluid 20 can be forced out of the region separating the first lens assembly 10 and the second lens assembly 5. If the first lens assembly 10 is moved away from the second lens assembly 5, the fluid 20 can be allowed or forced into the region separating the first lens assembly 1 and the second lens assembly 5. In some embodiments, an actuator can pump the fluid into a region between the first lens assembly j 〇 and the second lens assembly 5 and pump out the region. The actuator can be positioned, for example (in an embodiment including a goggle), in one of the rim holders of one of the lens frames. However, the actuator can be located at any suitable location. The fluid 20 can be evacuated (i.e., 'removed or displaced) to a chamber or reservoir that can be positioned in a variety of positions relative to the lens 100. For example, and as shown in Figure 1, the fluid 20 can be emptied to one or more reservoirs 25. As an additional example, the fluid can be pumped into a fluidizer positioned within a gusset that houses one of the lens frames of the lens 100. As noted above, the exemplary lens 100 depicted in Figure 1 is merely illustrative and is not meant to be limiting. As shown in Figure 1, the fluid 20 is depicted as including the entire first surface η of the first lens assembly 10 from a flexible 157229. Doc • 45· 201219842 The entire second lens assembly 5 of the sexual element is separated (ie, as depicted, the fluid may cover approximately the entire first surface η of the first lens component ίο), but the embodiment is not limited thereby . That is, in some embodiments, the fluid 20 of a dynamic lens 100 can be positioned only between the first lens component 1 and a selected portion of the second lens component 5. For the portion of the lens 100 in which the amount of the fluid 20 separating the first lens assembly 1 and the second lens assembly 5 is allowed to be sufficiently small, the region of the flexible member 5 may substantially conform to the first The portion of the first surface 11 of the lens assembly 10. Moreover, in some embodiments, a portion of the flexible element 5 can be adhesively attached to the first surface of the first lens assembly 10. Moreover, some embodiments may include a flexible element s and a lens assembly 1〇 in alternate positions as illustrated in FIG. That is, the flexible element 5 is positioned closer to a user of the lens 1 and the first lens assembly 10 is positioned away from the user. In such embodiments, the optical features positioned on the second surface 12 of the lens assembly 10 will be based on the presence or absence of fluid 20 that separates the region of the flexible membrane 5 from the lens assembly 1 It is exposed or covered. Embodiments provide a dynamic lens that can dynamically adjust the entirety provided by one or more optical regions of the dynamic lens by exposing or covering an optical feature of a surface of a lens assembly with an approximately refractive index matching fluid Optical power. Embodiments can be used to form any variable optical power lens; the optical power of the lens can vary with space and/or over time. The schema will now be described in more detail. These figures are provided as examples of embodiments and/or operations of a dynamic lens. The drawings and the description herein are for illustrative purposes and are not intended to be limiting. 157229. Doc • 46· 201219842 Figures 1 through 3 illustrate the operation of an exemplary embodiment of a dynamic lens. The illuminating element 100 is shown in FIG. i as having a sufficient amount of fluid between the flexible element 5 and the first surface u of the first lens assembly 10 such that the flexible element 5 is not Conforms to the first surface ^. In Fig. 2 the mirror 100 is shown with only the flexible element s and a portion of the first surface U with a sufficient amount of fluid therebetween. In Fig. 3, the lens 1 is shown with a sufficiently small amount of fluid 2 between the flexible element 5 and a substantial portion of the first surface of the first lens assembly 10. Each of these exemplary embodiments will be described in more detail below. Referring to Figure 1, a cross section of one exemplary embodiment of a dynamic lens is shown. The lens 100 is depicted in a substantially "first" or "start" state. In this embodiment, the fluid 20 separates the entire first surface 11 of a first lens assembly 10 from a second lens assembly that includes a flexible element 5 (eg, a flexible diaphragm). As described herein, in some embodiments, the fluid may only separate one portion of the first lens assembly J from the flexible member 5 of the second lens assembly. In this exemplary embodiment, the fluid 20 and the flexible element 5 can have a refractive index that substantially matches the refractive index of the first lens assembly 10. As mentioned above, "substantially matching" means that there is no significant difference in the refractive indices of the two components, for example, the refractive index difference is zero. Within 05 units. Although this exemplary embodiment will be described with reference to the case where the refractive indices are substantially the same, it should be understood that in some embodiments, the refractive indices of one or more of such components may differ from one another, as will be discussed in more detail below. . In this first state as depicted in Figure 1 (and continuing the fluid therein and the 157229. Doc -47- 201219842 The refractive index of a lens assembly is the same as that of the first embodiment of the first lens assembly 10, and the first surface 11 of the first lens assembly 10 has 弁m μ, Does not contribute to the optical power 4 provided by the lens 100 because the amount of flow (4) between the first surface 11 (and any optical features thereon) and the flexible _5 is sufficient to cover the And other features. As depicted in Figure!, the lens is not depicted as a single vision lens in the first state (e.g., a planar lens, the curvature of the flexible element 5 is about the same as the curvature of the surface 12, such that The lens m does not have - optical power. Thus, the light m (which is parallel to the point of incidence of the lens) exits substantially parallel from the lens. However, it should be understood that in other embodiments, the lens 100 ( Or a region thereof may have different optical power and/or optical properties in this first state. For example, 'the second surface 12 (eg, the back surface) of the first lens assembly 10 may include any optical features ( For example, a multifocal region, such as a progressive optical power region, causes the lens 100 to provide one or more optical powers in the first state. As depicted, the first state in Figure 1 is green where the surface is 11 does not contribute to an embodiment of optical power. Referring to Figure 2, the exemplary lens 100 is depicted in a "second" or "transitional" state. Specifically, one portion of the fluid 20 has been from the first Lens assembly 10 and The gap between the second lens assemblies 5 is removed or displaced. As depicted, as the fluid 20 is removed or displaced, one of the first regions 201 of the flexible element 5 of the second lens assembly begins to change. The first region 201 of the flexible component 5 is in contact with the first surface 11 of the first lens component 1 and/or conforms to the first surface 11' of the first lens component 1 The first region 201 conforms to its shape or curvature. 157229. Doc -48· 201219842 In this embodiment, as the fluid 2〇 is removed or displaced, the optical power provided by the lens 100 in the characteristic region may be based on the first surface u of the first lens assembly 10 The shape of the corresponding portion is adjusted or changed. This is depicted in FIG. 2 by the refraction of light rays 202, which are incident on the lens 100, wherein the first region of the flexible member 5 has conformed to the first lens assembly 10 In the area of a surface n. In contrast, light ray 203 is not shown to be refracted by the lens 1 because, in this exemplary embodiment, the curvature of the second region of the Heteroflex element 5 continues to match the curvature of surface 12 (ie, in this portion) The lens continues to be flat). It should be understood that as the μ body is displaced or removed, the optical power of the portion of the lens j can also be changed (ie, it can be continuously and/or gradually changed) until the optical power of the region of the lens is equal to The optical power provided by the first surface η of the first lens assembly 1 is. In some embodiments, the fluid 20 can be displaced by the use of the movable slider 15 and the fixed portion 4G. That is, the fluid 2G can be removed by moving the slider 15 of the device away from a fixed portion 40 to allow fluid to be applied to the gap between the first lens assembly 10 and the second lens assembly, or from the gap. Removed. Any fluid that is not in the gap between the first lens assembly 1〇 and the second lens assembly 5 can be stored or retained in the reservoir 25 or the mirror (10) and/or other suitable regions of the device. 'However, as will be understood by those skilled in the art, any method can be used to remove, displace, and/or apply the fluid to the gap, including the use of an actuator, a pump, a valve system, and the like. Although not depicted in Figure 2, it will be understood that as the fluid 20 is from the gap between the first lens assembly and the second lens assembly 5 (or portions thereof) 157229. Doc •49· 201219842 Application (eg 'additional removal (or (four) way (4)), and the flexible 7" piece 5 begins to change shape (although it does not need to conform to the surface), the optical power of the area can also begin Changing, this can optically cause a tunable spectral optical power of the region of the lens that is sufficiently small between the first surface u and a region of the flexible element 5 such that The optical power of the region of the lens is defined by the first surface 11 and any optical features thereon. Referring to Figure 3, the exemplary lens 1 depicts green as an "final" or "second" I Although described as a "second" state, as mentioned above, the exemplary lens 100 may have an infinite number of states since the fluid 20 is from the first lens component 1 and the flexible element 5 The optical power of the lens 1 (or a region thereof) can continue to change as the gap is removed (or applied to the gap). As mentioned above, this procedure can be referred to as "tuning" because the optical power can gradually Or systematically change to close to one Learning a power of the power stop' or moving away from an optical power stop. As shown in Figure 3, as depicted, the fluid 2〇 has substantially been detachable from the first lens assembly 10 and the second lens assembly. Displacement or removal between the elements 5. As the additional area of the flexible element 5 of the second lens assembly contacts the first surface ii of the first lens assembly 10 and/or conforms to the first lens assembly The first surface H of the 10, the additional regions have changed shape. As shown in Figure 3, one of the optical powers provided by the lens 1 has been made to conform to the first The lens assembly 1 is adjusted in the shape of the first surface 11. Therefore, the light ray 3 is now refracted and focused based on the optical power of the lens 1 'and in particular, as by the first lens assembly 157229. The first surface 11 of doc-50-201219842 10 is defined. As shown in Figure 3, the lens 100 is depicted as a single vision lens (e.g., k for positive optical power)' but embodiments are not so limited. That is, a portion of the first surface 11 of the first lens assembly 10 can include a multi-focal region - such as a 'gradual optical power region' - such that the lens 100 provides a plurality of optical powers or Vision zone. For example, the first surface 11 can comprise any desired optical feature (or plurality of optical features). As mentioned above, the second surface 12 can also have an optical feature or a plurality of optical features that contribute to the overall optical power of the lens 100 (or a region thereof). Referring to Figure 4, the exemplary lens 100 is shown in a front view. As depicted, the lens 100 of Figure 4 corresponds to a lens in a "first" or "initial" state as described with reference to Figure 1. That is, the lens 1 〇 0 is depicted as being in a state [by which the amount of fluid 2 间隙 in the gap between the first surface U of the first lens component 1 and the levisable element 5 is sufficient, The first surface (or a portion thereof) does not contribute to one of the optical power regions of the exemplary lens 100 when the fluid does not have an index of refraction. Also depicted in FIG. 4 is a core (body reservoir 25 and a solid component 40 positioned about the periphery of the lens assembly. Referring to FIG. 5, the exemplary lens 100 is shown in a front view. As depicted in FIG. The lens 1 〇〇 corresponds to a lens in the r-transition state as described with reference to Figure 2. In this embodiment, a region or zone 3 is shown that is distinct from one of the outer perimeters 35 of the lens 100. The region 3〇 may correspond to the first surface u of the first lens assembly 10 and/or has been conformed to the 157229. Doc • 51 · 201219842 The first region of the flexible element 5 of the first surface u of the first lens component. That is, the amount of fluid 20 between the first region of the flexible element 5 and the first surface 11 is sufficiently small in the region 30 that the first surface η contributes to and/or defines the optical region. The lens 1 〇〇 ^ optical power. Thus, the region 30 can provide an optical power that varies from the optical power provided by the region 35 of the lens surrounding the region 30. This region 3 can be considered as part of the dynamic (or adjustable) optical power region of one of the lenses 100 because the amount of fluid between the first surface 11 and the flexible member 5 varies, The optical power can be tuned toward or tuned away from the optical power pupil defined by the first surface. Referring to Figure 6, an exemplary lens 1 is shown in a front view. As depicted, the exemplary lens 1 in Figure 6 corresponds to a lens in the "first" or final state as described with reference to Figure 3. This region 30 is enlarged relative to the region 30 depicted in FIG. 5 because, as described with reference to FIG. 3, this depicts that substantially all of the fluid has been removed from between the flexible member 5 and the first surface U. Or one of the stages of displacement. The region 3 〇 can again correspond to the flexible element 5 that has been in contact with the first surface n of the first lens assembly 10 and/or has conformed to the first surface 11 of the first lens assembly 10 The first area. That is, the amount of fluid 20 between the first region of the flexible element 5 and the first surface „ is sufficiently small in the region 3〇 such that the first surface is dedicated to and/or defines the region The optical power of the lens is 1 因此. Therefore, as depicted in Fig. 6, the larger surface 4 of the first surface u of the lens 1 is a dynamic optical power region. That said, the area 30 can be of any size or shape 'and can provide a 157229. Doc -52- 201219842 Constant optical power or a variable optical power (having a symmetrical or asymmetrical and continuous or discontinuous optical power profile p) This region 3 can be positioned centrally or in any region of the lens 1〇〇. Moreover, the lens can include more than one adjustable optical power region 30 that can be physically separated and/or include a plurality of flexible elements. Further, the region 3 can include any type of optical feature, including but not Limited to: a progressive optical power region, a bifocal lens, a bifocal lens, a multifocal region, a non-spherical optical feature, a non-spherical region, a rotationally symmetric optical feature; and/or a non-rotationally symmetric optics A person skilled in the art will understand and understand that, in general, an embodiment of a dynamic lens as provided herein provides a first aspect of a "first" to "initial" state. An initial optical power provides a transitional optical power profile in a "transitional" state (eg, tunable from a first state to an intermediate state, thereby changing the first lens component ι The amount of fluid 20 between the portion of the first surface U and the portion of the first region of the flexible element 5, and may be based on the optical on the first surface 11 of the first lens assembly (7) Exposure of the feature (eg, when the amount of fluid between the first surface 11 and the first region of the flexible element 5 is sufficient) is in a "second" or "final" state One region provides a second optical power profile. The "first", "transition" and "second" optical power turns are any desired optical power profile. One or more surface or optical features may contribute to The mirror (10) provides an optical power profile (eg, 'two or more surfaces can provide the total added power of the lens 1GG by optically communicating with each other.) Further, those skilled in the art will have 157,229. Doc • 53· 2012 1984 2 The solution can use different methods and mechanisms to displace and store fluids used in the dynamic lens of the present invention, which can include, for example, an actuator and/or a reservoir. In some embodiments, the first optical power vernier and/or an optical region described with reference to Figures 1 and 4 can be determined in part by the second surface 12 of the first lens assembly 10 and the flexible diaphragm 5. As described above, when the fluid 20 covers one or more optical features of the first surface n of the first lens assembly 1', the first optical power profile can be provided by the lens 1'. That is, the first optical profile can include an embodiment wherein the first surface u and the flexible element 5 have a sufficient amount of fluid 2〇. In some embodiments, the "second" optical power profile described with reference to FIGS. 3 and 6 may be partially from the second surface 12 of the first lens assembly 1 and the first surface 11 of the first lens assembly 10. Decide. The second optical power profile may be provided by the lens 1 当 when one or more previously covered optical features of the first surface 11 of the first lens assembly 10 are exposed as described above. That is, the second optical wheel gallery can include wherein there is a sufficient amount of fluid 2' between at least a portion of the first surface and the flexible element 5 such that the first region of the flexible element 5 conforms In the case of the first surface 11. In addition, in some embodiments, there may be an intermediate ("transition") optical profile between the first and second optical corridors (described with reference to Figures 2 and 5) , which may be defined in part by a different amount of fluid 20 between the first surface u and the exchangeable element 5, which results in one of the flexible elements 5 being different in shape and/or the first surface 11 ( Different portions of the optical features thereon are applied to the dynamic optical power region of the lens 100. 157229. Doc-54-201219842 The embodiments described above may provide several advantages. For example, the first surface 11 of some of the embodiments may define a fixed optical power stop for the one or more optical regions of the lens 100. The fixed optical power stop can be accurately and repeatedly returned by a user. . This is due in part to the fact that the group of optical apertures of the optical region of the lens 100 is not defined by the addition of a specific amount of fluid, but can be used with an optical surface η that does not change, similar to existing fixed (ie, , non-dynamic) lens definition. The embodiment may thereby allow a user to quickly set the lens to the desired optical power, for example by removing or displacing from the first-table (or part thereof) and the flexible element 5 All (or substantially all) fluid between a zone. Thus, if the user has a particular prescription, the embodiment can easily cause a user to set the lens 100 to provide the desired optical correction. Embodiments may also provide a step-by-step benefit that the fixed optical feature does not always contribute to the optical power of the region of the lens. This may, for example, allow the same optical zone to allow a viewer to see farther objects in an implementation example, and in another embodiment, the same optical zone may be positive for myopia. Any type of bridge can be provided. As mentioned above, the flexible element 5 can comprise a flexible membrane. The flexible member s can be adhered or attached to the lens 1 at any position. For example, a portion of the flexible member 5 can be adhered to any combination of the following: a portion of the first surface 11, a first optical component 10, a lens-fixed portion 40, a spectacle frame, or a lens 1 Any other suitable location on the raft. In some embodiments, the second lens assembly can have a stationary component and a flexible element (such as a diaphragm). In some embodiments, the 157229. Doc •55· 201219842 Flexible 7C parts 5 can be coated with a hard coat/scratch resistant coating, an anti-reflective coating and/or an anti-fouling coating. In some embodiments, a device including a dynamic lens may not have any additional optical components adjacent the surface of the flexible element 5 and that do not conform to the first surface 11 of the first lens assembly 10. In a second embodiment, the s-fold dynamic lens may have additional optical components adjacent to the surface of the flexible element 5 and that do not conform to the first surface u of the first lens assembly 10, such as another-lens, - dynamic Lens, a cover lens or any other transparent or translucent component. In some implementation life! Medium (and as described above), the fluid 20 can have a refractive index that matches some or all of the other optical components of the lens 1〇〇. That is, the refractive indices may be substantially the same. For example, the fluid 20 can have a GQ5 unit (four)-refractive index that matches the refractive index of the first lens assembly. The removable 7G member 5 can also be index matched to the fluid 2 and the first lens assembly. In some embodiments, the fluid 20 does not have an index of refraction matching the first lens assembly 10. In this G-sounding example, the lens 100 can still be used in the same manner as described above, however, the specific state of the dynamic lens described with reference to Figures 1 to 6 The ig stalker has an optical power, even in the area of the first watch that is covered by the fluid 20. For example, in a state of fluid ιοπ ′ between the first surface 11 and the first region of the flexible element, the light does not enter the lens 100 in parallel and is emitted from the flat rod of the lens 100. The first surface is optically based on a portion of the lens 100 that is supplied by a different index of refraction: u can still be L', however, and the light is on the power stop, based on the flexible 157229. Doc • 56 · 201219842 The amount of fluid 20 between the element 5 and the first surface 11 is tuned to the optical power stop or tuned away from the optical power stop. Additional embodiments of exemplary dynamic lenses that may include various features are described below with reference to Figures 7-20. Referring to Figure 7, an embodiment of a dynamic lens 2 is shown. As used herein, "lens 200" is an abbreviation for an optical device that includes at least one lens assembly and other components' as will now be described in detail. The lens 200 shown in Figure 7 can be a lens blank (e.g., an unfinished lens blank or a half finished lens fan). The lens shown in Figure 7 can be plastically edged or finished to fit into a goggle frame (e.g., as shown in Figure ,, which will be further described below). Continuing with the description of Figure 7, the flexible element of the lens 200 is adhered to the entire lens except for the circular area 7〇1 shown by the dashed line. In this embodiment the 'dynamic or adjustable power zone is in region 701 within the dashed line. Accordingly, the region 701 is the region of the lens 200 having an optical power that can be dynamically changed as the fluid of the lens 200 is extracted or displaced from the region. This region 701 can be positioned below one of the lens assembly points 702' but is not so limited (i.e., it can be positioned anywhere on the lens 200). This region 〇1 may be centered on the geometric center 703 of the lens, but is again emphasized and is not limited thereto. Moreover, one of the dynamic lenses 200 of the present invention can have an assembly point 702 that coincides with the geometric center 703 of the lens, but is not so limited. Continuing with the exemplary embodiment shown in FIG. 7, a bond line 704 shows an area (eg, a first area) that is adhered to the flexible element of the lens 200 and an area that does not adhere to the flexible element of the lens 200. The separation between 701. One 157229. Doc • 57· 201219842 Ditch or channel 705 may surround all or a portion of the unattached flexible element portion. In some embodiments, a trench or channel 7〇5 can be located on the first surface of the first lens assembly. The trench or channel 7〇5 can be used to route or direct the movement of fluid in the lens 200. In some embodiments, the trench or channel 705 can have a width and depth to be pulled in or otherwise placed in the flexible element as the fluid is removed or displaced from the region 701. The ditches or channels 705 compete for time to cause the flexible element to elongate. The trench or channel 705 can be polished and shaped by a mold or other suitable member to reduce or eliminate the number of sharp edges. In some embodiments, the trench or channel 705 can be utilized to prevent fluid from re-entering the gap between the flexible element and the first surface of the first lens assembly (eg, can be utilized to form a dynamic region) A seal of 7〇1) In some embodiments, the diameter of the trench or channel 705 can range from about 10 〇 1 „1 to 5 〇 mm. Preferably, the diameter of the trench or channel 705 In the range of about 2 〇 to 35 mm. In some embodiments, the fluid can enter and exit the dashed region 701 using a channel 7〇6. The channel is shown in Figure 7, which extends horizontally from the dynamic power region 7〇1. , but not limited to this. That is, the channel 7〇6 can extend from the dynamic power region 701 in any direction or at any angle (eg, it can be tilted away from a slight angle of the dynamic power region 701). The port 6 can be coupled to one or more reservoirs that retain the fluid when no fluid is applied between the flexible element and the first surface of the first lens assembly. The dynamic power region 701 and the surrounding channel 70S can be any 157,229 size or shape. Doc -58 · 201219842 MODE In general, the size of the dynamic power region 7〇1 and the surrounding channel 705 may preferably be one size within the dimensions of any frame pattern or shape. For example, for a lens frame having a vertical height of about 48 mm, the dynamic power zone 701 and the diameter of the surrounding channel 705 can have a diameter between 43 mm and 44 mm. For example, for a lens frame having a vertical south of one of about 26 mm, the diameter of the dynamic power zone 7〇1 and the surrounding channel 705 can have a diameter between 21 melons and mm. Referring to Figure 8, an exemplary dynamic lens 2 is shown in a side view. Permanently connected. Or the region 〇1 of the flexible member adhered to the lens 200 is different from the region 8〇2 of the flexible 7G member, and the region 〇2 of the flexible member has a plurality of pieces that can be based on flexibility. One of the shapes is adjusted by the amount of fluid between the region 8〇2 and the portion 803 of the first surface of the first lens assembly. In some embodiments and as shown in Figure 8, when the amount of fluid between the region 〇2 of the flexible element and the portion 803 of the first surface is sufficient, on the surface 8〇3 The light features or features may not contribute to the optical power of the area of the lens (e.g., when the indices match). As the fluid in the region between the region 802 and the surface 8〇3 of the flexible I 兀 is removed or displaced, the region 8G2 of the flexible element moves closer to the first '• Hai. Sickle 803, and ultimately conforming to the portion 803 of the first surface. Referring to Figure 9, an exemplary dynamic lens 2GG is shown. The illustrated lens 200 of Figure 9 has a rotationally symmetric aspherical additive zone (4). When exposed (1) the amount of fluid matching the index of the stomach is sufficiently small, the additive zone 901 shown in S can provide 25 turns. D - add power (though add 157229. Doc -59· 201219842 Zone 901 can have any added power value). The rotationally symmetric aspheric addition zone 901 can have a rotationally symmetric continuous optical power profile with a lower optical power at its perimeter 902 than at its center. The perimeter 9〇2 may or may not have an optical power discontinuity (e.g., 'which may have an optical discontinuity of 025 ,, as shown in Figure 9). In some embodiments, one of the discontinuities of a dynamic lens 200 can be a discontinuity of tilt or sagging. It should be understood that one of the discontinuities of a dynamic lens 200 can be a power discontinuity having any optical power value. In some embodiments, the dynamic lens 200 shown in Figure 9 can provide far and/or near optical power, at least in part due to the shape of the first lens assembly (i.e., substrate) that includes a bifocal surface curvature. That is, for example, when the fluid between the first surface of the first lens surface and one of the regions of the flexible member is sufficiently small, the bifocal surface curvature on the first lens surface provides near and far optical power. Referring to Figure 10, a front view of the exemplary dynamic lens 200 is shown. In this embodiment, the dynamic lens 200 is shown having a dynamic power region 1001 having a shape corresponding to a progressive addition surface located on a first surface of the first lens assembly, between such components When the amount of fluid is sufficiently low, one of the regions of the flexible member can conform to the shape such that the region of the flexible member conforms to the progressive addition surface. In some embodiments, when the amount of fluid between the first lens, the component and the flexible element is sufficiently small. Establishing far optical power, intermediate optical power, and/or near optical power due to the progressive curvature of the first surface (eg, the user of the dynamic lens 200) continues with reference to FIG. 1A, similar to FIG. The bonding wire 1〇〇2 shows the flexible 157229. Doc -60- 201219842 The adhesive element is adhered to the area of the lens 200 (outside the bonding wire 1002) and the flexible element is not adhered to the area of the lens 200 (within the bonding wire 1002) The separation between). The exemplary lens 2 shown in the figure can use an internal progressive surface (which can be located, for example, on the first surface at or below the assembly point 1003 of the first lens assembly) to provide the lens 200. Fully added power ^ In some embodiments 'the internal progressive surface can be in optical communication with another optical element of the lens (eg, a progressive addition region positioned on a second (eg, back) surface of the lens) such that The internal progressive surface provides a first component of one of the total added power of the lens. That is, in some embodiments, a progressive surface (which may for example be located on a first surface of a first lens component, such as surface u of Figure 1) may provide a "full" optical add power or a "part" Optically added power. In some embodiments, when the first surface provides a portion of the optically added power, the other progressive surface can be freely formed or otherwise provided on another surface (such as surface 12, which is the surface closest to the wearer's eye) As shown in Figure 1 to allow for the combined power to be added to provide the wearer with full positive power. In some embodiments, the dynamic power zone 110 of a dynamic lens 200 can be in optical communication with one or more optical components such that the combined components are for a particular zone of vision (eg, an intermediate vision zone or nearsightedness) Zone) provides the desired optical power. The one or more optical elements can include a portion of the dynamic lens 200 (such as a portion of the second surface of the first lens assembly) or can be a separate optical component. In some embodiments, a progressive addition region is a non-rotationally symmetrical surface that does not add the thickness of the first convex surface curvature, even if the progressive addition is I57229. Doc • 61 - 201219842: The region is located on the _ surface of the first lens assembly. Some examples of the optical features of a progressively added surface curvature system, μ of the first surface of the first lens component, u) and wherein the optical features are progressively added surface regions and/or curvatures The medium-channel or trench can be deleted along the dynamic optical region = mosquito level and below the point at which the progressively added surface curvature contributes to the maximum optical added power. In some embodiments (the slab channel or trench in Figure 1Q is "completely" below the point at which the progressively added surface contributes its maximum optical power addition'" in other embodiments (Fig. 10 also Not shown), the channel or trench _ "majority" is below the point at which the progressively added surface contributes its maximum optical power. "Most" means that the major portion of the length of the channel or trench can be located. The progressive addition surface contributes below its point of maximum optical added power. In some embodiments, the point at which the progressive addition surface contributes its maximum A optical addition (four) maximum may also correspond to the total added power of the lens. Referring to Figure 11, four examples of exemplary dynamic lenses 200 are shown in a variety of shapes and sizes to accommodate a wide range of lenses and frame styles. That is, in some embodiments, the dynamic lens 200 can be inserted into glasses or care. The eyepiece is used with eyeglasses or goggles. In some embodiments, the dynamic lens can be used in other applications, such as in an imaging device, a camera, and/or Any system of focus lasers and/or any other optical system utilizing lenses. The dynamic lens 200 can be fabricated to have any desired shape or size. The examples shown in Figure 11 can be glasses for the right eye of a patient. Lenses. The general practitioner will understand that 'any known method can be used to mold 157229. Doc -62- 201219842 Shape a lens. Each of the dynamic power zones 1101 can have the same optical features regardless of the overall shape of the dynamic lens 200. Referring to Figure 12, an example of an exemplary dynamic lens 200 positioned in an exemplary goggle frame 1200 is shown. As shown in FIG. 12, a channel 1201 of the dynamic lens 200 is coupled to an actuator 1202 positioned in or adjacent to one of the visor frames 1200. The actuator 1202 can use the channel 1201 to pump fluid from the dynamic lens 200 into and out of the reservoir 1203 to dynamically change the dynamic lens 200 provides optical power. Those skilled in the art will appreciate that a variety of actuators can be used to assist in moving or displacing the fluid of the dynamic lens 200. For example, in some embodiments, the dynamic lens 200 can use a mechanical actuator, an electronic actuator, a fuel cell actuator, or a manual actuator. The actuator can also be a syringe, plunger, pump that is mechanically (e.g., spring loaded), manually or electrically, or mechanically moved or adjusted to move the fluid of the dynamic lens 200. In some embodiments, the dynamic lens 200 can have or be coupled to a plurality of actuators 1202 and/or a plurality of reservoirs 1203. An airtight seal may be formed between one or more actuators 1202, one or more reservoirs 1203, and one or more dynamic power zones 1204 (ie, an area that allows the fluid to enter and exit each component) To achieve a better flow of fluid from the dynamic lens 200. Although depicted in the context of goggles or glasses, it should be understood that any configuration of the actuator 1202 and the reservoir 1203 can be used based on the application of the dynamic lens 200. An example illustrated in Figure 12 can be a lens for use in the right eye of a patient. Such as I57229. Doc-63-201219842 As mentioned above, the dynamic lens 200 can use one or more reservoirs 1203. Moreover, embodiments in which the dynamic lens 2 is used in a goggle or frame are not limited to placing the one or more reservoirs 12A in the position shown in FIG. For example, one or more reservoirs 1203 can be positioned within a nose bridge that houses a frame of a dynamic lens 200. Moreover, in some embodiments, a dynamic lens 200 can use a plurality of reservoirs 1203 positioned in a plurality of positions relative to the lens 2''. For example, a first reservoir can be positioned in a gusset and a second reservoir can be located in a nose bridge. Again, any suitable location can be used for the actuator 1202 and the reservoir 12A. An exemplary embodiment of the lens 1' is shown with reference to FIG. The exemplary lens 100 illustrated herein is shown with an optical feature 14 on the first surface 11 of the first lens assembly 1 (as shown on the front surface). In one embodiment, the optical feature 14 can be a constant optical power region (when it is no longer covered by the fluid 20 such that there is a region between the flexible component 5 and the first surface 11 A small amount of fluid 2) and may have a spherical or non-spherical curvature that is similar to the remainder of the first surface!!. g and in the "some embodiments" when the first surface u is no longer covered by the flow_such that when one of the regions of the flexible element s has a sufficiently small amount of fluid 20 with the first surface... Lens 100 can be a multi-focal lens. As shown in FIG. 13, the exemplary lens 100 is in a first series, wherein the area of the first (fourth) and the flexible element 5 has a sufficient amount of fluid 2' Optical feature 14 does not contribute to the optical power of the dragon dynamic optical region. Thus entering the lens 100 in parallel, 157229. Doc • 64 - 201219842 Line 101 is shown as being substantially parallel from the lens. As described above, in some embodiments, the lens 100 can have some optical power even during this first phase. Referring to Figure 14, an exemplary embodiment of the lens 1 shown in Figure 13 is now depicted in a second state in which the amount of fluid 20 is sufficiently small to no longer deflect the optical features 14 from One of the regions of the flexible element 5 is separated. Thus, the region of the flexible element 5 conforms to the optical feature 14 on the first surface 11 of the first lens assembly 10 in the dynamic optical power region 14〇1. The shape. The lens 100, as shown in such an embodiment, can provide an optical power in a lower portion of the lens 100 that is different from an optical power provided by an upper portion of the lens 100. This is illustrated by ray 1402 in Figure 14. The ray 1402 enters the lens in the dynamic optical power region 1401 and is refracted according to the optical power defined or contributed thereto by the optical feature 14. Conversely, the light 1403 entering the lens 1 in a different region is not refracted. It should be noted that although the flexible member 5 may be flexible, it may also be extensible. That is, in some embodiments, the flexible element 5 is only flexible, and in some embodiments, the flexible element 5 can be extensible and flexible. 5 is stretched and / or bent. In accordance with the shape of the surface 11 and/or the optical features 14, the elongation can help the fluid 2〇 refill the chamber of the lens 1G() (ie, at the first (fourth) and the flexible element 5 Between the gaps), when the flexible element 5 is released and/or no longer conforms to the first surface 11. Referring to Figure 15, another embodiment of an exemplary dynamic lens 3 is shown. 157229. Doc -65- 201219842 FIGS. 15(4) and 15(8) illustrate an exemplary lens 30〇m5(4) in the first state (FIG. i5(4)) and a second state (FIG.) showing the first surface of the first lens assembly 310. There is a sufficient amount of fluid 330 between the 360 and the third lens assembly 32〇 such that the optical features 37〇 do not contribute to the optical power of the lens 300 (for the refractive index of the fluid 33〇 and the first lens assembly 310 and The third lens assembly 320 is substantially the same as the lens 300 of the embodiment. In the illustrated embodiment, when the fluid 33 is substantially removed from the chamber, the lens 300 can use a porous plug 3s instead of a flexible diaphragm to fill the first lens assembly 310 with The area between the third lens assembly 32〇. A channel 340 is also provided to remove or displace the fluid 33. (In this exemplary embodiment, the third lens assembly 32A can include a cover lens. As illustrated, in this illustrative embodiment, Light 1501 entering the lens 3 (10) in parallel exits substantially parallel from the lens 300. Conversely, Figure 15(b) shows an exemplary lens 3' in a second state in which the fluid 330 has been removed from the first lens assembly 31. The region between the crucible and the third lens assembly 32A is substantially removed. The air now fills this region (air can enter through the porous plug 350) and the air is first and/or third with the first lens assembly 31 The difference between the indices of refraction of the lens assembly 320, along with the nature of the optical features 370 on the first surface 360, establishes a positive optical power. This is achieved by the lens entering the lens in the dynamic optical region and being refracted by the optical power. Light 1502 is shown. In this embodiment, when the fluid mo is pumped or otherwise applied between the first lens assembly 31 and the third lens assembly 320, the optical power is eliminated (by Returned fluid 33 positions The moved air passes through the porous plug 350). 157229. Doc-66-201219842 Referring to Figure 16, an exploded view of another embodiment of an exemplary lens 3 is shown in cross section. In this embodiment, the lens 3 includes a substrate 31 (eg, a first lens assembly), an outer rigid cover 32 (eg, a third lens assembly), a fluid 33 (which may be a refractive index) Matched) and a flexible element 350 (eg, a diaphragm). A fluid 埠 34 〇 (e.g., a channel) allows the pump to feed in and out (or any other displacement method) fluid 33 。. The first lens assembly 300 has a thickness T1, an inner radius of curvature R1, an outer radius of curvature R2, and a central outer radius of curvature R3. When the value of R2 is equal to R1 plus T1, there is substantially zero optical power in the first lens assembly 3A. When the radius of curvature R1 is made shallower relative to the radius of curvature R2, a larger positive optical power is added to the first lens assembly 3 (similarly, when the radius of curvature R2 is made steeper than the radius of curvature, Large optical power is added to the first lens assembly 300. When the radius of curvature R3 is steeper than the radius of curvature ri, positive optics are added in the region of the radius of curvature R3 (e.g., in this embodiment, for the dynamic optical power region) Power to the first lens assembly 3〇〇. As shown in Figure i6, the fluid 330, the flexible member 35, and the third lens assembly are for illustrative purposes only for convenience and clarity of viewing such components. "O is placed at a distance away from the first lens assembly 300. In this embodiment, the components are assembled together as shown in Figure 17. Referring to Figure 17, an exemplary lens 300 is shown in cross-section. The flexible element 350 is located (ie, sandwiched) between a third lens component (eg, an outer rigid cover) 32A and a first lens component (eg, a substrate) 3〇〇, wherein the fluid 330 (which can have a refractive index) Match) will be flexible components The 350 is pressed against the third lens assembly 320. The internal radius of curvature of the third lens assembly 320 provides the flexibility I57229. Doc -67- 201219842 One of the elements 350 can conform to and provide the shape desired for the desired optical effect. That is, the third lens assembly 320 can be used as an optical power. In the embodiment illustrated in FIG. 17, when the refractive index of the fluid 33 is matched, and the internal radius of curvature (ie, the first surface) and the outer 4 radius of curvature of the third lens assembly 320 (ie, the 'second surface') When the curvature matches the curvature of the first lens assembly plus the second surface 380, there is substantially zero optical power in the assembly. In some embodiments, the optical power that is established by the third lens assembly 32 is optically responsive to the viewer's far vision. That is, similar to the first surface of the first lens assembly 31, the first surface of the third lens assembly 320 can include any optical features. Thus, when in the first state, as illustrated in Figure 17, the embodiment of the lens 3 can provide a bridge positive optical power for any prescription required by a viewer, which can be based in part on the third The curvature of the first surface of the lens assembly 320. In addition, the outer surface of the third lens assembly (e.g., the 'second surface) can also include any optical features and/or any curvature that can contribute to the optical power of the lens 30G (or region thereof). Embodiments including a third lens assembly also prevent overcompression of the flexible member 350 into an undesired shape due to fluid 33〇. The third lens assembly 320 can further provide a protective layer on the flexible member 350 that prevents the flexible member 350 from being damaged by external forces. Replacing the third lens assembly 32 can also be easier @ without replacing the flexible member 35, thereby reducing maintenance costs. Referring to Figure 18, the exemplary lens 3 shown in Figure 17 is depicted in a first embodiment, wherein the fluid 330 has been channeled (e.g., helium) 34 from 157229. Doc -68· 201219842 The assembly is removed or displaced (eg 'sucking out'). One region of the flexible member 350 is pressed against and/or conforms to the outer shape of the first lens assembly 31. Air or fluid may be allowed to fill the space between the flexible member 35'' and the third lens assembly 32'' via a pick-up (not shown). In the illustrated embodiment, in the central section (dynamic optical power zone) of the first lens assembly 310, positive optical power can be established in the region defined by the radius of curvature R3. In some embodiments, the third lens assembly 32 and any optical features on the first or second surface, including the curvature of either surface, may also contribute to the optical power of the lens 100. In some embodiments, the refractive index-matched fluid 330 is not "sucked" through the channel 34(), but the air or non-index matching fluid can be forced into the flexible element 3 5 〇 and the third In the gap between the lens assembly 3 2 , the fluid 330 is ejected from the gap between the flexible element 35 〇 and the first lens assembly 310, forcing it to be positive on the right side of the channel 34 〇 The pressure travels through channel 340 (i.e., pumping) rather than through channel 34 (i.e., aspirated) by the negative pressure on the left side of channel 340. This will be discussed in more detail below with reference to Figure 21. Referring to Figure 19, an embodiment of an exemplary lens 300 is shown. In this embodiment as shown in Figure 19, the flexible element 350 is the outermost optical element, without a protective cover or other third lens assembly. In the illustrated embodiment 'the fluid 33 〇 (which may be index matched) causes the levisable element 350 to expand into a spherical shape such that there is no optical power in the assembly. The outer curvature of the sexual element 350 matches the curvature of the second surface of the first lens assembly 310 (e.g., the back surface shown). With 157229. Doc • 69· 201219842 The fluid 330 is removed from the gap between the flexible element 35〇 and the first lens assembly 3i, and the shape of the curvature of the flexible element can begin to change, thereby changing The optical power of the dynamic optical power region of the lens 300 (e.g., the optical power of the lens 300 is tuned toward the optical power provided by the first surface of the first lens assembly 31). This tuning may continue until substantially all of the fluid 330 is removed from the gap, and the flexible element 35(or a region thereof) thereby conforms to the first surface of the first lens assembly 31 (wherein Used as an optical power diaphragm) Referring to Figure 20, the exemplary lens 3 shown in Figure 19 is depicted in a second state. That is, Figure 20 shows that after the fluid 33 has been aspirated (or otherwise removed or displaced) by the channel (i.e., 埠) 340, the flexible element 350 conforms to the shape of the first lens assembly 31. In this state, positive optical power has been established in the central zone (i.e., dynamic optical power zone) in which a steeper radius of curvature exists. In some embodiments, the flexible element 3S0 can also be a semi-rigid material that is sufficiently flexible to allow it to conform to the first lens assembly 31 when the fluid phantom is removed or displaced. Shape, but flexible enough to return to its original spherical shape when the fluid 33() returns into the gap between the first lens assembly 31 and the flexible member 350, without requiring the fluid 330 to swell with positive pressure Great for this shape. In some embodiments, if the flexible element 350 is overpressured by the fluid 330, a negative optical power can be established in the region where the flexible member 350 expands beyond the normal radius. That is, if the flexible element 3S0 is over-pressed such that the radius of curvature of its outer surface is reduced, this area can have an effect on the optical power of the lens 3 (10). Although the exemplary lens 300 is described in this embodiment, the first lens group 157229. Doc 201219842 piece 310 has been described as having zero optical power. Κέ Un Un Un Un Un bi 疋 疋 Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un Un This is done by changing the & L ratio. In these embodiments, even the first u.  ^ ^ .  In the first state, the lens 300 will thereby have some optical power. As mentioned above, the flexible element may comprise a material, and in some embodiments (by way of example only) the material may comprise biaxially oriented polyethylene terephthalate (available under My(4)) Acquired or carbamic acid. However, there are many other materials that have a suitable transparency, kinetic, and refractive index, which can be used as the flexible member. Referring to Figure 21, an embodiment of a dynamic lens 3 is shown that differs from the space occupied by the fluid 33 允许 which allows the air to be filled with an index of refraction, and may instead be applied to a second optical fluid 37 having a different refractive index. In (for example, pumping into) the cavity. The optical power of the lens assembly can be varied by varying the refractive index of the second optical fluid 37 (ie, the second optical fluid can have a refractive index that does not match the index of the first lens assembly. Allowing the same lens assembly to be used in different lenses, each of which has a different optical power. That is, the optical power of the same lens (eg, having the same first lens assembly, second lens assembly, etc.) can be Selecting a different refractive index for the second optical fluid is "stylized." In some embodiments, a flexible element 350 can also be used. The flexible element 350 can be used to prevent contaminants and air bubbles from entering the fluid, and It can also be used to keep the two optical fluids apart. In some embodiments, the flexible element 350 does not establish the optical power of the lens, but rather the first lens assembly with the 157229. Doc-71-201219842 The shape of the first surface 360 (along with any optical features that may be located thereon) coupled by the difference in refractive index between the second optical fluid at the first surface 360 (or lack thereof) establishes the optics Power, the optical power can thereby be controlled by the refractive indices of the fluids. In some embodiments, the flexible element can also have a different index of refraction than the second optical fluid that can contribute to the optical power of the lens 300. In some embodiments, the second optical fluid 370 can be applied to the gap between the flexible element 35A and the third lens assembly 32A. In operation, in some embodiments, the lens 3 can be in a first state, wherein the first optical fluid 330 substantially fills the first lens assembly 310 and the flexible element 350 (or one of them) The gap between the areas). In some embodiments, fluid 330 can be index matched to the first lens assembly, as described above, however, it is not so limited and can have any index of refraction. In this first state, in some embodiments, the amount of the second optical fluid 370 between the flexible element 350 and the third lens assembly 32A can be sufficiently small. In some embodiments, in the exemplary first state, the flexible element 350 or a region thereof can conform to the first surface of the third lens assembly 320 (eg, the third lens assembly 32) The curvature of the inner radius of curvature, as shown in Figure 21, provides a desired optical power to the lens 3 (10) (e.g., an optical power for far vision correction). In a transitional state, the first optical fluid 33 (or an amount thereof) can be displaced from the region between the first lens assembly 310 and the flexible member 35A. The second optical fluid 370 can be applied at a region between the flexible member 35A and the second lens assembly 320. In some embodiments, the first 157229. Doc 72·201219842 Optical fluid 330 can be displaced or removed while approximately being applied with the second optical fluid 370. In some embodiments, the application of the second optical fluid 370 forces the first optical fluid 330 to displace or contribute to the displacement of the first optical fluid 330. That is, in some embodiments, application of the second optical fluid can apply pressure to the flexible membrane 350, which in turn can pass the first optical fluid 330 from the flexible element 350 to the first surface 360 The displacement at the area. In some embodiments, the lens 300 can include a sufficient amount of the first optical fluid 330 between the first lens assembly 310 and the flexible member 350 during a transition phase, and at the flexible member 350 A sufficient amount of the second optical fluid 370 is included between the third lens assemblies 320. In some embodiments, a transition phase can provide a desired optical power for a wearer's vision correction. Moreover, as mentioned above, in some embodiments, the transition phase can include the ability to tune the lens between a first optical power and a second optical power, which can be by the first lens assembly 310 and A three lens assembly 320 is provided. Preferably, the second optical fluid 370 can have a refractive index different from the refractive index of the first optical fluid 330. In some embodiments, the flexible element 350 can have a different index of refraction than the refractive index of the second fluid 370. In some embodiments, the second optical fluid 370 can have a refractive index that is substantially the same as the refractive index of the first lens component and/or the same as the third lens component 320. As will be appreciated by those skilled in the art, by varying the various components of the lens 300 and the refractive index of the fluid, different optical powers can be achieved based in part on the refraction of the light waves at the interfaces. In a second or final state, the first lens assembly 310 and the 157229. Doc-73-201219842 The amount of fluid between the tractable elements 350 may be sufficiently small, and the amount of the second optical fluid 37 在 between the flexible element 35 〇 and the third lens assembly 320 may be sufficient. In some embodiments, one of the regions of the wrapable member 35 can conform to the portion of the first surface of the first lens assembly 31. In some embodiments in which the refractive index of the second optical fluid 370 is substantially the same as the refractive index of the first lens component 31, any of the first surface 360 provided on the first surface 360 of the first lens assembly 3H) The optical feature can be masked or hidden (ie, the first surface 360 can not contribute to the optical power of the lens 3 in the dynamic optical power region in which the second optical fluid 37 has In some embodiments in which the three lens assemblies 310 are substantially identical in refractive index, any optical features on the first surface of the third lens assembly 320 can be masked or hidden (ie, the third lens assembly The first surface may not contribute to the optical power of the dynamic optical power region of the lens.) Although some embodiments have been described and illustrated as including two optical apertures having a particular optical feature or features (eg, Figures i6 through 2)), as stated above, this is for illustrative purposes only. It should be understood that the first surface of the first lens assembly (eg, a surface defining an optical power pupil) such as described The design of any and all of the surfaces of the surface 36" in the embodiment can be utilized to include an embodiment of a third lens assembly (eg, a cover lens or top cover 32" as shown in Figures 16-21). Any desired optical power is provided. Similarly, any and all surface designs can be used for any of the other surfaces of the dynamic lens 3 (eg, the internal curvature surface of the third lens assembly 32) to provide any The desired optical power 'or contributes to one of the optical powers of the dynamic lens 300. 157229. Doc-74-201219842 As mentioned above, the embodiments illustrated in Figures 1 through 21 and described herein are for illustrative purposes only and are not meant to be limiting. For example, it should be understood that any of the embodiments of Figures 1 through 21 may also provide a portion of the positive added power in only one dynamic optical region. In some embodiments, a portion of the added power progressive surface may also be freely formed on a surface that is not adjacent to one of the flexible barriers (eg, the second surface shown in FIGS. 3 and 13 to FIG. 12; the surface 38〇 shown in Figures 15-21, or any other suitable lens assembly or surface in a dynamic lens, may include one surface of a lens assembly that is closest to the eye of a viewer. In an embodiment, this allows for the addition of a power combination to provide full positive power to the wearer. Reference will now be made to the elements of FIG. 1 that are described for illustrative purposes only, but the discussion discussed is equally applicable to other embodiments. Embodiments of the present invention may allow a dynamic lens to be processed into a customized lens having a specific prescription by free formation, digital surface processing, conventional surface processing, and polishing of a lens blank including a fluid, the specific prescription being An eye care provider assigns or measures a particular patient wearer of the lenses of the present invention. Again emphasizes 'with reference to the elements depicted in Figure 1 (for illustrative purposes), one action Embodiments of the lens can be made such that the first lens component (eg, first lens U component: M) can be a first lens component of a semi-finished lens, on the same side of the lens blank as the flexible component 5 The desired finished curved shape having the first surface n, and having a surface curvature on the second surface (eg, as shown on the back surface of the river). Although for illustrative purposes, it is desirable to complete the curved display. On the convex side, and the surface curve of the 6 士, Μ士丑禾凡成 is shown in the 157229. Doc -75- 201219842 On the second surface 12 of the first lens assembly 1 , the embodiment can be reversed such that the finished curved shape is located on the second surface 12 together with the flexible element 5 and the unfinished shape can be Located on the first surface (eg, a front surface) n. In some embodiments, the flexible element 5 can be adhesively bonded to the finished surface of the lens assembly 10 (if done on both surfaces, the lens assembly 10 can also be referred to as a --lens chain, or - Finished on the surface and not completed on the opposite surface, which may be referred to as a semi-finished lens, except for a region that covers the optical features 14. In some embodiments, the semi-finished lens hair is supported by conventional support, and the unfinished surface is freely formable, digitally surfaced or surface finished and polished to a suitable curvature to serve when the flexible membrane 5 is in a In the relaxed non-conformal state (eg, the first state described in the figure), and also when the flexible diaphragm 5 (or a region thereof) is in a non-relaxed conformal state (eg, Figure 3) The second state described therein provides the intended prescription to the dynamic lens. In this manner, embodiments of the dynamic lens can provide for correction of both myopia and hyperopia, for example, to a viewer. In addition, by using one of the first lens assembly optical power light cabinet and a second optical power diaphragm at the third lens assembly (as described with reference to FIGS. 17 and 18), the (four) lens t can be Return to the corrective optical power accurately and accurately. Embodiments may allow for multi-focal power of a dynamic lens for myopia focusing when the flexible element 5 is in a non-loose conformal state (eg, at 15, 2 to 2, and more preferably at 16" To 18"). As described above, the conformal state means that the flexible element 5 (or a region thereof) mostly conforms to the shape of the first surface U, which may include optical features 14 (eg, Figure 13 157229. Doc -76- 201219842 and shown in Figure 14). In some embodiments, when the flexible element 5 is relaxed, it provides the wearer of the dynamic lens with a hyperoptical correction power of optical infinity (e.g., 20 feet or more away from the wearer). This is partially feasible, provided that the fluid 20 is refractive index so as to conceal or mask the optical features 14 when the diaphragm is loose and not in a conformal state. Further, in some embodiments, In the design of the first surface "and optical features 14 (shown in Figures 13 and 14), when the pickable element or one of its regions is in a conformal non-relaxed state, the near vision distance (e.g., At 15, "to 20 " one distance of the object) and additionally at an intermediate visual distance (eg, 'about 20" to 5 feet), both objects are focused on possible ❶ in some embodiments, at all distances Objects at (myopia distance, intermediate vision distance, and optical infinity hyperopia) can be simultaneously corrected and focused, but in different regions or zones of the lenses of the present invention. This can be included on the first lens surface 11 of the first lens assembly. A plurality of optical features 14 are utilized at different locations. In some embodiments, when the dynamic lens is in a loose/non-protected shape, the dynamic lens can be provided to correct the farsightedness desired by the wearer and/or Or middle The optical power required for the force. This can be processed, for example, by using a free-form or digital surface relative to the surface comprising the flexible element 5 (eg, the back surface or second surface 12 of the first lens assembly 10 and/or The surface of the third lens assembly-surface is added to the surface-added power progressive addition meter®. The term partially added power progressive addition surface system does not provide the wearer (four) the full addition required for clear viewing One of the power progressive addition surfaces. In some embodiments, the outer surface curvature of the first lens assembly 10 (eg, 'the second surface 12') can be made to be the pullability I57229. Doc •77· 201219842 Element 5 (or a region thereof) allows the far bridge positive and/or intermediate vision bridge to be 'when in the relaxed/non-conformal state' and when the flexible element 5 (or one of its regions) Allowing near (10) positive in non-(four)/conformal states, it should be understood by those skilled in the art that, based on the principles discussed herein, for example, the optical properties of the surface of the first, second, and/or third lens components are shaped or The optical properties of the other optical features of the dynamic lens can achieve any combination of close, intermediate, and long-distance alignments in any of the conformal and non-conformal states. Embodiments allow for the fabrication of any and all optical locations required for the patient's vision bridge = (including making spheres, cylinders, prisms, etc.). Those skilled in the art will also be able to provide (4) astigmatism, as well as the required spherical power, or a combination of the two. Additionally, an example of a dynamic lens as shown in Figure 11 can be edged and mounted to any eyelid frame of any size and or shape. In some embodiments, the first lens assembly 10 can be made of any material as long as the refractive index of the fluid 2〇 matches the index of refraction of the first lens assembly 10. For example, the indices of refraction can be substantially the same (e.g., Within 5 units). Embodiments may thereby allow for material independence of the dynamic lens, and thus allow for the creation of a set of dynamic lenses, each having a different thickness and or optical properties for a given prescription. That is, for example, the dynamic lens may include, by way of example only, CR 39 (refractive index I49), polycarbonate hot (refractive index 丨. 60), MR 2 〇 (refractive index 丨 6 〇), mr 1 〇 (refractive index 1. 67) and / or Mitsui (refractive index 1. 74). As is known in the optical industry, each of these materials exhibits certain advantages and also exhibits certain disadvantages, and thus the eye care provider can designate and/or recommend to the patient or wearer of the lenses of the present invention that they wish the patient or The material combination owned by the wearer. In fact 157229. Doc-78-201219842 In the embodiment, when the dynamic lens is colored, a covering body may be added to the surface including the flexible diaphragm s. In some embodiments, a cover coffee (e.g., the third lens assembly of (4) of Figure 16) can be hard coated and colored. In some embodiments in which the covering body 32 is not present, a temporary covering may be added to prevent color from penetrating into the interchangeable element 5. The color can then be absorbed into the second surface of the dynamic lens and/or in the side relative to the levisable element 5. As noted above, the refractive power, radius of curvature, any size, and refractive index provided herein as examples are merely examples and are not intended to be limiting. Embodiments disclosed herein may provide any and all of the farsightedness corrected optical power and added optical power required or desired by the wearer's optical needs. This may be achieved, for example, by selecting a first (eg, front) surface, a second (eg, back) surface, any suitable curved shape for the outer surface of the optical features, and the desired shape of the first lens assembly. This is done with the appropriate thickness and refractive index. In addition, and as mentioned above, the embodiment of the dynamic lens can be a lens, a lens blank completed on both sides, or a half finished lens of one of the freely formed or digital surface finishes, or a surface finish and Polished into a final finished lens. Embodiments will now be described in terms of a prototype optical device, a method of providing and obtaining an optical device, and an optical device and glasses including the optical device and methods of making the same. It should be noted that any such embodiments may be used in whole or in part in conjunction with the teachings detailed above. It should be noted that the term prototype means a state in which the device will be improved to a final state, and those skilled in the art will recognize that the prototype device can be improved to a final state. 157229. Doc • 79·201219842 Figures 22A and 22B provide conceptual cross-sectional views of an exemplary release optical device/lens according to an exemplary embodiment when viewed from the side. In this exemplary embodiment, the front face of the lens is raised and the back of the lens is concave. In an exemplary embodiment, the lens depicted in Figure 22A includes a dynamic liquid mirror in the form of a balloonable region, wherein Figure 22B depicts the balloonable region in an expanded state. In an exemplary embodiment, the raised surface of the back of the lens can be modified to have a progressive region in the form of a low power progressive addition surface as can be seen conceptually in Figure 22B. Additional details of the exemplary prototype optical device/lens will now be described. Referring to Figures 22C and 22D, in an exemplary embodiment, there is a eccentric optic 2200 that includes a first lens assembly in the form of a lens 221 . The first lens assembly can be an unfinished or half finished lens blank (Figs. 22C and 22D, respectively). Referring to FIG. 22C, the lens surface 2210匕3 first surface 2214 (which corresponds to a front surface of the lens head 2210) and a second surface 2212 on an opposite side of the lens blank 221〇 Corresponding to a back surface, as can be seen in Figure 22 (the front surface is one of the surfaces of the optical device, which is when the release optical device 2200 is completed as an optical device and incorporated into the glasses) Farther from the back surface than the surface of the viewer. As can be seen, a position of the front surface relative to the front of the front face of the lens blank 2210 is a raised surface, and the back surface of the embodiment depicted in Figure 22 (flat) is flat. The position of the back surface of the embodiment depicted in Figure 22D relative to the back of the lens blank 221 is a concave surface. In an exemplary embodiment, 157229 will be described in detail below. Doc-80-201219842 The lens blank 2210 can then be changed in a permanent manner to obtain a lens according to the first lens component cartridge described in detail above, and/or the lens blank 2210 can correspond to FIG. A lens assembly on the lens assembly. The lens blank 2210 can correspond to any or more of the lens blanks detailed herein and/or can be permanently altered to achieve any or more of the lenses detailed herein and variations thereof. Still referring to Figures 22C and 22D, the release optical device 2200 further includes a second lens assembly 2220 that includes a flexible member. At least a portion of the second lens assembly 2220 is adhered to the first surface 2214 of the lens blank 221. Referring to Figure 23, which shows the embodiment of Figure 22C, the flexible element of the second lens assembly 2220 is in an extended state (note that if the back surface is changed to a concave shape, Figure 23 can also be applied to the Figure Example of 22D). Specifically, the second lens assembly 222 includes a first region 2222 that is responsive to a change in pressure applied to at least a portion of the first region 2222 toward the first surface and away from the first surface. Varyingly moving, thereby dynamically adjusting an optical power of the exiting optical device 22A relative to a light path 2300 through the first region 2222 and the first surface 2214 (the light path 2300 is only representative Delineated for sexual purposes, and does not plot the effects of optical power that is not dynamically adjusted, as described herein and below, the defined optical power can be any optical power, such as for a near prescription, a far prescription, etc. Optical power. In an exemplary embodiment, the second lens assembly 2220 corresponds to the flexible element 5 and/or the flexible element of the lens 2GG and/or the lens of the lens of FIG. And/or any other flexible element described in detail herein and variations thereof, etc. 157229. Doc 201219842 In some embodiments, the flexible element 2220 is retained to the first lens in a manner that maintains one or more modes of the flexible element to a lens and variations thereof as described in detail herein. Component 221 〇. The prototype optical device 2200 is configured such that at least a portion of the second surface 22 12 can be permanently altered to permanently define an optical power of the first lens 221 at at least a second region of the second surface 2212, The second region is optically aligned with the first region 2222, thereby resulting in a prescription level ophthalmic optical device. (It should be noted here that the following examples mainly discuss ophthalmic optical devices', whether stated or not stated, but the following embodiments also primarily discuss optical devices other than ophthalmic optical devices. FIG. 24 depicts such a resulting prescription-grade optical device 2200. ', which includes a modified first lens assembly 221A. As can be seen, the modified first lens assembly 2210 includes a surface 22 12' that changes from surface 2212. In an exemplary embodiment, the prototype optical device 22 The configuration is such that at least a portion of the second surface 2212 can be permanently altered to permanently define a distance prescription of the first lens at at least the second region of the second surface 2212 corresponding to a spectacle wearer. An optical power, and/or configured such that at least a portion of the second surface 2 212 is permanently changeable to permanently define a positive optical power of the first lens at the second region of the second surface 2212. In an exemplary embodiment, the lens blank 221 is a conventional optical semi-finished lens blank or an unfinished lens blank (but in other embodiments, one can be used) The flexible element 2220 can be a transparent membrane 222A located on or adjacent to the convex surface of the lens strand 2210 before the lens head 2210. The transparent membrane 222〇157229. Doc-82-201219842 includes a region 2222 that can be altered, in an exemplary embodiment, as mentioned above, the change corresponds to deformation due to pressure applied to the side of the diaphragm facing the lens blank 2210. . As will be described in more detail below, after holding the flexible element 2220 to the lens blank 2210, the lens blank 2210 can then be combined or randomly formed via one of free formation, polishing, and/or surface processing and/or the like. Other acceptable methods for purposefully changing to a user (such as the prescription level optics) on its back surface 2212 (which may be a concave surface compared to the surface depicted in Figure 22C) A prescription level optical device of the wearer of the eyeglass in which the device is mounted, as described in detail below by way of example. The "prescription-level light-drying device" means an optical device having a finished quality that can be used in a pair of prescription glasses in accordance with standards set by the relevant US regulatory agencies for such optical devices, whether or not they are ultimately used. For example, assuming that the lens blank 2210 can be completed as a prescription optical device, the optical device can be used in a pair of over-the-counter glasses. Varying the lens blank 221 can result in possessing a spherical curvature (as desired based on the user's line of sight characteristics), toroidal curvature (as may be desired based on the user's line of sight characteristics, which may, for example, correct the user) A astigmatism or a back-to-back lens of a spherical torus (as desired based on the line of sight characteristics of the user). In some embodiments, changing the back provides a low power progressive addition surface that corrects some, but not all, of the wearer's near power requirements, as will be described in more detail below. The low power progressive addition of the lens means that there is a smaller added power that is required to be viewed in close proximity when the wearer is reading from 12 inches to 18 inches from their face. For example only, and as will be at 157229. Doc-83·201219842 As described in further detail below, if the wearer requires an added power of +2 50D, the low power progressive addition lens will have an added power of less than +25 〇d. The second lens assembly 2220 (which may be a front raised surface diaphragm-like covering) provides optical communication with the back surface 22 12 and the altered back surface 2212 of the first lens assembly 2210 (after the surface is altered) A dynamic lens assembly, the modified back surface 2212, such as a low power progressive addition back surface, in an exemplary embodiment, the prototype optical device 2200 and the resulting optical device 2200, the second lens assembly 2220 is formed A dynamic fluid lens on the raised surface of the semi-finished lens blank and also the finished lens and any intermediate finished lens. More specifically, in an exemplary embodiment, the dynamic fluid lens includes a diaphragm-like covering that covers the semi-finished lens and the raised surface of the final inventive lens and any intermediate completed lens. In other words, the first lens assembly 22 10 / the altered first lens assembly 22 1 〇, the exemplary front convex surface can be shaped, deformed or otherwise deformed at least in a reversible manner The transparent membrane 2220 is covered. Such shaping, alteration or deformation can be accomplished by pressure adjustment on the diaphragm as will be described in detail below. In some embodiments, as mentioned above, the membrane, its effectiveness and/or function may correspond to any of the membranes and variations thereof described in detail herein. In some embodiments, the shaping, alteration or deformation of the diaphragm is limited to a localized portion that is adjacent to the convex surface 2214 that is covered by the transparent membrane and that is smaller relative to the total area of the membrane adjacent the front convex surface 2214. Region (eg, region 2222 of Figure 23). In an exemplary embodiment, the cover 157229. Doc -84 - 201219842 The barrier 222 that covers the front raised surface 2214 can be a composite of plastic, rubber or thin glass membrane or one or more of the components and/or other components. It may be reversed, altered, or otherwise adjusted based on the pressure on a given area of the diaphragm. In an exemplary embodiment, the resulting dynamic fluid lens of optical device 2200 can correspond to any of these dynamic fluid lenses and variations thereof as described in detail herein. In an exemplary embodiment, the release optical device 2200 and the resulting optical device 2200· comprise a lens assembly 2220, which may be in the form of a diaphragm and variations thereof as described in detail herein, having a A region 2222' can be ballooned in response to pressure applied to at least a portion of the first region 2222. An example of this ballooning can be seen in Figure 23. Ballooning means that a localized portion of the diaphragm is configured to expand outwardly away from surface 2214 and inwardly toward surface 2214 in a manner similar to a balloon inflation and contraction. The shape of the localized portion of the diaphragm has An arcuate section that varies in a manner similar to a section of a portion of a balloon during expansion/reduction. The ballooning of the diaphragm at the first region 2222 dynamically adjusts an optical power of the exiting optics relative to a light path of the first region 2222 and the surface 2214 of the lens assembly 22 10/changed lens assembly 221 ' . As will be described in more detail below, one of the parameters of a fluid in space 231A can be adjusted by adjusting between the balloonable portion of the diaphragm and the surface 2214 of the lens assembly 22 1 〇/changed lens assembly 2210 ′. (Refer to Fig. 23), thereby adjusting the pressure on the diaphragm to complete the ballooning. This pressure adjustment as just described in detail can be accomplished as described in further detail below. However, in short, in an exemplary embodiment, when in space 157229. Doc • 85-201219842 23 When the amount of fluid in 10 increases, the diaphragm is ballooned away from surface 2214 because of the increased pressure at the localized region 2222. Further, in the exemplary embodiment, when the amount of fluid in the space 23 1 减小 decreases, the pressure at the localized region 2222 on the diaphragm 2220 decreases as the diaphragm is ballooned toward the surface 2214. It should be noted that when there is no fluid at all in space 23 10 ' although the volume is reduced, space 23 1 〇 still exists (e.g., when diaphragm 2220 substantially conforms to surface 2214 and is located on surface 2214). In an exemplary embodiment, reducing the pressure on the diaphragm 222 by a specified amount corresponding to a given design of the optical exit device 2200 / optical device 2220 may allow the diaphragm to return to an original shape, It may for example be a shape that conforms to the convex shape of the surface 2 214 of the lens blank 22 10 / modified lens assembly 22 0 . In an exemplary embodiment, the pressure on the diaphragm 2220 can be applied by a gas (e.g., air, nitrogen, dehumidified air, etc.) or a liquid. The use of the term fluid as used herein means a gas or a liquid. In at least some exemplary embodiments, it can be used in practice. All of the liquids and gases (including air) of at least some embodiments may be adapted to create/change the pressure on the membrane 2220. In some embodiments, the membrane 2220 has a transparency/transmittance of 88% or about 88% or greater. By way of example only, a transparent rubber, nylon or mylar may be utilized as the membrane 2220. As will be described in further detail below, in an exemplary embodiment, the pressure on the membrane 2220 may be heated by heating. Fluid increases. Any device, system or method that increases the pressure on the diaphragm 2220 to achieve expansion, as described in detail herein, and variations thereof, may be practiced in some embodiments, 157,229. Doc -86 - 201219842 S-Separator 2220 (which may be in the form of a transparent membrane and/or a flexible membrane and/or a transparent flexible membrane covering, and hereinafter will be based on a transparent membrane and/or flexibility A septum and/or transparent flexible membrane cover is described that is applied to the lens blank 2210 (which may be a static semi-finished lens blank, as described in detail herein) to be adhesively bonded to the lens blank 2210 ( Surface 2214, also referred to herein as a base lens. However, a region of the transparent membrane 2220 (which is suitably sized and shaped to allow for the desired shape and curvature variation of the localized region after pressure adjustment at least on the localized portion of the membrane at region 2222 ( For example, ballooning)) is not bonded to the surface 22 14 of the lens blank 22 1 . Due to the lack of such engagement, in some embodiments, the surface of the portion of the membrane 2220 at the region 2222 on the opposite side of the surface of the membrane 2220 facing the surface 2214 of the lens blank 221 can be dynamic Ground changes or deformations (eg, 'ballooning'' are as described in detail herein. The adhesive for adhering the transparent barrier 2220 to the front surface 2214 of the lens blank 221 can be used. 〇 5 units or in 〇. Within 03 units or within 〇 〇 1 unit or smaller units (or about 0. Any value of 05 units or less (for example, about 5 units or less 'about 0. 045 units or less, oh. 〇 4 units or less, 〇 〇 35 units or smaller... 0. 005 units or less) refractive index is matched to the transparent diaphragm 222 and/or between the region of the front surface 2214 of the lens blank 221 and the surface of the surface 2224 of the diaphragm and wherein the transparent diaphragm 222 is Non-adhesive joint space 23 10 fluid. It should be noted that in an exemplary embodiment, the diaphragm 222(R) may instead be applied to the back surface of the lens blank 2210 instead of the front surface. This back surface can be 157229. Doc •87- 201219842 is recessed. In this embodiment, the additive surface can be located on the front raised surface. For example, if a low power progressive addition surface (as will be described in more detail below) will be added to the lens blank 22, this will then be placed on the raised surface of the lens blank 2210. In an exemplary embodiment, a portion of the transparent membrane 2220 that covers a surface 2214 of the lens blank 221 has a circular shape (e.g., a circular shape) and has a size of 1 mm in diameter is not attached. / not adhered to the front surface 2214 of the lens blank 2210. This region 2222 forms the dynamic optical power region of the exiting optical device 2200 and/or the resulting optical device 22A. The portion of the transparent membrane 2220 or at least the transparent membrane 222 that is not adhered/not attached to the surface 22 14 of the lens blank 2210 can be extensible/extensible by at least one elastic material. Made by practicing the embodiments of the invention). In some embodiments, some embodiments may be practiced using a membrane/area 2222 of any shape and size. In an exemplary embodiment, the lens blank 221 has a diameter of 75 mm adjacent the front surface 2214. In some embodiments, some embodiments may be practiced using any shape and size of lens blank 2210. The lens blank 22 1 〇 can be made of any optical material that allows for practicing at least some embodiments. By way of example only and not limitation, the lens blank 22 can be made of glass, plastic, and/or rubber. Each of these materials may have a self. 〇 to 2. Any refractive index that is higher or lower. Any and all optical grade materials may be used if practical examples are permitted, including, by way of example only and not limitation, CR 39, polycarbonate, MR 6, MR 1 , Mitsui i. 74. As described above, the prototype optical device 2200 is configured such that the lens is 157229. Doc • 88 · 201219842 One surface of the blank 2210 can be purposefully permanently changed to define one of the optical powers of the lens blank 2210, thereby obtaining a modified lens assembly 221, which can be attached to the diaphragm 2220 The lens blank 2210 is then executed. That is, the release optical device 2200 can be manufactured on an industrial scale (e.g., using a high-volume production line that can be automated), producing economies of scale and/or consistency with respect to the off-the-shelf optical device 2 200 produced thereby and/or Predicted quality (or a statistically acceptable number with a required quality). An optical instrument vendor that can be localized at a location remote from where the embryonic optical device 2200 is positioned (eg, such as an optometrist in a particular prescription relative to an individual user and/or to a specified user's eyeglasses) Subsequent changes to the surface 2212 of the lens blank 2210 are performed to obtain a customized surface 2212 that defines an optical power and/or provides added power corresponding to, for example, a prescription for a particular user's eyeglasses. As used herein, an optical instrument is a person or company having the ability to freely form, surface machine, polish, and/or grind a lens blank (and/or one or more of these methods). In an exemplary embodiment, this allows an optometrist to stock a large number of off-the-go optics 22〇〇 so that he/she can meet the prescription of the glasses with dynamic power capabilities on-site without having to wait for a match to him/her and/or use One of the prescriptions is an optical device and/or it is not necessary to stock multiple finished lenses for a particular prescription classification/use. In this regard, an exemplary method will now be described which results in and/or enables the provision of an optical device to a user' such as a wearer of glasses in which the optical device has been combined. It should be noted that any of the optical optical devices described in detail herein may be included in some embodiments or may include some or any of the optical devices described in detail herein. Doc -89· 201219842 Any method that has components and/or features and that can be used to obtain an optical device from a prototype optical device can result in the inclusion of some or all of the components and/or features of any of the optical devices described in detail herein. An optical device. Referring to Figure 25, there is a method 2500 that includes an action 2510, which means providing a lens assembly. The lens assembly can be a prototype optical device 2200 and/or variations thereof as described in detail above. In an exemplary embodiment, the lens assembly includes a first lens assembly 221 that includes a first surface 2214 and a side opposite the first surface 2214 of the first lens assembly 221 A second surface 2212 on the upper surface. In this exemplary embodiment, the provided lens assembly further includes a second lens assembly 222, including a flexible member (eg, a flexible diaphragm as described in detail herein) At least a portion of the lens assembly 2220 is adhered to the first surface 2214 of the first lens assembly. The flexible element of the second lens assembly 222 includes a first region 2222 that is variable toward and away from the first surface 2214 in response to a change in pressure applied to at least a portion of the first region 2222 Ground movement, thereby dynamically adjusting the optical power of the lens assembly 22 relative to a light path through the first region 2222 and the first surface 2214. In an exemplary embodiment, act 2510 provides the lens assembly to include providing the lens assembly to a recipient, such as, for example, an optical instrument manufacturer. The lens assembly can be manufactured, for example, by direct manufacturing, licensed manufacturing and/or by outsourcing, and subsequently obtained via, for example, government postal, contract express delivery (eg 'FEDERAL EXPRESSTM & / or slower speed delivery method) and directly Courier (eg 'by the execution of action 2510, the author has 157,229. Doc •90· 201219842 Some couriers are delivered to the recipient to obtain the lens assembly and complete the action 2510. The lens assembly can also be manufactured or otherwise obtained by a third party by instruction or otherwise, and the third party or the other party can be directed or otherwise delivered to the recipient by the obtained lens assembly. Act 2510 of method 25 is completed. That is, the action 25 1 can be performed without the right (physical and/or legal) of the lens assembly provided to the recipient. Method 2500 also includes act 2520, which means providing that at least one component of the provided lens assembly will permanently change one of the indicated actions. In an exemplary embodiment, 'action 2520 means providing an indication that the first lens assembly 2210 will permanently define the first lens at least one of the second surface 2212 of the first lens assembly 2210. The second region is optically aligned with the first region 2222 in a manner that one of the two regions is optically powered. Before discussing this method action further, it should be noted that FIG. 24 depicts permanently changing the lens description 2210 at the second region 2216 on the second surface 2212 to permanently define the second region 22 of the first lens assembly/lens blank 2210. An illustrative result of one of the optical powers of 1 (leading to the altered lens 2210'). As seen in Figure 24, the second region 2216 is optically aligned with the first region 2222. It should be noted that if the changing action is limited to a subset of the surface 2212 of the first lens 'assembly 2210, the second area 2216 can be a comparison.  A small area 'eg, such as the embodiment of FIG. 22D, may be the case where the second area 2216 corresponds to a full diameter extension of the first lens assembly 221 '' located on the lower portion of the resulting optical device and that does not span the change Low power progressive addition surface. For example, it can be done, for example, via government postal, contract express (eg 157229. Doc •91· 201219842 eg, federal expresstm&/or slower delivery method) and direct delivery (eg, courier owned by the author of action 2510) to deliver an indication that the component can be permanently changed to the acceptance of the lens assembly The action 2520 is completed. The action 2520 can be performed, for example, by providing the indication along with the provided lens assembly. Action 252 can be accomplished, for example, by posting the indication on a website and/or via telephone and/or video communication with another party (which may or may not be the lens assembly). Action 2520 can be accomplished, for example, by an advertisement. The indication can be, for example, in the form of an instruction to change the second surface 2212, and/or in the form of a notification that the second surface up can be changed. Any action that results in performing an action indicating that the component can be permanently changed can be performed to practice the action 252 〇 β should note that in performing act 2520, the actor performing action 252 可 may or may not direct the indication to a particular party . It should be noted that action 2520 can be practiced before and/or after performing action 25 1/ and/or when performing action 2510. Referring to Figure 26, there is a method 2600 of providing an optical device (e.g., the resulting prescription level optical device 2200) that includes an action 261, which means obtaining a lens assembly. The lens assembly can be a drop-off optical device 2200 as described in detail above. In an exemplary embodiment, the obtained lens assembly includes a first lens assembly 2210 including a first surface 2214 and a side of the first lens assembly 2210 opposite the first surface 2214. A second surface 2212. In this exemplary embodiment, the lens assembly is further provided with a second lens assembly 2220 that includes a flexible member (eg, 'a flexible diaphragm as described in detail herein), the second 157229. Doc 92· 201219842 At least a portion of the lens assembly 2220 is adhered to the first surface 22 14 of the first lens assembly. The flexible element of the second lens assembly 2220 includes a first region 2222 that is variably movable toward and away from the first surface 2214 in response to a change in pressure applied to at least a portion of the first region 2222 'The optical power of the lens assembly 2200 is dynamically adjusted relative to a light path through the first region 2222 and the first surface 2214. In an exemplary embodiment, act 2610 of obtaining the lens assembly includes directly manufacturing the lens assembly and/or via, for example, government postal, contract delivery (eg, FEDERAL EXPRESSTM & / or slower speed delivery method), etc. Waiting to receive the lens assembly.

方法2600進一步包含動作2620,其意味著決定該光學裝 置(例如’所得的處方級光學裝置2200,)之一期望光學功率 及/或添加功率。在一例示性實施例中,可藉由評估一處 方及/或坪估基於一眼鏡處方的資料而執行動作2620。應 注意,動作2620可在執行動作2610之前及/或之後及/或執 行動作2610時執行。在一例示性實施例中,對於眼鏡(所 得的處方級光學裝置2200,將裝配於該眼鏡内)之佩戴者評 估的處方如下:右眼-2.00D-0.50Dxl80,需要一 +2.〇〇d光 學功率/添加功率。左眼-3_00D-0.75Dxl75,需要一+2.00D 光學功率/添加功率。(應指出,預期任何及所有處方可由 本文中揭示的方法及裝置及其變動滿足 方法2600進一步包含動作2630,其意味著在執行動作 2610後’永久改變該鏡片總成的一組件。在一例示性實施 例中,2630意味著永久改變該第一鏡片221〇之第二表 157229.doc •93- 201219842 2212,以永久定義一光學功率/永久定義該第一鏡片221〇 在該第二表面2212之至少一第二區域2216處之一光學功率/ 添加功率,該第一區域2216與該第一區域2222光學對準, 以具有小於期望光學功率/添加功率(例如,由處方指示的 光學功率/添加功率)的一第一光學功率/添加功率。在藉由 執行動作2630改變該第二表面後(即,由於執行動作 2630),當該第二鏡片組件222〇之第一區域以^移動遠離 該第一表面而至一第一位置時,相對於該第一鏡片組件 2210’及該第二鏡片組件222〇之光路徑23〇〇的一累積光學功 率/添加功率實質上等於該期望光學功率/添加功率。參考 上文中詳細描述的例示性處方,在藉由執行一自由形成方 法(或允許執行一實施例的其他方法)而執行動作263〇後, 動態流體鏡片區域2222(其可具有10 mm的—直徑,如將在 下文中更詳細描述)在氣球化為一給定氣球幾何形狀後(例 如,在完全氣球化達最大程度後)或以別的方式使其曲率 變形或重新塑形為一給定幾何形狀之後貢獻+ i 〇〇d之遞增 添加功率。在此一實施例中,所得第二表面2212·(其可完 全(例如,圖22C的區域2216)或部分(例如,圖22D的區域 22!6,其位於所得光學裝置的下部中心,諸如舉例而言且 並不限制地在圖32及圖33中勾4)為—漸進添加式表面(例 如’一靜態漸進添加式表面))亦提供+1〇〇D的遞增添加功 率。即,在藉由例如自由形成(或其他方法)執行動似㈣ 後’改變的第-鏡片組件㈣,/所得的靜態基底鏡片221〇, 提供一改變之光學裝置2200|,22〇〇,具有以下光學功率: 157229.doc -94- 201219842 右使用為右眼的一光學裝置(例如,放置於一副眼鏡的右 側-2.00D-0.50DX180,具有+1.00D的漸進添加式添加功 率;若使用為左眼的一光學裝置(例如,放置於一副眼鏡 的左側):-3,00D-0.75Dxl75,具有+1.0〇d的漸進添加式添 加功率。靜態基底鏡片及動態流體鏡片之組合因此為佩戴 者提供總共需要的+2.00D添加功率》 在該方法2600的一例示性實施例中,可用動作261 〇替代 以下動作之一者或多者及/或一實施例包含以下動作之一 者或多者,而沒有方法26 00之動作之一者或多者。(A)獲 得一鏡片組件,諸如本文中所詳細描述的一半成品或未完 成鏡片毛坯,無可撓性隔膜附接至該鏡片毛坯。(B)視需 要將該鏡片組件改變為一半成品狀態。將可撓性隔膜附接 至該鏡片組件/改變之鏡片組件。在動作A及/或3後,執行 方法動作2620及/或2630。如所見,方法動作263〇可執行 於一半成品或未完成之鏡片上,在執行動作263〇時將一隔 膜附接至該鏡片。 在一例示性實施例中,動作2630可包含永久改變該第二 表面以永久定義對應於一眼鏡佩戴者的一距離處方之一光 學功率’及/或永久改變該第二表面以永久定義一正光學 功率。 已描述獲得將使用於一使用者之眼鏡中的一光學裝置的 一例示性方法’現將參考上文詳細描述的1〇瓜爪直徑的動 態光學功率區域2222而描述光學功率區域2222與所獲得之 光予裝置的一裝配點之對準。在一例示性實施例中,參考 157229.doc •95- 201219842 圖27,其描繪當從前面觀看時圖24之所得處方級光學裝置 2200,,在-例示性實施例t,1G麵直徑的動態光學功、率 區域2222經定位使得一幾何中心272〇(例如,在一圓形品 域2222之情況中,為半徑的原點)係在所得處方級光學2 置2200’之一裝配點2710(其與所得的光學裝置22〇〇,將裝配 於其中之眼鏡之佩戴者之瞳孔中心對準)定位所在處之下 方12 mm處。即,1〇 mm直徑的動態光學功率區域之 上部周邊邊緣位於該裝配點在所得光學裝置22〇〇,上定位所 在之位置的下方7 mm處。在本發明之某些其他實施例中, 對於所得處方級光學裝置22⑻,將裝配於其中之眼鏡之佩戴 者的每-只眼睛’該動態光學功率區域助往鼻側偏離申 心。相應地,方法2600可意味著決定該裝配點將位於所得 處方級光學裝置2200,上的何處及識別光學總成22〇〇上相對 於該動態光學功率區域2222的對應位置(或反之亦然)的額 外動作/子動作。 在一例示性實施例中,動作263〇意味著永久改變該第一 鏡片221G之第二表面2212,以獲得_永久漸進添加式區域 2216(在-例示性實施例中,其係呈—低功率漸進添加式 表面2212’之形式的一低功率漸進添加式區域2216,如將在 下文中更詳細地描述)。應注意,雖然該低功率漸進添加 式區域2216描繪為跨越該第一鏡片組件221〇之整個直徑, 該低功率漸進添加式部分可僅跨越該直徑的一部分(諸如 下文中詳細描述的圖29及圖30之實施例即為此情況)。可 藉由在該鏡片毛坯221〇(其可為凹入的及/或半成品)之背側 157229.doc •96- 201219842 上自由形成此漸進添加式區域(或其他類型之區域)而執行 動作2630。動作2630可對應於將該半成品鏡片毛坯完成為 一完成的鏡片(所得處方級光學裝置22〇〇,)。在一例示性實 施例中,該漸進添加式區域(其例如在圖24中描繪為區域 2216,但再次強調,其可跨越一較小區域)在鏡片之裝配 點的1 mm内開始其逐漸性光學功率斜波,且繼續以便使該 漸進添加式區域的最適點(sweet sp〇t)與該動態光學功率區 域2222(其可為上文所詳細描述的動態1〇 mm動態光學功率 區域)的至少一部分光學對準。在意味著自由形成該鏡片 毛坯2210之背部的一例示性實施例中,光學儀器商可定位 設備以自由形成該鏡片毛坯2210,以對準該漸進添加式表 面2212' ’使得適當的最適點變得與該動態光學功率區域 2222之至少一部分(若非全部)(例如,隔膜2220之未附接的 前透明隔膜部分)光學對準》光學對準意味著光將行經兩 個區域’且在光學功率上變為添加式。最適點意味著對應 於一漸進添加式區域/表面之最大光學功率之區域的點。 如上文所提,流體可移動進入空間23 1 0中及移動出空間 2310,以改變隔膜2220上的壓力,以改變在區域2222處隔 膜2220之幾何形狀(例如,使隔膜2220氣球化)。現將根據 一例示性眼鏡描述可用於改變隔膜2220上的壓力的一流體 系統的一例示性實施例。應注意,此等例示性流體系統亦 可與其他類型的光學裝置一起科用。 在一例示性實施例中,一折射率匹配的液體被利用為移 動進入空間23 10中及移動出空間23 10以改變隔膜2220上之 157229.doc -97· 201219842 壓力的流體。應注意在一些實施例中,亦可利用空氣或任 何氣體,其可能為或可能不為折射率匹配的,且再者,亦 可使用非折射率匹配的液體。參考圖28及圖29,其描緣當 分別從側面及前面觀看時的一例示性眼鏡2800,折射率匹 配的液體可經由一泵致動器2820施加,該泵致動器2820可 為一微型泵致動器,其位於其中裝配光學裝置2200'之眼鏡 2800之一眼鏡框架2810之表面内或表面上。在一替代例示 性實施例中,該泵致動器可位於改變之第一鏡片組件2 21 〇1 之内或之上。該微型泵致動器2820與空間23 10流體連通。 此流體連通可經由流體通道2830而達成,如將在下文中更 詳細描述。應注意,上文提及的裝配至眼鏡框架281 〇中以 獲得眼鏡2800可為在上文中參考圖26詳細描述的方法26〇〇 的一額外動作。舉例而言,方法2600可包含一額外動作 2640 ’其可在動作2630後執行’意味著將獲得的鏡片總成 之永久改變的組件裝配至一眼鏡框架中。應注意,在一些 實施例中’裝配至眼鏡中的光學裝置2200,並不需嚴格根據 本文中詳細描述的方法而獲得。例如’可藉由首先自由形 成第一鏡片組件以具有一最終表面組態,接著將可撓性隔 膜附接至該第一鏡片組件而製造此一光學裝置2200·。即, 一些實施例包含本文中詳細描述的一裝置及系統,及以不 同於本文中詳細描述之方式製造或獲得的該裝置及系統之 變動。 返回參考該泵致動器2820,該泵致動器2820可位於眼鏡 28〇〇(或其他總成)上的任何處,諸如在該框架281〇上該框 157229.doc -98· 201219842 架2810的撑邊器部分處’在眼鏡之框架281〇之前面或橋接 件處等等。在一例示性實施例中,可提供兩個泵致動器 2820,每一者用於眼鏡2800中所使用之每一光學裝置 2200’。在一替代實施例中,在眼鏡28〇〇中僅利用一個致動 器’其供應流體至兩個光學裝置2200'。在一例示性實施例 中’其中包含單一致動器的流體系統經組態以在適當時調 整每一光學裝置2200,之每一空間2310中的流體量,以獲得 期望的動態遞增添加功率。將在下文中詳細描述一例示性 控制系統。除了該致動器或該等致動器之外,一個或多個 流體儲液器位於眼鏡2800之流體系統中/為眼鏡2800之流 體系統的一部分。在一例示性實施例中,該流體系統形成 一封閉式遞送網路。片語「封閉式遞送網路」意味著由塑 膠、橡膠或框架材料自身(其可為金屬)製成的當為中空時 或當形成可運載流體使得其内的空氣或液體不洩露的一腔 或管時氣密性管的一網路。 該泵致動器2820回應於一感測器及控制器總成2840及/ 或以別的方式與一感測器及控制器總成284〇通信。該感測 器及控制器總成2840經組態以控制該泵致動器2820,以將 流體泵送進入空間23 10中及將流體泵送出(包含吸出)空間 23 10(或者,替代地,允許流體由於趨向於將流體從空間 2310中逐出/使空間23 10坍縮的環境壓力而流出空間 23 10,諸如在其中該可撓性隔膜2220具有致使其收縮以符 合於表面2224之記憶的一實施例中可為此情況),以視期 望改變該隔膜2220之幾何形狀(例如,使該隔膜2220氣球 157229.doc -99- 201219842 化)。圖30提供該感測器及控制器總成284〇及該微型泵致 動器2820之一例示性功能圖。在一例示性實施例中,該感 測器及控制器總成2840之感測器2842係一傾斜開關及/或 —微型加速計之一者或多者,其感測眼鏡28〇〇的大致方 向。在一替代實施例中,代替此或除此之外,可使用一測 距儀、微型陀螺儀、一汞開關、一眼睛追蹤器件或任何其 他測距感測器,以將關於眼鏡2800的大致及/或特定方向 的輸入提供至該感測器及控制器總成2840之控制器。更明 確言之’可用於估計或以別的方式確定眼鏡之一期望用途 的任何器件、系統或方法可使用為感測器2842。在一例示 性實施例中,該感測器及控制器總成284〇之控制器2844可 為一微處理器。如圖30中可見,感測器2842與控制器2844 信號通信。如圖30中亦可見,泵致動器2820與控制器2844 k號通信。在一些實施例中,控制器2844係一邏輯器件, 其s平估來自該感測器2842的輸入,並且藉由發送一控制信 號至泵致動器2820而控制該泵致動器2820,藉此例如控制 隔膜2220之氣球化,如將在下文中經由實例詳細描述。應 注意,在一些實施例中,該感測器及控制器總成284〇可由 一控制器或一感測器替代,及/或該感測器可為與該控制 器分離的一單元。應注意,該感測器2842、該控制器2844 及/或該泵致動器2820可為一單一單元》 在一例示性實施例中,眼鏡2800之流體系統包含一小型 管,其自該泵致動器2820延伸且位於改變之第一鏡片組件 2210'之邊緣之至少一部分周圍直至大致在改變之第—鏡片 157229.doc -100- 201219842 組件2210’之底部邊緣處的一位置。在一例示性實施例中, 參考圖29之右眼光學裝置2200',此管對應於通道2830,且 其相對於該第一鏡片組件22 10’之邊緣而從約10點鐘位置延 伸至約6點鐘位置。在約6點鐘位置,該通道2830流體地耦 合至通道2850,該通道2850從經調整之光學第一鏡片組件 22 10'之邊緣向上延伸至隔膜2220之區域2222。在一例示性 實施例中,一耦合係位於通道2830之末端/通道2850之起 始處。在該通道283 0係由一管形成的一實施例中,該管可 分別以公-母關係裝配至通道2850中。在一替代實施例 中,通道2850可分別以公-母關係裝配至通道2830中。在 又一替代實施例中,可使用一公或母配接器將通道2850與 通道2830以一公-母-母-公或一母-公-公-母關係結合。在一 些實施例中可使用允許將通道2830放置為與通道2850流體 連通的任何方法、系統及/或器件。 在一例示性實施例中,通道2850係形成於改變之第一鏡 片組件22 10'之表面22 14與可撓性隔膜2220之表面2224之 間,且係由該表面2214與該表面2224形成。明確言之,通 道2850可對應於從該改變之第一鏡片組件2210'之一邊緣延 伸至未黏著至表面2214的區域2222的可撓性隔膜2220之一 區段,該區段允許流體從通道2830行經通道2850而至空間 2310及從空間23 10行經通道2850而至通道2830,導致或以 別的方式允許隔膜例如在區域2222處氣球化。在一例示性 實施例中,眼鏡2800包含一填充埠,其包含透明隔膜2220 之未附接至改變之第一鏡片組件2210’且與位於鏡片之前底 157229.doc -101 - 201219842 表面上的未附接之10 mm直徑區域2222流體連接的一邛 分。在一例示性實施例中,此填充琿係-垂直寬度為2mm 的填充槔,其可由透明隔膜222G之未附接至改變之第一鏡 片組件2 21 〇 ’且與位於錄H夕计ώ:主丨 , 丹佴孓鞔月之刖底表面上的未附接之1〇 mm 直徑區域2222流體連接的一部分形成。 用於建立通道2830(且在一替代例示性實施例中,代替 上文詳細描述或除上文詳細描述之外,可用於建立通道 2850)的管可位於可膨脹區域下方或偏向側面。在一些實 施例中,該管/通道2830相對於不同於上文詳細描述之位 置而延伸。在一例示性實施例中,參考右眼光學裝置 2200' ’代替從10點鐘位置延伸至6點鐘位置,該通道 2830(其可由一管建立)從1〇點鐘位置延伸至9點鐘位置且 通道2850水平地延伸(代替在如圖中所描繪該通道283〇延 伸至6點鐘位置之情況中的垂直延伸)^實際上,在一例示 性實施例中’該通道2830(其可由管製成)延伸超過6點鐘位 置而至約2點鐘位置’藉此其跨橋接件延伸至左眼光學裝 置2200’,以從左眼光學裝置2200,的約2點鐘位置延伸至6 點鐘位置。 在一例示性實施例中’該泵致動器2820及/或該感測器 及控制器總成2840及/或眼鏡2800實質上包含一感測器, 其可為一壓阻感測器或其他類型壓力感測器之形式,其用 於感測位於動態流體鏡片區域2222之空間2310中的流體的 壓力及/或來自該動態流體鏡片區域2222之空間2310及/或 流至該動態流體鏡片區域2222之空間2310的流體的壓力。 157229.doc •102· 201219842 在一例示性實施例中,基於一感測器讀數,該感測器及控 制器總成2840之控制器判定已施加足夠流體(例如,泵送 進入空間2310或泵送出空間231〇)以對動態流體鏡片提供 適當的或期望的光學功率,該泵致動器282〇停止施加壓力, 停止將流體泵送進入空間23 10或泵送出空間23 10。在一例 示性實施例中,該感測器用於周期性地或連續地感測流體 系統中/該空間2310中的流體的壓力。在一例示性實施例 中,該感測器及控制器總成2840之控制器經組態以辨識該 流體之壓力是否以任何方式減小或至少低於一給定界限, 並且啟動該泵致動器以對該流體及因此對該可撓性隔膜 2222施加額外壓力,並且連續泵送直到達到流體及/或隔 膜2222上需要的或期望的壓力臨限值(其與動態流體鏡片 之期望的光學功率相關聯)^或者,該泵致動器282〇及/或 該感測器及控制器總成2840可經程式化以將預定體積的流 體逐入隔膜/空間23 10之可膨脹部分中。該動態流體鏡片 可經組態以在光學功率上係可調諧的,或提供關於光學功 率增加或減小之步驟。 現將描述使用該感測器及控制器總成284〇以控制該動態 流體鏡片的一例示性案例。 在該感測器及控制器總成2840感測到眼鏡2800之佩戴者 以指示眼鏡2800之佩戴者很可能開始執行一近點視覺任務 (諸如(僅舉例而言)閱讀或觀看距該眼鏡28〇〇達12英寸至18 英寸之範圍内的一近點目標)的—方式傾斜他或她的頭部 時(例如,該感測器部分遞送—通信信號至該控制器,指 157229.doc •103- 201219842 二已伯測到此傾斜’及/或由感測器部分輸出一信號,該 么號由該控制器部分讀取且識別為含有指示此傾斜的參 數)該感測器及控制器總成2840之控制器部分引導或以 別的方式控制該泵致動器282〇以將適量流體泵送進入空間 2310(例如,1〇加功直徑的未附接區域(該動態光學鏡片)) 中,因此致使該區域變形或在曲率上改變(例如,氣球 化),且藉此致使該動態流體鏡片提供光學功率。此區域 可以此广方式氣球化,以改變該隔膜222〇之至少表面的形 狀,因此施加適當的添加光學功率。在感測到眼鏡28〇〇之 佩戴者以指示他或她很可能開始執行一遠點視覺任務的一 方式傾斜他或她的頭部時,或以別的方式感測到該佩戴者 並不閱讀或執行一近點視覺任務時(例如,該感測器部分 遞送通仏信號至該控制器’指示已偵測到此傾斜,及/ 或由感測器部分輸出一信號,該信號由該控制器部分讀取 且識別為含有指示此傾斜的參數),該感測器及控制器總 成2840之控制器部分引導或以別的方式控制該泵致動器 2820以減小空間231 〇中的壓力(其可藉由例如關閉該致動 器2820而完成’藉此釋放壓力),使得該可撓性隔膜2220 氣球化返回至實質上符合該改變之第一鏡片組件2210,之表 面2214 ’導致動態光學功率減小/消除(例如,眼鏡2800之 動態光學功率消失)。在該泵致動器僅經啟動以增加流體 壓力/該隔膜2220上的壓力以使該隔膜2220向外氣球化或 以別的方式維持該隔膜2220上的壓力以維持該隔膜2220向 外氣球化的例示性實施例中,對於該泵致動器282〇,僅當 157229.doc 201219842 佩戴者正執行一近點視覺任務時需要電力,諸如來自—電 池的電力《在利用電池對該泵致動器2820供電的一例示性 貫施例中,利用可再充電的電池,其可位於一密封電子模 組内’該密封電子模組位於眼鏡2800之框架内(例如,該 框架的撑邊器位置)。在一例示性實施例中,電池可位於 接近該框架之撐邊器位置的前方,沿著該框架之撐邊器位 置的中間,或在該框架之撐邊器位置之背部耳架處。在一 些實施例中’該電池可位於允許實踐實施例的框架之任何 部分。 圖3 1 k供一例示性演算法31 〇〇,其可由控制器2844使用 以自動改變由該動態流體鏡片提供的添加功率。最初,在 步驟3110,該控制器接收一信號或其他類型之指示(其指 示眼鏡的一期望用途),藉此確定該眼鏡的一用途。例 如’該控制器可從感測器2842接收指示一傾斜條件的一信 號,該傾斜條件指示佩戴者將執行一近點視覺任務。該控 制器進行步锁3120,其意味著輸出一信號至泉致動器2 82〇 以致使該泵致動器2820例如使可撓性隔膜氣球化至一膨脹 狀態(一第一組態)以增加眼鏡的添加功率。該控制器接著 進行步驟3130,其中該控制器2844判定眼鏡的所判定用途 是否已從步驟3110中的判定改變。若沒有作出所判定用途 已改變的判定’則該控制器返回進行重複步驟3丨3〇。若作 出用途已改變的一判定(其包含判定一新用途,諸如遠點 視覺任務),則該控制器進行步驟3 14 0,其中該可繞性隔 膜氣球化至一放鬆狀態或一中間狀態(一第二組態)。在完 157229.doc •105· 201219842 成步驟3140時’該演算法返回步驟3 11〇。應注意,控制器 2844可使用替代演算法。在一些實施例中可使用任何演算 法或控制器件、系統或方法。在一些實施例中,該控制器 係一二進位控制器。當例如感測器2842感測一傾斜條件 時’ s亥控制器在從感測器2842接收一信號時輸出一信號至 果致動器2820,且該泵致動器2820將流體泵送進入空間 23 10以使該可撓性隔膜膨脹。在終止接收信號時,控制器 2844終止輸出至該泵致動器,且因此該泵致動器停止將流 體泵送進入空間23 10或以別的方式停止維持空間23丨〇内流 體的壓力。 松封電子模組亦可容置感測器部分、控制器部分及/或 該感測器及控制器總成2840,且可容置可用於控制動態流 體鏡片的所有手動或自動控制器。在這點上,在一實施例 中,眼鏡2800經組態使得一佩戴者可將眼鏡2800置於一自 動模式、手動開啟模式或一手動關閉模式。在一手動模式 中,佩戴者可手動調整該動態流體鏡片之添加功率。此可 藉由按壓眼鏡2800上的一按鈕或一開關達一給定時間周 期’直到達成期望的添加功率而完成。隨後按壓該按鈕或 開關導致該添加功率完全減小,然而在其他實施例中,使 用者隨後可按壓該按紐或開關以減小該添加功率,直到達 成期望的添加功率。在一例示性實施例中,可提供一個電 子模組以對兩個光學裝置2200,供電或以別的方式控制兩個 光學裝置2200',而在一替代實施例中,可提供兩個此類電 子模組以控制兩個光學裝置2200·。此等電子模組可經密封 157229.doc -106· 201219842 使得其等係抗水的或防水的。 —實施例提供一非常小直徑的動態流體鏡片,其具有一 小添加功率(小於+2.00D)且以—方式定位,此方式使得佩 戴者可將s亥鏡片的頂部非動態(靜態)部分用於遠視矯正, 將靜態漸進添加式部分用於中間視力矯正,且當執行近點 任務時僅使用最終鏡片的近閱讀區域(其包含漸進添加式 區域之最適點以及亦包含動態流體鏡片區域)。此允許一 鏡片提供一失效安全鏡片,使得若光學功率失效或致動器 失效,該鏡片仍可對佩戴者提供不打折扣的遠視矯正,圖 3 2提供當從前面觀看時此一光學裝置32〇〇的一例示性實施 例。在此實施例中,漸進區域3210係塑形為所展示位於該 光學裝置3200之背部上之一靜態漸進區域。添加功率區域 3220係一動態添加功率區域,其係如本文中經由實例詳細 描述般氣球化的一區域。另外,圖3 2詳細描述在本發明之 一實施例中,該光學裝置3200可為一雛形光學裝置,其可 經受塑邊緣’或可以別的方式使部分/區段切斷或以別的 方式移除(諸如切除區域的上方及右邊的部分),以獲得根 據圖3 3的一鏡片總成。明確言之,圖3 3提供一例示性鏡片 總成33 00 ’其可對應於以上文詳細描述的方法25〇〇提供或 以方法2600獲得且運用可研磨鏡片總成之邊緣及/或可移 除鏡片總成之區段之額外動作的鏡片總成。如可見,該鏡 片總成3300包含如上文詳細描述的一光學裝置22〇〇1,,一 管連接至離形光學裝置2200之流體通道。應注意,在其他 實施例中,當該鏡片總成係以方法2500提供或以方法2600 I57229.doc -107- 201219842 獲得時,該鏡片總成3300可能不包含該管。在此等方法 中,該管可以其他方式提供或獲得。在一些此類實施例 中,並不獲得一管。代之為位於其中放置光學總成之框架 (例如,眼鏡之框架)中的一通道’且鏡片總成33〇〇之流體 通道連接至該框架内的該通道。相應地,在一例示性實施 例中,具有一離形光學裝置3300,其包含與—第一空間 2310流體連通的一通道2830及/或2850,該第一空間231〇 位於能可變地移動之可撓性隔膜2220之一第一區域2222與 鏡片組件2210之第一表面2214之間,其中該通道2830及/ 或2850經組態以允許流體經該通道283〇及/或285〇移動, 該流體產生施加至該第一區域2222之至少一部分的壓力, 以使該可挽性1¾膜2 2 2 0之部分變形。在一例示性實施例 中’此通道可包含或以別的方式對應於一管。 仍然參考圖3 2及圖3 3,在一例示性實施例中,具有提供 一光學裝置(例如’所得的處方級光學裝置2200")的一方 法’其包括獲得一鏡片總成的動作。該鏡片總成可為如上 文所詳細描述的一雛形光學裝置22〇(^在一例示性實施例 中’所獲得的鏡片總成包含一第一鏡片組件22丨〇,其包含 一第一表面2214及在該第一鏡片組件221〇之與該第一表面 22 14相對的一側上的一第二表面2212。在此例示性實施例 中,所提供的鏡片總成進一步包含一第二鏡片組件222〇, 其包括一可撓性元件(例如,本文中所詳細描述的該可撓 性隔膜),該第二鏡片組件222〇之至少一部分黏著至該第 一鏡片組件之第一表面2214。該第二鏡片組件2220之該可 157229.doc -108- 201219842 撓性元件包括一第一區域2222,其可回應於施加至該第一 區域2222之至少一部分的壓力的一變化而朝向該第一表面 2214及遠離該第一表面2214可變地移動,藉此相對於經該 第一區域2222及該第一表面2214的一光路徑動態調整該鏡 片總成2200的一光學功率。 在一例示性實施例中,動作26 10獲得鏡片總成之動作包 含直接製造該鏡片總成及/或經由例如政府郵政、合約快 遞(例如,FEDERAL EXPRESSTM&/或較慢速度的配送方 法)等等接收該鏡片總成》 此方法進一步包含一動作,其意味著永久改變該鏡片總 成的一組件。在一例示性實施例中,此動作意味著永久改 變該第一鏡片2210 ’以永久重新塑形該第一鏡片組件221〇 之外部輪廓,以獲得所得第一鏡片組件(及視需要第二鏡 片組件)中的一框架輪廓。如所見,此動作可執行於有一 隔膜附接至其的一半成品或未完成鏡片上。可使用任何器 件、系統或方法移除該第一鏡片2210及/或該第二鏡片 2220之材料’以永久改變一光學裝置3200,以獲得一光學 裝置3300及其變動。 在一進一步例示性實施例中,該通道283〇及/或285〇經 組態使得一流體經該通道進入該第一空間23丨〇中的移動增 加施加至該可撓性隔膜2220之該第一區域2222之至少一部 分的壓力’以使該第一區域2222移動遠離讓鏡片組件221〇 之第一表面2214。此外’該通道2830及/或2850經組態使 得該流體經該通道從該第一空間231〇出去的移動減小施加 157229.doc •109· 201219842 至該第一區域2222之至少一部分的壓力,以使該第一區域 2222朝向該第一表面2214移動。 應注意’在一些實施例中’根據方法25〇〇提供鏡片總成 3300包含阻塞或以別的方式密封鏡片總成33〇〇之管及/或 流體通道之開口,及/或根據鏡片總成33〇〇提供一鏡片總 成’其中提供一插塞或密封件以阻塞或密封該管及/或流 體通道之開口。此對可能源自例如如上文詳細描述施加至 鏡片總成3300之永久改變動作的非預期材料的入侵提供一 障壁。此外,在一例示性實施例中,根據方法26〇〇獲得鏡 片總成3300包含根據鏡片總成33〇〇獲得一鏡片總成,其中 提供一插塞或密封件以阻塞或密封該管及/或流體通道之 開口。或者,方法2600可包含阻塞或以別的方式密封鏡片 總成3300之該管及/或流體通道之開口的動作。此對可能 源自例如如上文詳細描述施加至鏡片總成33〇〇之永久改變 動作的非預期材料的入侵提供一障壁。 在一例示性實施例中,自改變本文中詳細描述之雛形鏡 片裝置及其變動及/或執行方法2500及/或2600及其等之變 動而獲得之所得光學裝置導致具有完美外觀(或至少外觀 了々人接又)、無分界之連續視力矯正、從遠至近及從近 至遠不間斷觀看之能力的一所得光學裝置。此一鏡片的成 本非常合理。在一例示性實施例中,用以改變該動態鏡片 之此一非常小區域(area或regi〇n)所需要之非常有限的流體 允許該泵致動器為非常小的且在外觀上隱藏於眼鏡的框架 内0 157229.doc •110- 201219842 在一例示性實施财,魏漸祕加式W表面係在鏡 片、·且件之凹入側’其位於最接近佩戴者的面#,且藉由 在由光學實驗室處理時(例如,方法2_中所發生)自由形 成鏡片組件(例如,半成品鏡片毛坯)之凹入表面而生產。 相反’在_•例示性實施例中,具有—離形光學裝置,其包 括-半成品鏡片毛坯’其具有一前凸起表面,該前凸起表 面包括-低功率漸進添加式表面,i透明遮蓋材料隔膜位 於此前凸起表面之頂部上。’該可撓性隔膜位於該低功 率漸進添加式表面之頂部上。此一離形光學裝置可對應於 根據方法2500提供之鏡片總成及其之變動及/或可對應於 根據方法2600所獲得的鏡片總成及其之變動。在此一實施 例中,該半成品鏡片毛坯之背部凸起表面可自由形成、表 面加工、拋光及/或研磨(及/或其等之組合)為最終需要的 處方或非處方鏡片。在此一例示性實施例中,該可撓性隔 膜之未附接區域(即,氣球化或以別的方式變形的部分)為 12mm咼(垂直)及2〇 mm(水平)的一橢圓。 在另一例示性實施例中,該透明遮蓋隔膜/可撓性隔膜 係允許其黏著或以別的方式貼附至離形光學裝置之半成品 鏡片毛坯之前凸起表面的一材料,且在此實施例中其係具 有18 mm之一垂直直徑及14 mm之一水平直徑的橢圓形。 在此實施例中,該可撓性隔膜之未附接區域重疊且大致平 行於靜態低功率漸進添加式鏡片基底之流體通道。 在一例示性實施例中,動態流體鏡片之直徑經匹配以便 使其自身與漸進添加式區域之輪靡之一者對準,使得動態 157229.doc • 111· 201219842 鏡片在該漸進添加式鏡片之此特定輪廓區域中提供光學功 率。 應指出,本文中所提供之揭示内容並不意欲為限制性。 可乂供任何直徑、形狀、鏡片毛达或未附接的可撓性隔膜 區域以完成所需之光學特徵或光學功率。可提供流體鏡片 或靜態基底鏡片之任何光學功率且預期達成佩戴者需要的 期望總添加光學功率’可預期任何及所有材料、流體、氣 體、液體。在一些實施例中,若允許實踐實施例,則半成 品鏡片毛坯、完成鏡片毛坯'完成鏡片及任何及所有框架 式樣或材料均可被利用,僅舉例而言且並不具限制性,包 含無邊的、半邊的、金屬、金屬絲、管狀框架及塑膠框 架。 此外,一些實施例包含一鏡片組件,其包含一前凸起表 面,該前凸起表面在用一透明隔膜遮蓋之前係可具或可不 具過渡性(Transitions)的一光致變色表面或基底材料(ppG 光致變色表面)。在一例示性實施例中,當使用一光致變 色表面或基底材料時,遮蓋該光致變色表面或基底材料的 透明隔膜及/或用於將該隔膜黏著至該表面的任何黏著劑 較佳地並不抑制(或儘可能小地抑制)紫外光經過此一遮 蓋,因為需要UV光改變該光致變色材料的色彩。 此外,在一例示性實施例中具有一鏡片組件,其可經塑 邊為任何形狀,且可用所有鏡片塗層處理,諸如(僅舉例 而言)AR(抗反射)塗層、硬抗到塗層、著色塗層、防污塗 層、疏水性塗層、鐵氟龍(teflon)塗層等等。 157229.doc -112- 201219842 本文中所提供的圖式展示鏡片/光學裝置的一些例示性 設計。 在一例示性實施例中,透明隔膜之氣球化可藉由加熱眼 鏡之流體系統中的一量之液體而獲得。明確言之,一量之 液體可經加熱以使液體的體積膨脹。此液體膨脹可使該鏡 片組件的可撓性或可膨脹或可氣球化部分膨脹。隨著該鏡 片之此部分改變形狀,由該鏡片之此部分可提供額外的添 加功率。即,該鏡片之該可膨脹部分在一未膨脹狀態中可 具有一第一曲率半徑(例如,其可不提供額外添加功率), 且在一膨脹狀態中可具有一第二曲率半徑(例如,其可提 供一額外添加功率)。該液體可由該鏡片組件供應之電能 而加熱。該電能可在接近容納該液體的一儲液器處轉換為 熱。該熱可致使該液體加熱,且藉此在體積上膨脹。舉例 而5,在一鏡片組件中的一 IT〇層可用於供應電能至該鏡 片組件,電能可在該鏡片組件之一期望位置處轉換為熱。 該電能可例如藉由使用一電阻負載(例如線圈)而轉換 為熱。 應注意此時在一些實施例中,如本文中所詳細描述的任 何離形光學裝置可包含本文中所詳細描述的任何光學裝置 的些或所有組件及/或特徵部,且可用於從一雛形光學 裝置獲得一光學裝置的任何方法可導致包含如本文中所詳 細描述的任何光學裝置之一些或所有組件及/或特徵部之 一光學裝置。 參考圖24、圖28及圖29及圖34,一例示性實施例包含一 157229.doc •113- 201219842 光學裝置2··(其可對應於本文中詳細描述的任何光學裝 置,諸如參考數字1〇〇、200、12〇〇、3〇〇等等及其等之變 動)’其包括:一低添加功率漸進添加鏡片2210,,其包含 一第-曲率半徑R1,提供-漸進添加功率至—最大第一添 加功率’及-隔膜2220,其位於該低添加功率漸進添加鏡 片2210之—第一表面上,包含一可膨脹部分助,該可膨 脹部分2222m_狀態(其中該可膨脹部分2222具有 一第二曲率半徑)膨脹至一第二狀態(其中該可膨脹部分具 有一第三曲率半徑R3);包含通道283〇及285〇的一流體系 統,其經組態以使該可膨脹部分2222從該第一狀態膨脹至 該第二狀態,及使該可膨脹部分從該第二狀態收縮至該第 狀態。該第二曲率半徑實質上對應於該第一曲率半徑 W,使得當該可膨脹部分在該第一狀態令0夺,該可膨脹吾: 分及該低添加功率漸進添加鏡片之一最大累積添加功率約 等於該第一添加功率,且該第三曲率半徑R3不同於該第一 曲率半徑R1 ’使得當該可膨脹部分在該第二狀態中時,該 可膨脹部分及該低添加功率漸進添加鏡片之最大累積添加 功率等於該第一添加功率加上一第二添加功率。 在一例示性實施例中,該光學裝置22〇〇,包含一流體系 統,其經組態以允許一流體移動進入及離開形成於該低添 加功率漸進添加鏡片2210'與該可膨脹部分2222之間的一空 間2310,以分別使該可膨脹部分2222從該第一狀態(例 如,如圖24及圖28中可見)膨脹至該第二狀態(例如,如圆 34中可見),及使該可膨脹部分從該第二狀態收縮至該第 157229.doc 201219842 一狀態。在一例示性實施例中,該光學裝置2200,包含一流 體系統’該流體系統包括一流體通道2850,其從該低添加 功率漸進添加鏡片2210,之至少一邊緣延伸至該可膨脹部分 2222 »在一例示性實施例中,該流體通道係藉由該低添加 功率漸進添加鏡片之第一表面2214及該隔膜2220定義。在 一例示性實施例中,該流體系統經組態以加熱該流體,藉 此使該流體膨脹,且因此使該可膨脹部分2222從該第一狀 態膨脹至該第二狀態,且該流體系統經組態以冷卻該流體 (其包含允許該流體自身冷卻),藉此使該流體收縮,且因 此使該可膨脹部分2222從該第二狀態收縮至該第一狀態。 在一例示性實施例中,具有28〇〇,其包括光學裝置 2200及一眼鏡框架28 1 〇。在一例示性實施例中,眼鏡28〇〇 包含一控制器2840,其中控制器經組態以自動控制該流體 系統,藉此控制該可膨脹部分2222的膨脹及收縮。在一例 示性實施例甲,該眼鏡進一步包括一微型泵致動器282〇, 其、’里,’且態以將流體泵送進入位於該低添加功率漸進添加鏡 片2810’與該隔膜222〇之間的一空間231〇中,以使該隔膜 2220之該可膨脹部分2222膨脹。 在-例示性實施例中’具有一半成品鏡片毛述,其包括 靜態基底部分及一表面的一區域,該表面的該區域可氣 球化以產生動態光學功率,藉此該靜態基底部分可以此一 方式改變以產生靜態遞增添加功率的—區域,藉此可氣球 化的該表面提供-第二遞增添加功率(其係動態的),藉此 ^學連通時〜組合光學功率滿足_佩戴者所需的光學功 I57229.doc -115- 201219842 率需求。在一例示性實施例中,具有如上文及/或下文詳 細描述的一半成品鏡片毛坯’其中該光學功率係由一流體 鏡片產生。在一例示性實施例中,具有如上文及/或下文 詳細描述的一半成品鏡片毛坯,其中該改變係藉由自由形 成或表面加工及拋光之一者提供。在一例示性實施例中, 具有如上文及/或下文詳細描述的一半成品鏡片毛述,其 中該半成品鏡片毛坯經自由形成為一完成鏡片。在一例示 性實施例中,具有如上文及/或下文詳細描述的一完成鏡 片’其中該鏡片包括·一低功率漸進添加鏡片表面。在—例 示性實施例中,具有如上文及/或下文詳細描述的一完成 鏡片’其中該鏡片係光致變色的。在一例示性實施例中, 具有如上文及/或下文詳細描述的一半成品鏡片,其令該 半成品鏡片毛堪係光致變色的。在一例示性實施例中,具 有如上文及/或下文詳細描述的一半成品鏡片毛坯,其中 該半成品鏡片毛坯包括一低功率漸進添加鏡片表面。在一 例示性實施例中,具有如上文及/或下文詳細描述的一完 成鏡片毛坯’其中該完成鏡片已經塑邊為眼鏡框架的形 狀。在一例示性實施例中,具有如上文及/或下文詳細描 述的一眼鏡框架,其中該眼鏡框架包括一致動器。在一例 示性實施例中’具有如上文及/或下文詳細描述的一眼鏡 框架’其中該眼鏡框架包括一封閉式遞送網路β在一例示 性實施例中’具有如上哀及/或下文詳細描述的一眼鏡框 架’其中該眼鏡框架包括一傾斜開關。在一例示性實施例 中,具有如上文及/或下文詳細描述的一眼鏡框架,其中 157229.doc -116- 201219842 該眼鏡框架包括一加速計。在一例示性實施例中,具有如 上文及/或下文詳細描述的一眼鏡框架,其中該眼鏡框架 谷納電子器件。在一例示性實施例中,具有包括一封閉式 遞送網路的一眼鏡框架,其中該封閉式遞送網路包含一流 體儲液器《在一例示性實施例中,具有如上文及/或下文 詳細描述的一半成品鏡片毛坯,其中該流體鏡片可為液體 或氣體的流體鏡片。 在例示性實施例中,具有一鏡片,其包括:具有一第 曲率半控的一基底部分;一可膨脹部分,其中在一第一 狀態中,該可膨脹部分具有一第二曲率半徑,且其中在一 第二狀態中,該可膨脹部分具有一第三曲率半徑;一液 體,其儲存於該可膨脹部分内,其中該第二曲率半徑實質 上等於或保形於該第-曲率半徑,使得t在該第—狀態中 時’該可膨脹部分不提供額外添加功率,纟中該第三曲率 半徑不同於該第一曲率半徑’使得當在該第二狀態中時, 該可膨脹部分提供一額外添加功率,且其中當加熱該液體 時,該可膨脹部分從該第一狀態過渡至該第二狀態。 上文之描述係例證性的,且並非限制性的。熟習此項技 術者在回顧本揭㈣容時將瞭解本發明之許多變動。因此 «明之範圍不應參考上文之描述決定,而是應參考待審 定的請求項μ及其全部範圍或均等内纟而決定。 來自任何實施例之-個或多個特徵部可在未脫離本發明 之範圍之下與任何其他實施例之__個或多個特徵部組合。 個」或「該」之一敘述意欲意味著 厂 r . _ _ 個或 157229.doc •117· 201219842 多個」,除非明確地另有相反指示。 【圖式簡單說明】 圖1展示一動態鏡片之一例示性實施例之一側視圖。 圖2展示一動態鏡片之一例示性實施例之一側視圖。 圖3展示一動態鏡片之一例示性實施例之一側視圖。 圖4展示一動態鏡片之一例示性實施例之一側視圖。 圖5展示一動態鏡片之一例示性實施例之一前視圖。 圖6展示一動態鏡片之一例示性實施例之一前視圖。 圖7展示一動態鏡片之一例示性實施例之一前視圖。 圖8展示一動態鏡片之一例示性實施例之一截面。 圖9展示一動態鏡片之一例示性實施例之一前視圖。 圖10展示一動態鏡片之一例示性實施例之一前視圖。 圖11展示一動態鏡片之多個例示性實施例。 圖12展示一動態鏡片之一例示性實施例之一前視圖的一 圖式。 圖13展示一動態鏡片之一例示性實施例之一侧視圖。 圖14展示一動態鏡片之一例示性實施例之一侧視圖。 圖15(a)展示一動態鏡片之一例示性實施例之兩個側視 圖。 圖15(b)展示一動態鏡片之一例示性實施例之兩個側視 圖。 圖16展示一動態鏡片之一例示性實施例之一側視圖。 圖17展示一動態鏡片之一例示性實施例之一側視圖。 圖18展示一動態鏡片之一例示性實施例之一侧視圖。 157229.doc .118- 201219842 圖19展示一動態鏡片之—例示性實施例之一側視圖。 圖20展示一動態鏡片之—例示性實施例之—側視圖。 圖21展示一動態鏡片之一例示性實施例之一側視圖。 圖22A至圖22B展示一動態鏡片的一例示性實施例的一 概念性側視圖。 圖22C至圖22D展示一離形光學裝置之一例示性實施例 的一側視圖。 圖23展示雛形光學裝置的—例示性實施例的一側視 圖。 圖24展不-光學裝置的—例示性實施例的—側視圖。 圖25展示詳細描述提供—光學裝置的一方法的一流程 圖。 圖26展示詳細描述提供—光學裝置的一方法的一流程 圖。 圖27展示一雛形异墨驻$ . , _ _ /尤予裒置之一例不性貫施例的一前視 圖。 圖28展示眼鏡之-例示性實施例的—側視圖。· 圖29展不眼鏡之一例示性實施例的一前視圖。 圖30展示使用於圖28及圖29之眼鏡中的—例示性實施例 的一功能圖。 圖3 1展示在例示性實施例中由定位於圖28及圖29之眼 鏡中或眼鏡上的一控制器使用的一演算法。 圖32展示雛形光學裝置之一例示性實施例的一前視 157229.doc .119- 201219842 圖 33展示一離形光學裝置的一例示性實施例的 前視 圖。 側視圖 圖34展示一光學裝置的一例示性實施例的一 【主要元件符號說明】 5 第二鏡片組件/可撓性元件/可击 10 第一鏡片組件 11 第一表面 12 第二表面 14 光學特徵部 15 可移動滑件 20 流體 25 儲液器 30 區域或區帶/可調整光學功率區 35 鏡片之外部周邊/區域 40 固定部分/固體組件 100 鏡片 101 光線 200 動態鏡片 201 第一區域 202 光線 203 光線 300 動態鏡片/第一鏡片組件 301 光線 310 第一鏡片組件/基板 157229.doc -120* 201219842 320 第三鏡片組件/外部剛性蓋/遮 蓋/遮蓋體 330 流體 340 通道/流體埠 350 多孔插塞/可撓性元件/可撓性 360 第一表面 370 光學特徵部/第二光學流體 380 第二表面 701 區域/動態功率區域 702 裝配點 703 鏡片之幾何中心 704 接合線 705 溝渠或溝道 706 通道 801 區域 802 區域 803 第一鏡片組件之第一表面之名 901 旋轉對稱非球形添加區帶 902 周邊 1001 動態功率區域/動態光學區域 1002 接合線 1003 第一鏡片組件之裝配點 1004 溝道或溝渠 1101 動態功率區域 隔膜 面 157229.doc 121 201219842 1200 1201 1202 1203 1204 1401 1402 1403 1501 1502 2200 2200, 2200" 2210 2210' 2212 2212' 2214 2216 2220 2222 護目鏡框架 通道 致動器 儲液器 動態功率區域 動態光學功率區域 光線 光線 光線 光線 雛形光學裝置/鏡片總成 所得的處方級光學裝置 所得的處方級光學裝置 鏡片毛链/第一鏡片組件/第一鏡片 改變的第一鏡片組件/靜態基底鏡片/低添加 功率漸進添加鏡片 第二表面/背表面 自表面2212改變的表面/定製表面/低功率漸 進添加式表面 第一表面/前凸起表面 第二區域/永久漸進添加式區域/低功率漸進 添加式區域 第二鏡片組件/可撓性元件/透明隔膜 第一區域/動態光學功率區域/動態流體鏡片 157229.doc -122- 201219842 2224 區域/可撓性隔膜/可膨脹部分 隔膜之表面 2300 光路徑 2310 空間 2710 裝配點 2720 幾何中心 2800 眼鏡 2810 眼鏡框 2820 泵致動器 2830 流體通道 2840 感測器及控制器總成 2842 感測器 2844 控制器 2850 通道 3200 光學裝置 3210 漸進區域 3220 添加功率區域 3300 鏡片總成/雛形光學裝置 ΤΙ 第一鏡片組件之厚度 R1 内部曲率半徑/第一曲率半徑 R2 外部曲率半徑 R3 中央外部曲率半徑 157229.doc -123-The method 2600 further includes an act 2620 that means determining one of the optical devices (e.g., the resulting prescription level optical device 2200,) to expect optical power and/or add power. In an exemplary embodiment, act 2620 can be performed by evaluating a prescription and/or ping estimate based on a prescription of the glasses. It should be noted that act 2620 can be performed before and/or after act 2610 and/or when act 2610 is performed. In an exemplary embodiment, the prescription for the wearer of the spectacles (the resulting prescription level optical device 2200 will be fitted within the spectacles) is as follows: right eye-2. 00D-0. 50Dxl80, need a +2. 〇〇d optical power / added power. Left eye -3_00D-0. 75Dxl75, need a +2. 00D optical power / added power. (It should be noted that any and all prescriptions are contemplated by the methods and apparatus disclosed herein and variations thereof to satisfy method 2600 further comprising act 2630, which means that a component of the lens assembly is 'permanently changed' after performing act 2610. In an embodiment, 2630 means permanently changing the second table 157229 of the first lens 221. Doc • 93-201219842 2212, to permanently define an optical power/permanently defining an optical power/addition power of the first lens 221 at at least a second region 2216 of the second surface 2212, the first region 2216 and The first region 2222 is optically aligned to have a first optical power/added power that is less than a desired optical power/added power (eg, optical power/added power indicated by the prescription). After the second surface is changed by performing act 2630 (ie, due to performing act 2630), when the first region of the second lens assembly 222 is moved away from the first surface to a first position, A cumulative optical power/addition power of the light path 23A of the first lens assembly 2210' and the second lens assembly 222 is substantially equal to the desired optical power/addition power. With reference to the exemplary prescriptions described in detail above, after performing the action 263 by performing a free formation method (or allowing other methods of performing an embodiment), the dynamic fluid lens region 2222 (which may have a diameter of 10 mm) As will be described in more detail below) after ballooning into a given balloon geometry (eg, after full ballooning to a maximum extent) or otherwise deforming or reshaping the curvature to a given geometry After the shape contributes + i 〇〇d increments to add power. In this embodiment, the resulting second surface 2212. (which may be entirely (e.g., region 2216 of Figure 22C) or portion (e.g., region 22! 6 of Figure 22D, located at the lower center of the resulting optical device, such as an example) By way of example and not limitation, in FIG. 32 and FIG. 33, the rule 4) is a progressive addition surface (eg, 'a static progressive addition surface)) also provides an incremental addition power of +1 〇〇D. That is, by performing, for example, freely forming (or other means) performing a motion-like (four) post-change of the first lens assembly (four), / resulting static base lens 221, providing a modified optical device 2200|, 22, having The following optical power: 157229. Doc -94- 201219842 Right use an optical device for the right eye (for example, placed on the right side of a pair of glasses - 2. 00D-0. 50DX180 with +1. Gradual addition of 00D adds power; if using an optical device for the left eye (for example, placed on the left side of a pair of glasses): -3,00D-0. 75Dxl75 with +1. The incremental addition of 0〇d adds power. The combination of static base lens and dynamic fluid lens thus provides the wearer with a total of +2. 00D Adding Power" In an exemplary embodiment of the method 2600, one or more of the following actions may be replaced by an action 261 及 and/or an embodiment may include one or more of the following actions without the method 26 00 One or more of the actions. (A) A lens assembly is obtained, such as a half finished or unfinished lens blank as described in detail herein, to which the inflexible membrane is attached. (B) The lens assembly is changed to a half finished state as needed. A flexible membrane is attached to the lens assembly/changed lens assembly. After actions A and/or 3, method actions 2620 and/or 2630 are performed. As can be seen, method act 263 can be performed on a half finished or unfinished lens, and a diaphragm is attached to the lens when act 263 is performed. In an exemplary embodiment, act 2630 can include permanently changing the second surface to permanently define an optical power of a distance prescription corresponding to a spectacle wearer and/or permanently changing the second surface to permanently define a positive Optical power. An exemplary method of obtaining an optical device to be used in a user's eyeglass has been described. The optical power region 2222 will now be described with reference to the dynamic optical power region 2222 of the melon-claw diameter described in detail above. The light is aligned with an assembly point of the device. In an exemplary embodiment, reference 157229. Doc • 95-201219842 Figure 27, which depicts the resulting prescription level optical device 2200 of Figure 24 when viewed from the front, in the exemplary embodiment t, the 1G surface diameter dynamic optical work rate region 2222 is positioned such that a geometry Center 272 〇 (eg, in the case of a circular range 2222, the origin of the radius) is at one of the assembly level 2 2' assembly points 2710 (which, with the resulting optical device 22, will The center of the pupil of the wearer in which the lens is fitted is aligned 12 mm below the location. That is, the upper peripheral edge of the 1 mm diameter dynamic optical power region is located 7 mm below the position at which the assembly point is positioned on the resulting optical device 22A. In certain other embodiments of the present invention, for the resulting prescription level optical device 22 (8), the dynamic optical power region of the wearer of the eyeglasses in which the lens is assembled is assisted by the nasal side deviation. Accordingly, method 2600 can mean determining where the assembly point will be located on the resulting prescription level optical device 2200 and identifying the corresponding position on the optical assembly 22 222 relative to the dynamic optical power region 2222 (or vice versa) Extra action/subaction. In an exemplary embodiment, act 263 means permanently changing the second surface 2212 of the first lens 221G to obtain a _ permanent progressive addition region 2216 (in the exemplary embodiment, it is - low power) A low power progressive addition region 2216 in the form of a progressive addition surface 2212', as will be described in more detail below. It should be noted that although the low power progressive addition region 2216 is depicted as spanning the entire diameter of the first lens assembly 221, the low power progressive addition portion may span only a portion of the diameter (such as Figure 29 and described in detail below). The embodiment of Fig. 30 is the case). It can be on the back side of the lens blank 221 (which can be concave and / or semi-finished) 157229. Doc •96- 201219842 Freely form this progressive add-on area (or other type of area) and perform action 2630. Act 2630 can correspond to completing the semi-finished lens blank into a finished lens (the resulting prescription-grade optical device 22A). In an exemplary embodiment, the progressive addition region (which is depicted, for example, as region 2216 in Figure 24, but again emphasized that it can span a smaller region) begins its graduality within 1 mm of the assembly point of the lens. Optical power ramps, and continue to make the optimum point of the progressive addition region and the dynamic optical power region 2222 (which may be the dynamic 1 mm dynamic optical power region described in detail above) At least a portion of the optical alignment. In an exemplary embodiment that means free to form the back of the lens blank 2210, an optical instrument vendor can position the device to freely form the lens blank 2210 to align the progressive addition surface 2212'' such that the appropriate optimum point is changed. Optical alignment with at least a portion, if not all, of the dynamic optical power region 2222 (e.g., the unattached front transparent diaphragm portion of the diaphragm 2220) means that light will travel through both regions 'and at optical power The upper becomes additive. The optimum point means the point corresponding to the region of the maximum optical power of a progressively added region/surface. As mentioned above, fluid can move into space 23 1 0 and out of space 2310 to change the pressure on diaphragm 2220 to change the geometry of diaphragm 2220 at region 2222 (e.g., balloon 2220 is ballooned). An illustrative embodiment of a fluid system that can be used to vary the pressure on the diaphragm 2220 will now be described in terms of an exemplary spectacles. It should be noted that such exemplary fluid systems can also be used with other types of optical devices. In an exemplary embodiment, an index matching liquid is utilized to move into space 23 10 and out of space 23 10 to change 157229 on diaphragm 2220. Doc -97· 201219842 Pressure fluid. It should be noted that in some embodiments, air or any gas may also be utilized, which may or may not be index matched, and further, non-index matching liquids may also be used. Referring to Figures 28 and 29, the refractive index-matched liquid can be applied via a pump actuator 2820, which can be a miniature, when viewed from the side and front, respectively. A pump actuator is located in or on the surface of one of the eyeglass frames 2810 in which the optical device 2200' is mounted. In an alternate exemplary embodiment, the pump actuator can be located within or on the altered first lens assembly 2 21 〇1. The micropump actuator 2820 is in fluid communication with the space 2310. This fluid communication can be achieved via fluid passage 2830, as will be described in more detail below. It should be noted that the above-mentioned assembly into the eyeglass frame 281 以 to obtain the spectacles 2800 may be an additional action of the method 26 详细 described in detail above with reference to FIG. For example, method 2600 can include an additional action 2640 'which can be performed after act 2630' means assembling the permanently changed components of the obtained lens assembly into a spectacle frame. It should be noted that the optical device 2200 assembled into the spectacles in some embodiments is not necessarily obtained in strict accordance with the methods detailed herein. For example, the optical device 2200 can be fabricated by first freely forming the first lens assembly to have a final surface configuration, and then attaching the flexible barrier to the first lens assembly. That is, some embodiments include a device and system described in detail herein, and variations of the device and system that are made or obtained in a manner not described in detail herein. Referring back to the pump actuator 2820, the pump actuator 2820 can be located anywhere on the lens 28 (or other assembly), such as the frame 157229 on the frame 281. Doc -98· 201219842 The edger portion of the frame 2810 is at the front of the frame 281 of the eyeglass or at the bridge, and so on. In an exemplary embodiment, two pump actuators 2820 can be provided, each for each optical device 2200' used in the glasses 2800. In an alternate embodiment, only one actuator ' is used in the eyeglasses 28' to supply fluid to the two optical devices 2200'. In an exemplary embodiment, the fluid system in which the single actuator is included is configured to adjust the amount of fluid in each of the spaces 2310 of each optical device 2200 as appropriate to achieve the desired dynamic incremental added power. An exemplary control system will be described in detail below. In addition to the actuator or the actuators, one or more fluid reservoirs are located in/being part of the fluid system of the glasses 2800. In an exemplary embodiment, the fluid system forms a closed delivery network. The phrase "closed delivery network" means a cavity made of plastic, rubber or frame material itself (which may be metal) when it is hollow or when a carrier fluid is formed such that air or liquid within it does not leak. Or a network of airtight tubes. The pump actuator 2820 is responsive to a sensor and controller assembly 2840 and/or otherwise in communication with a sensor and controller assembly 284. The sensor and controller assembly 2840 is configured to control the pump actuator 2820 to pump fluid into the space 23 10 and pump fluid out (including aspiration) space 23 10 (or, alternatively, Allowing fluid to flow out of space 23 10 due to environmental pressure tending to expel fluid from space 2310/collapse of space 23 10, such as where flexible membrane 2220 has caused it to contract to conform to the memory of surface 2224. In one embodiment, this may be the case to change the geometry of the membrane 2220 as desired (eg, to make the membrane 2220 balloon 157229. Doc -99- 201219842)). FIG. 30 provides an illustrative functional diagram of the sensor and controller assembly 284A and the micropump actuator 2820. In an exemplary embodiment, the sensor 2842 of the sensor and controller assembly 2840 is one or more of a tilt switch and/or a micro accelerometer that senses the approximate shape of the eyeglasses 28 direction. In an alternate embodiment, instead of or in addition, a range finder, microgyroscope, a mercury switch, an eye tracking device, or any other ranging sensor can be used to approximate the glasses 2800. And/or input in a particular direction is provided to the controller of the sensor and controller assembly 2840. More specifically, any device, system or method that can be used to estimate or otherwise determine the intended use of one of the glasses can be used as the sensor 2842. In an exemplary embodiment, the sensor and controller assembly 2844 can be a microprocessor. As seen in Figure 30, sensor 2842 is in signal communication with controller 2844. As can also be seen in Figure 30, pump actuator 2820 is in communication with controller 2844 k. In some embodiments, controller 2844 is a logic device that evaluates the input from the sensor 2842 and controls the pump actuator 2820 by transmitting a control signal to the pump actuator 2820. This, for example, controls the ballooning of the diaphragm 2220 as will be described in detail below by way of example. It should be noted that in some embodiments, the sensor and controller assembly 284 can be replaced by a controller or a sensor, and/or the sensor can be a separate unit from the controller. It should be noted that the sensor 2842, the controller 2844, and/or the pump actuator 2820 can be a single unit. In an exemplary embodiment, the fluid system of the glasses 2800 includes a small tube from which the pump The actuator 2820 extends and is located around at least a portion of the edge of the modified first lens assembly 2210' until substantially altered by the lens 157229. Doc -100- 201219842 A position at the bottom edge of component 2210'. In an exemplary embodiment, referring to right eye optical device 2200' of FIG. 29, the tube corresponds to channel 2830 and extends from about 10 o'clock to about the edge of first lens assembly 22 10' to about 6 o'clock position. At about the 6 o'clock position, the channel 2830 is fluidly coupled to the channel 2850 which extends upwardly from the edge of the conditioned optical first lens assembly 22 10' to the region 2222 of the diaphragm 2220. In an exemplary embodiment, a coupling system is located at the end of channel 2830/the beginning of channel 2850. In an embodiment where the channel 283 0 is formed by a tube, the tube can be assembled into the channel 2850 in a male-female relationship, respectively. In an alternate embodiment, the channels 2850 can be assembled into the channels 2830 in a male-female relationship, respectively. In yet another alternative embodiment, a male or female adapter can be used to combine the channel 2850 with the channel 2830 in a male-female-female-male or a female-male-male-mother relationship. Any method, system, and/or device that allows channel 2830 to be placed in fluid communication with channel 2850 can be used in some embodiments. In an exemplary embodiment, the channel 2850 is formed between the surface 22 14 of the modified first lens assembly 22 10' and the surface 2224 of the flexible membrane 2220 and is formed by the surface 2214 and the surface 2224. In particular, the channel 2850 can correspond to a section of the flexible membrane 2220 that extends from one edge of the altered first lens component 2210' to a region 2222 that is not adhered to the surface 2214, which section allows fluid to pass from the channel The 2830 line passes through the channel 2850 to the space 2310 and from the space 23 10 through the channel 2850 to the channel 2830, causing or otherwise allowing the diaphragm to balloon, for example, at the area 2222. In an exemplary embodiment, the spectacles 2800 include a filler raft that includes the transparent membrane 2220 that is not attached to the modified first lens assembly 2210' and that is located before the lens 157229. Doc -101 - 201219842 A portion of the unattached 10 mm diameter zone 2222 fluid connection on the surface. In an exemplary embodiment, the fill raft is a fill ridge having a vertical width of 2 mm, which may be unattached to the modified first lens component 2 21 〇 ' by the transparent diaphragm 222G and is located at the H: Mainly, a portion of the unattached 1 mm diameter region 2222 fluid connection on the bottom surface of the Tanjung Moon is formed. Used to establish channel 2830 (and in an alternative exemplary embodiment, instead of or as described in detail above, the tube that can be used to establish channel 2850) can be located below or to the side of the expandable region. In some embodiments, the tube/channel 2830 extends relative to a location other than that detailed above. In an exemplary embodiment, instead of extending from the 10 o'clock position to the 6 o'clock position with reference to the right eye optics 2200", the channel 2830 (which may be established by a tube) extends from the 1 o'clock position to the 9 o'clock position. Position and channel 2850 extends horizontally (instead of a vertical extension in the case where the channel 283 〇 extends to the 6 o'clock position as depicted in the figure) ^ In fact, in an exemplary embodiment 'the channel 2830 (which may be The tube is made to extend beyond the 6 o'clock position to about 2 o'clock position 'by which it extends across the bridge to the left eye optics 2200' to extend from about 2 o'clock to the left eye optics 2200 The clock position. In an exemplary embodiment, the pump actuator 2820 and/or the sensor and controller assembly 2840 and/or the glasses 2800 substantially comprise a sensor, which may be a piezoresistive sensor or Other types of pressure sensors are used to sense the pressure of the fluid located in the space 2310 of the dynamic fluid lens area 2222 and/or the space 2310 from the dynamic fluid lens area 2222 and/or to the dynamic fluid lens The pressure of the fluid in the space 2310 of the region 2222. 157229. Doc • 102· 201219842 In an exemplary embodiment, based on a sensor reading, the controller of the sensor and controller assembly 2840 determines that sufficient fluid has been applied (eg, pumping into space 2310 or pumping out) Space 231)) To provide appropriate or desired optical power to the dynamic fluid lens, the pump actuator 282 stops applying pressure, stopping pumping fluid into the space 23 10 or pumping the space 23 10 . In an exemplary embodiment, the sensor is for periodically or continuously sensing the pressure of the fluid in the fluid system/the space 2310. In an exemplary embodiment, the controller of the sensor and controller assembly 2840 is configured to recognize whether the pressure of the fluid is reduced or at least below a given limit in any manner, and the pump is activated The actuator applies additional pressure to the fluid and thus to the flexible membrane 2222 and is continuously pumped until a desired or desired pressure threshold is reached on the fluid and/or membrane 2222 (which is desirable with dynamic fluid lenses) The optical actuator is associated with the pump actuator 282 and/or the sensor and controller assembly 2840 can be programmed to divert a predetermined volume of fluid into the expandable portion of the diaphragm/space 23 10 . The dynamic fluid lens can be configured to be tunable in optical power or to provide steps for increasing or decreasing optical power. An illustrative case of using the sensor and controller assembly 284A to control the dynamic fluid lens will now be described. The wearer of the glasses 2800 is sensed at the sensor and controller assembly 2840 to indicate that the wearer of the glasses 2800 is likely to begin performing a near-point visual task (such as, by way of example only, reading or viewing from the glasses 28) 〇〇 一 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 Doc •103- 201219842 II has detected this tilt 'and/or a signal is output from the sensor section, which is partially read by the controller and identified as containing the parameter indicating the tilt) the sensor and The controller portion of the controller assembly 2840 directs or otherwise controls the pump actuator 282 to pump an appropriate amount of fluid into the space 2310 (eg, an unattached area of 1 〇 plus diameter) (the dynamic optical lens) In this case, the region is thus deformed or altered in curvature (e.g., ballooning), and thereby causing the dynamic fluid lens to provide optical power. This region can be ballooned in this broad manner to change the shape of at least the surface of the diaphragm 222, thus applying the appropriate added optical power. The wearer is sensed when he or she senses that the wearer of the glasses 28 is tilting his or her head in a manner that indicates that he or she is likely to begin performing a far vision task, or otherwise When reading or performing a near-point vision task (eg, the sensor portion delivers an overnight signal to the controller' indicates that the tilt has been detected, and/or a signal is output by the sensor portion, the signal is The controller portion reads and is identified as having a parameter indicative of the tilt, and the controller portion of the sensor and controller assembly 2840 directs or otherwise controls the pump actuator 2820 to reduce the space 231 The pressure (which can be accomplished by, for example, closing the actuator 2820) thereby relieving the pressure, causing the flexible membrane 2220 to balloon return to the surface 2214 of the first lens assembly 2210 that substantially conforms to the change. This results in a reduction/elimination of dynamic optical power (eg, the dynamic optical power of the glasses 2800 disappears). The pump actuator is only activated to increase fluid pressure/pressure on the diaphragm 2220 to balloon the diaphragm 2220 or otherwise maintain pressure on the diaphragm 2220 to maintain the diaphragm 2220 ballooning outward. In the exemplary embodiment, for the pump actuator 282, only 157229. Doc 201219842 The wearer is in need of power when performing a near-point vision task, such as power from a battery - in an exemplary embodiment of powering the pump actuator 2820 with a battery, utilizing a rechargeable battery, The sealed electronic module can be located within a frame of the lens 2800 (eg, the position of the frame of the frame). In an exemplary embodiment, the battery can be located in front of the position of the edger adjacent the frame, in the middle of the position of the edge of the frame, or at the back of the frame at the back of the frame. In some embodiments, the battery can be located in any part of the framework that allows the practice embodiments. Figure 1 1k is for an exemplary algorithm 31 〇〇 that can be used by controller 2844 to automatically change the added power provided by the dynamic fluid lens. Initially, at step 3110, the controller receives a signal or other type of indication (which indicates a desired use of the glasses) to thereby determine a use of the glasses. For example, the controller may receive a signal from sensor 2842 indicating a tilt condition indicating that the wearer will perform a near vision task. The controller performs a step lock 3120, which means that a signal is output to the spring actuator 2 82 〇 such that the pump actuator 2820, for example, balloons the flexible diaphragm to an expanded state (a first configuration) Increase the added power of the glasses. The controller then proceeds to step 3130 where the controller 2844 determines if the determined use of the glasses has changed from the determination in step 3110. If the determination that the determined use has been changed is not made, then the controller returns to repeat step 3丨3〇. If a determination is made that the usage has changed (which includes determining a new use, such as a far vision task), then the controller proceeds to step 3140, wherein the resilience diaphragm is ballooned to a relaxed state or an intermediate state ( A second configuration). At the end of 157229. Doc •105· 201219842 When step 3140 is reached, the algorithm returns to step 3 11〇. It should be noted that the controller 2844 can use an alternative algorithm. Any algorithm or control device, system or method can be used in some embodiments. In some embodiments, the controller is a binary controller. When, for example, the sensor 2842 senses a tilt condition, the controller outputs a signal to the fruit actuator 2820 when receiving a signal from the sensor 2842, and the pump actuator 2820 pumps the fluid into the space. 23 10 to expand the flexible diaphragm. Upon terminating the receipt of the signal, the controller 2844 terminates the output to the pump actuator, and thus the pump actuator stops pumping fluid into the space 23 10 or otherwise stops maintaining the pressure of the fluid within the space 23 . The unsealed electronic module can also house the sensor portion, the controller portion, and/or the sensor and controller assembly 2840, and can house all of the manual or automatic controls that can be used to control the dynamic fluid lens. In this regard, in one embodiment, the glasses 2800 are configured such that a wearer can place the glasses 2800 in an automatic mode, a manual on mode, or a manual off mode. In a manual mode, the wearer can manually adjust the added power of the dynamic fluid lens. This can be accomplished by pressing a button or switch on the glasses 2800 for a given period of time ' until the desired added power is achieved. Subsequent pressing of the button or switch causes the added power to be completely reduced, while in other embodiments, the user can then press the button or switch to reduce the added power until the desired added power is reached. In an exemplary embodiment, an electronic module can be provided to power or otherwise control two optical devices 2200', while in an alternate embodiment, two such devices can be provided. The electronic module controls two optical devices 2200. These electronic modules can be sealed 157229. Doc -106· 201219842 makes it water resistant or waterproof. - The embodiment provides a very small diameter dynamic fluid lens with a small added power (less than +2. 00D) and positioned in a manner that allows the wearer to use the top non-dynamic (static) portion of the s-eye lens for far vision correction, the static progressive addition portion for intermediate vision correction, and when performing near-point tasks Only the near reading area of the final lens (which includes the optimum point of the progressive addition area and also the dynamic fluid lens area) is used. This allows a lens to provide a fail-safe lens such that if the optical power fails or the actuator fails, the lens can still provide unobscured far vision correction to the wearer, and Figure 3 2 provides the optical device 32 when viewed from the front. An exemplary embodiment of 〇. In this embodiment, the progressive region 3210 is shaped as one of the static progressive regions shown on the back of the optical device 3200. The add power zone 3220 is a dynamically added power zone that is an area of ballooning as described in detail herein by way of example. In addition, FIG. 3 is a detailed description. In an embodiment of the present invention, the optical device 3200 can be a prototype optical device that can withstand plastic edges or can otherwise cut portions or segments or otherwise The removal (such as the portion above and to the right of the cut-out area) is removed to obtain a lens assembly according to Fig. 33. In particular, FIG. 33 provides an exemplary lens assembly 33 00 'which may be provided in accordance with the method 25 详细 described in detail above or obtained by method 2600 and using the edge and/or movable of the grindable lens assembly. A lens assembly that additionally acts in addition to the segment of the lens assembly. As can be seen, the lens assembly 3300 includes an optical device 22〇〇1, as described in detail above, with a tube connected to the fluid passage of the detachment optics 2200. It should be noted that in other embodiments, the lens assembly is provided by method 2500 or by method 2600 I57229. Doc -107- 201219842 When obtained, the lens assembly 3300 may not contain the tube. In such methods, the tube can be provided or obtained in other ways. In some such embodiments, a tube is not obtained. Instead, a channel in which the optical assembly is placed (e.g., the frame of the eyeglasses) and the fluid channel of the lens assembly 33 is coupled to the channel within the frame. Accordingly, in an exemplary embodiment, there is a release optical device 3300 that includes a channel 2830 and/or 2850 in fluid communication with the first space 2310, the first space 231 〇 being variably movable Between the first region 2222 of one of the flexible membranes 2220 and the first surface 2214 of the lens assembly 2210, wherein the channels 2830 and/or 2850 are configured to allow fluid to move through the channels 283 and/or 285, The fluid creates a pressure applied to at least a portion of the first region 2222 to deform a portion of the levitable film 2 2 2 0 0 . In an exemplary embodiment, this channel may include or otherwise correspond to a tube. Still referring to Figures 32 and 33, in an exemplary embodiment, there is a method of providing an optical device (e.g., the resulting prescription-grade optical device 2200") that includes the act of obtaining a lens assembly. The lens assembly can be a prototype optical device 22 as described in detail above (the lens assembly obtained in the exemplary embodiment includes a first lens assembly 22A comprising a first surface 2214 and a second surface 2212 on a side of the first lens assembly 221 opposite the first surface 22 14. In the exemplary embodiment, the lens assembly further includes a second lens The assembly 222, which includes a flexible member (e.g., the flexible diaphragm as described in detail herein), at least a portion of the second lens assembly 222 is adhered to the first surface 2214 of the first lens assembly. The second lens assembly 2220 can be 157229. Doc-108-201219842 The flexible element includes a first region 2222 that is variable toward and away from the first surface 2214 in response to a change in pressure applied to at least a portion of the first region 2222 Ground movement, thereby dynamically adjusting an optical power of the lens assembly 2200 relative to a light path through the first region 2222 and the first surface 2214. In an exemplary embodiment, act 26 10 of obtaining a lens assembly includes directly manufacturing the lens assembly and/or via, for example, government postal, contract delivery (eg, FEDERAL EXPRESSTM & / or slower speed delivery method), etc. Receiving the lens assembly. The method further includes an action that means permanently changing a component of the lens assembly. In an exemplary embodiment, this action means permanently changing the first lens 2210' to permanently reshape the outer contour of the first lens assembly 221 to obtain the resulting first lens assembly (and optionally the second lens) A frame outline in the component). As can be seen, this action can be performed on a half finished or unfinished lens to which a diaphragm is attached. The material of the first lens 2210 and/or the second lens 2220 can be removed using any device, system or method to permanently change an optical device 3200 to obtain an optical device 3300 and variations thereof. In a further exemplary embodiment, the channel 283〇 and/or 285〇 is configured such that movement of a fluid through the channel into the first space 23丨〇 increases the amount applied to the flexible membrane 2220 The pressure of at least a portion of a region 2222 moves the first region 2222 away from the first surface 2214 of the lens assembly 221 . Further, the channel 2830 and/or 2850 is configured such that the movement of the fluid from the first space 231 through the channel is reduced by 157229. Doc • 109· 201219842 Pressure to at least a portion of the first region 2222 to move the first region 2222 toward the first surface 2214. It should be noted that 'in some embodiments' lens assembly 3300 according to method 25 includes opening or otherwise sealing the opening of the tube assembly and/or fluid passage of the lens assembly 33, and/or according to the lens assembly. 33A provides a lens assembly 'with a plug or seal therein to block or seal the opening of the tube and/or fluid passage. This pair may result from the impingement of an unintended material, such as the permanent change action applied to the lens assembly 3300 as detailed above, to provide a barrier. Moreover, in an exemplary embodiment, obtaining the lens assembly 3300 according to method 26 includes obtaining a lens assembly from the lens assembly 33, wherein a plug or seal is provided to block or seal the tube and/or Or the opening of the fluid passage. Alternatively, method 2600 can include the act of blocking or otherwise sealing the opening of the tube and/or fluid passage of lens assembly 3300. This pair may result from the impingement of an unintended material, such as the permanent change action applied to the lens assembly 33A as described in detail above, to provide a barrier. In an exemplary embodiment, the resulting optical device obtained by altering the lenticular lens device and its variations and/or performing the methods 2500 and/or 2600 and variations thereof, as described in detail herein, results in a perfect appearance (or at least an appearance) A resulting optical device that has no boundaries, continuous vision correction, ability to view from far to near, and from near to far. The cost of this lens is very reasonable. In an exemplary embodiment, the very limited fluid required to change such a very small area or area of the dynamic lens allows the pump actuator to be very small and hidden in appearance. Within the frame of the glasses 0 157229. Doc •110- 201219842 In an exemplary implementation, the Wei-Feng added W surface is on the concave side of the lens and the piece, which is located on the face # closest to the wearer, and is processed by the optical laboratory. Produced when the concave surface of the lens assembly (eg, semi-finished lens blank) is free to form (eg, occurs in Method 2_). In contrast, in the exemplary embodiment, there is a detachment optical device comprising a semi-finished lens blank having a front raised surface comprising a low power progressive addition surface, i transparently covering The material diaphragm is located on top of the previously raised surface. The flexible membrane is located on top of the low power progressive addition surface. The drop-off optical device can correspond to the lens assembly provided in accordance with method 2500 and variations thereof and/or can correspond to lens assemblies obtained in accordance with method 2600 and variations thereof. In this embodiment, the raised surface of the back of the semi-finished lens blank can be freely formed, surface finished, polished and/or ground (and/or combinations thereof) to the final desired prescription or over-the-counter lens. In this exemplary embodiment, the unattached area of the flexible membrane (i.e., the portion that is ballooned or otherwise deformed) is an ellipse of 12 mm (vertical) and 2 mm (horizontal). In another exemplary embodiment, the transparent cover membrane/flexible membrane is a material that allows it to be adhered or otherwise attached to the raised surface of the semi-finished lens blank of the release optical device, and is implemented herein In the example, it has an elliptical shape with a vertical diameter of 18 mm and a horizontal diameter of 14 mm. In this embodiment, the unattached regions of the flexible membrane overlap and are substantially parallel to the fluid passage of the static low power progressive addition lens substrate. In an exemplary embodiment, the diameter of the dynamic fluid lens is matched to align itself with one of the rims of the progressive addition zone, such that dynamic 157229. Doc • 111· 201219842 The lens provides optical power in this particular contour region of the progressive addition lens. It should be noted that the disclosure provided herein is not intended to be limiting. The flexible membrane region of any diameter, shape, lens flare or unattached can be used to accomplish the desired optical characteristics or optical power. Any optical power of the fluid lens or static base lens can be provided and is expected to achieve the desired total added optical power required by the wearer'any and all materials, fluids, gases, liquids can be expected. In some embodiments, semi-finished lens blanks, finished lens blank 'finished lenses, and any and all of the frame styles or materials may be utilized if practice embodiments are permitted, by way of example only and not limitation, including Half, metal, wire, tubular frame and plastic frame. Moreover, some embodiments include a lens assembly that includes a front raised surface that may or may not have a transitional photochromic surface or substrate material prior to being covered with a transparent membrane. (ppG photochromic surface). In an exemplary embodiment, when a photochromic surface or substrate material is used, the transparent membrane covering the photochromic surface or substrate material and/or any adhesive for adhering the membrane to the surface is preferably preferred. The ground does not inhibit (or suppress as little as possible) the ultraviolet light passes through this mask because UV light is required to change the color of the photochromic material. Moreover, in an exemplary embodiment there is a lens assembly that can be shaped to any shape and can be treated with all lens coatings, such as, by way of example only, AR (anti-reflective) coating, hard-resistant coating Layers, pigmented coatings, antifouling coatings, hydrophobic coatings, teflon coatings, and the like. 157229. Doc - 112 - 201219842 The drawings provided herein show some exemplary designs of lenses/optical devices. In an exemplary embodiment, ballooning of the transparent membrane can be obtained by heating a quantity of liquid in the fluid system of the ophthalmoscope. Specifically, a quantity of liquid can be heated to expand the volume of the liquid. This fluid expansion can expand the flexible or expandable or balloonable portion of the lens assembly. As this portion of the lens changes shape, this portion of the lens provides additional power. That is, the expandable portion of the lens may have a first radius of curvature in an unexpanded state (eg, it may not provide additional added power) and may have a second radius of curvature in an expanded state (eg, An additional power can be added). The liquid can be heated by electrical energy supplied by the lens assembly. This electrical energy can be converted to heat near a reservoir that holds the liquid. This heat can cause the liquid to heat and thereby expand in volume. For example, an IT layer in a lens assembly can be used to supply electrical energy to the lens assembly, and electrical energy can be converted to heat at a desired location of the lens assembly. This electrical energy can be converted to heat, for example, by using a resistive load (e.g., a coil). It should be noted that in some embodiments, any of the discrete optical devices as described in detail herein can include some or all of the components and/or features of any of the optical devices described in detail herein, and can be used from a prototype Any method of obtaining an optical device by an optical device can result in an optical device comprising some or all of the components and/or features of any of the optical devices as described in detail herein. Referring to Figures 24, 28 and 29 and 34, an exemplary embodiment includes a 157229. Doc • 113- 201219842 Optical device 2 (which may correspond to any optical device described in detail herein, such as reference numerals 1 , 200, 12 〇〇, 3 〇〇, etc., etc.) The method includes: a low added power progressive addition lens 2210, comprising a first radius of curvature R1, providing - progressively adding power to - a maximum first added power 'and a diaphragm 2220 located at the low added power progressive addition lens 2210 - a first surface comprising an expandable portion, the expandable portion 2222m_ state (where the expandable portion 2222 has a second radius of curvature) is expanded to a second state (where the expandable portion has a third Radius of curvature R3); a fluid system comprising channels 283A and 285A configured to expand the expandable portion 2222 from the first state to the second state, and to cause the expandable portion to be from the second The state is contracted to the first state. The second radius of curvature substantially corresponds to the first radius of curvature W such that when the expandable portion is in the first state, the expandable one and the low added power progressively add one of the lenses to the maximum cumulative addition The power is approximately equal to the first added power, and the third radius of curvature R3 is different from the first radius of curvature R1 ' such that the expandable portion and the low added power are progressively added when the expandable portion is in the second state The maximum cumulative added power of the lens is equal to the first added power plus a second added power. In an exemplary embodiment, the optical device 22 includes a fluid system configured to allow a fluid to move into and out of the low added power progressive addition lens 2210' and the expandable portion 2222. a space 2310 therebetween to expand the expandable portion 2222 from the first state (e.g., as seen in Figures 24 and 28) to the second state (e.g., as visible in circle 34), and to cause The expandable portion contracts from the second state to the 157229. Doc 201219842 A state. In an exemplary embodiment, the optical device 2200 includes a fluid system that includes a fluid channel 2850 that progressively adds a lens 2210 from the low added power, at least one edge of which extends to the expandable portion 2222 » In an exemplary embodiment, the fluid channel is defined by the low added power progressive addition of the first surface 2214 of the lens and the diaphragm 2220. In an exemplary embodiment, the fluid system is configured to heat the fluid, thereby expanding the fluid, and thereby expanding the expandable portion 2222 from the first state to the second state, and the fluid system It is configured to cool the fluid (which includes allowing the fluid to cool itself), thereby causing the fluid to contract and thereby contracting the expandable portion 2222 from the second state to the first state. In an exemplary embodiment, there are 28 turns including an optical device 2200 and a spectacle frame 28 1 〇. In an exemplary embodiment, the eyewear 28A includes a controller 2840, wherein the controller is configured to automatically control the fluid system, thereby controlling expansion and contraction of the expandable portion 2222. In an exemplary embodiment A, the eyeglass further includes a micropump actuator 282A, which is 'in,' and is configured to pump fluid into the low added power progressive addition lens 2810' and the diaphragm 222. A space 231 is formed therebetween to expand the expandable portion 2222 of the diaphragm 2220. In an exemplary embodiment, 'having a semi-finished lens description comprising a static substrate portion and a region of a surface that can be ballooned to produce dynamic optical power whereby the static substrate portion can be The mode is changed to produce a region of static incrementally added power, whereby the surface that can be ballooned provides - a second incrementally added power (which is dynamic), whereby the combined optical power is satisfied - the wearer needs Optical work I57229. Doc -115- 201219842 Rate requirements. In an exemplary embodiment, there is a semi-finished lens blank as described above and/or in detail below wherein the optical power is produced by a fluid lens. In an exemplary embodiment, there are half finished lens blanks as described above and/or in detail below, wherein the alteration is provided by one of free forming or surface finishing and polishing. In an exemplary embodiment, there are half finished lens embodiments as described above and/or below, wherein the semi-finished lens blank is freely formed into a finished lens. In an exemplary embodiment, there is a finished lens' as described in detail above and/or below wherein the lens comprises a low power progressive addition lens surface. In an exemplary embodiment, there is a finished lens as described above and/or in detail below wherein the lens is photochromic. In an exemplary embodiment, there are half finished lenses as described above and/or in detail below which render the semi-finished lens hair photochromic. In an exemplary embodiment, there is a semi-finished lens blank as described above and/or below in detail, wherein the semi-finished lens blank includes a low power progressive addition lens surface. In an exemplary embodiment, there is a finished lens blank as described above and/or below in detail wherein the finished lens has been shaped into the shape of the eyeglass frame. In an exemplary embodiment, there is a spectacle frame as described above and/or below in detail, wherein the spectacle frame includes an actuator. In an exemplary embodiment, 'having a spectacle frame as described above and/or below in detail' wherein the spectacle frame comprises a closed delivery network β in an exemplary embodiment 'has been as above and/or below A spectacle frame is described wherein the eyeglass frame includes a tilt switch. In an exemplary embodiment, there is a spectacle frame as described above and/or below, wherein 157229. Doc -116- 201219842 The eyeglass frame includes an accelerometer. In an exemplary embodiment, there is a spectacle frame as described above and/or in detail below, wherein the spectacle frame is a nanoelectronic device. In an exemplary embodiment, there is a spectacle frame comprising a closed delivery network, wherein the closed delivery network comprises a fluid reservoir "in an exemplary embodiment, having the above and/or below A semi-finished lens blank is described in detail, wherein the fluid lens can be a liquid or gas fluid lens. In an exemplary embodiment, there is a lens comprising: a base portion having a semi-curvature half control; an expandable portion, wherein in a first state, the expandable portion has a second radius of curvature, and Wherein in a second state, the expandable portion has a third radius of curvature; a liquid stored in the expandable portion, wherein the second radius of curvature is substantially equal to or conformal to the first radius of curvature, Such that when t is in the first state, the expandable portion does not provide additional added power, and the third radius of curvature is different from the first radius of curvature 'such that when in the second state, the expandable portion provides An additional power is added, and wherein the expandable portion transitions from the first state to the second state when the liquid is heated. The above description is illustrative and not limiting. Many variations of the invention will be apparent to those skilled in the art in reviewing this disclosure. Therefore, the scope of the disclosure should not be determined by reference to the above description, but should be determined with reference to the request item μ to be examined and its full scope or equal internality. One or more features from any embodiment may be combined with any one or more of the features of any other embodiment without departing from the scope of the invention. One of the "or" or "the" is intended to mean the factory r.  _ _ or 157229. Doc • 117· 201219842 Multiple, unless expressly stated otherwise. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a side view of an exemplary embodiment of a dynamic lens. 2 shows a side view of one exemplary embodiment of a dynamic lens. Figure 3 shows a side view of one exemplary embodiment of a dynamic lens. 4 shows a side view of one exemplary embodiment of a dynamic lens. Figure 5 shows a front view of one exemplary embodiment of a dynamic lens. Figure 6 shows a front view of one exemplary embodiment of a dynamic lens. Figure 7 shows a front view of one exemplary embodiment of a dynamic lens. Figure 8 shows a cross section of one exemplary embodiment of a dynamic lens. Figure 9 shows a front view of one exemplary embodiment of a dynamic lens. Figure 10 shows a front view of one exemplary embodiment of a dynamic lens. Figure 11 shows a plurality of illustrative embodiments of a dynamic lens. Figure 12 shows a diagram of a front view of an exemplary embodiment of a dynamic lens. Figure 13 shows a side view of one exemplary embodiment of a dynamic lens. Figure 14 shows a side view of one exemplary embodiment of a dynamic lens. Figure 15 (a) shows two side views of an exemplary embodiment of a dynamic lens. Figure 15 (b) shows two side views of an exemplary embodiment of a dynamic lens. Figure 16 shows a side view of an exemplary embodiment of a dynamic lens. Figure 17 shows a side view of one exemplary embodiment of a dynamic lens. Figure 18 shows a side view of one exemplary embodiment of a dynamic lens. 157229. Doc . 118-201219842 Figure 19 shows a side view of an exemplary embodiment of a dynamic lens. Figure 20 shows a side view of an exemplary embodiment of a dynamic lens. Figure 21 shows a side view of one exemplary embodiment of a dynamic lens. 22A-22B show a conceptual side view of an exemplary embodiment of a dynamic lens. Figures 22C-22D show a side view of an exemplary embodiment of a drop-off optical device. Figure 23 shows a side view of an exemplary embodiment of a prototype optical device. Figure 24 is a side view of an exemplary embodiment of an optical device. Figure 25 shows a flow diagram detailing a method of providing an optical device. Figure 26 shows a flow diagram detailing a method of providing an optical device. Figure 27 shows a prototype of a different ink station.  , _ _ / 尤 裒 之一 一 一 之一 之一 之一 之一 之一 之一 之一 之一 尤 尤 尤 尤 尤 尤 尤Figure 28 shows a side view of an exemplary embodiment of the eyeglasses. Figure 29 is a front elevational view of one exemplary embodiment of a pair of glasses. Figure 30 shows a functional diagram of an exemplary embodiment used in the glasses of Figures 28 and 29. Figure 31 shows an algorithm used by a controller positioned in the eyeglasses of Figures 28 and 29 or on an eyeglass in an exemplary embodiment. Figure 32 shows a front view of an exemplary embodiment of a prototype optical device 157229. Doc . 119-201219842 Figure 33 shows a front view of an exemplary embodiment of a drop-off optical device. Side view FIG. 34 shows an exemplary embodiment of an optical device. [Main component symbol description] 5 Second lens component / flexible element / strikeable 10 First lens component 11 First surface 12 Second surface 14 Optical Feature 15 Movable Slider 20 Fluid 25 Reservoir 30 Area or Zone/Adjustable Optical Power Zone 35 External Peripheral/Area of the Lens 40 Fixed Part / Solid Component 100 Lens 101 Light 200 Dynamic Lens 201 First Area 202 Light 203 Light 300 Dynamic Lens / First Lens Assembly 301 Light 310 First Lens Assembly / Substrate 157229. Doc -120* 201219842 320 Third Lens Assembly / External Rigid Cover / Cover / Cover 330 Fluid 340 Channel / Fluid 埠 350 Porous Plug / Flexible Element / Flex 360 First Surface 370 Optical Features / Second Optical fluid 380 Second surface 701 Area / Dynamic power area 702 Assembly point 703 Geometric center of the lens 704 Bonding line 705 Ditch or channel 706 Channel 801 Area 802 Area 803 Name of the first surface of the first lens assembly 901 Rotationally symmetric non-spherical Add zone 902 perimeter 1001 dynamic power zone / dynamic optical zone 1002 bond wire 1003 assembly point 1004 of the first lens assembly channel or trench 1101 dynamic power zone diaphragm surface 157229. Doc 121 201219842 1200 1201 1202 1203 1204 1401 1402 1403 1501 1502 2200 2200, 2200" 2210 2210' 2212 2212' 2214 2216 2220 2222 Goggles Frame Channel Actuator Reservoir Dynamic Power Zone Dynamic Optical Power Region Light Rays Light Rays Prescription-grade optical device resulting from optical device/lens assembly prescription-level optical device lens chain/first lens assembly/first lens-changed first lens assembly/static base lens/low added power progressive addition lens second surface /Back surface modified from surface 2212 / Custom surface / Low power progressive addition surface First surface / Front raised surface Second area / Permanent progressive addition area / Low power progressive addition area Second lens assembly / Available Flexible Element / Transparent Diaphragm First Area / Dynamic Optical Power Area / Dynamic Fluid Lens 157229. Doc -122- 201219842 2224 Area / Flexible Diaphragm / Expandable Partial Diaphragm Surface 2300 Light Path 2310 Space 2710 Mounting Point 2720 Geometry Center 2800 Glasses 2810 Eyeglass Frame 2820 Pump Actuator 2830 Fluid Channel 2840 Sensor and Controller Assembly 2842 Sensor 2844 Controller 2850 Channel 3200 Optics 3210 Progressive Area 3220 Add Power Area 3300 Lens Assembly / Embryo Optical Device ΤΙ Thickness of First Lens Assembly R1 Internal Radius of Curvature / First Curvature Radius R2 External Curvature Radius R3 The central external radius of curvature is 157229. Doc -123-

Claims (1)

201219842 七、申請專利範圍: 1. 一種離形光學裝置,其包括: 一第一鏡片組件,其包含: —第一表面;及 一第二表面,其在該第一鏡片組件之與該第—表面 相對之一側上,及 一第二鏡片組件,其包括一可撓性元件,該第二鏡片 組件之至少一部分黏著至該第一表面, 其中該第二鏡片組件之該可撓性元件包括一第一區 域,其可回應於施加至該第一區域之至少一部分的壓力 的一變化而朝向該第一表面及遠離該第一表面可變地移 動,藉此相對於經該第一區域及該第一表面的一光路徑 動態地調整該雛形光學裝置之一光學功率,且 其中該雛形光學裝置經組態使得該第二表面之至少一 部分可永久改變,以永久定義該第一鏡片在該第二1面 之至少一第二區域處的一光學功率,該第二區域與該第 一區域光學對準,藉此導致一處方級眼科光學裝置。 2. 如請求項丨之離形光學裝置,其中該第一鏡片組件係一 未完成的或半成品鏡片毛坯。 3·如請求項〗之離形光學裝置,其中該雛形光學裝置經組 態使得至少該第二表面之可永久改變的該部分係可永久 改變,使得該第二區域可變形為處方級眼科靜態遞增添 加功率的一區域。 4.如請求項1之雛形光學裝置,其中該第二表面之該至少 157229 201219842 一部分經由自由形成、表面加工及/或拋光及/或其等之 一組合而可永久改變,以永久定義該第一鏡片在該第二 表面之至少該第二區域處之光學功率,藉此導致該處方 級眼科光學裝置。 5. 如請求項1之雛形光學裝置,其中該第一區域可回應於 施加至該第一區域之至少一部分的壓力而氣球化,藉此 相對於經該第一區域及該第一表面的一光路徑動態地調 整該離形光學裝置的一光學功率。 6. 如請求項1之雛形光學裝置,其中該雛形光學裝置進一 步包括: 一通道’其與位於能可變地移動的該第一區域與該第 一表面之間的一第一空間流體連通,該通道經組態以允 許流體經該通道移動,該流體產生施加至該第一區域之 至少一部分的壓力。 7. 如請求項6之雛形光學裝置,其中: 該通道經組態使得一流體經該通道進入該第一空間中 的移動增加施加至該第一區域之至少一部分的壓力,以 使該第一區域移動遠離該第一表面;且 該通道經組態使得該流體經該通道離開該第一空間的 移動減小施加至該第一區域之至少一部分的壓力,以使 該第一區域朝向該第一表面移動。 8. 如請求項6之離形光學裝置,其中該通道從該第一鏡片 組件之至少一邊緣延伸至該第一區域。 9. 如請求項8之雛形光學裝置’其中該通道係藉由該第一 157229 -2- 201219842 表面及該第二鏡片組件的未經黏著至該第一表面的一表 面定義。 ίο. 11. 12. 13. 如請求項11之雛形光學裝置,其中該通道的遠離該第一 區域的一末端經可開封地密封。 如請求項1之雛形光學裝置,其中該雜形光學裝置經組 態使得該第二表面之至少一部分y永久改變,以永久定 義該第一鏡片在該第二表面之至少一第二區域處的對應 於一眼鏡佩戴者的一距離處方之一光學功率。 如請求項1之離形光學裝置,其中該雛形光學裝置經組 態使得該第二表面之至少一部分可永久改變’以永久定 義該第一鏡片在該第二表面之至少一第二區域處的一正 光學功率。 一種提供一眼科光學裝置的方法,其包括: 獲得一鏡片總成’該鏡片總成包含: 一第一鏡片組件,其包括: 一第一表面;及 一第二表面,其在該第一鏡片組件之與該第一表 面相對之一側上,及 一第二鏡片組件,其包括一可撓性元件,該第二鏡 片組件之至少一部分黏著至該第一表面, 其中該第二鏡片組件之該可撓性元件包括一第一區 域,其可回應於施加至該第一區域之至少一部分的壓 力的-變化而朝向1¾第一表面及遠離該第一表面可變 地移動,#此相對於經該第一區域及該第一表面的一 157229 201219842 光路徑動態地調整該鏡片總成之一光學功率;及 在獲得該鏡片總成後,永久改變該第二表面,以永久 定義該第一鏡片在該第二表面之至少一第二區域處的一 光學功率,該第二區域與該第一區域光學對準。 14·如請求項13之方法’其進一步包括: 在獲得該鏡片總成之前及/或之後,判定該光學裝置的 一期望添加功率, 其中永久改變該第二表面以永久改變該第一鏡片在安 第二表面之至少一第二區域處的光學功率的動作導致,】 於該期望添加功率的一第一添加功率,且 其中在改變該第二表面後,當該第二鏡片組件之該筹 一區域移動遠離該第一表面而至一第一位置時,相對农 該第一鏡片組件及該第二鏡片組件之該光路徑的一累賴 添加功率實質上等於該期望添加功率。 、 15.如請求項13之方法,其中該第—區域之該第—位置大致 對應於該第一區域移動遠離該第一表面之一最大距離, 其中在改變該第二表面後’當該第二鏡片組件經移動以 實質上符合於該第一表面且支撐於該第一表面上時相 對於該第m讀及該第二㈣組件㈣光路徑的一 累積添加功率實質上等於一第一添加功率。 16·如請求項15之方法’其中該鏡片總成包含-流體通道, 其從該鏡片總成之至少一邊緣延伸至該第一區域。 17.如請求項13之方法,其中該流體通道係、藉由該第-表面 及該第二鏡片組件的未經黏著至該第一表面的—表面定 157229 -4- 201219842 義。 18.如請求項16之方法,其中該通道遠距於該第一區域之一 末端經可開封地密封,該方法進一步包括: . 在改變該第二表面後,將該通道的遠離該第一區域的 該末端開封。 19·如請求項16之方法,其進一步包括: 在改變該第二表面之前將該通道的遠離該第一區域的 該末端密封;及 在改變該第二表面之後,將該通道的遠離該第一區域 的該末端開封。 20.如請求項π之方法,其進一步包括: 在改變該第二表面之後,將所得之改變的鏡片總成裝 配至一眼鏡框架中。 21·如請求項16之方法,其進一步包括: 在改變該第二表面之後,將該所得之改變的鏡片總成 裝配至包含一流體通道的一眼鏡框架中;及 將该鏡片總成之該流體通道置於與該框架的一流體通 道流體連通。 22, 如請求項13之方法,其中永久改變該第二表面以永久定 . 義該第一鏡片在該第二表面之至少一第二區域處之一光 干力率的動作包合在至少該第二區域賦予一靜態漸進添 加功率區域。 23. —種方法,其包括: 提供一鏡片總成,其包含: 157229 201219842 一第一鏡片組件,其包含 一第一表面;及 -第二表面,其在該第—鏡片組件之與該第一表 面相對之一側上,及 一第二鏡片組件,其包括-可撓性元件,該第二鏡 片組件之至少一部分黏著至該第一表面, 其中該第二鏡片組件之該可撓性元件包括一第一區 域,其可回應於施加至該第—區域之至少一部分的壓 力的一變化而朝向該第一表面及遠離該第一表面可變 地移動’藉此相對於經該第一區域及該第一表面的— 光路徑動態地調整該鏡片總成之一光學功率; 在提供該鏡片總成之前及/或之後及/或提供該鏡片總 成時’提供該第一鏡片組件將以永久定義該第一鏡片在 該第一表面之至少一第二區域處的一光學功率的一方式 水久改變之一指示,該第二區域與該第一區域光學對 準。 24. 25. 26. 27. 如請求項23之方法,其中該鏡片總成包含一流體通道, 其從該鏡片總成之至少一邊緣延伸至該第一區域。 如請求項23之方法’其中該流體通道係藉由該第一表面 及該第二鏡片組件的未經黏著至該第-表面的一表面定 義。 如叫求項23之方法,其中該通道的遠離該第一區域的一 末端經可開封地密封。 一種眼科光學装置,其包括: 157229 201219842 曰低添加功率漸進添加鏡片,其包含一第—曲率半徑, 提供一漸進添加功率至一最大第一添加功率; 隔膜其位於該低添加功率漸進添加鏡片之—第一 表面上’包含-可膨脹部分,該可膨脹部分可從其中該 可膨脹部分具有—第二曲率半徑的—第—狀態膨服至其 中該可膨脹部分具有-第三曲率半徑的-第二狀態;、 一流體系統,其經組態以使該可膨脹部分從該第一狀 態膨脹至該第二狀態,及使該可膨脹部分從該第二狀態 收縮至該第一狀態, 〜 其中該第二曲率半徑實質上對應於該第一曲率半徑, 使得當該可膨脹部分在該第一狀態中時,該可膨脹部分 及該低添加功率漸進添加鏡片之一最大累積添加功率約 專於該第一添加功率, 其中該第三曲率半徑不同於該第一曲率半徑,使得當 S亥可膨脹部分在該第二狀態中時,該可膨脹部分及該低 添加功率漸進添加鏡片之該最大累積添加功率等於該第 一添加功率加上一第二添加功率。 28_如請求項27之光學裝置,其中: 該流體系統經組態以允許一流體移動進入及離開形成 於該低添加功率漸進添加鏡片與該可膨脹部分之間的一 空間’以分別使該可膨脹部分從該第一狀態膨脹至該第 二狀態,及使該可膨脹部分從該第二狀態收縮至該第一 狀態。 29.如請求項28之光學裝置,其中該流體系統包括一流體通 157229 201219842 道’其從該低添加功率漸進添加鏡片之至少—邊緣延伸 至該可膨脹部分。 如凊求項29之光學裝置,其中該流體通道係藉由該低添 加功率漸進添加鏡片之該第—表面及該隔膜定義。 31. 如請求項27之光學裝置,其中: 該μ體系統經組態以加熱該流體,藉此使該流體膨 脹’且因此使該可膨服部分從該第—狀態膨脹至該第二 狀態;且 該流體系統經組態以冷卻該流體,藉此使該流體收 縮’且因此使該可膨脹部分從該第二狀態收縮至該第一 狀態。 32. —種眼鏡,其包括: 如請求項27之一光學裝置;及 一眼鏡框架。 33. 如s青求項32之眼鏡,其進一步包括: 一控制器’其中該控制器經組態以自動控制該流體系 統’藉此控制該可膨脹部分之膨脹及收縮。 34. 如凊求項32之眼鏡,其進一步包括: 一微型泵致動器’其經組態以將流體泵送進入位於該 低添加功率漸進添加鏡片與該隔膜之間的—空間中,以 使該隔膜之該可膨脹部分膨脹。 35. 如s奢求項33之眼鏡,其進一步包括: 一感測器’其經組態以感測該眼鏡的一方向, 其中該感測器與該控制器信號通信, 157229 201219842 其中S亥控制器經組態以控制該流體系統,以在從該感 測器接收指示該眼鏡係以指示該眼鏡的佩戴者正執行一 近點視覺任務之一方向而定向的一信號時使該可膨脹部 分膨脹至該第二狀態。 36_如請求項35之眼鏡,其中該感測器包括一傾斜開關或一 加速計之至少一者。 3 7. —種雛形光學裝置,其包括: 一第一鏡片組件,其包含: 一第一表面;及 一第二表面,其在該第一鏡片組件之與該第一表面 相對之一側上,及 -第二鏡片組件,其包括一可撓性元件,該第二鏡片 組件之至少一部分黏著至該第一表面, 其中該第二鏡片組件之該可撓性元件包括一第一區 域’其可回應於施加至該第一區域之至少一部分的壓力 的-變化而朝向該第-表面及遠離該第_表面可變地移 動’藉此相對於經該第一區域及該篦 .^ ^ 〆弟—表面的一光路徑 動態地調整該雛形光學裝置之一光學功率,且 其中該雛形光學裝置經組態使得嗲 呀嗞第一鏡片組件之一 邊緣之至少-部分可永久移除,藉㈣致具有符合於一 眼鏡框架的一周邊的一眼科光學裂置。 157229201219842 VII. Patent Application Range: 1. A release optical device comprising: a first lens assembly comprising: - a first surface; and a second surface between the first lens assembly and the first a second lens assembly comprising a flexible member, at least a portion of the second lens assembly being adhered to the first surface, wherein the flexible member of the second lens assembly comprises a first region responsive to a change in pressure applied to at least a portion of the first region toward the first surface and variably moving away from the first surface, thereby An optical path of the first surface dynamically adjusts optical power of one of the prototype optical devices, and wherein the prototype optical device is configured such that at least a portion of the second surface is permanently changeable to permanently define the first lens An optical power at at least a second region of the second surface, the second region being optically aligned with the first region, thereby resulting in a prescription level ophthalmic optical device. 2. The release optical device of claim 1, wherein the first lens component is an unfinished or semi-finished lens blank. 3. The release optical device of claim 1, wherein the prototype optical device is configured such that at least the portion of the second surface that is permanently changeable is permanently changeable such that the second region is deformable to a prescription level ophthalmic static An area of incremental power added. 4. The prototype optical device of claim 1, wherein the portion of the second surface that is at least 157229 201219842 is permanently changeable by a combination of free formation, surface processing, and/or polishing and/or the like to permanently define the The optical power of a lens at at least the second region of the second surface, thereby causing the prescription level ophthalmic optical device. 5. The prototype optical device of claim 1, wherein the first region is ballooned in response to pressure applied to at least a portion of the first region, thereby being relative to one of the first region and the first surface The optical path dynamically adjusts an optical power of the exiting optical device. 6. The prototype optical device of claim 1, wherein the prototype optical device further comprises: a channel 'which is in fluid communication with a first space between the first region variably movable and the first surface, The channel is configured to allow fluid to move through the channel, the fluid generating a pressure applied to at least a portion of the first region. 7. The prototype optical device of claim 6, wherein: the channel is configured such that movement of a fluid through the channel into the first space increases pressure applied to at least a portion of the first region to cause the first Moving the region away from the first surface; and the channel is configured such that movement of the fluid away from the first space through the channel reduces pressure applied to at least a portion of the first region such that the first region faces the first A surface moves. 8. The exiting optical device of claim 6, wherein the channel extends from at least one edge of the first lens assembly to the first region. 9. The prototype optical device of claim 8 wherein the channel is defined by the first 157229 -2-201219842 surface and a surface of the second lens component that is not adhered to the first surface. 11. 12. 13. The prototype optical device of claim 11, wherein an end of the channel remote from the first region is sealably sealed. The prototype optical device of claim 1, wherein the hybrid optical device is configured such that at least a portion of the second surface y is permanently altered to permanently define the first lens at at least a second region of the second surface One of the optical powers corresponding to a distance prescription of a glasses wearer. The release optical device of claim 1, wherein the prototype optical device is configured such that at least a portion of the second surface is permanently changeable to permanently define the first lens at at least a second region of the second surface A positive optical power. A method of providing an ophthalmic optical device, comprising: obtaining a lens assembly comprising: a first lens assembly comprising: a first surface; and a second surface at the first lens a side of the component opposite the first surface, and a second lens assembly including a flexible member, at least a portion of the second lens assembly being adhered to the first surface, wherein the second lens assembly The flexible element includes a first region responsive to a change in pressure applied to at least a portion of the first region to variably move toward and away from the first surface, #this is relative to Dynamically adjusting an optical power of the lens assembly via the first region and a first surface of the 157229 201219842 light path; and after obtaining the lens assembly, permanently changing the second surface to permanently define the first An optical power of the lens at at least a second region of the second surface, the second region being optically aligned with the first region. 14. The method of claim 13 further comprising: determining a desired added power of the optical device before and/or after obtaining the lens assembly, wherein permanently changing the second surface to permanently change the first lens The act of optical power at at least a second region of the second surface results in a first added power of the desired added power, and wherein after the second surface is changed, when the second lens assembly is raised When a region moves away from the first surface to a first position, a cumulative added power relative to the optical path of the first lens assembly and the second lens assembly is substantially equal to the desired added power. 15. The method of claim 13, wherein the first position of the first region substantially corresponds to a maximum distance that the first region moves away from the first surface, wherein after changing the second surface The cumulative added power of the second lens assembly relative to the optical path of the mth read and the second (four) component (four) when moved substantially to conform to the first surface and supported on the first surface is substantially equal to a first addition power. 16. The method of claim 15 wherein the lens assembly comprises a fluid passage extending from at least one edge of the lens assembly to the first region. 17. The method of claim 13, wherein the fluid channel is defined by the surface of the first surface and the second lens assembly that has not been adhered to the first surface 157229 -4- 201219842. 18. The method of claim 16, wherein the channel is sealed from the end of the first region by an openable seal, the method further comprising: after changing the second surface, moving the channel away from the first The end of the area is unsealed. 19. The method of claim 16, further comprising: sealing the end of the channel away from the first region prior to changing the second surface; and after changing the second surface, moving the channel away from the first The end of an area is unsealed. 20. The method of claim π, further comprising: after changing the second surface, assembling the resulting changed lens assembly into a spectacle frame. The method of claim 16, further comprising: after changing the second surface, assembling the resulting changed lens assembly into a spectacle frame comprising a fluid channel; and assembling the lens assembly The fluid passage is placed in fluid communication with a fluid passage of the frame. The method of claim 13, wherein the second surface is permanently changed to permanently define that the action of the first lens at the at least one second region of the second surface is at least The second region is assigned a static progressive addition power region. 23. A method comprising: providing a lens assembly comprising: 157229 201219842 a first lens assembly including a first surface; and - a second surface at the first lens assembly and the first a second lens assembly comprising a flexible member, at least a portion of the second lens assembly being adhered to the first surface, wherein the flexible member of the second lens assembly A first region is included that is variably movable toward and away from the first surface in response to a change in pressure applied to at least a portion of the first region, thereby being relative to the first region And the optical path of the first surface dynamically adjusting one of the optical powers of the lens assembly; providing the first lens assembly prior to and/or after providing the lens assembly and/or providing the lens assembly One of the means of permanently defining an optical power of the first lens at at least a second region of the first surface is indicative of an optical alignment of the second region with the first region. The method of claim 23, wherein the lens assembly comprises a fluid passage extending from at least one edge of the lens assembly to the first region. The method of claim 23, wherein the fluid channel is defined by a surface of the first surface and the second lens component that is not adhered to the first surface. The method of claim 23, wherein an end of the channel remote from the first region is sealably sealed. An ophthalmic optical device comprising: 157229 201219842 a low added power progressive addition lens comprising a first radius of curvature providing a progressive addition power to a maximum first added power; the diaphragm being located at the low added power progressive addition lens - an inclusive-expandable portion on the first surface, the expandable portion being expandable from a first state in which the expandable portion has a second radius of curvature to a portion in which the expandable portion has a third radius of curvature a second state; a fluid system configured to expand the expandable portion from the first state to the second state, and to contract the expandable portion from the second state to the first state, Wherein the second radius of curvature substantially corresponds to the first radius of curvature such that when the expandable portion is in the first state, the maximum cumulative power of the expandable portion and the low added power progressive addition lens is approximately Adding power to the first, wherein the third radius of curvature is different from the first radius of curvature, such that when the swellable portion is at the second When the state in which the expandable portion and the low add power lens is progressively added to the maximum accumulated power equal to the add of a first add power plus a second add power. The optical device of claim 27, wherein: the fluid system is configured to allow a fluid to move into and out of a space formed between the low added power progressive addition lens and the expandable portion to respectively cause The expandable portion expands from the first state to the second state and causes the expandable portion to contract from the second state to the first state. 29. The optical device of claim 28, wherein the fluid system comprises a fluid pass 157229 201219842 track' which extends from at least the edge of the low added power progressive addition lens to the expandable portion. The optical device of claim 29, wherein the fluid channel is defined by the first surface of the lens and the diaphragm by the low added power. 31. The optical device of claim 27, wherein: the μ body system is configured to heat the fluid, thereby expanding the fluid and thereby expanding the expandable portion from the first state to the second state And the fluid system is configured to cool the fluid, thereby causing the fluid to contract 'and thereby shrink the expandable portion from the second state to the first state. 32. A pair of spectacles comprising: an optical device of claim 27; and a spectacle frame. 33. The lens of claim 32, further comprising: a controller 'where the controller is configured to automatically control the flow system' thereby controlling expansion and contraction of the expandable portion. 34. The eyeglass of claim 32, further comprising: a micropump actuator configured to pump fluid into a space between the low added power progressive addition lens and the diaphragm to The expandable portion of the diaphragm is expanded. 35. The spectacles of claim 33, further comprising: a sensor configured to sense a direction of the glasses, wherein the sensor is in signal communication with the controller, 157229 201219842 wherein the S-Hail control The device is configured to control the fluid system to cause the expandable portion to receive a signal from the sensor indicating that the pair of glasses is oriented to indicate that the wearer of the pair of glasses is performing a near-point vision task Expanded to the second state. 36. The eyeglass of claim 35, wherein the sensor comprises at least one of a tilt switch or an accelerometer. 3 - a prototype optical device comprising: a first lens assembly comprising: a first surface; and a second surface on a side of the first lens assembly opposite the first surface And a second lens assembly comprising a flexible member, at least a portion of the second lens assembly being adhered to the first surface, wherein the flexible member of the second lens assembly includes a first region Responsive to a change in pressure applied to at least a portion of the first region, variably moving toward the first surface and away from the first surface, thereby being relative to the first region and the 篦. ^ ^ 〆 a light path of the surface dynamically adjusting one of the optical powers of the prototype optical device, and wherein the prototype optical device is configured such that at least a portion of one edge of the first lens assembly can be permanently removed, by (4) An ophthalmic optical split having a perimeter conforming to a frame of the eyeglasses. 157229
TW100122504A 2010-06-25 2011-06-27 High performance, low cost multifocal lens having dynamic progressive optical power region TW201219842A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US35844710P 2010-06-25 2010-06-25
US36674610P 2010-07-22 2010-07-22
US38296310P 2010-09-15 2010-09-15
US13/050,974 US8922902B2 (en) 2010-03-24 2011-03-18 Dynamic lens
PCT/US2011/029419 WO2011119601A1 (en) 2010-03-24 2011-03-22 Dynamic lens

Publications (1)

Publication Number Publication Date
TW201219842A true TW201219842A (en) 2012-05-16

Family

ID=45372147

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100122504A TW201219842A (en) 2010-06-25 2011-06-27 High performance, low cost multifocal lens having dynamic progressive optical power region

Country Status (2)

Country Link
TW (1) TW201219842A (en)
WO (1) WO2011163668A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11899286B2 (en) 2018-03-01 2024-02-13 Essilor International Lens element

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8608800B2 (en) * 2011-08-02 2013-12-17 Valdemar Portney Switchable diffractive accommodating lens
US9535264B2 (en) 2012-07-13 2017-01-03 Adlens Beacon, Inc. Fluid lenses, lens blanks, and methods of manufacturing the same
TWI688791B (en) * 2019-08-13 2020-03-21 宏達國際電子股份有限公司 Head-mounted display device
US11366313B2 (en) 2019-08-13 2022-06-21 Htc Corporation Head-mounted display device
CN113117232A (en) * 2020-01-15 2021-07-16 北京富纳特创新科技有限公司 Facial mask type beauty instrument
US11963868B2 (en) 2020-06-01 2024-04-23 Ast Products, Inc. Double-sided aspheric diffractive multifocal lens, manufacture, and uses thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040947A (en) * 1998-06-09 2000-03-21 Lane Research Variable spectacle lens
GB2427484A (en) * 2005-06-21 2006-12-27 Global Bionic Optics Pty Ltd Variable power fluid lens with flexible wall
US7866816B2 (en) * 2006-10-10 2011-01-11 Lane Research, Llc Variable focus spectacles
US8922902B2 (en) * 2010-03-24 2014-12-30 Mitsui Chemicals, Inc. Dynamic lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11899286B2 (en) 2018-03-01 2024-02-13 Essilor International Lens element

Also Published As

Publication number Publication date
WO2011163668A2 (en) 2011-12-29
WO2011163668A3 (en) 2013-05-30

Similar Documents

Publication Publication Date Title
US20120019773A1 (en) High performance, low cost multifocal lens having dynamic progressive optical power region
JP6711895B2 (en) Variable focus liquid filled lens instrument
JP6330878B2 (en) Fluid filling adjustable contact lens
US10114232B2 (en) Fluid-filled lenses and their ophthalmic applications
JP7241678B2 (en) Tunable non-circular fluid lens using an immersed lens shaper
TW201219842A (en) High performance, low cost multifocal lens having dynamic progressive optical power region
JP2007526517A (en) Variable focus lens
AU2013289924B2 (en) Fluid lenses, lens blanks, and methods of manufacturing the same
KR20230054367A (en) Electroactive lens with cylinder rotation control