CN114602336B - 一种混合基质膜、蒸气诱导原位合成方法以及在h2/co2分离中的应用 - Google Patents

一种混合基质膜、蒸气诱导原位合成方法以及在h2/co2分离中的应用 Download PDF

Info

Publication number
CN114602336B
CN114602336B CN202210222277.3A CN202210222277A CN114602336B CN 114602336 B CN114602336 B CN 114602336B CN 202210222277 A CN202210222277 A CN 202210222277A CN 114602336 B CN114602336 B CN 114602336B
Authority
CN
China
Prior art keywords
mixed matrix
matrix membrane
solution
membrane
sif
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210222277.3A
Other languages
English (en)
Other versions
CN114602336A (zh
Inventor
刘公平
陈桂宁
金万勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202210222277.3A priority Critical patent/CN114602336B/zh
Publication of CN114602336A publication Critical patent/CN114602336A/zh
Application granted granted Critical
Publication of CN114602336B publication Critical patent/CN114602336B/zh
Priority to US18/165,235 priority patent/US11878267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00793Dispersing a component, e.g. as particles or powder, in another component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/521Aliphatic polyethers
    • B01D71/5211Polyethylene glycol or polyethyleneoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28026Particles within, immobilised, dispersed, entrapped in or on a matrix, e.g. a resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/108Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/14Ageing features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2189Metal-organic compounds or complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/26Spraying processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/36Introduction of specific chemical groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/50Control of the membrane preparation process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Transplantation (AREA)
  • Health & Medical Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明属于气体分离膜技术领域,具体涉及一种金属有机骨架混合基质膜及其制备和应用。M(SiF6)(pyz)3(M=Cu,Zn,Co,Ni)孔道尺介于H2和CO2之间,对H2/CO2具有良好的筛分性能,Cu(SiF6)(bpy)2对CO2分子的强相互作用能够阻碍CO2分子的传输,两种MOF均能够实现H2/CO2分离;通过制备MSiF6/聚合物致密层,将MSiF6均匀分散于聚合物中并实现了MSiF6的固定,在后续的MSiF6与有机配体作用转化为M(SiF6)(pyz)3或Cu(SiF6)(bpy)2,通过原位蒸气转化的方式可以实现MOF颗粒的良好分散且与聚合物之间不存在界面缺陷;即使在80%的掺杂量下,依旧能够保持混合基质膜的机械柔性和稳定性。

Description

一种混合基质膜、蒸气诱导原位合成方法以及在H2/CO2分离中 的应用
技术领域
本发明属于气体分离膜技术领域,具体涉及一种金属有机骨架混合基质膜及其制备和应用。
背景技术
随着人口的增长和工业化程度的提高,人类对能源需求日益增加。能源消耗在促进经济快速发展的同时,引起了诸多环境问题。在过去的几十年里,大气中二氧化碳(CO2)的浓度不断增加,导致了全球气候变化,这是21世纪最具挑战性的问题。为了控制CO2的排放,碳捕集是目前最有前途的技术。膜技术因其高能效,少量资本投资,环境友好的特性以及连续的操作过程而在工业分离处理中引起了极大的兴趣。目前,有机聚合物膜已成功实现商业应用。与无机材料相比,有机聚合物生产成本低且易加工。尽管自20世纪80年代以来,聚合物膜已成功在工业上用于气体分离,但由于其在气体渗透性和选择性之间的折衷效应 (trade-off)-著名的罗伯逊图表明:随着渗透率的增加,膜的选择性降低,即所谓的膜性能上限。
混合基质膜(Mixed-matrix membrane,MMM)是一种将纳米级的无机/有机填料分散于聚合物基质中而制备的一种新型气体分离膜形式,它既解决了高分子膜通量和选择性不能同时提高的问题,又解决了无机膜固有的脆性问题,目前已经气体分离膜领域的研究热点。通过使用两种具有不同传输特性的材料,MMM具有协同结合聚合物的易加工性和多孔填充材料的优异气体分离性能的潜力。目前已经对结合了聚合物基质和无机/有机填料优点的混合基质膜进行了广泛的研究。随着化学和材料科学的飞速发展,最近的研究已转向设计和应用先进的多孔材料,如碳分子筛、沸石、金属有机骨架材料等,作为填料以提高MMM的分离性能。
在众多材料中,金属有机骨架材料(Metal-organic framework,MOFs)引起了研究热源的广泛关注。MOFs是由无机金属中心(金属离子或金属簇)与桥连的有机配体通过自组装相互连接形成的一类具有周期性网络结构的晶态多孔材料。它既不同于无机多孔材料,也不同于一般的有机配合物。MOFs兼有无机材料的刚性和有机材料的柔性特征,使其在现代材料研究方面呈现出巨大的发展潜力和诱人的发展前景。MOFs具有多孔、比表面积大、孔道可调和多金属位点等特点,在化学化工领域得到许多应用,如气体贮、分子分离、催化、药物缓释等。在这其中,分离一直是主流,这不仅是因为分离的重要性和广泛性,也是因为MOFs 的固有特性使这类材料特别适合这项具有挑战性的工业过程。MOFs材料用于分离的最重要和最优越的性质之一是其可在大范围内控制精确的限定孔径,以允许对客体物种的尺寸和形状选择性。此外,MOF结构的化学可变性可用于增强特定化学物质的吸附,并有助于提高分离性能。
但是,MOF材料在制备混合基质膜的过程中,易导致材料与聚合物之间的匹配性不好、团聚等问题,影响了其制备得到的膜材料的分离性能。
发明内容
本发明目的之一在于提供了一种M(SiF6)(pyz)3(M=Cu,Zn,Co,Ni)或者M(SiF6)(bpy)2掺杂的混合基质膜;本发明另一目的在于提供了配体蒸气诱导金属盐原位转化制备超薄金属有机骨架(MOF)掺杂的混合基质膜(MMM)的策略;本发明还有一目的是提供了该种超薄混合基质膜的用途,将其应用于H2/CO2分离。
一种混合基质膜,包括聚合物基质以及分散于基质中的M(SiF6)(pyz)3纳米颗粒或者 M(SiF6)(bpy)2纳米颗粒,M是Cu、Zn、Co或者Ni,pyz是吡嗪,bpy是4,4’-联吡啶。
所述的纳米颗粒在混合基质膜中的含量是10-90%。
所述的混合基质膜用于气体分离。
所述的混合基质膜负载于载体上。
所述的混合基质膜的厚度30-100nm。
所述的聚合物基质的材质是聚乙烯醇(PVA)或者聚乙二醇(PEG)。
上述的混合基质膜的制备方法,包括如下步骤:
步骤1,将聚合物基质溶解于水中,得到基质溶液;将MSiF6(M=Cu,Zn,Co,Ni)金属盐溶解于水中,得到盐溶液;
步骤2,将水溶液和盐溶液按比例混合,得到涂膜液,并涂覆于载体上,蒸除溶剂;
步骤3,将步骤2中得到的载体置于配体蒸气中进行反应,获得混合基质膜;所述的配体是吡嗪或者4,4'-联吡啶。
步骤1中,聚合物基质在基质溶液中的浓度是2-20wt%,金属盐在盐溶液中的浓度是 5-50wt%。
步骤2中,涂覆过程采用旋涂法,旋涂次数为10-40次,旋涂转速为500rpm-3000rpm,单次旋涂时间为10s-60s。
步骤2中,载体是多孔聚丙烯腈(PAN)支撑体。
步骤2中,蒸除溶剂过程中温度为30-60℃,时间为4-24h。
步骤3中,吡嗪蒸气的环境温度范围为30-80℃,反应时间为6-24h。
混合基质膜在氢气/二氧化碳(H2/CO2)气体分离中的应用。
有益效果
(1)通过制备MSiF6/聚合物致密层,将MSiF6均匀分散于聚合物中并实现了MSiF6的固定,在后续的MSiF6与有机配体作用转化为M(SiF6)(pyz)3或者M(SiF6)(bpy)2(M=Cu,Zn,Co, Ni),MOF颗粒不会团聚且与聚合物之间不存在界面缺陷;
(2)M(SiF6)(pyz)3(M=Cu,Zn,Co,Ni)孔道尺介于H2和CO2之间,对H2/CO2具有良好的筛分性能,Cu(SiF6)(bpy)2对CO2分子的强相互作用能够阻碍CO2分子的传输,两种MOF均能够实现H2/CO2分离;
(3)制备高掺杂量的M(SiF6)(pyz)3混合基质膜以MOF传输通道为主体,混合基质膜气体分离性能远超聚合物膜分离性能上限,且混合基质膜依旧保持了良好的机械柔性以及稳定性。
附图说明
图1是实施例1中制备得到的CuSiF6@PEG和Cu(SiF6)(bpy)2@PEG混合基质膜的TEM表征结果;
图2是实施例1中制备得到的Cu(SiF6)(bpy)2@PEG混合基质膜的的XRD图谱、SEM照片和实物照片;
图3是实施例2中CuSiF6:PEG=5:1时的CuSiF6@PEG膜与Cu(SiF6)(pyz)3@PEG混合基质膜实物图;
图4是实施例2中CuSiF6:PEG=5:1时的Cu(SiF6)(pyz)3@PEG混合基质膜弯折图和对应的 SEM图;
图5是实施例2中不同CuSiF6:PEG质量比的Cu(SiF6)(pyz)3@PEG混合基质膜H2/CO2分离性能;
图6是实施例3中不同金属盐的M(SiF6)(pyz)3@PEG混合基质膜SEM图。
图7是对照例1中不同载量条件下得到的混合基质膜的分离性能对比。
图8是80%Cu(SiF6)(pyz)3/PSf混合基质膜实物照片。
图9是80%Cu(SiF6)(pyz)3/PSf混合基质膜电镜图。
具体实施方式
本发明提供了一种配体蒸气诱导金属盐原位转化制备超薄金属有机骨架(MOF)掺杂的混合基质膜(MMM)的策略及其气体分离应用。所述的混合基质膜由金属盐/聚合物层于有机配体蒸气环境中金属盐原位转化成金属有机骨架制备得到,而金属盐和聚合物致密膜由对应的金属盐/聚合物水溶液旋涂干燥制得,聚合物起到了锚定金属盐和弥补金属有机骨架颗粒间缺陷的作用。通过调节溶液中金属盐和聚合物的比例,MOF的掺杂量范围可达10%-90%;金属盐的原位转化避免了后掺杂的界面缺陷问题,即使在高掺杂量下混合基质膜依旧保持柔性。制备的混合基质膜H2/CO2分离性能超越了2008年的聚合物膜分离性能上限,且保持了良好的稳定性。本专利的实验部分受江苏省研究生科研与实践创新计划项目KYCX21_1170 资助。
本发明采用的技术方案如下:一种M(SiF6)(pyz)3(M=Cu,Zn,Co,Ni)和Cu(SiF6)(bpy)2掺杂的混合基质膜的混合基质膜,其特征在于:所述的混合基质膜掺杂量从10%-90%;所述的 MOF为M(SiF6)(pyz)3(M=Cu,Zn,Co,Ni)和Cu(SiF6)(bpy)2;所述的聚合物为水溶性良好的聚乙烯醇(PVA)和聚乙二醇(PEG)。混合基质膜厚度优选30-100nm。
本发明还提供了一种制备上述的混合基质膜的方法,其具体步骤如下:
a)称取PVA(或PEG)聚合物,将其溶解于去离子水中,得到质量浓度为2%-20%的PVA(PEG) 溶液;
b)称取MSiF6(M=Cu,Zn,Co,Ni)金属盐,将其溶解于去离子水中,得到质量浓度为5%-50%的MSiF6溶液;
c)按照MSiF6金属盐的质量占金属盐和聚合物总质量的9%-91%分别取MSiF6溶液和PVA (PEG)溶液进行混合,得到分散均匀的MSiF6@PVA(PEG)溶液;
d)利用旋涂将MSiF6@PVA(PEG)溶液旋涂于多孔聚丙烯腈(PAN)支撑体上,并去除溶剂水,得到致密MSiF6@PVA(PEG)膜;
e)将MSiF6@PVA(PEG)膜置于有机蒸气气氛中转化得到混合基质膜。
其特征在于:步骤d)中溶液旋涂次数为10-40次,旋涂转速为500rpm-3000rpm,单次旋涂时间为10s-60s。步骤e)中的有机蒸气气氛通过将配体置于密闭空间调节温度使有机配体挥发得到,其中温度范围为30-80℃。
基于M(SiF6)(bpy)2纳米颗粒的混合基质膜的制备方法与上述的基于M(SiF6)(pyz)3纳米颗粒的混合基质膜的制备方法基本相同,区别点在于金属盐溶液为CuSiF6溶液,采用的有机蒸气为4,4’-联吡啶。
本发明还提供了该种超薄混合基质膜的用途,将其应用于H2/CO2分离。其应用特征在于:混合基质膜优先透过H2,对H2/CO2混合气具有良好的选择性,可实现高效气体的分离,超越了聚合物膜H2/CO2分离性能上限。混合基质膜测试进料侧压力范围为0.1bar-5bar,其中, H2和CO2摩尔比为1:1,对应的H2和CO2的分压范围是0.05bar-2.5bar。测试温度范围为10-40℃。
下面结合具体实施例对本发明进行详细描述,但本发明并不限于以下所述实施例,在本发明内容和范围内,变化实施都应包含在本发明的技术范围内。其中,渗透率的单位为GPU, 1GPU=3.35×10-10mol m-2s-1Pa-1
实施例1
(1)配置100g质量分数为2%的PEG溶液和100g质量分数为10%的CuSiF6溶液;
(2)将20g PEG溶液和20g CuSiF6溶液混合搅拌得到CuSiF6@PEG水溶液,此时CuSiF6和PEG质量比为5:1;
(3)将CuSiF6@PEG水溶液旋涂于PAN支撑体上,旋涂次数为40次,转速1500rpm,单次旋涂时间30s。将得到的CuSiF6@PEG膜置于烘箱中40℃干燥12h,去除溶剂水,且使CuSiF6@PVA膜固化;
(4)将CuSiF6@PEG膜与1g 4,4’-联吡啶配体放置于反应釜中,保持二者不接触。将反应釜置于烘箱中60℃加热12h;
(5)材料的表征:如图1,通过对CuSiF6@PEG前驱体膜与转化后的Cu(SiF6)(bpy)2@PEG 混合基质膜进行TEM表征,观察到明显的晶格衍射图案的变化,以及晶面间距的增加。其中 Cu(SiF6)(bpy)2@PEG混合基质膜傅里叶红外转换后的高清TEM晶面间距为0.55nm,与Cu(SiF6)(bpy)2晶体的(020)晶面相吻合。如图2所示:SEM图显示混合基质膜表面呈现出明显的颗粒状突起,证明了MOF颗粒的存在,且实物照片观察到配位反应带来的颜色变化。XRD图谱证实了Cu(SiF6)(pyz)3的原位合成。
(6)分离性能的表征:将制备得到的Cu(SiF6)(bpy)2@PEG进行测试,结果显示:CuSiF6: PEG=5:1时,得到的混合基质膜CuSiF6转化率和MOF掺杂量分别为90.1%和84%。30℃0.5bar 进气压力下,混合基质膜的H2渗透率和H2/CO2选择性分别为933GPU和31。
实施例2
(1)配置100g 5wt%的PEG溶液和100g 10wt%的CuSiF6溶液;
(2)按CuSiF6和PEG质量比为1:1,2.5:1,5:1,10:1配置CuSiF6@PEG水溶液;
(3)将不同质量比的CuSiF6@PEG水溶液分旋涂于PAN支撑体上,旋涂次数为20次,转速2000rpm,单次旋涂时间20s。将得到的CuSiF6@PEG膜置于烘箱中60℃干燥6h,去除溶剂水,且使CuSiF6@PEG膜固化;
(4)将CuSiF6@PEG膜与2g吡嗪配体放置于反应釜中,保持二者不接触。将反应釜置于烘箱中60℃加热24h;
(5)制备得到的Cu(SiF6)(pyz)3@PEG混合基质膜与CuSiF6@PEG致密膜相比,颜色发生了明显的改变(图3)。不同CuSiF6:PEG比值的混合基质膜中CuSiF6转化率和实际得到的Cu(SiF6)(pyz)3掺杂量如下表。
Figure BDA0003534066430000061
(6)掺杂量为86.3%的混合基质膜进行弯折,结果显示弯折后混合基质膜界面无明显缺陷(图4),且分离性能基本维持不变,表明即使在极高的掺杂量下,混合基质膜依旧保持了良好的机械柔性和稳定性;
(7)将制备得到的Cu(SiF6)(pyz)3@PEG进行测试。5℃1bar进气压力下, Cu(SiF6)(pyz)3@PEG混合基质膜的气体渗透性和H2/CO2选择性如图5。
实施例3
(1)配置500g 20wt%的PEG溶液和20g 50wt%的MSiF6溶液(M=Zn,Co,Ni);
(2)按MSiF6和PEG质量比为5:1配置MSiF6@PEG水溶液;
(3)将不同金属盐的MSiF6@PEG水溶液分旋涂于PAN支撑体上,旋涂次数为30次,转速3000rpm,单次旋涂时间40s。将得到的CuSiF6@PEG膜置于烘箱中30℃干燥12h,去除溶剂水;
(4)将MSiF6@PEG膜与2g吡嗪配体放置于反应釜中,保持二者不接触。将反应釜置于烘箱中30℃加热24h;
(5)制备得到的混合基质膜如图6,将制备得到的M(SiF6)(pyz)3@PEG进行测试,得到的混合基质膜M(SiF6)(pyz)3掺杂量分别为83.4%(Ni),84.7(Zn),84.3%(Co)。25℃2bar进气压力下,M(SiF6)(pyz)3@PEG混合基质膜的气体渗透性和H2/CO2选择性如下表。
Figure BDA0003534066430000071
实施例4
(1)配置50g 10wt%的PEG溶液和20g 5wt%的CuSiF6溶液,将两种溶液混合得到CuSiF6@PEG水溶液,此时CuSiF6和PEG质量比为1:5;
(2)将CuSiF6@PEG水溶液涂于PAN支撑体上,旋涂次数为20次,转速1500rpm,单次旋涂时间30s。将得到的CuSiF6@PEG膜置于烘箱中30℃干燥24h,去除溶剂水;
(4)将CuSiF6@PEG膜与1g吡嗪配体放置于反应釜中,保持二者不接触。将反应釜置于烘箱中60℃加热24h;
(5)将制备得到的Cu(SiF6)(pyz)3@PEG进行测试,得到的混合基质膜CuSiF6转化率和 MOF掺杂量分别为53.4%和13%。25℃5bar下,Cu(SiF6)(pyz)3@PEG混合基质膜的气体渗透性和H2/CO2选择性分别为238GPU和11.4。
实施例5
(1)配置100g质量分数为2%的PVA溶液和100g质量分数为5%的CuSiF6溶液;
(2)将20g PVA溶液和20g CuSiF6溶液混合搅拌得到CuSiF6@PVA水溶液,此时CuSiF6和PVA质量比为2.5:1;将25g PVA溶液和10g CuSiF6溶液混合搅拌得到CuSiF6@PVA水溶液,此时CuSiF6和PVA质量比为1:1;
(3)将不同质量比的CuSiF6@PVA水溶液分旋涂于PAN支撑体上,旋涂次数为20次,转速1500rpm,单次旋涂时间30s。将得到的CuSiF6@PVA膜置于烘箱中40℃干燥12h,去除溶剂水,且使CuSiF6@PVA膜固化;
(4)将CuSiF6@PVA膜与1g吡嗪配体放置于反应釜中,保持二者不接触。将反应釜置于烘箱中60℃加热12h;
(5)将制备得到的Cu(SiF6)(pyz)3@PVA进行测试,测试温度和压力分别为25℃和0.1bar。结果显示:CuSiF6:PVA=2.5:1时,CuSiF6转化率为91%,MOF掺杂量为77%。,Cu(SiF6)(pyz)3@PVA混合基质膜的H2渗透率为364.9GPU,H2/CO2选择性为30.0;CuSiF6: PVA=1:1时,CuSiF6转化率为84%,MOF掺杂量为55%。Cu(SiF6)(pyz)3@PVA混合基质膜的 H2渗透率为310.5GPU,H2/CO2选择性为10.9;
对照例1
本对照例用于说明直接将Cu(SiF6)(pyz)3MOF颗粒掺入聚合物中制备混合基质膜时由于团聚而导致分离性能提高不明显。
(1)称取0.9g、0.8g、0.7g和0.6g聚砜聚合物溶于4ml四氢呋喃(THF)溶液中,搅拌1h,PSf完全溶解形成均匀的聚合物溶液A;
(2)称取0.1g、0.2g、0.3g和0.4gCu(SiF6)(pyz)3MOF颗粒分散于4ml THF中得到MOF分散液B;
(3)将MOF分散液用滴管逐滴加入到聚合物溶液中,确保MOF和聚合物的质量和为1g。此时得到了MOF掺杂量分别为10%、20%、30%和40%的铸膜液。在通风橱内搅拌48h 后使铸膜液分散均匀。将刮刀和贴有锡箔胶带的玻璃板放置于手套带中,并用通氮气的方式使手套带膨起并在手套带内制造THF气氛。将分散均匀的铸膜液用300μm刮刀在玻璃板上制备Cu(SiF6)(pyz)3/PSf混合基质膜,待有机溶剂挥发完全,将膜取出并在室温下干燥24h,在60℃真空干燥箱中老化24h,得到膜厚约为50μm。
(4)将膜在0.1MPa、25℃条件下进行单组分性能测试,结果如图7。在10%时混合基质膜选择性提升最多,20%掺杂量对应的H2渗透性最佳。但MOF带来的性能提升有限。
本对照例中采用聚砜聚合物进行对照,是由于直接将Cu(SiF6)(pyz)3MOF颗粒混合于水溶液体系时会造成MOF材料的溶解。
对照例2
本对照例用于说明直接将Cu(SiF6)(pyz)3MOF颗粒制备混合基质膜时由于团聚而导致膜的可弯曲性的缺陷。
(1)称取0.2g聚砜聚合物溶于2ml四氢呋喃(THF)溶液中,搅拌1h,PSf完全溶解形成均匀的聚合物溶液A;
(2)称取0.8gCu(SiF6)(pyz)3MOF颗粒分散于4ml THF中得到MOF分散液B;
(3)将聚合物溶液滴加入MOF分散液中,此时铸膜液中MOF质量比为80%。在通风橱内搅拌48h后使铸膜液分散均匀。将刮刀和贴有锡箔胶带的玻璃板放置于手套带中,并用通氮气的方式使手套带膨起并在手套带内制造THF气氛。将分散均匀的铸膜液用300μm刮刀在玻璃板上制备Cu(SiF6)(pyz)3/PSf混合基质膜,待有机溶剂挥发完全,将膜取出并在室温下干燥24h,在60℃真空干燥箱中老化24h,得到膜厚约为50μm。
(4)将膜在0.1MPa、25℃条件下进行单组分性能测试,然而由于混合基质膜中聚合物用量太低,混合基质膜表现出极大的脆性,无法完成气体渗透性能测试。实物图如图8。对此时的混合基质膜进行电镜表征(图9)发现:混合基质膜中MOF颗粒间存在明显的界面缺陷,且颗粒与颗粒之间基本观察不到聚合物的包裹,这也是混合基质膜脆性增加的主要原因。
对照例3
与实施例1的区别在于:采用不添加MOF颗粒的PEG或PVA溶液直接旋涂为聚合物膜,并进行气体渗透性和H2/CO2选择性的测试。分别配置质量分数为5%的PEG水溶液和2%的 PVA水溶液。将溶液旋涂于PAN支撑体上。旋涂次数为20次,转速1500rpm,单次旋涂时间为30s。将制备得到的PEG膜与PVA膜分别置于烘箱中60℃去除溶剂,24h后取出并进行气体渗透性能测试。在25℃和1bar的压力下,PEG膜的分离性能:H2渗透性:221.8GPU, H2/CO2选择性:3.4;PVA膜的分离性能:H2渗透性:98.8GPU,H2/CO2选择性:4.1。PEG 膜与PVA膜的H2/CO2选择性略低于努森扩散,表明二者并不具备H2和CO2体系的筛分能力。

Claims (9)

1.一种混合基质膜,其特征在于,包括聚合物基质以及分散于基质中的M(SiF6)(pyz)3纳米颗粒,M是Cu、 Zn、Co或者Ni,pyz是吡嗪;
所述的混合基质膜的制备方法包括如下步骤:
步骤1,将聚合物基质溶解于水中,得到基质溶液;将MSiF6金属盐溶解于水中,得到盐溶液;
步骤2,将基质溶液和盐溶液按比例混合,得到涂膜液,并涂覆于载体上,蒸除溶剂;混合过程中,MSiF6金属盐的质量占金属盐和聚合物基质总质量的9%-91%;
步骤3,将步骤2中得到的载体置于配体蒸气中进行反应,获得混合基质膜;所述的配体是吡嗪。
2.根据权利要求1所述的混合基质膜,其特征在于,所述的纳米颗粒在混合基质膜中的含量是10-90%;所述的混合基质膜用于气体分离;所述的混合基质膜负载于载体上。
3.根据权利要求1所述的混合基质膜,其特征在于,所述的混合基质膜的厚度30-100nm。
4.根据权利要求1所述的混合基质膜,其特征在于,所述的聚合物基质的材质是聚乙烯醇或者聚乙二醇。
5.根据权利要求1所述的混合基质膜,其特征在于,步骤1中,聚合物基质在基质溶液中的浓度是2-20wt%,金属盐在盐溶液中的浓度是5-50wt%。
6.根据权利要求1所述的混合基质膜,其特征在于,步骤2中,涂覆过程采用旋涂法,旋涂次数为10-40次,旋涂转速为500rpm-3000rpm,单次旋涂时间为10s-60s;载体是多孔聚丙烯腈支撑体。
7.根据权利要求1所述的混合基质膜,其特征在于,蒸除溶剂过程中温度为30-60℃,时间为4-24h。
8.根据权利要求1所述的混合基质膜,其特征在于,配体蒸气的环境温度范围为30-80℃,反应时间为6-24h。
9.一种氢气/二氧化碳气体分离方法,其特征在于,采用权利要求1所述的混合基质膜进行分离。
CN202210222277.3A 2022-03-07 2022-03-07 一种混合基质膜、蒸气诱导原位合成方法以及在h2/co2分离中的应用 Active CN114602336B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210222277.3A CN114602336B (zh) 2022-03-07 2022-03-07 一种混合基质膜、蒸气诱导原位合成方法以及在h2/co2分离中的应用
US18/165,235 US11878267B2 (en) 2022-03-07 2023-02-06 Mixed matrix membrane (MMM) and method of H2/CO2 gas separation by using MMM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210222277.3A CN114602336B (zh) 2022-03-07 2022-03-07 一种混合基质膜、蒸气诱导原位合成方法以及在h2/co2分离中的应用

Publications (2)

Publication Number Publication Date
CN114602336A CN114602336A (zh) 2022-06-10
CN114602336B true CN114602336B (zh) 2022-12-20

Family

ID=81861672

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210222277.3A Active CN114602336B (zh) 2022-03-07 2022-03-07 一种混合基质膜、蒸气诱导原位合成方法以及在h2/co2分离中的应用

Country Status (2)

Country Link
US (1) US11878267B2 (zh)
CN (1) CN114602336B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115463555A (zh) * 2022-08-30 2022-12-13 石河子大学 基于金属位点饱和度可调纳米片的混合基质膜及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104722215A (zh) * 2014-10-08 2015-06-24 南京工业大学 基于石墨烯材料的二氧化碳气体分离膜的制备方法
CN105833662A (zh) * 2016-05-17 2016-08-10 浙江大学 一种吸附分离含硫酸性气体的方法
CN112029104A (zh) * 2019-06-03 2020-12-04 中国科学院大连化学物理研究所 一种蒸气辅助外延生长法制备金属有机骨架膜及其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090131242A1 (en) * 2007-11-15 2009-05-21 Chunqing Liu Method of Making Polymer Functionalized Molecular Sieve/Polymer Mixed Matrix Membranes
US20090126567A1 (en) * 2007-11-16 2009-05-21 Chunqing Liu Mixed Matrix Membranes Containing Molecular Sieves With Thin Plate Morphology
US20090155464A1 (en) * 2007-12-12 2009-06-18 Chunqing Liu Molecular Sieve/Polymer Mixed Matrix Membranes
KR101421219B1 (ko) * 2013-04-24 2014-07-30 한양대학교 산학협력단 그래핀 옥사이드 코팅층을 포함하는 복합 분리막 및 그 제조방법
WO2016014963A1 (en) * 2014-07-24 2016-01-28 King Abdullah University Of Science And Technology Fabrication of highly co2 selective metal organic framework membrane using liquid phase epitaxy approach
US11344850B2 (en) * 2017-10-27 2022-05-31 Michael Tsapatsis Nanocomposite membranes and methods of forming the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104722215A (zh) * 2014-10-08 2015-06-24 南京工业大学 基于石墨烯材料的二氧化碳气体分离膜的制备方法
CN105833662A (zh) * 2016-05-17 2016-08-10 浙江大学 一种吸附分离含硫酸性气体的方法
CN112029104A (zh) * 2019-06-03 2020-12-04 中国科学院大连化学物理研究所 一种蒸气辅助外延生长法制备金属有机骨架膜及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
In-situ SIFSIX-3-Cu growth into melamine formaldehyde sponge monolith for CO2 efficient capture;Hong-Gang Zhen et.al;《Separation and Purification Technology》;20190907;全文 *
SeparationsofbinarymixturesofCO2/CH4 and CO2/N2 with mixed-matrixmembranescontainingZn(pyrz)2(SiF6) metal-organic framework;Heqing Gong et.al.;《Journal of Membrane Science》;20150812;第169-171页 *
Yanfeng Zhang et.al..Gas permeability properties of Matrimid® membranes containing the metal-organic framework Cu–BPY–HFS.《Journal of Membrane Science》.2008,第170-173页. *

Also Published As

Publication number Publication date
US11878267B2 (en) 2024-01-23
US20230277979A1 (en) 2023-09-07
CN114602336A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
Kang et al. Synthesis of ZIF-7/chitosan mixed-matrix membranes with improved separation performance of water/ethanol mixtures
Yang et al. Vacuum-assisted assembly of ZIF-8@ GO composite membranes on ceramic tube with enhanced organic solvent nanofiltration performance
Wee et al. Submicrometer‐sized ZIF‐71 filled organophilic membranes for improved bioethanol recovery: mechanistic insights by Monte Carlo simulation and FTIR spectroscopy
Lin Metal organic framework membranes for separation applications
Li et al. Sol–gel asynchronous crystallization of ultra-selective metal–organic framework membranes for gas separation
Ramu et al. Effects of zinc salts on the microstructure and performance of zeolitic-imidazolate framework ZIF-8 membranes for propylene/propane separation
Wei et al. Viscosity-driven in situ self-assembly strategy to fabricate cross-linked ZIF-90/PVA hybrid membranes for ethanol dehydration via pervaporation
WO2017210874A1 (en) Imperfect mofs (imofs) material, preparation and use in catalysis, sorption and separation
CN110270333B (zh) 一种双金属有机框架纳米花及其衍生物及制备方法与应用
Hamid et al. In situ formation of zeolitic-imidazolate framework thin films and composites using modified polymer substrates
Ma et al. In-situ growth of highly permeable zeolite imidazolate framework membranes on porous polymer substrate using metal chelated polyaniline as interface layer
CN111282405A (zh) 一种改性金属有机骨架纳米片及其制备方法
CN110563992A (zh) 一种阳离子型金属有机骨架膜材料的制备方法
CN111589422B (zh) 一种金属有机骨架-离子液体复合材料的制备方法及其应用
CN114602336B (zh) 一种混合基质膜、蒸气诱导原位合成方法以及在h2/co2分离中的应用
CN114456339B (zh) 高离子基团含量共价有机框架膜、制备方法及其应用
US11254691B1 (en) Method for making metal organic frameworks and thin film nanocomposite membranes using the same
CN112934007B (zh) 一种zif-8前驱体转化制备zif-8/go复合气体分离膜的方法
CN108525526B (zh) 一种复合膜的制备方法
CN114642975B (zh) 一种金属-有机骨架混合基质膜及其制备方法及应用
Qian et al. High-performance ZIF-302 mixed-matrix membranes for efficient CO2 capture
CN113354830A (zh) 一种均一尺寸zif-8金属有机骨架材料的合成方法及其应用
KR102339456B1 (ko) 결정구조가 제어된 제올라이트 이미다졸레이트계 구조를 포함하는 나노입자 및 이의 제조 방법
CN113121834B (zh) 一种复合金属有机骨架材料及其制备方法
KR102062865B1 (ko) 기체 분리막 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant