CN114599450A - 包括被Ti和Zr取代的β沸石(*BEA)骨架的加氢裂化催化剂及其制备方法和用途 - Google Patents

包括被Ti和Zr取代的β沸石(*BEA)骨架的加氢裂化催化剂及其制备方法和用途 Download PDF

Info

Publication number
CN114599450A
CN114599450A CN202080069233.0A CN202080069233A CN114599450A CN 114599450 A CN114599450 A CN 114599450A CN 202080069233 A CN202080069233 A CN 202080069233A CN 114599450 A CN114599450 A CN 114599450A
Authority
CN
China
Prior art keywords
oil
catalyst
zeolite
hydrocracking
beta zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080069233.0A
Other languages
English (en)
Inventor
R.P.霍奇金斯
O.R.科塞奥格鲁
内田浩司
香川智靖
渡部光德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Consortium Legal Person Jccp International Oil And Gas Cooperation Agency
JGC Catalysts and Chemicals Ltd
Saudi Arabian Oil Co
Original Assignee
General Consortium Legal Person Jccp International Oil And Gas Cooperation Agency
JGC Catalysts and Chemicals Ltd
Saudi Arabian Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Consortium Legal Person Jccp International Oil And Gas Cooperation Agency, JGC Catalysts and Chemicals Ltd, Saudi Arabian Oil Co filed Critical General Consortium Legal Person Jccp International Oil And Gas Cooperation Agency
Publication of CN114599450A publication Critical patent/CN114599450A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7057Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7415Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/7815Zeolite Beta
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/18Crystalline alumino-silicate carriers the catalyst containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/36Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明涉及用于将含烃原料加氢裂化或加氢处理的方法。这经由使用包括*BEA骨架的β沸石的催化剂而实现,其中*BEA骨架中的铝原子的一部分已经被各自0.1–5.0wt%的Ti和Zr所取代,基于氧化物计算。

Description

包括被Ti和Zr取代的β沸石(*BEA)骨架的加氢裂化催化剂及 其制备方法和用途
相关申请
本申请要求2019年10月1日提交的序号16/589,719的美国专利申请的优先权,该申请的内容通过引用以其整体并入本文中。
技术领域
本发明涉及使用新催化组合物将烃原料加氢裂化的方法。具体地,催化组合物包括*BEA沸石且还包括至少一种活性相金属,其中沸石骨架中的铝离子的一部分已经被两者均为0.1-5质量%的钛和锆所取代,基于氧化物计算,所述至少一种活性相金属具有加氢和/或加氢脱硫和/或加氢脱氮功能。
背景技术
多年来,包含沸石以及钛和锆的一者或两者(其中金属负载在介孔上)的催化剂用于处理尾油(残油)。参见例如日本未审专利申请公布No.2000-334305、2002-255537和2003-226519。也参见通过引用并入的美国专利No.10,293,332和9,221,036。
日本专利申请公布No.2000-334305教导了包括沸石载体上的活性相金属的加氢裂化催化剂。载体包含已经与介孔内表面结合的钛或锆氧化物的超细颗粒。Al对Si的原子比为0.01-0.1,等于20-200的SiO2/Al2O3摩尔比或“SAR”。这些催化剂通过将含介孔的沸石与Ti或Zr氧化物的水溶液在0.8-2的pH下结合而制备。然后,将沸石洗涤、干燥和在400-600℃下烧制。
“255537”公开物教导具有高介孔含量和0.01-0.2的Al对Si的原子比(10-200的SAR)的沸石,其中介孔体积的30-50%具有
Figure BDA0003574864210000011
的孔径。介孔具有0.14cc/g或更多的体积,其中Al原子的25%或更多为四配位的。不容易还原的Ti或Zr氧化物的超细颗粒与沸石介孔内表面结合。其充当活性相金属的载体。该催化剂的制造工艺与“334305”申请的催化剂的制造工艺的类似之处在于,将沸石在0.8-2的pH下与Ti或Zr氧化物的水溶液接触、随后在50–200℃干燥且在350–600℃烧制。
“226519”申请也教导加氢裂化催化剂,其中FAU(八面沸石)结构的沸石包含Ti、Zr或Hf。金属含量为0.1–10重量%(基于元素计算),Al/Si原子比为0.01-0.1(SAR为20-200),且还包含活性相金属。FAU沸石具有
Figure BDA0003574864210000021
Figure BDA0003574864210000022
的晶格常数。该制备类似于上述催化剂的制备。
然而,在这些加氢裂化催化剂中,介孔被原料中存在的金属例如钒和镍堵塞,并因此这些催化剂在没有任何事先的保护性加氢脱金属层的情况下不适合于重烃油例如VGO和DAO或其它的基于石油的烃原料的加氢处理(或加氢裂化)。
如通过引用以其整体并入的WO2007/032232中公开的,包括Y-型沸石作为载体的加氢裂化催化剂包含引入到沸石骨架中的钛原子。(换言之,已经开发其中构成骨架的铝原子的一部分被钛原子取代的Y-型沸石)。以上沸石可通过将Y-型沸石用pH为1.5或更小的含钛的酸性水溶液处理、之后过滤、洗涤和干燥而制备。于是,可使沸石包含引入到沸石骨架结构中的钛原子而不堵塞介孔。该文献述及,当包括作为载体的以上沸石的加氢裂化催化剂用于将重烃油加氢裂化时,中间馏分的产率因重烃油容易扩散到介孔中而改善。
美国专利No.10,081,009(其公开内容通过引用以其整体并入)教导,可处理具有FAU骨架的USY沸石以替换其沸石骨架中的铝的一部分,且该铝可替换为两者均为0.1-5.0wt%的Ti和Zr,其中重量百分比基于氧化物计算。发现,所得的催化剂可尤其用于将原料例如烃油加氢处理和加氢裂化中。催化剂提供高产率的中间馏分。
还有,参见公布的美国专利申请US 2015/0375218,也通过引用以其整体并入。美国公布的专利申请US 2013/0319910也通过引用并入。这些公布的专利申请均采用具有以上讨论的骨架取代的USY催化剂。
β沸石在催化领域中是已知的,虽然在加氢处理或加氢裂化的场合中并非如此。美国专利No.4,826,586例如教导在流化催化裂化(FCC)工艺中使用β沸石的可能性。FCC工艺的实施条件与加氢裂化/加氢处理中使用的条件大为不同,且技术人员未将这些工艺作为等同物对待。与加氢裂化/加氢处理相比,FCC工艺还不使用氢。也参见CN 106145136(教导β沸石的改性)以及CN 104549543和CN 106140289。在各情形中,制备方法使得如下明晰:将金属包括在沸石中的工艺(过程)是离子交换而不是骨架取代,导致与其中骨架取代发生的催化剂不等同的催化剂。
美国专利No.6,063,944教导将钛插入到β沸石中,但未提到Zr。还有,参见美国专利No.6,017,840,教导将金属浸渍到β沸石中而没有骨架取代。就这点,还有Reddy等人的Studies in Surface Science and Catalysts,94:309-316(1995)和Hamdy等人的Mol.Catalysts,441:140-149(2017),以及Rakshe等人的J.Catalysis,188:252-260(1999),讨论了用Zr而非Ti的改性。
本发明的目的在于,提供改善期望产物例如中间馏分的产率的加氢裂化或加氢处理方法。这通过将美国专利No.10,081,009的具有FAU骨架的USY沸石替换为具有*BEA骨架的β沸石而实现。
附图说明
图1呈现显示本发明催化剂的结构完整性的XRD数据。
图2描绘基础沸石和本发明的最终催化剂的UV-Vis谱图。
图3以图表显示基于USY的催化剂和本发明的*BEA催化剂之间的总酸度和酸度强度的差。
具体实施方式
本发明为用催化剂将基于石油的烃原料在加氢裂化条件下加氢裂化的方法,所述催化剂包括负载于载体上的活性相金属化合物,该载体包括具有*BEA骨架的β沸石,其中所述骨架中的铝原子的一部分已经被各自0.1–5wt%的Ti和Zr取代/替换,其中所述重量基于氧化物计算。任选地,0.1-5wt%的Hf也可用于取代Al。活性相金属包括Fe、Co、Ni、Rh、Pd、Ag、In、Pt、Au、Cr、Mo或W的一种或多种。在一些实施方式中,Ti和Zr的量为0.1–2.0质量%,基于氧化物计。在进一步实施方式中,存在的Hf的量为0.1–2.0质量%,基于氧化物计。
本发明的包含Ti和Zr原子的改性β沸石骨架优选地拥有以下特征的一个或多个、和最优选地全部:
(a)a=1.260-1.270nm、b=1.260-1.270nm和c=2.620-2.650nm的晶格常数;
(b)400-800m2/g、更优选地500–700m2/g的比表面积,和
(c)10-200(优选地10-100、和更优选地30-70)的就SiO2对Al2O3而言的摩尔比。
上面提到的“比表面积”与改性沸石本身相关,列出的所有的其它性质亦然。包含催化剂载体的沸石具有15-500m2/g、和更优选地150-450m2/g的比表面积。
在根据本发明的用于烃油的加氢裂化催化剂中,其比表面积优选地落在15-500m2/g、优选地150-400m2/g的范围内;具有
Figure BDA0003574864210000041
或更小的直径的孔体积优选地落在0.40-0.75ml/g的范围内;和活性相金属组分的量在0.01-40质量%、优选地10-35质量%的范围内,基于氧化物计。催化剂中的TiZrβ沸石的量在催化剂重量的1-80wt%、和优选地5-50wt%的范围内。在一些实施方式中,催化剂在无机载体、优选地包含氧化铝和二氧化硅的无机载体上。
本发明的加氢裂化催化剂的制造方法包括将具有*BEA骨架的β沸石的铝原子的一部分用锆原子和钛原子取代,之后在55–700℃的温度下烧制沸石,本发明的具有锆和钛原子的具有*BEA骨架的β沸石具有落在a=1.260-1.270nm、b=1.260-1.270nm和c=2.620-2.650nm的范围内的晶格常数,400-800m2/g的比表面积以及10-200、优选地10-100和更优选地30-70的SiO2对Al2O3摩尔比,由以上的烧制沸石制备具有在液体/固体方面5-15的质量比的悬浮体,向其中加入无机酸或有机酸使得以上悬浮体的pH小于2.0,随后加入锆化合物和/或钛化合物和将它们混合且然后中和该悬浮体。
在本发明的加氢裂化催化剂的另外制备方法中,如上所述的沸石用于制备具有在液体/固体沸石方面5-15的质量比的悬浮体,向其中加入无机酸或有机酸使得悬浮体的pH小于2.0,加入锆化合物和钛化合物,混合,和然后中和混合的溶液以得到催化剂。
本发明的第三方面为用上述的加氢裂化催化剂将基于石油的烃原料例如烃油在氢的存在和适当的反应条件下加氢裂化的方法。
优选地,根据本发明的将基于石油的烃原料加氢裂化的方法包括向作为流动反应器的加氢裂化设备的反应器器皿放置本发明的催化剂,且将具有300℃-833℃的沸点的原料在氢的存在下在300℃-450℃的反应器温度、4-30MPa氢压、0.1-10h-1液时空速(LHSV)和500-2500Nm3/m3氢/油比下处理。
优选地,根据本发明的将烃油加氢裂化的方法涉及用催化剂和在氢的存在下在330℃-450℃的反应器温度、7-15Mpa的氢压、0.2-1.5h-1的液时空速(LHSV)和1000-2000Nm3/m3的氢/油比下处理具有375-650℃沸点的原料以产生中间馏分。优选地,该中间馏分富含煤油和瓦斯油。
在根据本发明的将烃油加氢裂化的方法中,上述的流动反应器优选地为选自搅拌浴型反应器、沸腾床型反应器、装备挡板的浆浴型反应器、固定床型反应器、旋转管型反应器和浆床型反应器的流动反应器。
在根据本发明的将石油原料加氢裂化的方法中,上述的烃原料优选地包含得自(1)原油、(2)合成原油、(3)沥青、(4)油砂、(5)地壳油(shell oil)或(6)煤液体的精制油。
在根据本发明的将烃油加氢裂化的方法中,上述的烃油包含得自原油、合成原油、沥青、油砂、地壳油或煤液体的精制油,且以上的精制油优选为a)减压瓦斯油(VGO)、b)得自溶剂脱沥青工艺的脱沥青油(DAO)或去金属化油、c)得自焦化工艺的轻质焦化瓦斯油或重质焦化瓦斯油、d)得自流化催化裂化(FCC)工艺的循环油或e)得自减粘裂化工艺的瓦斯油的任意种。
根据本发明的用于烃油的加氢裂化催化剂包括负载在包含*BEA型β沸石的载体上的氢化金属组分,该*BEA型β沸石的构成其骨架的铝原子的一部分被锆原子和钛离子所取代。
因此,与常规的加氢裂化催化剂相比,本发明的加氢裂化催化剂使得易于将重烃例如VGO、DAO等扩散到其介孔中。
图3显示用于确定本发明和现有技术的催化剂的酸度的测试结果。
实施例1
使用具有28.5的二氧化硅/氧化铝比率(下文中的“SAR”)的*BEA骨架的β沸石。将总共51.4g的该沸石悬浮在450g去离子水中且加热至40℃。将总共14.8g的H2SO4(25wt%)与10.0g的硫酸钛的水溶液(相当于5wt%TiO2)一起加入。该溶液包含8.48g去离子水和1.52g硫酸钛(相当于33wt%TiO2)。加入另外的硫酸锆水溶液(2.8g,构成18wt%ZrO2),且将混合物搅拌4小时,然后过滤和用1.5升去离子水洗涤。这在60℃下发生。将所得沸石在110℃下干燥以产生骨架取代的Ti/Zrβ沸石。
*BEA沸石在骨架取代之前和之后的XRD数据显示在图1中。可见,沸石的结构完整性仍然存在。
实施例2
分析*BEA沸石和骨架取代的*BEA沸石,且结果跟在表1中。
Figure BDA0003574864210000061
另外的数据显示在图2中,呈现原始β沸石和骨架取代的β沸石的UV-Vis谱图。看到Ti 4-配位物种和约250nm的波长。若6-配位物种存在,则将会预期迁移到更高的在约285nm处的波长。这并未发生,如图2所示。
实施例3
实施实验以测定氧化铝骨架被Ti和Zr取代将对沸石的酸度具有何种影响。
测试未改性的和通过Ti和Zr取代而改性的USY和*BEA沸石两者的酸度。
图3呈现这些结果,其中总酸度由柱(bar)高显示,而水平柱显示弱的(100-200℃.)、中等的(200-400℃.)和强的(400-500℃.)酸位点含量。
本发明的其它特征对于技术人员将会是显然的且不需要在此赘述。
已经采用的术语和表述用作描述而非限制术语,且不希望这样的术语和表述的使用排除显示和描述的特征或其部分的任何等同物,领会到在本发明范围内的各种改变是可能的。

Claims (23)

1.用于将含烃原料加氢裂化或加氢处理的方法,包括将所述原料与(i)催化剂和(ii)氢接触以加氢裂化或加氢处理所述原料,所述催化剂包括活性相金属和*BEA骨架的β沸石,其中所述*BEA骨架中的铝原子的一部分已经被0.1-5.0wt%的Ti原子和0.1-5.0wt%Zr原子所取代,所述wt%基于氧化物计算。
2.如权利要求1所述的方法,其中所述催化剂进一步包括0.1-5.0wt%的Hf原子,基于氧化物计算。
3.如权利要求1所述的方法,其中所述催化剂其中所述β沸石具有以下特征:
(a)a=1.260-1.270nm、b=1.260-1.270nm和c=2.620-2.650nm的晶格常数,
(b)400-800m2/g的比表面积,和
(c)10-200的SiO2对Al2O3摩尔比。
4.如权利要求1所述的方法,其中包含催化剂载体的所述沸石具有15-500m2/g的比表面积;在0.40-0.75ml/g范围内的具有600A或的直径的孔体积;和范围为0.01-40质量%的活性相金属组分的量。
5.如权利要求1所述的方法,进一步包括:
向作为流动反应器的反应器器皿填充加氢裂化催化剂;和
将具有300℃-833℃的沸点的原料在氢的存在下在300℃-450℃的反应器温度、4-30MPa的氢压、0.1-10h-1的液时空速(LHSV)和500-2500Nm3/m3的氢/油比下处理。
6.如权利要求5所述的方法,其中所述流动反应器为选自搅拌槽、沸腾床反应器、挡板浆槽、固定床反应器、旋转管式反应器和浆床反应器的流动反应器。
7.如权利要求5所述的方法,其中烃油包括得自(1)原油、(2)合成原油、(3)沥青、(4)油砂、(5)页岩油或(6)煤制油的精制油。
8.如权利要求5所述的方法,其中烃油包括得自原油、合成原油、沥青、油砂、页岩油或煤制油的精制油,且所述精制油为a)减压瓦斯油(VGO)、b)得自溶剂脱沥青工艺的脱沥青油(DAO)或去金属化油、c)得自焦化工艺的轻质焦化瓦斯油或重质焦化瓦斯油、d)得自流化催化裂化(FCC)工艺的循环油或e)得自减粘裂化工艺的瓦斯油。
9.如权利要求1所述的方法,进一步包括:向作为流动反应器的加氢处理设备填充加氢裂化催化剂;和将具有375℃-650℃的沸点的原料在氢的存在下在330℃-450℃的反应器温度、7-15MPa的氢压、0.2-1.5h-1的液时空速(LHSV)、和1000-2000Nm3/m3的氢/油比下处理以产生中间馏分。
10.如权利要求1所述的方法,其中所述β沸石包含各自0.1–2.0质量%的Ti和Zr,基于氧化物计。
11.如权利要求2所述的方法,其中所述β沸石包含0.1–2.0质量%Hf,基于氧化物计。
12.如权利要求1所述的方法,其中所述催化剂在无机载体上。
13.如权利要求12所述的方法,其中所述无机载体包括氧化铝和二氧化硅的至少一种。
14.如权利要求1所述的方法,其中所述β沸石具有10-100的SiO2对Al2O3摩尔比。
15.如权利要求14所述的方法,其中所述摩尔比为30-70。
16.如权利要求3所述的方法,其中所述表面积为500-700m2/g。
17.如权利要求12所述的方法,其中所述催化剂具有150-500m2/g的比表面积。
18.如权利要求17所述的方法,其中所述比表面积为150-450m2/g。
19.如权利要求1所述的方法,其中所述活性金属相组分包括0.01-40质量%的所述催化剂,基于氧化物计算。
20.如权利要求19所述的方法,其中所述活性金属相包括10-35质量%的所述催化剂,基于氧化物计算。
21.如权利要求1所述的方法,其中所述活性金属相金属包括Fe、Co、Ni、Rh、Pd、Ag、In、Pt、Au、Cr、Mo或W。
22.如权利要求1所述的方法,其中所述β沸石包括1-80质量%的所述催化剂。
23.如权利要求22所述的方法,其中所述沸石包括5-50质量%的所述催化剂。
CN202080069233.0A 2019-10-01 2020-09-24 包括被Ti和Zr取代的β沸石(*BEA)骨架的加氢裂化催化剂及其制备方法和用途 Pending CN114599450A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/589,719 US10941354B1 (en) 2019-10-01 2019-10-01 Hydrocracking catalyst comprising a beta zeolite (*BEA) framework substituted with Ti and Zr and methods for its preparation and use
US16/589,719 2019-10-01
PCT/US2020/052554 WO2021067119A1 (en) 2019-10-01 2020-09-24 Hydrocracking catalyst comprising a beta zeolite (*bea) framework substituted with ti and zr and methods for its preparation and use

Publications (1)

Publication Number Publication Date
CN114599450A true CN114599450A (zh) 2022-06-07

Family

ID=73043309

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080069233.0A Pending CN114599450A (zh) 2019-10-01 2020-09-24 包括被Ti和Zr取代的β沸石(*BEA)骨架的加氢裂化催化剂及其制备方法和用途

Country Status (6)

Country Link
US (1) US10941354B1 (zh)
EP (1) EP4041848A1 (zh)
JP (1) JP2022552136A (zh)
KR (1) KR20220073812A (zh)
CN (1) CN114599450A (zh)
WO (1) WO2021067119A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11332678B2 (en) 2020-07-23 2022-05-17 Saudi Arabian Oil Company Processing of paraffinic naphtha with modified USY zeolite dehydrogenation catalyst
US11274068B2 (en) 2020-07-23 2022-03-15 Saudi Arabian Oil Company Process for interconversion of olefins with modified beta zeolite
US11420192B2 (en) 2020-07-28 2022-08-23 Saudi Arabian Oil Company Hydrocracking catalysts containing rare earth containing post-modified USY zeolite, method for preparing hydrocracking catalysts, and methods for hydrocracking hydrocarbon oil with hydrocracking catalysts
US11154845B1 (en) 2020-07-28 2021-10-26 Saudi Arabian Oil Company Hydrocracking catalysts containing USY and beta zeolites for hydrocarbon oil and method for hydrocracking hydrocarbon oil with hydrocracking catalysts
US11142703B1 (en) * 2020-08-05 2021-10-12 Saudi Arabian Oil Company Fluid catalytic cracking with catalyst system containing modified beta zeolite additive
US11884615B2 (en) 2021-01-27 2024-01-30 Saudi Arabian Oil Company Modified beta zeolitic (*BEA) catalyst for isomerization of alkylated aromatics, and method for isomerization of alkylated aromatics
US11529625B2 (en) 2021-02-02 2022-12-20 Saudi Arabian Oil Company Method of producing an encapsulated hydroprocessing catalyst
US11529614B2 (en) 2021-02-02 2022-12-20 Saudi Arabian Oil Company Coated hydroprocessing catalyst
US11618858B1 (en) * 2021-12-06 2023-04-04 Saudi Arabian Oil Company Hydrodearylation catalysts for aromatic bottoms oil, method for producing hydrodearylation catalysts, and method for hydrodearylating aromatic bottoms oil with hydrodearylation catalysts

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063944A (en) * 1995-08-02 2000-05-16 Elf Aquitaine Method for preparing lattice-inserted titanium zeolites, and use thereof
US20130175202A1 (en) * 2010-08-02 2013-07-11 Saudi Arabian Oil Company Hydrocracking catalyst for hydrocarbon oil, method for producing hydrocracking catalyst, and method for hydrocracking hydrocarbon oil with hydrocracking catalyst
CN103521260A (zh) * 2013-10-18 2014-01-22 中国石油天然气集团公司 一种含有Ti-P-Beta分子筛的加氢裂化催化剂及其制备方法
US20150231615A1 (en) * 2011-12-22 2015-08-20 IFP Energies Nouvelles Catalyst comprising at least one zeolite nu-86, at least one zeolite usy and a porous mineral matrix and process for hydroconversion of hydrocarbon feeds using said catalyst
CN105457672A (zh) * 2014-09-11 2016-04-06 中国石油化工股份有限公司 加氢裂化催化剂及其制备方法和加氢裂化反应的方法
CN106145136A (zh) * 2015-04-16 2016-11-23 中国石油化工股份有限公司 一种改性β沸石及其制备方法
JP2017006921A (ja) * 2016-10-05 2017-01-12 サウジ アラビアン オイル カンパニー 炭化水素油用水素化分解触媒、水素化分解触媒の製造方法、及び水素化分解触媒を用いた炭化水素油の水素化分解方法
US20170043329A1 (en) * 2015-08-11 2017-02-16 Chevron U.S.A. Inc. Middle distillate hydrocracking catalyst containing zeolite usy, and zeolite beta with low acidity and large domain size
CN106660034A (zh) * 2014-05-22 2017-05-10 沙特阿拉伯石油公司 用于流化催化裂化的骨架取代沸石催化剂,和用于流化催化裂化的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4826586A (en) 1986-09-03 1989-05-02 Mobil Coil Corporation Single riser fluidized catalytic cracking process utilizing a C3-4 paraffin-rich co-feed and mixed catalyst system
US5866744A (en) * 1997-01-30 1999-02-02 Phillips Petroleum Company Process for converting a c9 + hydrocarbon to a C6 to C8 aromatic using a steamed, acid-leached, impregnated zeolite
US5905051A (en) * 1997-06-04 1999-05-18 Wu; An-Hsiang Hydrotreating catalyst composition and processes therefor and therewith
JP3341011B2 (ja) 1999-05-28 2002-11-05 独立行政法人産業技術総合研究所 触媒担体及び水素化用触媒
JP2002255537A (ja) 2001-02-22 2002-09-11 National Institute Of Advanced Industrial & Technology 固体酸触媒
JP4138325B2 (ja) 2002-02-06 2008-08-27 財団法人 国際石油交流センター 修飾ゼオライトおよびそれを用いた水素化処理触媒
EP1938898B1 (en) 2005-09-12 2019-06-12 Petroleum Energy Center Catalyst composition for hydrogenation treatment of hydrocarbon and hydrogenation treatment method
US7659437B2 (en) * 2006-04-21 2010-02-09 Exxonmobil Chemical Patents Inc. Process for methane conversion
US20130319910A1 (en) 2012-06-05 2013-12-05 Jgc Catalysts And Chemicals Ltd. Integrated process for deasphalting and desulfurizing whole crude oil
CN104549453B (zh) 2013-10-22 2017-02-01 中国石油化工股份有限公司 一种含锆的β沸石及其制备方法
CN104549543B (zh) 2013-10-29 2017-08-25 中国石油化工股份有限公司 氧化铝载体、由其制成的银催化剂及其应用
WO2015067657A1 (en) * 2013-11-05 2015-05-14 Basf Se Process for the oxidation of organic carbonyl compounds
CN106140289B (zh) 2015-04-16 2018-11-02 中国石油化工股份有限公司 一种含改性β沸石的裂化催化剂
US10787399B2 (en) * 2015-11-20 2020-09-29 Exxonmobil Chemical Patents Inc. Preparation and use of phenylstyrene

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063944A (en) * 1995-08-02 2000-05-16 Elf Aquitaine Method for preparing lattice-inserted titanium zeolites, and use thereof
US20130175202A1 (en) * 2010-08-02 2013-07-11 Saudi Arabian Oil Company Hydrocracking catalyst for hydrocarbon oil, method for producing hydrocracking catalyst, and method for hydrocracking hydrocarbon oil with hydrocracking catalyst
CN103269795A (zh) * 2010-08-02 2013-08-28 沙特阿拉伯石油公司 用于烃油的加氢裂化催化剂、用于生产加氢裂化催化剂的方法以及用加氢裂化催化剂加氢裂化烃油的方法
US20150231615A1 (en) * 2011-12-22 2015-08-20 IFP Energies Nouvelles Catalyst comprising at least one zeolite nu-86, at least one zeolite usy and a porous mineral matrix and process for hydroconversion of hydrocarbon feeds using said catalyst
CN103521260A (zh) * 2013-10-18 2014-01-22 中国石油天然气集团公司 一种含有Ti-P-Beta分子筛的加氢裂化催化剂及其制备方法
CN106660034A (zh) * 2014-05-22 2017-05-10 沙特阿拉伯石油公司 用于流化催化裂化的骨架取代沸石催化剂,和用于流化催化裂化的方法
CN105457672A (zh) * 2014-09-11 2016-04-06 中国石油化工股份有限公司 加氢裂化催化剂及其制备方法和加氢裂化反应的方法
CN106145136A (zh) * 2015-04-16 2016-11-23 中国石油化工股份有限公司 一种改性β沸石及其制备方法
US20170043329A1 (en) * 2015-08-11 2017-02-16 Chevron U.S.A. Inc. Middle distillate hydrocracking catalyst containing zeolite usy, and zeolite beta with low acidity and large domain size
CN108055832A (zh) * 2015-08-11 2018-05-18 雪佛龙美国公司 含有USY沸石和具有低酸度和大晶畴尺寸的β沸石的中间馏分加氢裂化催化剂
JP2017006921A (ja) * 2016-10-05 2017-01-12 サウジ アラビアン オイル カンパニー 炭化水素油用水素化分解触媒、水素化分解触媒の製造方法、及び水素化分解触媒を用いた炭化水素油の水素化分解方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周炜, 淳远, 须沁华, 王程, 董家: "新型液固相同晶取代法制备Ti-β沸石", 高等学校化学学报, vol. 25, no. 01, pages 16 - 20 *

Also Published As

Publication number Publication date
WO2021067119A1 (en) 2021-04-08
KR20220073812A (ko) 2022-06-03
EP4041848A1 (en) 2022-08-17
US10941354B1 (en) 2021-03-09
US20210095213A1 (en) 2021-04-01
JP2022552136A (ja) 2022-12-15

Similar Documents

Publication Publication Date Title
CN114599450A (zh) 包括被Ti和Zr取代的β沸石(*BEA)骨架的加氢裂化催化剂及其制备方法和用途
US10030202B2 (en) Mesoporous composite of molecular sieves for hydrocracking of heavy crude oils and residues
JP6022454B2 (ja) 炭化水素油用水素化分解触媒、水素化分解触媒の製造方法、及び水素化分解触媒を用いた炭化水素油の水素化分解方法
CN115052678A (zh) 制造加氢裂化催化剂
JP2023535563A (ja) 炭化水素油のためのusyおよびベータゼオライトを含有する水素化分解触媒、並びに水素化分解触媒で炭化水素油を水素化分解する方法
JP2023537671A (ja) 事後修飾されたusyゼオライトを含有する、希土類含有水素化分解触媒、水素化分解触媒を調製する方法、および水素化分解触媒で炭化水素油を水素化分解する方法
JP2008297471A (ja) 接触改質ガソリンの製造方法
US3546094A (en) Hydrotreating catalyst and process
JP6382275B2 (ja) 高沸点留分含有炭化水素油用水素化分解触媒、高沸点留分含有炭化水素油用水素化分解触媒の製造方法、及び水素化分解触媒を用いた炭化水素油の水素化分解方法
JP2020514455A (ja) 水素化分解プロセスのための触媒充填の最適化方法
US3535225A (en) Hydrocarbon conversion catalyst and process using said catalyst
WO2016069071A2 (en) Middle distillate hydrocracking catalyst containing highly a stabilized y zeolite with enhanced acid site distribution
EP3212327A1 (en) Middle distillate hydrocracking catalyst containing highly nanoporous stabilized y zeolite
AU608389B2 (en) Heavy oil cracking process
US3535227A (en) Hydrocarbon conversion catalyst comprising an ultra - stable crystalline zeolitic molecular sieve component,and methods for making and using said catalyst
US11998898B1 (en) Hydrocracking catalyst for hydrocarbon oil including titania binder and phosphorous active component, method for producing hydrocracking catalyst, and method for hydrocracking hydrocarbon oil
CN114479927B (zh) 一种加氢装置及其加氢方法
US20240173704A1 (en) Hydrocracking catalyst for hydrocarbon oil including titania binder and phosphorous active component, method for producing hydrocracking catalyst, and method for hydrocracking hydrocarbon oil
JP2023543547A (ja) 炭化水素油を水素化分解するための改質された大結晶性usyゼオライト
JP2000265175A (ja) 軽油留分の水素化脱硫方法
JPH0925488A (ja) 残留炭化水素油の変換方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Saudi Aramco

Applicant after: SAUDI ARABIAN OIL Co.

Applicant after: JGC CATALYSTS AND CHEMICALS Ltd.

Applicant after: General Consortium Legal Person JCCP International Agency for Oil, Gas, and Sustainable Energy Cooperation

Address before: Saudi Aramco

Applicant before: SAUDI ARABIAN OIL Co.

Applicant before: JGC CATALYSTS AND CHEMICALS Ltd.

Applicant before: General consortium legal person JCCP international oil and Gas Cooperation Agency