CN114570378A - CeO2包覆Ni的纳米管光热复合催化剂及制法和应用 - Google Patents

CeO2包覆Ni的纳米管光热复合催化剂及制法和应用 Download PDF

Info

Publication number
CN114570378A
CN114570378A CN202210187353.1A CN202210187353A CN114570378A CN 114570378 A CN114570378 A CN 114570378A CN 202210187353 A CN202210187353 A CN 202210187353A CN 114570378 A CN114570378 A CN 114570378A
Authority
CN
China
Prior art keywords
ceo
psnts
preparation
photo
composite catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210187353.1A
Other languages
English (en)
Inventor
刘向雷
史航
宣益民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202210187353.1A priority Critical patent/CN114570378A/zh
Publication of CN114570378A publication Critical patent/CN114570378A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种用于光热驱动甲烷‑二氧化碳重整的CeO2包覆Ni的硅酸盐纳米管催化剂及其制备方法和应用。首先采用水热法制备了包Ni的的层状硅酸盐前驱体(Ni‑psnts),然后再使用沉淀法在Ni‑psnts上沉积一层CeO2薄层,然后经过高温煅烧和H2还原后制备得到Ni‑psnts@CeO2。在全波段光谱氙灯辐照下,该催化剂具有优异的吸光性能和非常好的光热催化CH4‑CO2重整催化活性及稳定性。本发明制备方法简单,生产成本低,用该方法制备的催化剂为太阳能驱动温室气体(CH4和CO2)减排和绿色能源转化等领域奠定了良好的基础。

Description

CeO2包覆Ni的纳米管光热复合催化剂及制法和应用
技术领域
本发明属于能源材料领域,尤其涉及一种CeO2包覆Ni的硅酸盐纳米管光热复合催化剂的制备方法及其应用。
背景技术
随着世界经济的快速发展与全球工业化的推进,化石能源在过去的几百年里被过度的开采与使用。由于化石能源的过度使用,人类已经向大气中排放了太多的温室气体(CH4,CO2),它们被认为是造成全球变暖的原因。CH4-CO2重整技术可以将CH4与CO2两种温室气体作为原料转化为具有更高附加值的H2和CO合成气。而以太阳能驱动的光热CH4-CO2重整技术具有更广阔的发展前景,因为该技术不仅具备传统CH4-CO2催化技术的优势,同时还能够避免温室气体的二次排放,利用清洁可再生的太阳能作为能量输入,实现太阳能到化学能的存储与利用。
早在20世纪90年代,多个国际组织报道了人类活动,尤其是温室气体的排放是全球变暖的主要原因。同一时期,Aschoft等人发表了他们在CH4-CO2重整领域的研究成果,CO2-CH4重整反应开始引起人们的广泛关注。经过20多年的研究,目前普遍认同CH4-CO2重整反应的主要活性组分集中在除金属锇(Os)外的第Ⅷ族金属元素(Rh、Ru、Ir、Pt、Pd、Fe、Co、Ni)。其中Ni金属因其储量丰富、价格低、活性高被认为是CH4-CO2重整工业应用最理想的催化剂。但是由于实现C-H键的活化在热力学和动力学上都面临着巨大的挑战,需要在较高的温度下才能实现,而Ni金属在高温下容易因烧结和积碳而失活,所以设计新的催化剂体系,保持催化剂高的活性,提高镍基催化剂的稳定性依然是研究的重点。目前的研究认为积碳是热力学上不可避免的问题,所以如何提升催化剂消除积碳的速率成为减少积碳的关键,当前的研究表明了具有氧化还原特性的氧化物载体(如CeO2)对抑制积碳生长有较好的帮助。另一方面,使用太阳能辅助Ni基催化剂进行CH4-CO2重整反应,利用Ni纳米颗粒的局部表面等离子体效应减少积碳行为的研究也有报道,虽然目前内在的机理尚不清晰,但是太阳能对CH4-CO2重整反应的促进作用值得研究。因此,我们选用以CeO2包覆Ni的硅酸盐纳米管催化剂作为光热催化CH4-CO2重整反应的研究对象。
发明内容
发明目的:本发明的目的在于提供一种用于光热CH4-CO2重整反应的高效、稳定的新型催化剂的制备方法,先采用水热法合成Ni-psnts前驱体,然后用沉淀法在前驱体上沉积一层CeO2薄层,经过高温煅烧还原后制备出Ni-psnts@CeO2。本发明的另一个目的是提供上述催化剂的应用,在全波段的氙灯光源辐照下,该催化剂具有很高的光热CH4-CO2催化重整活性和稳定性。该方法对环境、能源和材料等交叉学科领域具有广泛的实用价值和应用研究前景。。
技术方案:本发明的CeO2包覆Ni的光热复合催化剂Ni-psnts@CeO2,所述催化剂包括负载在层状硅酸盐纳米管psnts载体上的活性组分Ni和包覆在外层的助催化剂壳层CeO2
进一步地,所述活性组分Ni的粒径为7-9nm。
本发明还公开一种CeO2包覆Ni的光热复合催化剂Ni-psnts@CeO2的制备方法,包括如下步骤:
步骤(1):将硝酸镁和硝酸镍溶解在去离子水中超声处理10~20min,然后持续搅拌形成均匀的盐溶液;偏硅酸钠溶解在去离子水中超声处理15~30min形成溶液并将其添加到上述盐溶液中,继续搅拌形成悬浊液;
步骤(2):将氢氧化钠溶解在去离子水中超声处理5~10min形成碱性溶液,将其加入到步骤(1)所述的正在搅拌的悬浊液中,再持续搅拌20~30min;然后将搅拌完成后的液体转移到带有聚四氟乙烯内衬的高压反应釜中高温处理;将所得沉淀物离心收集并使用去离子水和乙醇交替洗涤三次后干燥得到Ni-psnts前驱体;
步骤(3)称取一定量的Ni-psnts前驱体和硝酸铈加入到乙醇溶液中超声分散;将一定量的乌洛托品溶解在去离子水中并加入到上述乙醇溶液中,然后将混合溶液转移到水浴锅中加热;将得到的沉淀物离心收集并使用水和乙醇交替洗涤,然后干燥、煅烧、还原后得到最终产物。
进一步地,步骤(1)中,所述的硝酸镁和硝酸镍的摩尔量之和(Ni+Mg)与偏硅酸钠的摩尔量(Si)的比值为1~1.5。
进一步地,步骤(2)中,所述的氢氧化钠摩尔量为偏硅酸钠的15~20倍,悬浊液在加热前的pH>14,加热后的pH>11。
进一步地,步骤(2)中,所述的高温处理温度为150~250℃,处理时间为24~48h,干燥温度为60~120℃,干燥时间为8~12h。
进一步地,步骤(3)中,所述的每克Ni-psnts对应的硝酸铈添加量为1.65~1.98g,对应乙醇使用量为300~500ml。
进一步地,步骤(3)中,所述每克Ni-psnts对应的乌洛托品添加量为10~15g,对应的去离子水使用量为50~75ml。
进一步地,步骤(3)中,所述水浴加热温度为60~100℃,加热时间为5~10h;所述的干燥温度为60~100℃,煅烧温度为600~700℃,还原温度为600~750℃,还原气氛为氢气,所有升温速率均为1~5℃/min。
一种如上所述的用于光热催化CH4-CO2重整反应的光热复合催化剂的应用:复合光热催化剂在氙灯模拟的太阳光下表现出很高的光热催化活性和稳定性,持续反应100h后CO产率为120.9mmol·g-1·min-1,H2产率为136.8mmol·g-1·min-1
光热催化CH4-CO2重整反应制备太阳能燃料的具体步骤如下:
(1)在自制的内径为6mm的光热催化反应器中装入17mg Ni-psnts@CeO2复合催化剂,在12W聚光辐照下以81.5ml·min-1的流速通入体积含量为37.2/37.4/25.4%的CH4/CO2/N2混合气。
(2)将反应器出口的气体引入气相色谱中进行气体种类与含量分析,根据色谱检测图中峰面积的大小进行定量。
发明原理:本发明将助催化剂CeO2包覆在硅酸盐负载的Ni纳米颗粒外获得Ni-psnts@CeO2复合催化剂用于光热催化CH4-CO2重整反应。CeO2的包覆作用在一定程度上限制了Ni纳米颗粒的热运动,减缓了Ni颗粒的烧结问题;由于CeO2具有良好的氧化还原特性,能够利用其晶格氧气化Ni颗粒表面的碳物种减少积碳生成,同时利用其晶格氧缺陷加速CO2活化,这使得催化剂具有较高的催化活性和稳定性。Ni-psnts@CeO2上的光热催化则进一步降低了CH4-CO2重整反应的表观活化能,使得光热催化相比于同温度下的热催化具有更高的反应速率,因此具有更广阔的发展前景。
有益效果:与现有技术相比,本发明具有如下显著优点:
(1)该催化剂制备方法简单、成本低,能够以太阳能作为唯一能量驱动,实现集温室气体转化和太阳能燃料制备及太阳能存储一体化。避免了传统热催化的高耗能和温室气体二次排放问题,有利于环境保护和新能源开发。
(2)Ni-psnts@CeO2复合催化剂的生产工艺简单、成本低、有活性高、稳定性强。
附图说明
图1是psnts@CeO2、Ni-psnts和Ni-psnts@CeO2的光谱吸收图;
图2是前驱体Ni-psnts的SEM图;
图3是Ni-psnts@CeO2的SEM图;
图4是Ni-psnts和Ni-psnts@CeO2的XRD图;
图5是催化剂的光热催化CH4-CO2重整活性测试图;
图6是psnts@CeO2、Ni-psnts和Ni-psnts@CeO2的光热催化反应和生产速率图;
图7是Ni-psnts@CeO2在光照和黑暗条件下的催化活性随温度演化曲线。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
实施例1
催化剂的制备
(1)Ni-psnts催化剂的制备:
称取2.9486g的硝酸镁和1.1078g的硝酸镍溶解在55ml去离子水中超声处理10min,然后持续搅拌至形成均匀的盐溶液;接着将2.842g的偏硅酸钠溶解在25ml去离子水中超声处理15min形成溶液并将其添加到上述盐溶液中,继续搅拌30min形成悬浊液;然后将6.8g的氢氧化钠溶解在20ml去离子水中超声处理5min形成强碱性溶液,将其加入到上述的正在搅拌的悬浊液中形成碱性液体(Ph>14),再持续搅拌20min。然后将搅拌完成后的液体转移到带有聚四氟乙烯内衬的高压反应釜中190℃高温处理48h(Ph>11)。将所得沉淀物离心收集并使用去离子水和乙醇交替洗涤三次再60℃干燥10h得到Ni-psnts前驱体。然后将Ni-psnts前驱体转移至马弗炉中650℃煅烧6h,接着转移至管式炉中650℃氢气气氛中还原1h得到Ni-psnts催化剂。
(2)Ni-psnts@CeO2催化剂的制备:
称取500mg的Ni-psnts前驱体和990mg的硝酸铈放入150ml的乙醇溶液中,超声处理120min至形成悬浊液。然后,将5g的乌洛托品加入到20ml的去离子水中超声至完全溶解,接着在搅拌下将乌洛托品的水溶液滴加到上述的悬浊液中,然后将混合液体转移至水浴锅中70℃处理7小时。离心收集沉淀并使用去离子水和乙醇交替洗涤3次,然后转移至鼓风干燥箱中60℃干燥12h,再转移至马弗炉中600℃煅烧2h,最后转移至管式炉中在氢气气氛下650℃还原2h得到Ni-psnts@CeO2催化剂。
(3)psnts@CeO2催化剂的制备:
先制备不Ni的的psnts前驱体,将上述步骤(1)中的硝酸镍替换为相同摩尔量的硝酸镁,然后按照上述步骤(1)中的制备流程即可得到不Ni的的psnts前驱体;接着将上述步骤(2)中的Ni-psnts前驱体替换为psnts前驱体,再按照步骤(2)中的制备流程即可以得到psnts@CeO2催化剂。
实施例2
光热催化活性测试:
(1)在自制的内径为6mm的光热催化反应器中装入17mg催化剂,在12W聚光辐照下以81.5ml·min-1的流速通入体积含量为37.2/37.4/25.4%的CH4/CO2/N2混合气。
(2)将反应器出口的气体引入气相色谱中进行气体种类与含量分析,根据色谱检测图中峰面积的大小进行定量。
实施例3
热催化活性测试:
将0.017mg的催化剂置于管式炉中,以81.5ml·min-1的流速通入体积含量为37.2/37.4/25.4%的CH4/CO2/N2混合气,然后使用电加热升温(无光)到反应温度,将管式炉出口的气体引入气相色谱中进行气体种类与含量分析,根据色谱检测图中峰面积的大小进行定量。
从催化剂psnts@CeO2、Ni-psnts和Ni-psnts@CeO2的光谱吸收结果(图1)可以看出,不Ni的的psnts@CeO2在300~450nm范围内表现出较好的吸光效果,在450~2500nm波段的整体吸光性能较差,而含有Ni的Ni-psnts和Ni-psnts@CeO2在整个光谱范围内则具有较好的吸光性能,这是催化剂表面的Ni等离激元效应增强光谱吸收的结果。
从图2中的SEM图中可以看出,前驱体Ni-psnts呈纳米管状。
从图3中的SEM图中可以看出,纳米管外包裹了一层CeO2层,形成Ni-psnts@CeO2
从图4的XRD分析结果中可以看出,Ni-psnts中的金属Ni和载体的衍射峰明显,这说明Ni在催化剂中以金属相形式存在。但是Ni-psnts@CeO2中只有CeO2的衍射峰表现明显,几乎看不到Ni的衍射峰,这说明CeO2成功覆盖在Ni的表面。
从图5中可以看出,本实验除氙灯光源作为能量输入外不提供其他外热源,也就是说该反应完全由光热驱动。
从图6中可以看出,不Ni的的psnts@CeO2几乎不具备任何催化活性,而包裹了CeO2的Ni-psnts@CeO2则表现出最高的催化活性。
从图7中可以看出,在相同温度下,Ni-psnts@CeO2上的光热反应活性要高于黑暗条件下的热催化反应活性,这说明光热催化能够降低反应的活化能从而提升反应活性。

Claims (10)

1.一种CeO2包覆Ni的硅酸盐纳米管光热复合催化剂,其特征在于,所述催化剂包括负载在层状硅酸盐纳米管psnts载体上的活性组分Ni和包覆在外层的助催化剂壳层CeO2
2.根据权利要求1所述的CeO2包覆Ni的硅酸盐纳米管光热复合催化剂,其特征在于,所述活性组分Ni的粒径为7-9nm。
3.一种权利要求1所述的CeO2包覆Ni的硅酸盐纳米管光热复合催化剂的制备方法,其特征在于,包括如下步骤:
步骤(1):将硝酸镁和硝酸镍溶解在去离子水中超声处理10~20min,然后持续搅拌形成均匀的盐溶液;偏硅酸钠溶解在去离子水中超声处理15~30min形成溶液并将其添加到上述盐溶液中,继续搅拌形成悬浊液;
步骤(2):将氢氧化钠溶解在去离子水中超声处理5~10min形成碱性溶液,将其加入到步骤(1)所述的正在搅拌的悬浊液中,再持续搅拌20~30min;然后将搅拌完成后的液体转移到带有聚四氟乙烯内衬的高压反应釜中高温处理;将所得沉淀物离心收集并使用去离子水和乙醇交替洗涤三次后干燥得到Ni-psnts前驱体;
步骤(3)称取一定量的Ni-psnts前驱体和硝酸铈加入到乙醇溶液中超声分散;将一定量的乌洛托品溶解在去离子水中并加入到上述乙醇溶液中,然后将混合溶液转移到水浴锅中加热;将得到的沉淀物离心收集并使用水和乙醇交替洗涤,然后干燥、煅烧、还原后得到最终产物。
4.根据权利要求3所述的CeO2包覆Ni的硅酸盐纳米管光热复合催化剂的制备方法,其特征在于,步骤(1)中,所述的硝酸镁和硝酸镍的摩尔量之和与偏硅酸钠的摩尔量的比值为1~1.5。
5.根据权利要求3所述的CeO2包覆Ni的硅酸盐纳米管光热复合催化剂的制备方法,其特征在于,步骤(2)中,所述的氢氧化钠摩尔量为偏硅酸钠的15~20倍,悬浊液在加热前的pH>14,加热后的pH>11。
6.根据权利要求3所述的CeO2包覆Ni的硅酸盐纳米管光热复合催化剂的制备方法,其特征在于,步骤(2)中,所述的高温处理温度为150~250℃,处理时间为24~48h,干燥温度为60~120℃,干燥时间为8~12h。
7.根据权利要求3所述的CeO2包覆Ni的硅酸盐纳米管光热复合催化剂的制备方法,其特征在于,步骤(3)中,所述的每克Ni-psnts对应的硝酸铈添加量为1.65~1.98g,对应乙醇使用量为300~500ml。
8.根据权利要求3所述的CeO2包覆Ni的硅酸盐纳米管光热复合催化剂的制备方法,其特征在于,步骤(3)中,所述每克Ni-psnts对应的乌洛托品添加量为10~15g,对应的去离子水使用量为50~75ml。
9.根据权利要求3所述的CeO2包覆Ni的光热复合催化剂的制备方法,其特征在于,步骤(3)中,所述水浴加热温度为60~100℃,加热时间为5~10h;所述的干燥温度为60~100℃,煅烧温度为600~700℃,还原温度为600~750℃,还原气氛为氢气,所有升温速率均为1~5℃/min。
10.一种CeO2包覆Ni的硅酸盐纳米管光热复合催化剂在光热催化CH4-CO2重整反应中应用。
CN202210187353.1A 2022-02-28 2022-02-28 CeO2包覆Ni的纳米管光热复合催化剂及制法和应用 Pending CN114570378A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210187353.1A CN114570378A (zh) 2022-02-28 2022-02-28 CeO2包覆Ni的纳米管光热复合催化剂及制法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210187353.1A CN114570378A (zh) 2022-02-28 2022-02-28 CeO2包覆Ni的纳米管光热复合催化剂及制法和应用

Publications (1)

Publication Number Publication Date
CN114570378A true CN114570378A (zh) 2022-06-03

Family

ID=81776698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210187353.1A Pending CN114570378A (zh) 2022-02-28 2022-02-28 CeO2包覆Ni的纳米管光热复合催化剂及制法和应用

Country Status (1)

Country Link
CN (1) CN114570378A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116351430A (zh) * 2023-03-31 2023-06-30 中节能工程技术研究院有限公司 一种用于甲烷二氧化碳干重整的Ni-Ce基催化剂制备方法
CN116351430B (zh) * 2023-03-31 2024-06-07 中节能工程技术研究院有限公司 一种用于甲烷二氧化碳干重整的Ni-Ce基催化剂制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505810A (ja) * 2008-07-30 2012-03-08 ブラックライト パワー インコーポレーティド 不均一系水素触媒反応器
CN103101881A (zh) * 2013-02-04 2013-05-15 天津大学 抗烧结、抗积碳镍硅催化剂用于生物醇重整制氢的方法
US20160001269A1 (en) * 2014-07-07 2016-01-07 Council Of Scientific And Industrial Research PROCESS FOR THE PREPARATION OF Ni-CeMgAl2O4 CATALYST FOR DRY REFORMING OF METHANE WITH CARBON DIOXIDE
CN109529857A (zh) * 2018-12-10 2019-03-29 江苏大学 Ni@SiO2@CeO2核壳催化剂的制备方法及其在甲烷二氧化碳重整中的应用
CN112439420A (zh) * 2020-12-03 2021-03-05 南京航空航天大学 一种光热耦合甲醇蒸汽重整制氢复合催化剂的制备方法
CN112973703A (zh) * 2021-01-26 2021-06-18 南京航空航天大学 一种直接光热协同催化甲醇制氢的方法
CN113751012A (zh) * 2021-10-08 2021-12-07 成都碳为光止科技有限公司 一种催化剂的制备方法及其应用
CN113769751A (zh) * 2021-08-28 2021-12-10 西南石油大学 一种催化剂的制备方法及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505810A (ja) * 2008-07-30 2012-03-08 ブラックライト パワー インコーポレーティド 不均一系水素触媒反応器
CN103101881A (zh) * 2013-02-04 2013-05-15 天津大学 抗烧结、抗积碳镍硅催化剂用于生物醇重整制氢的方法
US20160001269A1 (en) * 2014-07-07 2016-01-07 Council Of Scientific And Industrial Research PROCESS FOR THE PREPARATION OF Ni-CeMgAl2O4 CATALYST FOR DRY REFORMING OF METHANE WITH CARBON DIOXIDE
CN109529857A (zh) * 2018-12-10 2019-03-29 江苏大学 Ni@SiO2@CeO2核壳催化剂的制备方法及其在甲烷二氧化碳重整中的应用
CN112439420A (zh) * 2020-12-03 2021-03-05 南京航空航天大学 一种光热耦合甲醇蒸汽重整制氢复合催化剂的制备方法
CN112973703A (zh) * 2021-01-26 2021-06-18 南京航空航天大学 一种直接光热协同催化甲醇制氢的方法
CN113769751A (zh) * 2021-08-28 2021-12-10 西南石油大学 一种催化剂的制备方法及其应用
CN113751012A (zh) * 2021-10-08 2021-12-07 成都碳为光止科技有限公司 一种催化剂的制备方法及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIAN, ZF ET AL.: ""Highly carbon resistant multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica for dry reforming of methane"", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
GUO, D ET AL.: ""Effects of extrinsic defects originating from the interfacial reaction of CeO2-x-nickel silicate on catalytic performance in methane dry reforming"", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
江仲开: ""Ni-CeO2/SiO2纳米复合物的制备及其甲烷干法重整催化性能的研究"", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116351430A (zh) * 2023-03-31 2023-06-30 中节能工程技术研究院有限公司 一种用于甲烷二氧化碳干重整的Ni-Ce基催化剂制备方法
CN116351430B (zh) * 2023-03-31 2024-06-07 中节能工程技术研究院有限公司 一种用于甲烷二氧化碳干重整的Ni-Ce基催化剂制备方法

Similar Documents

Publication Publication Date Title
CN110624550B (zh) 一种原位碳包覆的铜镍合金纳米颗粒光催化剂及其制备方法和应用
CN112774692B (zh) 一种Ru@Ni2V2O7高效光热协同催化剂及其制备方法和应用
CN107890870B (zh) 一种二氧化碳和水制甲烷催化剂及其制备方法和应用
CN111617790B (zh) 一种氮掺杂碳层包覆碳化钴锰复合材料及其应用
CN109746016A (zh) 金属性氮化镍/氮化碳纳米片光催化材料及制备方法和应用
CN113441159A (zh) 一种镍/碳化钛光热催化材料及其制备方法和应用
CN109603843A (zh) 一种核壳型催化剂及其制备方法和在重整制氢中的应用
Liu et al. CoNi bimetallic alloy cocatalyst-modified TiO2 nanoflowers with enhanced photocatalytic hydrogen evolution
CN112774682A (zh) 一种铝钴复合催化剂及其制备方法与应用
CN110756199A (zh) 一例基于硫化镍量子点的复合光催化剂的制备方法及应用
CN110386626A (zh) 一种氧化亚钴薄片、其制备方法和其在可见光催化全分解水中的应用
CN114452998B (zh) 一种多壁碳纳米管和石墨化氮化碳复合材料的制备方法及应用
CN114570378A (zh) CeO2包覆Ni的纳米管光热复合催化剂及制法和应用
CN113101946B (zh) 一种NiMoO4基Z-型异质结光催化剂及制备与应用
CN115193448A (zh) 不同形貌锌镉硫纳米材料的合成方法及其光催化产氢应用
CN111036270B (zh) 一种复合光催化材料及其制备方法
CN114289047A (zh) 一种氢氧化钴/氮化碳光催化材料及其制备方法和应用
CN113697783A (zh) 一种多孔g-C3N4纳米薄片的制备方法及其应用
CN114762829A (zh) 一种z型异质结光催化材料的简易制备方法
CN111589463A (zh) 一种碳化铁复合一氧化钛的纳米颗粒光热催化剂及其制备
CN116139868B (zh) 一种碳点负载NiAl LDH/In2O3复合光催化剂的制备方法及其应用
CN115430446B (zh) 一种CePO4/g-C3N4异质结材料及其制备方法和应用
CN112403476B (zh) 一种甲醇水蒸气裂解高效金属催化剂及其应用
CN114832825B (zh) 一种球壳分离双包覆结构催化剂的制备方法
CN116273124B (zh) 一种Ni-Ni2P-Ni5P4/g-C3N4光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220603

RJ01 Rejection of invention patent application after publication