CN113769751A - 一种催化剂的制备方法及其应用 - Google Patents

一种催化剂的制备方法及其应用 Download PDF

Info

Publication number
CN113769751A
CN113769751A CN202110999067.0A CN202110999067A CN113769751A CN 113769751 A CN113769751 A CN 113769751A CN 202110999067 A CN202110999067 A CN 202110999067A CN 113769751 A CN113769751 A CN 113769751A
Authority
CN
China
Prior art keywords
solution
catalyst
cerium oxide
solid powder
calcining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110999067.0A
Other languages
English (en)
Inventor
殷梓航
黄泽皑
刘禄瑜
何肖婷
冯芊玥
胡潇匀
张云熙
徐芸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN202110999067.0A priority Critical patent/CN113769751A/zh
Publication of CN113769751A publication Critical patent/CN113769751A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于催化剂领域,尤其涉及本发明属于催化剂制备技术领域,涉及一种催化剂的制备方法及其应用,该催化剂的制备方法包括如下步骤:1)称取六水硝酸铈固体粉末,溶解在水中进行超声,制得溶液A;称取氢氧化钠固体粉末,溶解在水中进行超声,制得溶液B,将溶液B逐滴滴入溶液A中,并在恒温状态下搅拌反应,直至产生乳白色沉淀,再进行水热合成法得到氧化铈;2)将步骤1)得到的氧化铈离心、洗涤、干燥、研磨与煅烧制得氧化铈粉末;3)将步骤2)制得的氧化铈粉体浸渍于镍盐溶液中,然后将浸渍处理后的产物,经过干燥、研磨与煅烧制备得到本发明催化剂。其制备方法简单易行,制备得到的催化剂可有效的应用于甲烷干重整光热催化。

Description

一种催化剂的制备方法及其应用
技术领域
本发明属于催化剂领域,尤其涉及一种催化剂的制备方法及所其应用。
背景技术
现阶段世界能源供应主要依靠于煤炭、石油、天然气等高含碳量的不可再生能源。此类能源利用效率较低,存在大量CO2等温室气体的排放,已引发严重的生态环境问题,如温室效应、全球范围内的气候异常变化。在当代全球化的经济背景下,能源需求常年呈现增长的趋势。可再生且低碳的新能源(如:太阳能、风能、生物质能、核能)供应量需求远超出传统能源。其中太阳光能有着能打破地域限制,无需特殊开采和运输的优点。基于以上优点,环境友好型的清洁能源,即太阳能的开发和利用具有战略性意义。
近年来,光热协同催化已被证明是传统热催化的一种可行替代方法。太阳能聚光催化转化的主要途径是聚集太阳光提供的光效应和热效应,提供高温下进行热化学过程中产生高的能量消耗,以此达到高效驱动催化反应的目的,是当前新型催化技术的研究核心之一,在能源的开发利用领域占据着一定地位。实现高效率太阳能聚光催化转化的核心之一是催化剂的制备。因此,设计和研发用于光驱动的催化剂是研发的聚焦点。
其中,碳中和是指企业、团体或个人在一定时间内直接或间接产生的二氧化碳排放总量,通过直接或间接手段,抵消掉自身产生的二氧化碳碳排放,达到“净零排放”的目的。
现阶段用于甲烷二氧化碳干重整反应过程的低温光热催化剂以贵金属负载型为主,多如贵金属铑(Rh),制备成本高,难以实现工业化。
发明内容
本发明为了解决上述技术问题提供一种催化剂的制备方法及其应用。其制备方法简单易行,制备得到的催化剂可有效的应用于甲烷干重整光热催化。
本发明解决上述技术问题的技术方案如下:一种催化剂的制备方法,包括如下步骤:
1)称取六水硝酸铈固体粉末,溶解在水中进行超声,制得溶液A;称取氢氧化钠固体粉末,溶解在水中进行超声,制得溶液B,将溶液B逐滴滴入溶液A中,并在恒温状态下搅拌反应,直至产生乳白色沉淀,再进行水热合成法得到氧化铈;
2)将步骤1)得到的氧化铈离心、洗涤、干燥、研磨与煅烧制得氧化铈粉末;
3)将步骤2)制得的氧化铈粉体浸渍于镍盐溶液中,然后将浸渍处理后的产物,经过干燥、研磨与煅烧制备得到本发明催化剂。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,所述步骤1)具体为如下步骤:
称取0.868g六水硝酸铈固体粉末,溶解在5mL去离子水中进行超声,制得溶液A;称取8.4g氢氧化钠固体粉末,溶解在35mL去离子水中进行超声,制得溶液B,将溶液B以32滴min-1的滴加速率滴入溶液A中,并在搅拌速率为250rmin-1,温度为35℃恒温状态下搅拌反应,直至产生乳白色沉淀,再进行水热合成法得到氧化铈。
进一步,在步骤3)中,所述干燥温度为60℃,干燥时间为12h,煅烧温度为350~500℃,煅烧时间为2h。
进一步,在步骤3)中,所述氧化铈粉末与镍盐溶液按照1g:50mL的用量比进行浸渍。
进一步,在步骤3)中,所述镍盐溶液的质量分数为1%~5%。
进一步,所述镍盐为硝酸镍。
本发明的另一个目的是,提供一种由上述方法所制备得到的Ni-CeO2光热催化剂在甲烷干重整反应的太阳能聚光催化中的应用。
所述的太阳能聚光催化甲烷干重整反应的温度为150-220℃,包括以下步骤:
(1)将基于太阳能聚光的催化剂放置于反应器中,使催化剂的上表面的垂直于聚光太阳光。
(2)在流动体系中,先通入氩气置换催化剂表面和气路中的空气,然后通入氧气,在加热器加热作用下反应30min,降至室温,随后通入氢气,在加热器加热作用下反应30min,降至室温。
(3)采用甲烷和二氧化碳为原料气,使甲烷:二氧化碳=1:1相混合,混合后的两种气体通入反应器里,反应器流通,使用聚光太阳光垂直照射光热催化材料的上表面,同时使用循环水机通过反应器内部,为光热催化剂降温,通过随后产物气体依次经过气相色谱仪和质谱仪,最后排出到外界系统。
(4)利用气相色谱检测方法,每隔30min检测流通反应体系中的气体,气体中检测到一氧化碳,氢气,甲烷和二氧化碳,并定量分析。同时,利用质谱检测方法,对气体实时定性检测分析。
本发明的基于上述催化剂的制备方法,首先得到具有低温活性的光热催化剂,大幅度地提升宽光谱太阳能的吸收能力。制备过程简单可行。
本发明采用浸渍法合成Ni-CeO2催化材料,相较于现有技术中贵金属催化剂而言,成本低廉。
本发明合成Ni-CeO2催化材料用于太阳能聚光催化甲烷干重整反应,相较于现有技术,将H2/CO的比值可以稳定在0.8~0.9之间,有利于费托合成工业化的应用。
本发明的有益效果是:本发明所制备的催化剂由镍和氧化铈两部分组成。所制备的六方纤锌矿结构氧化铈(CeO2)是一种直接带隙半导体材料,价带顶主要由O2p构成,导带底主要由Ce4s和Ce4p构成。当氧化铈吸收光子后,电子从价带直接跃迁到导带。通过引入纳米金属镍催化剂,实现反应驱动力来自光热效应,即热电子的转移和注入。镍基催化剂在甲烷干重整反应中具有与贵金属相当的催化活性。
具体实施方式
以下对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例1
1)称取0.868g六水硝酸铈(CeN3O9·6H2O)固体粉末,溶解在5mL去离子水中进行超声,制得溶液A;称取8.6g氢氧化钠(NaOH)固体粉末,溶解在35mL去离子水中,制得溶液B,将溶液B逐滴滴入溶液A中,速率为32滴min-1,并在恒温状态下搅拌,速率为250rmin-1,直至产生乳白色沉淀,再进行水热合成法得到二氧化铈;
2)二氧化铈离心处理四次,第一次离心后使用酒精洗涤,然后用去离子水洗涤数次,经过60℃干燥12小时,研磨和煅烧处理,制得二氧化铈粉末;
3)将制得的氧化铈粉体浸渍于质量分数为的5%镍盐溶液中,然后将浸渍处理后的产物,经过干燥,研磨和煅烧处理,煅烧温度为350~500℃,煅烧时间为2h。制备得到Ni-CeO2的太阳能聚光催化甲烷干重整的催化剂。
试验例
将上述实施例1中制备的5%Ni-CeO2光热催化剂用于甲烷干重整光热催化反应。取40mg Ni-CeO2光热催化剂于微型光热Harrick反应器中,通入惰性气体氩气,置换反应器及气路中的空气,关闭氩气。依次通入5%氧气 15min,然后打开加热器加热,当反应器内部温度达到450℃除去催化剂表面吸附的含碳物质,降到室温;再通入5%氢气15min,随后打开加热器加热,当反应器内部温度达到450℃活化催化剂,降至室温后,通入CH4/CO2混合气(1:1,10mL min-1)吸附1h,然后打开模拟太阳能的光源,开始反应。反应产物流入气相色谱和质谱进行分析。
Ni-CeO2用于太阳能聚光催化甲烷干重整的催化活性。通过对比可以发现:反应温度达到156℃,太阳能聚光催化的反应开始产生催化活性;而单纯的热催化,则反应温度需要达到216℃,才开始有明显的催化活性。光热催化,反应温度300℃,单次反应效率达到28%,反应温度350℃,单次反应效率达到32%。
由以上实验例可知,由此方法制备的Ni-CeO2太阳能聚光催化甲烷干重整的催化剂在低温反应下对甲烷干重整反应具有催化活性,相较于纯热催化,打破了热力学限制,显著提升催化活性。本发明不局限于以上实例,通过热处理工艺改变催化剂的晶粒结构,工艺制备条件以及反应条件,达到对传统光催化的修饰改性,使Ni-CeO2催化剂对太阳能聚光催化的甲烷干重整反应达到良好的效果。
本发明制备方法得到的Ni-CeO2光热催化剂。该催化剂在低温下对光驱动的甲烷干重整光热催化具有优异的催化效果。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种催化剂的制备方法,其特征在于,包括如下步骤:
1)称取六水硝酸铈固体粉末,溶解在水中进行超声,制得溶液A;称取氢氧化钠固体粉末,溶解在水中进行超声,制得溶液B,将溶液B逐滴滴入溶液A中,并在恒温状态下搅拌反应,直至产生乳白色沉淀,再进行水热合成法得到氧化铈;
2)将步骤1)得到的氧化铈离心、洗涤、干燥、研磨与煅烧制得氧化铈粉末;
3)将步骤2)制得的氧化铈粉体浸渍于镍盐溶液中,然后将浸渍处理后的产物,经过干燥、研磨与煅烧制备得到本发明催化剂。
2.根据权利要求1所述的催化剂的制备方法,其特征在于,所述步骤1)具体为如下步骤:
称取0.868g六水硝酸铈固体粉末,溶解在5mL去离子水中进行超声,制得溶液A;称取8.4g氢氧化钠固体粉末,溶解在35mL去离子水中进行超声,制得溶液B,将溶液B以32滴min-1的滴加速率滴入溶液A中,并在搅拌速率为250rmin-1,温度为35℃恒温状态下搅拌反应,直至产生乳白色沉淀,再进行水热合成法得到氧化铈。
3.如权利要求1所述的太阳能聚光催化甲烷干重整的催化剂的制备方法,其特征在于,在步骤3)中,所述干燥温度为60℃,干燥时间为12h,煅烧温度为350~500℃,煅烧时间为2h。
4.根据权利要求1所述的催化剂的制备方法,其特征在于,在步骤3)中,所述氧化铈粉末与镍盐溶液按照1g:50mL的用量比进行浸渍。
5.根据权利要求1所述的催化剂的制备方法,其特征在于,在步骤3)中,所述镍盐溶液的质量分数为1%~5%。
6.根据权利要求5所述的催化剂的制备方法,其特征在于,所述镍盐为硝酸镍。
7.一种如权利要求1-6任一项所述的催化剂的制备方法所得的催化剂在甲烷干重整光热催化中的应用。
CN202110999067.0A 2021-08-28 2021-08-28 一种催化剂的制备方法及其应用 Pending CN113769751A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110999067.0A CN113769751A (zh) 2021-08-28 2021-08-28 一种催化剂的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110999067.0A CN113769751A (zh) 2021-08-28 2021-08-28 一种催化剂的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN113769751A true CN113769751A (zh) 2021-12-10

Family

ID=78839752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110999067.0A Pending CN113769751A (zh) 2021-08-28 2021-08-28 一种催化剂的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN113769751A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114192152A (zh) * 2022-01-03 2022-03-18 西南石油大学 抗碳沉积光热催化甲烷干重整催化剂及其制备方法与用途
CN114570378A (zh) * 2022-02-28 2022-06-03 南京航空航天大学 CeO2包覆Ni的纳米管光热复合催化剂及制法和应用
CN114733528A (zh) * 2022-03-29 2022-07-12 中国科学院兰州化学物理研究所 一种镍/氧化铈催化剂的制备方法与应用
CN114920279A (zh) * 2022-05-09 2022-08-19 西南石油大学 一种氧载体用于低温氧化甲烷制氢的制备方法与应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114192152A (zh) * 2022-01-03 2022-03-18 西南石油大学 抗碳沉积光热催化甲烷干重整催化剂及其制备方法与用途
CN114570378A (zh) * 2022-02-28 2022-06-03 南京航空航天大学 CeO2包覆Ni的纳米管光热复合催化剂及制法和应用
CN114733528A (zh) * 2022-03-29 2022-07-12 中国科学院兰州化学物理研究所 一种镍/氧化铈催化剂的制备方法与应用
CN114920279A (zh) * 2022-05-09 2022-08-19 西南石油大学 一种氧载体用于低温氧化甲烷制氢的制备方法与应用
CN114920279B (zh) * 2022-05-09 2023-10-24 西南石油大学 一种氧载体用于低温氧化甲烷制氢的制备方法与应用

Similar Documents

Publication Publication Date Title
Mao et al. Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide–A review
CN113769751A (zh) 一种催化剂的制备方法及其应用
CN104016825A (zh) 一种利用太阳光和光热催化剂直接转化二氧化碳制备有机燃料的技术
CN112774692B (zh) 一种Ru@Ni2V2O7高效光热协同催化剂及其制备方法和应用
CN101757943B (zh) 二氧化碳加氢合成甲醇的催化剂及其制备方法和应用
CN110721678A (zh) 一种光热耦合催化CO2甲烷化的Ru基催化剂
Zhao et al. Advances and perspectives of photopromoted CO2 hydrogenation for methane production: catalyst development and mechanism investigations
CN110711582A (zh) 一种催化剂、制备方法及其应用
CN109794245A (zh) 一种蜂窝状铁基加氢催化剂(Fe3O4@C)/C及其制备方法和应用
CN105771974A (zh) 一种室温催化甲酸盐分解产氢的催化剂
CN114054036A (zh) 一种催化剂的制备方法及其应用
Mateo et al. Challenges and opportunities for the photo-(thermal) synthesis of ammonia
Guo et al. CATALYTIC STEAM REFORMING OF ETHANOL FOR HYDROGEN PRODUCTION OVER Ni/CeO 2-ZrO 2 CATALYSTS.
CN112604691A (zh) 一种逆水煤气变换催化剂及其制备方法和应用
CN113941334A (zh) 太阳能聚光催化甲烷干重整催化剂及其制备方法与用途
CN111377398B (zh) 生物质热解气化制取氢气和一氧化碳的方法
CA2851377A1 (en) Methanation catalyst of carbon dioxide, preparation method and usage of same
CN112619644A (zh) 一种以四方钛酸钡为载体的Ru基催化剂及其制备与应用
Yu et al. Solar Energy‐Driven Reverse Water Gas Shift Reaction: Photothermal Effect, Photoelectric Activation and Selectivity Regulation
Kaskun Hydrogen Production from Sawdust Pyrolysis Catalysed by TiO2 Impregnated Al2O3 Nanoparticles
Zhou Study on Hydrogen Production From Solar Biomass Based on Fe-Ce Catalyst
CN115106092B (zh) 一种高效光热协同催化剂Ni/CeNiO3的制备及其应用
CN115999641B (zh) 一种CeO2@Cu-TCPP复合光催化剂及其制备方法和应用
Epelle et al. Advances in Thermochemical Hydrogen Production Using Nanomaterials: An Analysis of Production Methods, Challenges, and Opportunities
CN110240119B (zh) 一种双金属光催化剂及生物醇液相重整制氢方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication