CN110240119B - 一种双金属光催化剂及生物醇液相重整制氢方法 - Google Patents

一种双金属光催化剂及生物醇液相重整制氢方法 Download PDF

Info

Publication number
CN110240119B
CN110240119B CN201910632680.1A CN201910632680A CN110240119B CN 110240119 B CN110240119 B CN 110240119B CN 201910632680 A CN201910632680 A CN 201910632680A CN 110240119 B CN110240119 B CN 110240119B
Authority
CN
China
Prior art keywords
metal component
biological alcohol
hydrogen
hydrogen production
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910632680.1A
Other languages
English (en)
Other versions
CN110240119A (zh
Inventor
郑占丰
王瑞义
谷献模
马鹏伟
裴林娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Institute of Coal Chemistry of CAS
Original Assignee
Shanxi Institute of Coal Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Institute of Coal Chemistry of CAS filed Critical Shanxi Institute of Coal Chemistry of CAS
Priority to CN201910632680.1A priority Critical patent/CN110240119B/zh
Publication of CN110240119A publication Critical patent/CN110240119A/zh
Application granted granted Critical
Publication of CN110240119B publication Critical patent/CN110240119B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及氢能制备相关技术领域,具体是一种双金属光催化剂及生物醇液相重整制氢方法,旨在解决现有光催化生物醇液相重整制氢技术存在的反应温度高、催化效率低的技术问题。所述催化剂为γ‑Al2O3负载的双金属纳米颗粒,其中,金属组分一为Pt或Pd或Ni,金属组分二为Au或Ag或Cu,双金属的总负载量为1~5wt%,金属组分一与金属组分二的质量比为1:0.2~15。所述制氢方法依次包括以下几个步骤:S1、以生物醇和水为反应物,所述生物醇与水的体积比为1:1~10;S2、添加催化剂,所述催化剂的使用量为总反应物的1.0~5.0 wt%;S3、加热,至温度为130~170℃;S4、采用光照强度为0.1~0.5 W/cm2的可见光持续照射1‑10 h;S5、收集氢气。

Description

一种双金属光催化剂及生物醇液相重整制氢方法
技术领域
本发明涉及氢能制备相关技术领域,具体是一种双金属光催化剂及生物醇液相重整制氢方法。
背景技术
由于化石能源的大量开发和使用,导致了全球日趋严重的能源和环境危机,因此迫切需要寻找清洁、可再生的能源以替代化石能源。氢能是具有广阔发展前景的理想能源,具有以下特点:1)燃烧热值高于其他碳氢燃料;2)燃烧产物是水,清洁环保;3)来源广泛,储量丰富;4)能量形式多样,可以作为内燃机中的替代燃料,也可以通过燃料电池转换成电能。开发氢能对于经济高速增长、能源消耗与日俱增、且能源进口依赖较大的我国具有十分重要的战略意义。
氢源和成本问题是制约氢能实用化的瓶颈,因为目前氢气的主要来源(96%)仍是煤、石油、和天然气等化石燃料制取的,这不仅使大气CO2排放量不断增加,也无法满足能源可持续发展的要求。要想利用氢能,必须发展从可再生能源制氢的高效途径。目前的非化石资源制氢方法包括电解水制氢、太阳能制氢以及生物质制氢等,其中生物质制氢因为生物质是绿色可再生资源、污染小被认为是非常具有潜力的一个方向。
生物质制氢主要包括高温热裂解制氢(直接路线)和重整制氢(间接路线) 两条路线。高温裂解制氢通常在750-1000 ℃高温下进行,能耗高。重整制氢路线包括热催化重整制氢和光催化重整制氢,二者都是先将生物质进行预处理:在酸或酶的作用下解聚为单糖和低聚糖,再通过降解、还原、发酵得到甲醇、乙醇、乙二醇、丙三醇、山梨醇、葡萄糖等。
热催化生物醇制氢主要技术是通过生物醇蒸汽重整,主要采用Pt、Rh、Ir、Ru、Ni、Co、Cu等金属催化剂在高于300 ℃以及2.2 MPa的压力下实现,参考文献Chem. Rev. 2007,107, 3952-3991。虽然蒸汽重整制氢技术成熟,也适用于大规模制氢,但在操作过程中要消耗大量不可再生的化石能源,所以该方法有一定的局限性。2002年,Dumesic等首次报道了γ-Al2O3上负载的Pt纳米颗粒可以在227 ℃下实现乙二醇水溶液的近乎完全转化,转化成H2(气相组分中比例 > 70%)以及CO2,这一发现开创了生物醇液相重整制氢路线,参考文献Nature 2002, 418, 964-967。液相重整制氢避免了蒸汽重整制氢所需的原料气化过程,大大降低了能耗和操作繁琐度,同时液相重整能通过水煤气变换反应产生额外的高质量氢气(较低的CO含量),特别适用于PEM燃料电池。Toshiaki等报道了TiO2负载的Ru催化剂用于生物乙醇液相重整制氢,在200 ℃下H2的转化频率(TOF)可达17.8×10-3 s-1,参考文献Appl.Catal. B: Environ. 2014, 146, 221-226。Coronado等采用负载型非贵金属Ni催化剂用于甲醇液相重整制氢,在230 ℃, 3.2 MPa下,产氢速率可达84.7 mmol•min-1•g-1,参考文献Biomass and Bioenergy 2017, 106 29-37。尽管生物醇液相重整制氢已经取得了一定的进展,但反应仍需在200 ℃以上的高温下进行,能耗高,同时存在CO和CO2甲烷化反应等副反应造成的H2纯度低等问题。
光催化生物醇重整制氢通常在温和的条件下进行,日本科学家Kawai等人首次采用TiO2光催化剂在室温下重整乙醇水溶液,检测到氢气、甲烷和乙醛等产物,参考文献Nature 1980, 286, 474-476。TiO2半导体催化剂具有以下特点:1)由于光生电子和空穴需要移动到半导体表面才能进行催化反应,电子和空穴在移动过程中有很大的复合损失的几率(>90%),所以催化效率不高;2)TiO2只吸收紫外光(紫外光只占太阳光谱的4%,可见光占太阳光谱的43%),对太阳能的利用率低。因此开发具可见光响应的高效光催化剂成为研究的热点。
发明内容
本发明旨在解决现有生物醇液相重整制氢技术存在的反应能耗高、催化效率低的技术问题。为此,本发明提出一种双金属光催化剂及生物醇液相重整制氢方法。
本发明解决其技术问题所采用的技术方案是:
一种双金属光催化剂,其特征在于:所述催化剂为γ-Al2O3负载的双金属纳米颗粒,其中,金属组分一为Pt或Pd或Ni,金属组分二为Au或Ag或Cu,双金属的总负载量为1~5wt%,金属组分一与金属组分二的质量比为1:0.2~15。
一种运用上述双金属光催化剂的生物醇液相重整制氢方法,其特征在于,依次包括以下步骤:
S1、以生物醇和水为反应物,所述生物醇与水的体积比为1:1~10;S2、添加催化剂,所述催化剂的使用量为总反应物的1.0~5.0 wt%;
S3、加热,至温度为130~170 ℃;
S4、采用光照强度为0.1~0.5 W/cm2的可见光持续照射1-10 h;
S5、收集氢气。
本发明的有益效果是:
本发明提供一种γ-Al2O3负载的双金属纳米颗粒光催化剂,双金属纳米颗粒的金属组分一为Pt或Pd或Ni纳米颗粒,这类金属是生物醇重整制氢的活性金属,具有很强的脱氢能力,金属组分二为Au或Ag或Cu纳米颗粒,这类金属无催化活性,但它们具有表面等离子共振效应(LSPR),即电子能在可见光的作用下产生振荡,其频率与入射光频率一致时,就会发生共振,产生表面等离子体共振效应,参考文献Energy Environ. Sci. 2011, 4, 3384-3388;Chemsuschem 2011, 4, 1431-1438;Angew. Chem. Int. Ed. 2011, 50, 3934-3937。LSPR金属强的光吸收具有以下三个作用:a、激发金属的价电子,使电子产生带间跃迁而具有高的能量;b、在金属纳米颗粒周围产生比入射光强106个数量级的电场;c、高能电子跃迁后回到基态时会释放出热量。当将这种催化剂用于制备氢气时,具有LSPR效应的组分二金属吸收的光能能够转移给产氢活性组分一金属,从而有效的活化被吸附的生物醇和水分子,极大降低反应活化能,从而实现较低温度下高效产氢。
具体实施方式
下面结合一些具体实施例对本发明作进一步的详细阐述。但不应将此理解为本发明上述主题的范围仅限于下述实施例。
下述实施例中,反应后得到的气体产物采用岛津GC 2014C型气相色谱仪分析(5A分子筛填充柱,热导检测器分析氢气;TDX-1填充柱,甲烷转化炉+氢火焰离子检测器分析CO、CH4、CO2等),氩气为内标,按照气体标准曲线分析检测。
实施例一:
将1 gγ-Al2O3分散于40 mL的去离子水中,超声30 min,逐滴加入5 mL含有0.0398g H2PtCl6•6H2O和0.0627 g HAuCl4•4H2O 的混合溶液,加入10 mL赖氨酸溶液(0.308 mol/L),在25 ℃搅拌30 min,再逐滴加入含0.028 g NaBH4溶液10 mL,25 ℃继续搅拌24 h,4000 rpm离心5 min,120 ℃烘箱干燥12 h得到催化剂PtAu/γ-Al2O3。本实施例中,双金属的总负载量为4.46wt%,金属组分一与金属组分二的质量比为1:2.05。
在反应釜中加入PtAu/γ-Al2O3催化剂,催化剂质量占总反应物质量的5%,加入的乙二醇与去离子水的体积比为1:9,500 rpm转速搅拌下加热到130 ℃,采用光强为0.1 W/cm2高压汞灯光照3 h,反应后产物用气袋取气,在气相色谱进行分析。结果表明,氢气的转化频率45.8 molH2•mol-1Pt•h-1,氢气选择为94.2%。
实施例二:
2 gγ-Al2O3分散于70 mL去离子水,超声30 min,逐滴加入5 mL含有0.0796 gH2PtCl6•6H2O和0.0228 gCu(NO3)2•3H2O的混合溶液,加入10 mL赖氨酸溶液(0.308 mol/L),25 ℃搅拌30 min,逐滴加入含0.036 g NaBH4溶液10 mL,25 ℃继续搅拌24 h,4000 rpm离心5 min,120 ℃烘箱干燥12 h得到催化剂PtCu/γ-Al2O3。本实施例中,双金属的总负载量为1.8wt%,金属组分一与金属组分二的质量比为1:0.2。
在反应釜中加入PtCu/γ-Al2O3催化剂占总反应物质量的3%,加入的丙三醇与去离子水的体积比为1:7,500 rpm转速搅拌下,加热到150 ℃,采用光强为0.15 W/cm2氙灯光照5 h,反应后产物用气袋取气,在气相色谱进行分析。结果表明,氢气的转化频率164.8molH2•mol-1Pt•h-1,氢气选择为96.7%。
实施例三:
1 gγ-Al2O3分散于40 mL去离子水,超声30 min,逐滴加入5 mL含有0.0595 gPt(NO3)2•4NH3和0.0236 gAgNO3的混合溶液,加入10 mL赖氨酸溶液(0.308 mol/L),25 ℃搅拌30 min,逐滴加入含0.036 g NaBH4溶液10 mL,25 ℃继续搅拌24 h,4000 rpm离心5min,120 ℃烘箱干燥12 h得到催化剂PtAg/γ-Al2O3。本实施例中,双金属的总负载量为4.5wt%,金属组分一与金属组分二的质量比为1:0.5。
在反应釜中加入PtAg/γ-Al2O3催化剂占总反应物质量的5%,加入的乙醇与去离子水的体积比为1:5,300 rpm转速搅拌下,加热到170 ℃,采用光强为0.10 W/cm2高压汞灯光照8 h,反应后产物用气袋取气,在气相色谱进行分析。结果表明,氢气的转化频率396.4molH2•mol-1Pt•h-1,氢气选择为98.2%。
实施例四:
2.5 gγ-Al2O3分散于60mL去离子水,超声30 min,逐滴加入5 mL含有0.0125 gPdCl2和0.0627 gHAuCl4•4H2O 的混合溶液,加入10 mL 赖氨酸溶液(0.308 mol/L),25 ℃搅拌30 min,逐滴加入含0.058 g NaBH4溶液10 mL,25 ℃继续搅拌24 h,4000 rpm离心5min,120 ℃烘箱干燥12 h得到催化剂PdAu/γ-Al2O3。本实施例中,双金属的总负载量为1.5wt%,金属组分一与金属组分二的质量比为1:4.28。
在反应釜中加入PdAu/γ-Al2O3催化剂占总反应物质量的5%,加入的乙二醇与去离子水的体积比为1:6,500rpm转速搅拌下,加热到150 ℃,采用光强为0.1 W/cm2白色LED灯光照3 h,反应后产物用气袋取气,在气相色谱进行分析。结果表明,氢气的转化频率129.8molH2•mol-1Pt•h-1,氢气选择为96.3%。
实施例五:
1.5 gγ-Al2O3分散于50 mL去离子水,超声30 min,逐滴加入5 mL含有0.0149 gNi(NO3)2•6H2O和0.0941 gHAuCl4•4H2O 的混合溶液,加入10 mL赖氨酸溶液(0.308 mol/L),25℃搅拌30 min,逐滴加入含0.043 g NaBH4溶液10 mL,25 ℃继续搅拌24 h,4000 rpm离心5min,120 ℃烘箱干燥12 h得到催化剂NiAu/γ-Al2O3。本实施例中,双金属的总负载量为3.2wt%,金属组分一与金属组分二的质量比为1:15。
在反应釜中加入NiAu/γ-Al2O3催化剂占总反应物质量的5%,加入的丙三醇与去离子水的体积比为1:8,300 rpm转速搅拌下,加热到160 ℃,采用光强为0.1 W/cm2高压汞灯灯光照4 h,反应后产物用气袋取气,在气相色谱进行分析。结果表明,氢气的转化频率425.5 molH2•mol-1Pt•h-1,氢气选择为98.6%。
上述只是本发明的五个具体实施例,在本发明中,所述生物醇与水的体积比为1:1~10,采用1:1、1:3、1:5、1:7、1:10皆可;所述催化剂的使用量为总反应物的1.0~5.0wt%,采用1 wt%或3 wt%或5 wt%皆可;在所述催化剂中,双金属的总负载量为1~5wt%,采用1 wt%或3 wt%或5 wt%皆可;在所述催化剂中,金属组分一与金属组分二的质量比为1:0.2~15,采用1:0.2、1:0.8、1:1、1:3、1:5、1:7、1:9、1:11、1:13、1:15皆可;反应时间为1~10 h,采用1 h、5h、7 h、10 h皆可;反应温度为130~170 ℃,采用130 ℃、140 ℃、150 ℃、160 ℃、170 ℃皆可;反应所需光照强度为0.1~0.5 W/cm2,采用0.1、0.2、0.3、0.4、0.5 W/cm2皆可。
上述方法中,所述生物醇为甲醇或乙醇或乙二醇或丙三醇。
上述方法中,两种金属组分为组分一中的一种金属与组分二中的一种金属组合,由于γ- Al2O3负载的双金属催化剂是公知的产品,当选定两种金属组分时,具体怎样制备,这也是本领域人员清楚的技术,如上述五个实施例所示的制备方法。
以上具体结构和尺寸数据是对本发明的较佳实施例进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (1)

1.一种运用双金属光催化剂的生物醇液相重整制氢方法,其特征在于,依次包括以下步骤:
S1、以生物醇和水为反应物,所述生物醇与水的体积比为1:1~10;
S2、添加双金属光催化剂,所述双金属光催化剂的使用量为总反应物的1.0~5.0 wt%;
S3、加热,至温度为130~170℃;
S4、采用光照强度为0.1~0.5 W/cm2的可见光持续照射1-10 h;
S5、收集氢气;
所述生物醇为甲醇或乙醇或乙二醇或丙三醇;
所述双金属光催化剂为γ-Al2O3负载的双金属纳米颗粒,其中,金属组分一为Pt,金属组分二为Ag,双金属的总负载量为4.5wt%,金属组分一与金属组分二的质量比为1:0.5;或者,所述双金属光催化剂为γ-Al2O3负载的双金属纳米颗粒,其中,金属组分一为Ni,金属组分二为Au,双金属的总负载量为3.2wt%,金属组分一与金属组分二的质量比为1:15。
CN201910632680.1A 2019-07-14 2019-07-14 一种双金属光催化剂及生物醇液相重整制氢方法 Active CN110240119B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910632680.1A CN110240119B (zh) 2019-07-14 2019-07-14 一种双金属光催化剂及生物醇液相重整制氢方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910632680.1A CN110240119B (zh) 2019-07-14 2019-07-14 一种双金属光催化剂及生物醇液相重整制氢方法

Publications (2)

Publication Number Publication Date
CN110240119A CN110240119A (zh) 2019-09-17
CN110240119B true CN110240119B (zh) 2023-02-14

Family

ID=67892148

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910632680.1A Active CN110240119B (zh) 2019-07-14 2019-07-14 一种双金属光催化剂及生物醇液相重整制氢方法

Country Status (1)

Country Link
CN (1) CN110240119B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103832971A (zh) * 2012-11-26 2014-06-04 中国科学院大连化学物理研究所 光催化重整甲醇及生物质衍生物制取低co浓度氢气的方法
CN109650334A (zh) * 2019-01-24 2019-04-19 南京航空航天大学 一种直接光热转换甲醇制氢的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103832971A (zh) * 2012-11-26 2014-06-04 中国科学院大连化学物理研究所 光催化重整甲醇及生物质衍生物制取低co浓度氢气的方法
CN109650334A (zh) * 2019-01-24 2019-04-19 南京航空航天大学 一种直接光热转换甲醇制氢的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Glycerol hydrogenolysis over a Pt–Ni bimetallic catalyst with hydrogen generated in situ;Yuqiang Yan et al.;《RSC Adv.》;20170803;第7卷;第38251-38256页 *
Martin Khzouz et al..Catalytic performance of Ni-Cu/Al2O3 for effective syngas production by methanol steam reforming.《Fuel》.2018, *

Also Published As

Publication number Publication date
CN110240119A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
Nanda et al. Insights on pathways for hydrogen generation from ethanol
Bahari et al. Clean hydrogen generation and storage strategies via CO 2 utilization into chemicals and fuels: A review
Cui et al. Catalytic conversion of C1 molecules under mild conditions
CN108927224B (zh) 一种钴离子负载的共价有机框架催化材料及其制备方法和应用
Wu et al. H2 production with low CO selectivity from photocatalytic reforming of glucose on metal/TiO2 catalysts
CN107128875B (zh) 一种制氢催化体系、包含所述催化体系的制氢体系及其用途
CN104016825A (zh) 一种利用太阳光和光热催化剂直接转化二氧化碳制备有机燃料的技术
Li et al. Hydrogen production by aqueous phase reforming of phenol derived from lignin pyrolysis over NiCe/ZSM-5 catalysts
CN107497468B (zh) 一种氢氧化镍修饰的石墨相氮化碳复合光催化剂的制备方法及其应用
CN110523424B (zh) 一种基于Ru/NPC-CoxO制氢催化剂及制备方法
CN113058617B (zh) 一种光催化剂及其制备方法和应用
CN101880214A (zh) 一种非热等离子体与过渡金属协同催化co2加氢的方法
CN105833885A (zh) 非贵金属MoS2修饰的CdS纳米棒光催化剂及其制备方法和应用
CN109174186B (zh) 一种金属有机骨架材料负载贵金属与等离子体共活化co2制备c1有机产物的方法
CN111617790B (zh) 一种氮掺杂碳层包覆碳化钴锰复合材料及其应用
CN105771974A (zh) 一种室温催化甲酸盐分解产氢的催化剂
CN108623436B (zh) 一种一锅法转化纤维素为生物乙醇的方法
CN113769751A (zh) 一种催化剂的制备方法及其应用
Ćwieka et al. Supported plasmonic nanocatalysts for hydrogen production by wet and dry photoreforming of biomass and biogas derived compounds: recent progress and future perspectives
CN114308132B (zh) 一种质子化的CdS-COF-366-M复合光催化剂及其制备方法
Spadaro et al. Which future route in the methanol synthesis? Photocatalytic reduction of CO2, the new challenge in the solar energy exploitation
Hafeez et al. Review on recent progress and reactor set-ups for hydrogen production from formic acid decomposition
CN113816831B (zh) 一种等离子体-热耦合甲烷和水蒸气重整制甲醇的方法
CN111359644B (zh) 用于二甲醚水蒸气重整制氢的非贵金属基碳化钼催化剂及其制备方法和应用
CN110240119B (zh) 一种双金属光催化剂及生物醇液相重整制氢方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant