CN105833885A - 非贵金属MoS2修饰的CdS纳米棒光催化剂及其制备方法和应用 - Google Patents

非贵金属MoS2修饰的CdS纳米棒光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN105833885A
CN105833885A CN201610285209.6A CN201610285209A CN105833885A CN 105833885 A CN105833885 A CN 105833885A CN 201610285209 A CN201610285209 A CN 201610285209A CN 105833885 A CN105833885 A CN 105833885A
Authority
CN
China
Prior art keywords
cds
mos
base metal
preparation
gained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610285209.6A
Other languages
English (en)
Other versions
CN105833885B (zh
Inventor
付先亮
张莉
刘理华
陈士夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaibei Normal University
Original Assignee
Huaibei Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaibei Normal University filed Critical Huaibei Normal University
Priority to CN201610285209.6A priority Critical patent/CN105833885B/zh
Publication of CN105833885A publication Critical patent/CN105833885A/zh
Application granted granted Critical
Publication of CN105833885B publication Critical patent/CN105833885B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了非贵金属MoS2修饰的CdS纳米棒光催化剂及其制备方法和应用,该光催化剂是在CdS纳米棒的表面修饰有非贵金属MoS2颗粒,制备时通过简单的原位光还原的方法实现在CdS纳米棒的表面沉积MoS2。本发明的光催化剂具有纳米棒状形貌,在MoS2含量为0.2wt.%时即可表现出高效、稳定的可见光分解水产氢活性,本发明的催化剂制备工艺简单,使用非贵金属MoS2作为助催化剂,大幅度降低了催化剂成本,所得样品具有高效、稳定的可见光分解水产氢活性。

Description

非贵金属MoS2修饰的CdS纳米棒光催化剂及其制备方法和应用
技术领域
本发明涉及一种非贵金属修饰纳米棒状CdS光催化剂的制备及其在可见光下光催化分解水生产氢气的研究,属于材料制备领域,
背景技术
化石能源枯竭所导致的能源危机以及大规模使用化石能源所引起的环境污染是当今世界可持续发展所面临的两大问题。氢能以其清洁、来源广、燃烧热值高等优点被认为是解决这两大问题的理想方案。开发以氢能为代表的清洁、高效、可持续的新能源,无论对中国、还是对世界的可持续发展都极具意义。
作为典型的二次能源,自然界中单质态的氢极少存在,因此必须将含氢物质转化后方能得到氢气。目前的制氢原料主要基于各种化石燃料、水、生物质等。按底物能否再生分为不可再生制氢和可再生制氢两种途径。大概95%的氢是通过重整煤、天然气、石油等化石燃料来获得。基于化石能源的枯竭及环境问题,由化石资源获取氢能并不是长久之计。电解水制氢是目前仅次于天然气重整制氢的第二大制氢方法,占现有制氢总量的4%左右。电解水制氢存在的最大问题是槽电压过高,导致能耗大、制氢成本高。另一方面,对水源的纯度要求高,使用有杂质的水会显著降低电解池使用寿命。太阳能是太阳内部连续不断的核聚变反应产生的能量,每年辐射到地面的太阳能高达173,000TW,而全人类每年消耗的能源总量却不及这个数值的百分之一。如果能利用太阳能来制氢,那就等于把无穷无尽的、分散的太阳能转变成了高度集中的干净能源,其意义十分重大。1972年Honda和Fujishima应用n-TiO2电极首次实现了光电催化分解水制氢[Nature 1972,238(5358),37-38],正式拉开了光催化分解水产氢的研究序幕。
光解水产氢的基本原理是建立在半导体能带理论基础上,其整个过程可分为三个部分:(1)载流子的产生。当入射光光子能量大于半导体的带隙时,电子就会被激发,从价带跃迁到导带,同时在价带上留下一个带正电荷的空穴;(2)载流子的分离和迁移。上述光生电子和空穴从体相迁移至催化剂表面;(3)表面载流子同水的反应。当半导体的价带电势高于VO2/H2O=1.23V(vs.NHE,pH=7)时水就会被空穴氧化,生成氧气。当导带的电势低于VH + /H2=0V(vs.NHE,pH=7)时,水就会被光生电子还原为氢气。光解水的量子效率主要制约于光催化剂的光吸收范围、载流子的有效分离和表面水的氧化还原反应等三个过程。
CdS是最为典型的可见光光解水催化剂,其带隙为2.4eV,可有效利用太阳光谱中占主要部分的可见光。制备特定形貌如具有量子限域效应的一维纳米棒状的CdS或对其进行贵金属修饰(如能形成肖特基势垒的Pt、Pd或Ru等),能显著提高光生载流子的迁移和分离效率,进而提高产氢量子效率和抑制CdS的光腐蚀现象发生。目前,绝大多数光解水催化剂都需要负载一定量的贵金属才能显现出显著的分解水产氢活性。然而,铂族金属作为贵金属,不但价格昂贵且自然界中储量稀少,大大阻碍了其大规模商业化应用。此外,所修饰负载上的贵金属团聚严重,不能有效利用,贵金属含量至少要求在0.5wt.%[J.Phys.Chem.C 2013,117,783-790;Journal of Materials Chemistry A 2014,2,3407-3416]以上方可显著提高产氢效率。因此,开发出价格低廉且具较高活性与稳定性的非铂催化剂来替代贵金属助催化剂,被认为是降低催化剂成本,进而实现光解水制氢的商业化应用的重要一环。
发明内容
本发明旨在提供一种新型的非贵金属MoS2修饰的CdS纳米棒光催化剂及其制备方法和在可见光分解水产氢中的应用,所要解决的技术问题是现有光解水催化剂制备工艺的复杂和新型非贵金属助催化剂的开发利用。
本发明解决技术问题,采用如下技术方案:
本发明的非贵金属MoS2修饰的CdS纳米棒光催化剂,是在CdS纳米棒的表面修饰有非贵金属MoS2颗粒。其中所述非贵金属MoS2的修饰量为0.1~1.0wt.%(修饰量是指非贵金属MoS2占催化剂中CdS纳米棒质量的比例)。
本发明非贵金属MoS2修饰的CdS纳米棒光催化剂的制备方法,是按如下步骤进行:
(1)将非贵金属MoS2前驱物溶于乙二胺中,获得MoS2前驱物溶液;
(2)称取四水合硝酸镉和硫脲至聚四氟乙烯容器中,然后加入乙二胺,剧烈搅拌至溶解,获得CdS原料溶液;
(3)将步骤(2)中盛有CdS原料溶液的聚四氟乙烯容器装入不锈钢水热釜,然后放置于150-180℃鼓风烘箱中,溶剂热处理24-48h,最后自然冷却至室温,得反应液;
(4)将步骤(3)所得反应液中的固体产物进行离心、洗涤、真空烘干,即得CdS纳米棒;
(5)将步骤(4)所得CdS纳米棒分散于去离子水中,然后加入乳酸作为牺牲剂,同时加入步骤(1)所得的MoS2前驱物溶液,搅拌均匀,体系密闭抽真空,获得悬浊液;
(6)将步骤(5)所得悬浊液在λ>400nm的可见光下进行照射2~4h,然后对所得反应液中的固体产物进行离心、洗涤、真空烘干,即得非贵金属MoS2修饰的CdS纳米棒光催化剂。
优选的,步骤(1)中所述贵金属MoS2前驱物为(NH4)2MoS4
优选的,步骤(1)中非贵金属MoS2前驱物与乙二胺的用量比为162.5mg:50mL;步骤(2)中四水合硝酸镉、硫脲及乙二胺的用量比为4.66g:3.45g:60mL;步骤(5)中CdS纳米棒、去离子水、乳酸及MoS2前驱物溶液用量比为0.05g:90mL:10mL:25μL~250μL。
优选的,步骤(4)和步骤(6)中真空烘干的温度为80℃。
为获得具有所需要的非贵金属修饰量的CdS纳米棒,在前期投料时,首先根据四水合硝酸镉和所得产物CdS纳米棒的摩尔量相同,通过四水合硝酸镉的质量算得CdS纳米棒产物的质量,然后取出一定量的CdS置于密闭反应容器中,最后再根据催化剂质量确定修饰的非贵金属前驱物溶液的用量。
本发明还公开了上述制备方法所制备的CdS纳米棒光催化剂的应用,其特点在于:用于在可见光下催化分解水产生氢气。
使用本发明的光催化剂可见光分解水产生氢气的应用方法,包括以下步骤:
1、称取适量所制备的CdS纳米棒于上照式光催化反应器中,然后加入适量体积的纯水和少量乳酸(作为牺牲剂,用于消除光生空穴),再加入一定量的MoS2前驱物溶液,搅拌形成悬浊液;
2、将上述光催化反应器接入封闭的测试系统,随后将系统抽至真空(压力<1KPa);
3、依次开启搅拌器、冷凝装置、气相色谱,待系统稳定后开启氙灯光源(波长>400nm);
4、光照一定时间后将系统中所产生的氢气进行在线色谱分析。
与已有技术相比,本发明的显著优点在于:
本发明公开了一种新的非贵金属修饰的CdS纳米棒光催化剂的制备方法,制备工艺简单、条件温和,通过溶剂热法和原位光还原的方法即可完成CdS纳米棒的形成和随后的非贵金属MoS2的修饰。通过一步光反应操作,实现MoS2的光还原沉积和随后的光催化分解水产氢,简化了反应操作流程;此外,该发明制备催化剂所需的非贵金属MoS2含量低,其在所制备的CdS纳米棒上呈高分散状态,无团聚;本发明的CdS纳米棒光催化剂在较低非贵金属含量下即可高效稳定地分解水产氢。
附图说明
为了清楚体现本发明的技术方案和优点,下面将结合附图对本发明作进一步的详细描述,其中:
图1为实施例1、2、3所得光催化剂样品的X射线粉末衍射图;
图2为实施例1、2、3所得样品的紫外可见漫反射光谱图;
图3为实施例1、2所得样品的扫描电镜图和实施例2所得样品的透射电镜图;
图4为实施例2所得样品的面扫描元素分布图;
图5为实施例2所得样品的X射线光电子能谱分析图;
图6为实施例1、2、3所得样品在可见光下分解水产氢的产氢速率图;
图7为实施例1、2、4、5、6所得样品在可见光下分解水产氢的产氢速率图;
图8为实施例2所得样品在可见光下分解水产氢的寿命图。
具体实施方式
实施例1
本实施例按如下步骤合成CdS纳米棒:
用电子天平称取4.66g分析纯四水合硝酸镉和3.45g硫脲至100mL圆柱形聚四氟乙烯容器中,然后加入60mL分析纯乙二胺,剧烈搅拌至溶解,获得CdS原料溶液;将聚四氟乙烯容器密封,装入不锈钢水热釜,于160℃的鼓风干燥箱中热处理48h;自然冷却至室温后,对所得样品进行离心、去离子水洗涤,最后于80℃下真空烘干,即得CdS纳米棒光催化剂。
本实施例所得样品记为CdS-N。
实施例2
将162.5mg(NH4)2MoS4溶于50mL乙二胺中,获得MoS2前驱物溶液;
取0.05g实施例1所得的CdS纳米棒品于制氢装置反应器中,加入90mL去离子水、10mL乳酸作为牺牲剂,同时加入50μL的MoS2前驱物溶液搅拌均匀,体系密闭抽真空,获得悬浊液;将悬浊液在加滤光片的300W Xe灯下(λ>400nm的可见光下)进行照射3h,对所得反应液中的固体产物进行离心、洗涤和80℃真空烘干,即得非贵金属MoS2修饰的CdS纳米棒光催化剂,MoS2的修饰量为0.2wt.%。
本实施例所得样品记为0.2%MoS2/CdS-N。
实施例3
本实施例按实施例2相同的步骤合成非贵金属MoS2(0.1-1.0wt.%)修饰的CdS纳米棒,区别仅在于在制备过程中MoS2前驱物溶液的加入量不同。本实施例所得样品依次记为0.1%MoS2/CdS-N,0.3%MoS2/CdS-N,0.5%MoS2/CdS-N,1.0%MoS2/CdS-N。
实施例4
本实施例按如下步骤合成MoS2(0.2wt.%)修饰的CdS纳米棒:
取1.09g实施例1合成的CdS纳米棒,加入30mL分析纯乙二胺至50mL圆柱形聚四氟乙烯容器中,搅拌溶解,然后加入实施例2中的MoS2前驱物溶液1.1mL,获得原料溶液;将聚四氟乙烯容器密封,装入不锈钢水热釜,于200℃的鼓风干燥箱中热处理24h;自然冷却至室温后,用去离子水对所得样品进行洗涤、离心,最后于80℃下真空烘干,即得0.2%MoS2/CdS-N纳米棒光催化剂。
本实施例所得样品记为0.2%MoS2/CdS-N TS-E。
实施例5
本实施例按如下步骤合成MoS2(0.2wt.%)修饰的CdS纳米棒:
用电子天平称取2.33g分析纯四水合硝酸镉和1.72g硫脲至50mL圆柱形聚四氟乙烯容器中,然后加入30mL分析纯乙二胺,再加入实施例2中的MoS2前驱物溶液1.1mL,剧烈搅拌至溶解,获得原料溶液;将聚四氟乙烯容器密封,装入不锈钢水热釜,于200℃的鼓风干燥箱中热处理24h;自然冷却至室温后,用去离子水对所得样品进行洗涤、离心,最后于80℃下真空烘干,即得0.2%MoS2/CdS-N纳米棒光催化剂。
本实施例所得样品记为0.2%MoS2/CdS-N OS-E。
实施例6
本实施例按如下步骤合成MoS2(0.2wt.%)修饰的CdS纳米棒:
取0.3g实施例1方法合成的CdS纳米棒,加入实施例2中的MoS2前驱物溶液0.3mL,酌情加少量水超声浸渍,然后80℃下真空烘干;最后所得样品380℃、H2保护下煅烧处理4h,即得0.2%MoS2/CdS-N纳米棒光催化剂。
本实施例所得样品记为0.2%MoS2/CdS-N-IR。
性能测试
图1为实施例1-3所得光催化剂样品的粉末X射线衍射图。从图中可以看出所合成的六个样品的XRD衍射峰均可归属为六方相CdS。六个纳米棒状样品(CdS-N,0.1%MoS2/CdS-N,0.2%MoS2/CdS-N,0.3%MoS2/CdS-N,0.5%MoS2/CdS-N,1.0%MoS2/CdS-N)都具有较强的衍射峰而且无其他杂质峰,表明纳米棒状样品具有更高结晶度和纯度。在制备纳米棒状MoS2/CdS-N过程中,往溶液中添加前驱体溶液并没有影响CdS纳米棒的形貌,这些样品的XRD衍射图谱与纯的CdS纳米棒(CdS-N)的图谱几乎一样。由于MoS2的负载量仅为0.1-1.0wt.%,在所有谱图中均未观察到任何MoS2衍射峰。
图2为实施例1、2、3所得样品的紫外可见漫反射光谱图。从图中可以看出无论是纳米棒状CdS还是MoS2/CdS-N的吸收带边均在在530nm左右。对应的带隙能为2.34eV。说明MoS2只是负载在CdS表面,并没有改变CdS的内部结构。非贵金属MoS2修饰纳米棒后,样品在可见区的光吸收强度稍有增强,但带边位置未发生变化。
图3为实施例1、2所得样品的扫描电镜图(图3a为CdS-N;图3b为0.2%MoS2/CdS-N;)和实施例2所得样品的透射电镜图(图3c)和高分辨透射电镜图(图3d)。从图中可以看出原位光还原法沉积MoS2形成MoS2/CdS-N后,依然保持CdS的纳米棒状结构,纳米棒的平均宽度为50nm。
图4为实施例2所得样品的和面扫描元素分布图。图中结果进一步证实了实施例2所得样品为纳米棒状。图4面扫描的元素分析显示S、Cd、Mo元素呈均匀分布状态(图3b-d)。
图5为实施例2所得样品的X射线光电子能谱分析图。依据特征结合能峰出现结果可知样品由Cd、S和Mo元素构成。Mo元素化合价为+4价,说明MoS2/CdS-N的形成。
图6为实施例1、2、3所得样品在可见光下分解水的产氢速率图。实验考查了不同含量MoS2对产品产氢活性的影响。对比实验的结果显示,在产氢体系中仅仅加入MoS2前驱液,产氢速率仅为7μmol·h-1,说明前驱液无产氢活性,产氢量可以忽略不计。当在产氢体系中没有添加MoS2前驱液,样品CdS-N的产氢速率仅为127μmol·h-1,加入一定量的MoS2前驱液后产氢速率均有显著的提升,而当加入相对应0.2%MoS2的前驱液后,速率达到最大404μmol·h-1·g-1。当加入的前驱液对应MoS2的量大于0.2%时,活性开始降低。这表明MoS2/CdS-N的最佳优化量是0.2%MoS2
图7为实施例1、2、4、5、6所得样品在可见光下分解水的产氢速率图。对于不同方法合成的MoS2修饰的CdS纳米棒,实施例2的原位光还原法所得样品的活性(404μmol·h-1)显著大于两步法(0.2%MoS2/CdS-N TS-E,251μmol·h-1),一步法(0.2%MoS2/CdS-N OS-E,108μmol·h-1)和浸渍-还原法(0.2%MoS2/CdS-N-IR,108μmol·h-1))所得的样品。这一结果表明,原位光还原法合成的纳米棒状结构0.2%MoS2/CdS-N更有利于分解水产氢。
图8为实施例2所得样品在可见光下分解水产氢的寿命图。结果显示,在5轮循环光照实验中,所得的产氢量随光照时间的变化曲线几乎平行。随着乳酸的消耗,样品的产氢活性稍有下降,重新加入乳酸后,产氢活性可恢复。这些结果证实了所得样品的活性稳定性。
现有非贵金属修饰的催化剂体系主要是通过两步进行合成:(1)先制备出催化剂;(2)将催化剂与非贵金属前驱物溶液进行浸渍,再用外部还原剂如H2/Ar、NaBH4、甲醛、光生电子等将贵金属前驱物还原为单质态或者在高温煅烧下得到所需要的物质。而在本发明的这个体系中,非贵金属的还原沉积是通过原位光还原的简单方法进行的。

Claims (7)

1.非贵金属MoS2修饰的CdS纳米棒光催化剂,其特征在于:是在CdS纳米棒的表面修饰有非贵金属MoS2颗粒。
2.根据权利要求1所述的非贵金属MoS2修饰的CdS纳米棒光催化剂,其特征在于:所述非贵金属MoS2的修饰量为0.1~1.0wt.%。
3.一种权利要求1或2所述的非贵金属MoS2修饰的CdS纳米棒光催化剂的制备方法,其特征在于按如下步骤进行:
(1)将非贵金属MoS2前驱物溶于乙二胺中,获得MoS2前驱物溶液;
(2)称取四水合硝酸镉和硫脲至聚四氟乙烯容器中,然后加入乙二胺,剧烈搅拌至溶解,获得CdS原料溶液;
(3)将步骤(2)中盛有CdS原料溶液的聚四氟乙烯容器装入不锈钢水热釜,然后放置于150-180℃鼓风烘箱中,溶剂热处理24-48h,最后自然冷却至室温,得反应液;
(4)将步骤(3)所得反应液中的固体产物进行离心、洗涤、真空烘干,即得CdS纳米棒;
(5)将步骤(4)所得CdS纳米棒分散于去离子水中,然后加入乳酸作为牺牲剂,同时加入步骤(1)所得的MoS2前驱物溶液,搅拌均匀,体系密闭抽真空,获得悬浊液;
(6)将步骤(5)所得悬浊液在λ>400nm的可见光下照射2~4h,然后对所得反应液中的固体产物进行离心、洗涤、真空烘干,即得非贵金属MoS2修饰的CdS纳米棒光催化剂。
4.根据权利要求3所述的制备方法,其特征在于:
步骤(1)中所述非贵金属MoS2前驱物为(NH4)2MoS4
5.根据权利要求3所述的制备方法,其特征在于:
步骤(1)中非贵金属MoS2前驱物与乙二胺的用量比为162.5mg:50mL;
步骤(2)中四水合硝酸镉、硫脲及乙二胺的用量比为4.66g:3.45g:60mL;
步骤(5)中CdS纳米棒、去离子水、乳酸及MoS2前驱物溶液用量比为0.05g:90mL:10mL:25μL~250μL。
6.根据权利要求3所述的制备方法,其特征在于:步骤(4)和步骤(6)中真空烘干的温度为80℃。
7.一种权利要求1或2所述非贵金属MoS2修饰的CdS纳米棒光催化剂的应用,其特征在于:用于在可见光下催化分解水产生氢气。
CN201610285209.6A 2016-04-27 2016-04-27 非贵金属MoS2修饰的CdS纳米棒光催化剂及其制备方法和应用 Expired - Fee Related CN105833885B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610285209.6A CN105833885B (zh) 2016-04-27 2016-04-27 非贵金属MoS2修饰的CdS纳米棒光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610285209.6A CN105833885B (zh) 2016-04-27 2016-04-27 非贵金属MoS2修饰的CdS纳米棒光催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN105833885A true CN105833885A (zh) 2016-08-10
CN105833885B CN105833885B (zh) 2018-04-10

Family

ID=56590624

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610285209.6A Expired - Fee Related CN105833885B (zh) 2016-04-27 2016-04-27 非贵金属MoS2修饰的CdS纳米棒光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN105833885B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107460513A (zh) * 2017-09-08 2017-12-12 华南师范大学 MoS2/CdS薄膜电极的制备方法和应用
CN109999837A (zh) * 2019-04-29 2019-07-12 淮北师范大学 一种表面缺陷态修饰的金属硫化物催化剂的制备方法
CN110252349A (zh) * 2019-07-11 2019-09-20 福州大学 一种原位光沉积制备CdS@MoS2复合光催化剂的制备方法
CN110508295A (zh) * 2019-08-05 2019-11-29 河南师范大学 一种硫化钼掺杂硫化镉微纳米材料的制备方法及其在光催化产氢中的应用
CN113173599A (zh) * 2021-05-07 2021-07-27 南京理工大学 一种含有氧空位的二氧化钒材料的制备方法及应用
CN113769761A (zh) * 2021-09-22 2021-12-10 电子科技大学 一种硫化镉表面锚定铜原子簇的制备方法及应用
CN114392755A (zh) * 2022-01-14 2022-04-26 安徽大学 一种哑铃状三元过渡金属硫化物材料及其制备方法和用途
CN114534751A (zh) * 2022-01-14 2022-05-27 安徽大学 火柴形MoSe2-MoS2修饰的CdS纳米棒光催化剂及制备方法和用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119955A (ja) * 1998-10-07 2000-04-25 Toray Ind Inc 抗菌・防カビ性繊維構造物
CN103566953A (zh) * 2013-11-28 2014-02-12 中国石油大学(华东) 一维复合纳米光催化剂及其制备方法和应用
CN104923264A (zh) * 2015-05-28 2015-09-23 淮北师范大学 一种贵金属修饰的CdS纳米棒光催化剂的制备方法和应用
CN105044180A (zh) * 2015-06-29 2015-11-11 江苏大学 一种异质结光电极的制备方法和用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119955A (ja) * 1998-10-07 2000-04-25 Toray Ind Inc 抗菌・防カビ性繊維構造物
CN103566953A (zh) * 2013-11-28 2014-02-12 中国石油大学(华东) 一维复合纳米光催化剂及其制备方法和应用
CN104923264A (zh) * 2015-05-28 2015-09-23 淮北师范大学 一种贵金属修饰的CdS纳米棒光催化剂的制备方法和应用
CN105044180A (zh) * 2015-06-29 2015-11-11 江苏大学 一种异质结光电极的制备方法和用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUAN XU ET AL.: "Characterization and mechanism of MoS2/CdS composite photocatalyst used for hydrogen production from water splitting under visible light", 《CHEMICAL ENGINEERING JOURNAL》 *
米阿敏 等: "长径比可控的CdS纳米棒制备及光催化性能研究", 《人工晶体学报》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107460513A (zh) * 2017-09-08 2017-12-12 华南师范大学 MoS2/CdS薄膜电极的制备方法和应用
CN109999837A (zh) * 2019-04-29 2019-07-12 淮北师范大学 一种表面缺陷态修饰的金属硫化物催化剂的制备方法
CN109999837B (zh) * 2019-04-29 2022-04-12 淮北师范大学 一种表面缺陷态修饰的金属硫化物催化剂的制备方法
CN110252349A (zh) * 2019-07-11 2019-09-20 福州大学 一种原位光沉积制备CdS@MoS2复合光催化剂的制备方法
CN110508295A (zh) * 2019-08-05 2019-11-29 河南师范大学 一种硫化钼掺杂硫化镉微纳米材料的制备方法及其在光催化产氢中的应用
CN113173599B (zh) * 2021-05-07 2022-03-11 南京理工大学 一种含有氧空位的二氧化钒材料的制备方法及应用
CN113173599A (zh) * 2021-05-07 2021-07-27 南京理工大学 一种含有氧空位的二氧化钒材料的制备方法及应用
CN113769761A (zh) * 2021-09-22 2021-12-10 电子科技大学 一种硫化镉表面锚定铜原子簇的制备方法及应用
CN113769761B (zh) * 2021-09-22 2022-07-29 电子科技大学 一种硫化镉表面锚定铜原子簇的制备方法及应用
CN114392755A (zh) * 2022-01-14 2022-04-26 安徽大学 一种哑铃状三元过渡金属硫化物材料及其制备方法和用途
CN114534751A (zh) * 2022-01-14 2022-05-27 安徽大学 火柴形MoSe2-MoS2修饰的CdS纳米棒光催化剂及制备方法和用途
CN114534751B (zh) * 2022-01-14 2024-03-29 安徽大学 火柴形MoSe2-MoS2修饰的CdS纳米棒光催化剂及制备方法和用途
CN114392755B (zh) * 2022-01-14 2024-04-02 安徽大学 一种哑铃状三元过渡金属硫化物材料及其制备方法和用途

Also Published As

Publication number Publication date
CN105833885B (zh) 2018-04-10

Similar Documents

Publication Publication Date Title
CN104923264B (zh) 一种贵金属修饰的CdS纳米棒光催化剂的制备方法和应用
CN105833885B (zh) 非贵金属MoS2修饰的CdS纳米棒光催化剂及其制备方法和应用
Li et al. Design and synthesis of ZnCo2O4/CdS for substantially improved photocatalytic hydrogen production
CN104324733B (zh) 无贵金属高活性光解水制氢催化剂的制备方法
CN108927178B (zh) 一种金属有机框架材料原位硫化法制备NiS/CdS复合催化剂的方法及应用
CN108479810A (zh) 一种WS2/ZnIn2S4复合可见光催化剂及其制备方法
Kunthakudee et al. Light-assisted synthesis of Au/TiO2 nanoparticles for H2 production by photocatalytic water splitting
Wu et al. Enhanced visible light activated hydrogen evolution activity over cadmium sulfide nanorods by the synergetic effect of a thin carbon layer and noble metal-free nickel phosphide cocatalyst
Chen et al. Non-noble metal Co as active sites on TiO2 nanorod for promoting photocatalytic H2 production
Zhang et al. Mechanism investigation of PtPd decorated Zn0. 5Cd0. 5S nanorods with efficient photocatalytic hydrogen production combining with kinetics and thermodynamics
Huang et al. Visible light driven photocatalytic reduction of CO2 on Au-Pt/Cu2O/ReS2 with high efficiency and controllable selectivity
Huang et al. Two dimensional Ni 2 P/CdS photocatalyst for boosting hydrogen production under visible light irradiation
Li et al. Construction of a Photo-thermal-magnetic coupling reaction system for enhanced CO2 reduction to CH4
He et al. In-situ nanoarchitectonics of noble-metal-free g-C3N4@ C-Ni/Ni2P cocatalyst with core-shell structure for efficient photocatalytic H2 evolution
Wei et al. Different CdSeTe structure determined photoelectrocatalytic reduction performance for carbon dioxide
CN110280276A (zh) 负载型光催化剂NiSe2/CdS的制备方法及其应用
Huang et al. Two dimensional metal-organic frameworks-derived leaf-like Co4S3/CdS composite for enhancing photocatalytic water evolution
Shi et al. Preparation of TiO2/MoSe2 heterostructure composites by a solvothermal method and their photocatalytic hydrogen production performance
Jiang et al. ZIF-9 derived cobalt phosphide and In2O3 as co-catalysts for efficient hydrogen production
Jin et al. Fabrication of a novel Ni 3 N/Ni 4 N heterojunction as a non-noble metal co-catalyst to boost the H 2 evolution efficiency of Zn 0.5 Cd 0.5 S
Tang et al. Carbon quantum dot/mixed crystal TiO 2 composites via a hydrogenation process: an efficient photocatalyst for the hydrogen evolution reaction
Liu et al. CoNi bimetallic alloy cocatalyst-modified TiO2 nanoflowers with enhanced photocatalytic hydrogen evolution
Tahir et al. Synergistic effect of gold NPs modified graphitic carbon nitride nanotubes (g-CNT) with the role of hot electrons and hole scavengers for boosting solar hydrogen production
Liu et al. A Z-scheme heterostructure constructed from ZnS nanospheres and Ni (OH) 2 nanosheets to enhance the photocatalytic hydrogen evolution
CN109364949A (zh) 紫外-可见-近红外光响应的PbS/TiO2纳米管团聚微球异质结、其制备方法和用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180410

CF01 Termination of patent right due to non-payment of annual fee