CN114563026A - 光学感测的方法及装置 - Google Patents
光学感测的方法及装置 Download PDFInfo
- Publication number
- CN114563026A CN114563026A CN202111530902.2A CN202111530902A CN114563026A CN 114563026 A CN114563026 A CN 114563026A CN 202111530902 A CN202111530902 A CN 202111530902A CN 114563026 A CN114563026 A CN 114563026A
- Authority
- CN
- China
- Prior art keywords
- optical
- light
- optical sensing
- along
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 170
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000005259 measurement Methods 0.000 claims abstract description 36
- 230000035945 sensitivity Effects 0.000 claims abstract description 34
- 239000000835 fiber Substances 0.000 claims description 105
- 230000001427 coherent effect Effects 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 12
- 230000001360 synchronised effect Effects 0.000 claims description 6
- 230000002452 interceptive effect Effects 0.000 claims description 3
- 239000013307 optical fiber Substances 0.000 abstract description 41
- 238000012544 monitoring process Methods 0.000 abstract description 19
- 238000003384 imaging method Methods 0.000 abstract description 15
- 230000008901 benefit Effects 0.000 abstract description 7
- 238000001514 detection method Methods 0.000 abstract description 4
- 230000004044 response Effects 0.000 description 11
- 239000012530 fluid Substances 0.000 description 9
- 230000010363 phase shift Effects 0.000 description 9
- 238000001228 spectrum Methods 0.000 description 9
- 230000010287 polarization Effects 0.000 description 8
- 230000002269 spontaneous effect Effects 0.000 description 7
- 230000001902 propagating effect Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 4
- 238000000253 optical time-domain reflectometry Methods 0.000 description 4
- 230000005534 acoustic noise Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 3
- 230000035559 beat frequency Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 108010014172 Factor V Proteins 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H9/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
- G01H9/004—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35306—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
- G01D5/35325—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using interferometer with two arms in reflection, e.g. Mickelson interferometer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/38—Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/002—Survey of boreholes or wells by visual inspection
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/10—Locating fluid leaks, intrusions or movements
- E21B47/107—Locating fluid leaks, intrusions or movements using acoustic means
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/12—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
- E21B47/13—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
- E21B47/135—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency using light waves, e.g. infrared or ultraviolet waves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L55/00—Devices or appurtenances for use in, or in connection with, pipes or pipe systems
- F16L55/26—Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
- F16L55/48—Indicating the position of the pig or mole in the pipe or conduit
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02001—Interferometers characterised by controlling or generating intrinsic radiation properties
- G01B9/02002—Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
- G01B9/02003—Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using beat frequencies
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/268—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35303—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using a reference fibre, e.g. interferometric devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35306—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35306—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
- G01D5/35335—Aspects of emitters or receivers used by an interferometer in an optical fibre sensor arrangement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35338—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
- G01D5/35354—Sensor working in reflection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35338—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
- G01D5/35354—Sensor working in reflection
- G01D5/35358—Sensor working in reflection using backscattering to detect the measured quantity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35338—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
- G01D5/35354—Sensor working in reflection
- G01D5/35358—Sensor working in reflection using backscattering to detect the measured quantity
- G01D5/35364—Sensor working in reflection using backscattering to detect the measured quantity using inelastic backscattering to detect the measured quantity, e.g. using Brillouin or Raman backscattering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/3537—Optical fibre sensor using a particular arrangement of the optical fibre itself
- G01D5/35374—Particular layout of the fiber
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/3537—Optical fibre sensor using a particular arrangement of the optical fibre itself
- G01D5/35377—Means for amplifying or modifying the measured quantity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35383—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/661—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters using light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/662—Constructional details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/666—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters by detecting noise and sounds generated by the flowing fluid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/667—Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/704—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
- G01F1/708—Measuring the time taken to traverse a fixed distance
- G01F1/7086—Measuring the time taken to traverse a fixed distance using optical detecting arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J9/00—Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
- G01J9/02—Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/08—Testing mechanical properties
- G01M11/083—Testing mechanical properties by using an optical fiber in contact with the device under test [DUT]
- G01M11/085—Testing mechanical properties by using an optical fiber in contact with the device under test [DUT] the optical fiber being on or near the surface of the DUT
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/30—Testing of optical devices, constituted by fibre optics or optical waveguides
- G01M11/33—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
- G01M11/331—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face by using interferometer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/04—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
- G01M3/24—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
- G01M5/0041—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
- G01M5/005—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress by means of external apparatus, e.g. test benches or portable test systems
- G01M5/0058—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress by means of external apparatus, e.g. test benches or portable test systems of elongated objects, e.g. pipes, masts, towers or railways
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
- G01M5/0066—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by exciting or detecting vibration or acceleration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
- G01M5/0091—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by using electromagnetic excitation or detection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/18—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
- G01S5/30—Determining absolute distances from a plurality of spaced points of known location
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/16—Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
- G01V1/18—Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
- G01V1/186—Hydrophones
- G01V1/187—Direction-sensitive hydrophones
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/22—Transmitting seismic signals to recording or processing apparatus
- G01V1/226—Optoseismic systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/40—Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/181—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems
- G08B13/183—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems by interruption of a radiation beam or barrier
- G08B13/186—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems by interruption of a radiation beam or barrier using light guides, e.g. optical fibres
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/002—Survey of boreholes or wells by visual inspection
- E21B47/0025—Survey of boreholes or wells by visual inspection generating an image of the borehole wall using down-hole measurements, e.g. acoustic or electric
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- Remote Sensing (AREA)
- Geology (AREA)
- Electromagnetism (AREA)
- Geophysics (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Acoustics & Sound (AREA)
- Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Aviation & Aerospace Engineering (AREA)
- Analytical Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Combustion & Propulsion (AREA)
- Radar, Positioning & Navigation (AREA)
- Mechanical Engineering (AREA)
- Oceanography (AREA)
- Optical Transform (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Geophysics And Detection Of Objects (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
本申请涉及光学感测的方法及装置。本发明提供了用于快速定量测量沿着一段光纤传输、反射和/或散射的光场的扰动的新颖的装置及方法。本发明可以用于点传感器以及分布式传感器或两者的结合。特别地,这种技术可以应用于分布式传感器,同时显著地提高速度和灵敏度以允许检测沿一段光纤的任何地方的声波扰动,同时达到良好的空间分辨率。本发明在较广范围的声学感测和成像应用中提供了独特的优势。典型的用途是用于监测油井和气井,以用于诸如分布式流量计量和/或成像;地震成像,监测长电缆和管道;在大型容器内部成像以及安全应用。
Description
本申请是申请日为2010年5月27日,申请号为201610225290.9,发明名称为“光学感测的方法及装置”的申请的分案申请。
申请日为2010年5月27日,申请号为201610225290.9,发明名称为“光学感测的方法及装置”的申请是申请日为2010年5月27日,申请号为201080033359.9,发明名称为“光学感测的方法及装置”的申请的分案申请。
发明领域
本发明涉及光学传感器,并且特别地,涉及分布式光纤传感器及其应用。
发明背景
已在许多感测应用中证明了光纤的益处。两个主要领域是:(ⅰ)分布式光纤传感器,和(ⅱ)多路复用点传感器阵列。
分布式传感器利用反向散射光的强度,并利用光信号中的拉曼(Raman)峰值和/或布里渊(Brillouin)峰值来测量温度、张力或压力。分布式传感器提供了许多优点,包括沿光纤的全部长度连续感测,和传感器的灵活性及简易性,这可能是标准的电信光纤。例如,分布式传感器可以1m的空间分辨率沿10km的光纤提供10000个测量点。因此分布式传感器系统提供了较低的安装成本和所有权成本。
然而,由于其缓慢的响应,分布式传感器通常仅使用在可接受在数秒至数小时内进行测量的应用中。最常见的这种类型的传感器是分布式温度传感器(DTS),分布式温度传感器由许多公司制造。DTS的典型性能是在10km范围在60秒内具有1m的空间分辨率和1℃的温度分辨率。
如在第6,555,807号美国专利[1]或第WO98/27406号专利[2]中所描述的,通过利用在反射光或反向散射光中的布里渊偏移,分布式传感器还被用来测量张力。所述布里渊偏移的频率大约是1MHz/10με以及其线宽大约为30MHz。使用所描述的窄频扫描方法可以确定沿着光纤的张力在10με的量级。然而,使用这些方法,扫描率比脉冲重复率慢很多,且测量时间通常在几秒至几分钟的范围内。
最近,一种利用布里渊频率偏移的快速测量技术已在第7,355,163号美国专利[3]中提出。这种技术使用频率-振幅转换器,其可以是在输出端具有3×3个耦合器的光纤马赫曾德尔干涉仪的形式。然而,应变分辨率受到布里渊光的线宽的限制,因此在干涉仪中的光路长度差应该保持在布里渊光的相干长度内。另外,在干涉仪的两个光路之间的偏振衰减、光电探测器接收机的偏移和增益变化将极大地限制张力测量。具有50με应变分辨率的在大约0.1秒(10Hz)的测量时间最近已经被报道使用了此技术。
对于许多应用,如声波感测,需要更高的灵敏度和在1毫秒(1kHz),0.1毫秒(10kHz)或0.01毫秒(100kHz)的量级的更快的测量时间。
多路复用点传感器提供具有高灵敏度的快速测量并被用于如水听器阵列中。这些在能源市场中的主要应用是用于拖拽阵列和海底地震阵列。然而,与分布式传感器不同,当需要全面覆盖时不能使用多路复用点传感器。感测元件的大小和位置是固定的,并且在单个光纤上多路复用的传感器的数量通常被限制在50至100个元件。另外,该传感器设计依赖于附加的光纤部件,这导致庞大且昂贵的阵列结构。也做出了相当大的努力来增加可以有效地多路复用在单根光纤上的传感器的数量。
光时域反射仪(OTDR)是一项众所周知的用于测试光纤通讯电缆的技术。为了减少相干反向散射干扰(有时被称为相干瑞利噪声(Coherent Rayleigh Noise))的影响,通常使用宽带光源。然而,在第5,194,847号美国专利[4]中还提出通过检测在相干反向散射瑞利信号中的快速变化而使用相干OTDR来感测侵入。另外,Shatalin等人[5]描述了使用相干瑞利作为分布式光纤报警传感器。
第WO 2008/056143号专利[6]描述了类似于第5,194,847号美国专利[4]中的使用半导体分布式反馈激光源的扰动传感器。优选地7.5GHz的光纤布拉格光栅滤波器被用来除去带外啁啾光,因此,提高了发送到光纤内的激光脉冲的相干性。然而,这需要激光波长与窄带光学滤光器的匹配,与使用第5,194,847号美国专利所提出的非常高的相干源的系统相比较,这导致信号可见度变化减少。
类似的技术也在检测埋藏的光纤通信电缆(例如在WO 2004/102840[7]中),在边界安全中(GB 2445364[8]和第2009/0114386号美国专利[9])以及井底振动监测(WO 2009/056855[10])中提出。然而,这些相干瑞利反向散射系统的响应已受到许多参数的限制,所述参数诸如偏振和信号衰减现象;反向散射光的随机变化;以及非线性相干瑞利响应。因此这些技术主要用于事件检测并不提供定量测量,例如在较宽的频率范围和动态范围的声波振幅、频率以及相位的测量。
发明概述
本发明提供用于快速定量测量沿着一段光纤传输、反射和/或散射的光场的扰动的新颖的装置及方法。
本发明可以用于分布式传感器、点传感器、或两者的结合。
具体地,这种技术可以应用于分布式传感器同时显著地提高速度和灵敏度以允许检测沿一段光纤的任何地方的声波扰动,同时实现良好的空间分辨率。本发明在广范围的声波感测和成像应用中提供了独特的优势。典型的用途是用于监测油井和气井,用于诸如分布式流量测量和/或成像;地震成像,监测较长的电缆和管道;在大型容器内部的声波成像,以及安全应用等应用中。
本发明的一个目的是提供用于以高度灵敏且快速定量测量沿一段光纤传输、反射或散射的光的相位、频率和振幅的装置。
在现有技术中,光耦合器已被用在迈克尔逊或马赫曾德尔干涉仪配置中,其中需要谨慎控制在干涉仪的两个臂之间的偏振。本发明中的新颖的干涉仪允许使用非互易器件如法拉第旋转镜和光循环器来利用m×m耦合器,以提供可以在光耦合器的所有端口测量并快速(如几十kHz)分析的具有给定的相移的补偿的光干涉。
本发明的实施方式可以用于多路复用声学点传感器、分布式传感器或两者的结合。在分布式传感器的情况下,光脉冲被注入到光纤中,并以几十kHz的频率沿着光纤测量反向散射光的相位调制。光纤可以是标准的通信光纤和/或电缆。使用在此描述的技术,感测系统因此可以检测沿着光纤的声场以提供分布式声学传感器,其中可以通过组合地调节光脉冲的调制、在干涉仪中的光路长度以及感测光纤配置来选择感测元件的长度。
沿着光纤收集的数据自动地同步以及这些数据可被组合以提供相干场图像。
本发明的实施方式还包括以下内容:
1)一种光学传感器系统,所述系统包括:
光源,其产生脉冲的光信号;
光学感测光纤,其被配置成接收所述光信号;
光调制器,其用于在所述光信号中产生边频带;
滤光器,其被配置成可控制地选择一个或多个调制边频带,并因此改变输入至所述感测光纤的光的频率。
2)如项目1)所述的系统,其中所述光的频率被改变以使在所述光纤的给定部分上的信号灵敏度最优化。
3)如项目1)或2)所述的系统,其中穿过所述光调制器的所述光的频率被快速地改变以使光脉冲的至少两部分具有不同的调制边频带频率。
4)如任一前述项目所述的系统,其中所述光脉冲的一部分被砍掉以使光脉冲产生具有不同的调制边频带频率的两个不同的部分。
5)如项目4)所述的系统,其中在从感测光纤散射的或反射的光脉冲的两部分之间的调制边频带调和在一起以产生在所述两个脉冲之间的频率差的多倍处的、与所述调制边频带的阶数成比例的多个外差信号。
6)如任一前述项目所述的系统,其中所述光源是激光光源或宽带光源。
7)如任一前述项目所述的系统,其中使用波分复用部件以利用具有不同波长的多个激光脉冲,以及优选地,改变关于每一个光脉冲的时间偏移,以控制在所述光脉冲之间的交叉相位调制和允许处理在所述感测光纤中的多个脉冲没有和允许所述系统能够达到诸如较高的声学频率响应的较高的测量频率响应的交叉灵敏度,以及允许有效丢弃具有低灵敏度的任一点。
8)如任一前述项目所述的系统,其中所述感测光纤是单模光纤、偏振保持光纤、单一偏振光纤、多模光纤和/或带状光纤。
9)如任一前述项目所述的传感器系统,被用作分布式声学传感器。
10)如项目9所述的传感器系统,其中所述分布式传感器可被连接至用于管道、周界、端口或边界安全的标准光纤。
附图简述
参照附图通过实例的方式描述了本发明的实施方式以及如何将这些实施方式付诸于实践,其中:
图1、2、3和4示意性地示出了依据本发明的相关实施方式的新颖的干涉仪装置,其包括循环器和具有穿过干涉仪、法拉第旋转镜和光电探测器的不同光路的多个光纤耦合器;
图5和图6示意性地示出了依据本发明的实施方式的干涉仪在串联和/或星型配置中是如何被级联的;
图7示意性地示出了一个传感器系统,该传感器系统利用本发明的一个实施方式的干涉仪以快速测量来自光纤的散射光和反射光;
图8示意性地示出了分布式传感器系统,该分布式传感器系统利用本发明的一个实施方式的干涉仪以产生每个脉冲均具有不同频率的一系列脉冲,并因此允许散射光的一个不同的部分与散射光的产生轻微的频移的另一部分发生干涉,导致外差差拍信号;
图9是表示依据本发明的一个实施方式的数据处理方法的方框图;
图10是表示依据本发明的一个实施方式的校准干涉仪的方法的方框图;
图11示意性地示出了分布式传感器系统,其使用快速光调制器调制光的频谱,所述快速光调制器产生多个边频带,并使用滤光器选择频谱的一部分。
图12A示出了对于在图11中示出的布置,使用滤光器选择所调制的光的频谱;
图12B示意性地示出了依照图11的方法的时序图;
图13示意性地示出了一个实施方式,其中光纤可以被部署为线性传感器、方向传感器或传感器的多维阵列;
图14~16示意性地示出了用于本发明的实施方式的光纤的可选的布置;
图17~18示意性地示出了本发明在多个方面的应用。
优选实施方式的详细描述
图1示出了测量光信号的光振幅、相位和频率的新颖的干涉仪的第一实施方式,一般由100标示。来自光源(未示出)的入射光优选在光放大器101中被放大,并被传输至滤光器102。滤光器102滤除放大器101的带外的放大的自发辐射噪声(ASE)。然后所述光进入与3×3光耦合器104连接的光循环器103中。所述光的一部分被引导至光电探测器112以监测所述输入光的光强度。所述光的其他部分沿着第一光路105和第二光路106被引导,且在这两个光路之间具有光路长度差异。法拉第旋转镜(FRM)107和108分别将所述光穿过第一光路105和第二光路106反射回来。法拉第旋转镜沿着光路105和106提供自偏振补偿以使所述光的两部分在所述3×3光耦合器104的每一端口有效地发生干涉。光耦合器104将0度,+120度和-120度的相对相移引入干涉信号,以使生成第一干涉信号分量、第二干涉信号分量和第三干涉信号分量,每一分量处于不同的相对相位。
第一干涉信号分量和第二干涉信号分量通过光耦合器104被引导至光电探测器113和114,光电探测器113和114测量相应的干涉信号分量的强度。
光循环器103为所述输入光和通过光耦合器104的相同端口返回的(第三)干涉信号分量提供有效的光路。入射到光循环器103上的干涉信号分量被朝向光电探测器115引导以测量干涉信号分量的强度。
光电探测器113、114和115的输出被结合以测量所述入射光的相对相位,如以下参照图7和图9更详细地描述的。
可选择地,可以沿着所述光路105和106使用频移器110和111和/或光调制器109以进行外差信号处理。另外,频移器110和111的频率偏移可以分别从f1、f2交替到f2、f1以减少在穿过光路105和106传播的所述光的两部分之间的任何依赖于频率的影响。
以上描述的实施方式提供了适用于快速定量测量光场的扰动的新颖的装置,特别地该装置可被用于具有高灵敏度和快速响应时间的分布式传感器和多路复用传感器以满足诸如声波感测的应用要求。
图7示出了图1的干涉仪应用于分布式感测来自光系统700的光信号。显然,尽管在分布式感测的上下文中描述了该应用,例如通过接收来自与所述光纤耦合的一个或多个点传感器的反射光,其还可以用于点感测。
在此实施方式700中,由激光器701发出的光由脉冲信号702进行调制。光放大器705用来增强所述脉冲激光,且其后由带通滤波器706滤除所述放大器的ASE噪声。然后所述光信号被送入光循环器707。可以在所述循环器707的一个端口处使用附加的滤光器708。所述光被送入感测光纤712,例如感测光纤是布置在需要监测声波扰动的环境中的单模光纤或多模光纤。一段光纤可能被隔离并被用作参考部分710,例如在一个“安静”的位置。参考部分710可能形成在反射器之间或形成在分光器709与反射器711的结合处。
沿着感测光纤712产生的反射光和反向散射光被引导穿过循环器707并进入干涉仪713。干涉仪713的详细操作已在前面参照图1描述过。在此实例中,使用快速低噪声光电探测器112、113、114和115将所述光转换成电信号。所述电信号被数字化,然后使用快速处理器单元714(将在下文描述)计算沿着参考光纤710和感测光纤712的相对光相位调制。所述处理器单元与脉冲信号702是时间同步的。在光路105和光路106之间的光路长度差定义了空间分辨率。可在给定的空间分辨率上进行多个采样来对光电探测器输出进行数字化。结合所述多个采样以通过加权平均算法组合光电探测器输出来提高信号可见度和灵敏度。
可能需要稍微改变光的光频率以提高反向散射信号或反射信号的灵敏度。光调制器703可以由约10-40GHz的微波频率驱动以产生光学载波调制边频带。滤光器708可以被用来选择相对于载波偏移的调制边频带。通过改变调制频率,可以快速地调制所选定的光频率。
数据处理
图9示意性地表示了方法1100,通过该方法从光电探测器113、114、115的输出确定光学相位角。在光路105和光路106之间的光路长度差限定了系统的空间分辨率。可在给定的空间分辨率上进行多个采样以将光电探测器输出数字化,例如将强度值进行过采样。结合所述多个采样以通过加权平均算法组合光电探测器输出来提高信号可见度和灵敏度。
在步骤1102,将来自光电探测器113、114、115的三个强度测量值I1、I2、I3结合以计算来自感测光纤的反射光或反向散射光的相对相位和振幅。在每一采样点计算相对相位(步骤1104),以及所述方法利用过采样以使可用的数据点比所需的系统空间分辨率需要的数据点更多。计算来自干涉信号的三个相位偏移分量的相对相位和振幅的方法从文献上可以得知。例如,Zhiqiang Zhao等人[12]和第5,946,429号美国专利[13]描述了解调在连续波多路复用应用中的3×3耦合器的输出的技术。所描述的技术可以被应用于本实施方式的时间系列数据。
对于每一采样点,在步骤1106依据等式(1)根据来自光电探测器113、114、115的三个强度测量值I1、I2、I3为每一脉冲计算可见度因数V。
等式(1) V=(I1-I2)2+(I2–I3)2+(I3–I1)2
在低可见度的点,在各个相移处的强度值是相似的,因此V值较小。依据V来表征采样点允许确定相位角的加权平均(步骤1108),加权偏向于具有良好的可见度的采样点。这种方法提高了相位角数据1110的质量。
可选择地,可见度因数V还可以用于调节最大信号灵敏度位置的光的数字采样的时间(步骤1112)。此实施方式包括具有动态变化的时钟周期的数字器,(动态变化的时钟周期在此可称为“iclock”)。所述动态变化的时钟可以用于调节光电探测器输出的数字化采样的时间,以获得最大信号灵敏度位置和/或从发生信号衰减的位置偏移的位置。
相位角数据对由感测光纤经历的声波扰动是敏感的。当声波穿过光纤时,将导致玻璃结构收缩和膨胀。这改变了从光纤中的两个位置反射的反向散射光之间的光路长度(即沿着干涉仪中的这两个光路传播的光),其作为相对相位变化在干涉仪中被测量。这样,在步骤1114,光学相位角数据能够被处理以测量在光产生的点的声信号。
在本发明的优选实施方式中,利用专用的处理器,如现场可编程门阵列执行数据处理方法1100。
传感器校准
为了精确的相位测量,测量光电探测器113、114和115的偏移信号和相对增益是重要的。这些可以通过参照图10描述的方法1200进行测量并校正。
每一光电探测器具有光电探测器的电气偏移,即在没有光入射到光电探测器上时光电探测器的电压输出(这可称为“零-光电平(zero-light level)”偏移)。作为第一步骤(在步骤1202)关闭来自光纤的入射光和光放大器101。在关闭时,光放大器101作为一个有效的衰减器,允许较少的光到达光电探测器。在这种条件下光电探测器的输出被测量(步骤1204)以确定电气偏移,这形成了用于校准的基准电平。
在开启光放大器101同时关闭输入光(步骤1206)之后,在步骤1208可以测量光电探测器的相对增益。带内的自发辐射(即在带通滤波器102的带内的放大的自发辐射),其表现为一个非相干光源,然后可被用于确定归一化因数和偏移校正(步骤1210)以校准在干涉仪臂之间的耦合效率与光电探测器113、114和115的互阻抗增益的组合。此信号还可以被用于测量由带内的自发辐射导致的信号偏移。
便利地,光放大器,其是干涉仪的部件,被用作非相干光源而不需要辅助光源。所述光源的非相干性对于避免在光电探测器的干涉影响,即光的相干长度应该短于干涉仪的光路长度而言是必要的。然而,为了精确的校准,所述光源的频段最好接近,或以来自所述光源的光的频率为中心。因此选择带通滤波器102以滤除其频率在放大的自发辐射所需的带宽外的光。
当用于脉冲系统中时,例如可用于分布式传感器中,以上描述的方法可以被使用在来自所述光源的光脉冲之间,以在使用期间,在来自所述光源的每一(或所选定的)脉冲实质上没有中断测量过程之前有效地校准系统。
以上描述的实施方式的变形均包含在本发明的范围内,以及某些可替代的实施方式描述如下。图2示出了新颖的干涉仪的另一个实施方式,一般由200标示,其类似于在图1中示出的实施方式,但是用附加的法拉第旋转镜201代替光电探测器112。相似的部件由相似的参照数字标示出。在此实例中,在可能具有不同的光路长度的不同光路之间的干涉可以被分开在三个拍频f1、f2和(f2-f1)。此实施方式的布置具有在操作中提供另外的灵活性的优势,例如不同的外差频率能够提供不同的操作模式以产生在不同的空间分辨率的测量值。
图3示出了新颖的干涉仪的另一个实施方式,一般由300标示,其类似于图1的布置,且相似的部件由相似的参照数字标示出。然而,此实施方式使用4×4耦合器314和附加的光路301,频移器304,相位调制器303,法拉第旋转镜302和附加的光电探测器308。在此实例中,在可能具有不同的光路长度差的不同光路之间的干涉可以在三个拍频(f2-f1)、(f3-f2)和(f3-f1)分开。可选择地,法拉第旋转镜302可以由隔离器或光纤匹配端替换以使没有光反射穿过光路301,因此只允许在光路105和光路106之间的干涉。
这种布置的4×4光耦合器产生相对相移在-90度、0度、90度、180度的四个干涉信号分量。
图4示出了干涉仪的另一个实施方式。在此实例中,通过插入法拉第旋转镜402代替光电探测器112将附加的光路引入在干涉仪中。
在所有以上描述的实施方式中,光开关可被用来改变和/或选择穿过干涉仪的光路长度的不同组合。这有助于在不同的空间分辨率测量之间进行切换(与所选定的光路长度的光路长度差相对应)。
图5和图6示出了被布置用于级联或星型配置以允许测量不同的光路长度差的相对光学相位的干涉仪系统500、600的实施例。在图5中,具有不同的光路长度差(因此具有不同的空间分辨率)的三个干涉仪501,502,503被串联组合。在图6中,具有不同的光路长度差(因此具有不同的空间分辨率)的四个干涉仪602、603、604和605被组合,其中干涉仪602、603、604并联,以及干涉仪603和605串联。在图6中,干涉仪601是3×3的耦合器,其用于分离干涉仪之间的光。布置600也可以与波分复用部件相结合以提供针对不同的光波长的并行输出。
以上描述的实施方式涉及用于快速定量测量沿着一段光纤传输、反射和/或散射的光场的声波扰动的装置及方法。本发明的各个方面可以通过其他的方式应用或实施,例如监测通过激光器产生的光信号,和/或监测外差信号发生器的性能,和产生用于传输至光信号的光脉冲。参照图8描述了一个实施例。
图8示出了一个系统,一般由800标示,其包括依据本发明的一个实施方式的干涉仪801,其被用来产生一个相对于另一个频移的两个光脉冲。所述干涉仪通过光循环器103接收来自激光器701的输入脉冲。一个3×3光耦合器104将所述输入脉冲的一个分量引导至光电探测器,将其他的分量引导至所述干涉仪的臂。所述臂中的一个包括频移器110和RF信号805。两个脉冲之间的干涉由解调器802监测。经由法拉第旋转镜107和108反射的光使用延迟器803在耦合器809处结合以匹配所述干涉仪的光路长度,以使频移的脉冲和输入脉冲叠加。耦合器809将相对相移引入所述干涉信号,因此所述干涉仪监测在相对相移处的三个外差频率信号分量。光循环器103将所述两个脉冲传递至所述感测光纤。
在本实施方式中,反射光和反向散射光没有通过依据本发明的干涉仪检测。相反,反射光和反向散射光穿过光放大器804和滤光器806,然后被送入快速、低噪声的光电探测器807。电信号被分开并且然后采用本领域公知的方法,通过混频在不同相位角的射频(RF)信号805被降频成基带信号。所述电信号被数字化并通过使用快速处理器808将数字化的信号进行组合来计算在所述光纤的每一部分处的相对光学相位调制。
图11示出了用于点传感器以及分布式传感器的装置的另一实施方式。在本实例中,光调制器703的调制频率704在光脉冲调制波包络线内从f1被切换至f2。
如在图12A和12B中所指示的,滤光器708选择由光调制器产生的两个调制频率边频带1202/1203和1204/1205。在第一阶边频带1202和1203之间的频移与频率调制差(f2-f1)成比例,而在第二阶边频带1204和1205之间的频移与2(f2-f1)成比例。因此,光电探测器输出806产生两个差拍信号,其中一个差拍信号以(f2-f1)为中心,另一个差拍信号以2(f2-f1)为中心。使用解调器901,所述差拍信号的相对光学相位可以被独立地测量。这两个独立的测量值可以被组合以提高沿着所述感测光纤的信号可见度、灵敏度以及动态范围。
图12A示出了以上所提及的光的调制频谱和边频带的选择。
图12B示出了其在频率f0的脉冲宽度为T的原始激光脉冲1206分别在T1、T2和T3期间以频率f1,f2和f3进行调制的图。在T1、T2和T3之间的延迟也可以被改变。使用滤光器708选择一个或多个调制边频带以产生将被送入所述光纤中的频移的光脉冲。来自所述光纤的反射信号和/反向散射信号(709、710、711和712)通过循环器707被引导至光电探测器接收端。来自不同脉冲的反射光和/反向散射光在光电探测器输出端混合在一起以产生外差信号,如(f2-f1)、(f3-f1)、(f3-f2)、2(f2-f1)、2(f3-f1)和2(f3-f2)。也产生了其他的外差信号,但是(2f2-f1)、(2f3-f1)、(2f1-f2),(2f1-f3)、(2f3-f1)和(2f3-f2)产生在更高的频率处。所述外差信号被降频至基带同相信号和正交信号。所述同相信号和正交信号通过快速模数转换器被数字化以及使用快速数字信号处理器计算出相位角。
图13示出了分布式传感器的一个实施方式,其感测光纤702经过不同的扰动场1302、1304和1307。所述感测光纤可以被用作线性传感器1303和1304,被用作方向传感器1305和1306或被用作多维阵列传感器1308、1309和1310。因为所有的测量均是同步的,可以处理它们以提高信号灵敏度,实现较宽的动态范围并利用波束形成技术提供场成像。
图14示出了双八(88)图案的光纤布置1400,其中所述光纤以连续的路径被布置在表面区域上而没有横穿所述光纤的另一部分以提高灵敏度。
图15示出了三-欧米伽(ΩΩΩ)图案的光纤布置1500,其中所述光纤以连续的路径被布置在表面区域上而没有横穿所述光纤的另一部分以提高灵敏度。
这些布置对于提高感测系统的感测灵敏度、频率响应和空间分辨率是特别有用的,同时其简化了安装技术并使弯曲损耗最小化。
图16示出了光纤布置1600,其中所述光纤被布置成对数螺旋线图案以形成声学照相机或望远镜。完全沿着光纤的一部分可以检测到声能量。在本实例中,沿着场检测到的信号被同步,使用诸如波束形成的附加的信号处理,可绘制近场声发射和远场声发射图。这种装置可以被用来远眺天空、穿越海洋、深入地下、或深入容器内。本方面还提供了用于监测环境噪声的装置,如飞机在起飞和着陆期间的飞机噪声以及来自其他的飞行物或自然栖息地的噪声。
图17示出在1700,分布式流量感测的应用,沿着管道1702的不同部分,光纤1701在分开的位置1704卷绕所述管道并通过夹具1706附着到所述管道上或置于所述管道附近以测量流体噪声和压力变化。这种布置还可以被用来监测注射器或控制阀1708的操作,以及传感器可以被用于井内穿孔区监测和出砂监测。例如,对于井内应用,声学噪声分布可以被用来通过在沿着所述井的每一位置的噪声测井(noise logging)来测量流量。另外,噪声频谱可以被用来确定流体的相位。进一步的,噪声频谱相关技术可以被使用在较长的井段上以使用例如在WO 2006/130499[14]中所描述的分析技术确定声速以及跟踪产生于流体内部的漩涡以精确地确定流速。该文件描述了用于跟踪作为流量的函数的漩涡导致的压力波速度的光纤声学干涉传感器阵列。然而,所述干涉仪需要分立部件,如布拉格光栅对,和可以实际上在一段较短的管道上使用有限数量的传感器。使用本发明的分布式声学传感器,我们可以在优化的配置中沿着管道的全部长度,使用将连续长度的光纤附着至管道上或置于管道附近的灵活方法。例如所述空间分辨率测量值可能通过将光纤卷绕于管道上以跟踪漩涡引起的压力波或仅跟踪沿着所述管道产生并传播的声波以确定在相同和相反的流体方向的声速来提高。所述声速是流体成分的函数,并通过绘制所述声速图可以看出流量分布沿着管道是如何变化的。
同样地,因为我们不需要任何分立部件,在所述光纤上施加适当的保护涂层,可以达到较高的工作温度。使用不同的涂层或护套也可以提高或降低所述光纤的灵敏度。同样地,所述光纤可以被制成具有提高的感测灵敏度同时在恶劣的环境中为光纤提供保护的连续电缆。
图18示出在1800,使用声学光纤传感器1804和声学参考源1806动态定位立管1802的应用,光纤传感器1804凭借声学参考源1806测量在沿着所述立管的不同位置接收的声信号的飞行时间并因此确定所述立管的位置。
本发明的各个方面和实施方式的特征的回顾
在一个方面,本发明提供了一种光学干涉仪装置,所述装置能够提供所述光信号之间的多个光路差,并提供在不同的光路之间的具有固定相移和/或可变相移的干涉信号。在新颖的配置中,所述干涉仪利用分光部件,循环器件和法拉第旋转镜。在所述干涉仪的输出处的光信号被转换成电信号,将所述电信号数字化以用于快速处理。所述电信号的偏移电平被去除且其振幅被归一化。通过组合所述归一化的电信号来精确地确定光信号的相对相移。
在另一方面,本发明涉及一种干涉仪装置,所述装置利用分光器和非互易器件以提供具有给定的相移和光路长度差的光干涉,所述光干涉可以在所述分光器的所有端口处被测量,其中所述光的相对相位调制可以被非常精确且快速地(如在每几纳秒)计算出。所述干涉仪可以使用:光纤部件,如在其一个端口处连接至光纤循环器的m×m融合的光纤耦合器;反射并同时给穿过所述干涉仪的不同光路传播的光提供偏振补偿的法拉第旋转镜,以及被用来测量干涉光信号的光电探测器。入射光可以使用光纤放大器被放大,以及优选地所述干涉仪具有带通滤光器以滤除带外的放大的自发辐射噪声(ASE)。所述干涉仪可以为沿着穿过所述干涉仪的不同光路传播的光提供双折射补偿。这在所述干涉仪的输出处提供了足够高的可见度。
在其另一方面,本发明提供了一种用于补偿光电探测器的偏移和增益以及干涉仪臂的耦合比,以归一化所生成的干涉信号的方法,所生成的干涉信号被用于测量在前述任一实施方式中所述的调制的输入光的相对相位,其中探测器偏移通过关闭在反向散射光路中的所述光放大器来测量;然后通过开启所述放大器同时关闭所述输入光确定所生成的光电探测器的偏移和增益;然后所述光放大器的ASE作为一个独立的非相干光源,并因此可以确定所述光电探测器的偏移和相对增益,且归一化所探测的光信号。因此所述方法可以使用进入所述干涉仪的输入端的非相干光以归一化在光电探测器的输出处的相对信号振幅。例如,当在所述干涉仪的输入处使用光学前置放大器时,自发的光发射可以被用来测量所述干涉仪臂的分光比和光电探测器的相对增益的组合,并因此相应地归一化相对信号振幅。
本发明的另一附加特征是使用相位调制器和/或频移器以偏移相对频率和/或改变在所述干涉仪的光路之间的相位。频移器和/或相位调制器可以被用来提供外差信号和/或将所生成的穿过所述干涉仪的不同光路的干涉光信号分开。
本发明的一个实施方式的附加特征是选择足够高的频移器的频率以使至少一个拍频周期包含在一个光脉冲分辨率内。可在所述干涉仪的不同光路之间使用不同的频移以分开和/或外差探测不同的光路之间的相位。可交替在不同的光路之间的频移以校正干涉仪输出信号的任一频率依赖性。
本发明的一个实施方式的附加特征是例如通过使用光开关选择穿过所述干涉仪的不同光路。所述光开关可以被用来选择穿过所述干涉仪的不同光路,并因此选择不同的空间分辨率测量。本发明的另一方面涉及一种系统,所述系统包括以串联配置或星型配置或两者的结合级联的许多干涉仪。
本发明还提供了一种系统,该系统通过以高灵敏度、高动态范围和超过几十kHz的高速率测量沿着一段光纤的反射光和/或反向散射光的相位调制来利用多路复用传感器和/或分布式传感器的光脉冲。采用这种方式,本发明可以提供多路复用和/或分布式声感测系统。
本发明的一个实施方式的附加特征是在空间分辨率间隔上,至少两次数字化所述干涉仪的输出,或所述干涉仪的光电探测器的输出。本发明的一个实施方式的附加特征是组合所述干涉仪的输出以确定由所述光的任何信号衰减造成的不敏感的测量采样点,以在给定的空间分辨率测量或间隔上丢弃和/或提供所述光的多个采样的加权信号平均。本发明的实施方式使用具有动态变化的时钟周期的数字器,(动态变化的时钟周期在此可称为“iclock”),以调节在最大信号灵敏度位置的光的数字采样的时间。所述动态变化的时钟可以用来调节光电探测器输出的数字化采样的时间,以获得最大信号灵敏度位置和/或从发生光信号衰减的位置偏移的位置。
本发明的又一方面提供了频移光,其使用快速光调制器以产生优选具有抑制的载波频谱的边频带,以及使用带通滤光器以选择调制边频带,凭此调制频率在穿过所述光调制器传播的光脉冲的两部分之间快速地变化。所述光调制器还可以砍掉位于光脉冲的中间的一部分以产生具有不同的频率的两个脉冲。在这种情况下由这两个脉冲产生的反射光和/或反向散射光被结合以导致外差信号,该外差信号的相位被确定以测量沿着所述感测光纤的相对光学相位调制。
提供多个外差信号可以扩大动态范围并降低信号衰落的影响。当来自这两个脉冲的散射光和/或反射光被结合时,所述调制边频带将产生与调制频率差及所述边频带的阶数成比例的不同的拍频。光的频率可以被改变以使在光纤的给定部分上的信号灵敏度最优化。穿过所述光调制器的光的频率可以被快速地改变以使光脉冲的至少两部分具有不同的调制边频带频率,另外,光脉冲的一部分可以被砍掉以产生具有不同的调制边频带频率的两个不同的光脉冲部分。在来自感测光纤的散射的或反射的光脉冲的这两部分之间的调制边频带可以调和在一起以产生在这两个脉冲之间的频率差的多倍处的、与所述调制边频带的阶数成比例的多个外差信号。
本发明的实施方式可以使用激光光源或宽带光源。具有相同的延迟的光的相干匹配导致干涉信号,所述干涉信号可以被用来测量沿着光纤的散射光或反射光的相对相位调制。本发明可以使用波分复用部件以利用具有不同波长的多个激光脉冲,以及,优选地,改变关于每个光脉冲的时间偏移以控制所述光脉冲之间的交叉相位调制和允许处理在所述感测光纤中的多个脉冲没有和允许所述系统能够实现较高的测量频率响应的交叉灵敏度。这可能是所述系统的声频率响应,所述响应提供不同的空间采样分辨率和/或位置,和/或允许有效地丢弃具有低灵敏度的任何点。
本发明的一个实施方式的附加特征是选择不同的空间分辨率,其中可以调节沿着所述感测光纤的灵敏度和频率响应,以及可以扩大所述动态范围。
所述感测光纤可以是标准的单模光纤、偏振保持光纤、单一偏振光纤、和/或带状光纤,以及其可以是带涂层的和/或用电缆缚住的以增强或抑制其灵敏度。
本发明的一个实施方式的附加特征是选择所述光纤的不同配置以使在不同位置处的感测光纤的灵敏度、频率和定向最佳。所述光纤可以被布置为线性传感器、方向传感器或多维阵列传感器。所述光纤可以放置在表面区域上的连续路径中,而没有横穿所述光纤的另一部分以提高诸如褶曲的三-欧米伽(ΩΩΩ)和/或双八(88)构型的传感器系统的灵敏度。这对于提高感测系统的感测灵敏度、频率响应和空间分辨率是特别有用的,同时简化了安装技术并使弯曲损耗最小化。
所述光纤可以被附着在容器的表面上以听取产生于所述容器内部的噪声从而监测在该过程中的变化,声图像,以及探测任何泄漏。
又一方面提供了一种使用声学传感器用于分布式流量测量和成像、井内穿孔区监测以及出砂监测的装置。例如,对于井内应用,声学噪声分布可以用来通过沿着所述井的每一位置进行噪声测井来测量流量。另外,噪声频谱可以用来识别流体的相位。进一步地,噪声频谱相关技术可以使用在较长的井段上以确定声音的速度以及跟踪产生于流体内部的漩涡以精确地确定流速。
传感器系统可以用作分布式声学传感器,使确定分布式流量测量和成像、在油井、气井和流线(flowline)中的穿孔区监测及出砂监测成为可能。分布式温度测量和张力测量可以结合以提高所述分布式声学传感器的数据阐释。
又一应用是沿着预先安装的光纤监听以用于监控应用。这包括沿着顺着钻孔、管道、周界、端口和边界安装的光纤进行测量。
另外的方面提供了使用声学光纤传感器和声学参考源的动态定位装置,光纤传感器凭借声学参考源测量在沿着结构的不同位置接收的声信号的飞行时间,并因此确定所述结构的位置。
又一方面提供了使用声学光纤传感器和发出声音(被称为“鸣笛猪”)的清管器的管道结构监测装置。所述光纤传感器测量穿过所述管道壁的声学传输以用于诊断以及跟踪所述清管器的位置。
另一方面提供了管道监测装置,其中感测光纤被布置在管道的内部并由流体拖曳力沿着所述管道运送以为所述管道的诊断以及流体特性和/或成像提供噪声流量的测量。
另一方面提供了一种使用光纤传感器和收集能量的自供电的声源的装置,所述光纤传感器用于声学感测,所述收集能量的自供电的声源用于产生可以由附近的感测光纤接收的足够的声发射,以用于数据通信、测量、诊断和包括沿着长管道、井内的监控应用和其他的远程应用。
本发明的另一方面提供了一种使用声学光纤传感器的装置,所述装置通过在上游水库中或在所述水坝的中心部分产生声学噪声源并测量沿着所述光纤检测的声信号强度来测量沿着水坝和堤坝的渗流率,其中所述渗流区域作为声波传输的低声阻抗路径,并因此表现出较大的信号电平。
本发明的其他优势和应用对本领域的技术人员来说将是明显的。任何附加特征或可选特征可以组合在一起和与任一方面相组合,这对本领域技术人员来说将是明显的。
结语
如以上所描述的,公开了用于快速定量测量沿着一段光纤传输、反射和/或散射的光场的扰动的装置及方法。特别地,本发明可以用于分布式感测,同时显著地提高速度和灵敏度以允许检测沿一段光纤的任何地方的声波扰动同时实现良好的空间分辨率。本发明在较宽范围的声波感测和成像应用中提供了独特的优势。典型的用途是用于监测油井和气井,用于诸如分布式流量测量和/或成像,监测较长的电缆和管道,大型容器的成像以及安全应用等应用中。
参考文献:
[1]US 6,555,807,Clayton等人。
[2]WO 98/27406,Farhadiroushan等人。
[3]US 7,355,163,Watley等人。
[4]US 5,194,847,Taylor等人。
[5]Shatalin,Sergey等人,“Interferometric optical time-domainreflectometry for distributed optical-fiber sensing(用于分布式光纤感测的干涉仪的光时域反射测量术)”,应用光学,第37卷,第24号,第5600-5604页,1998年8月20日。
[6]WO 2008/056143,Shatalin等人。
[7]WO 2004/102840,Russel等人。
[8]GB 2445364,Strong等人。
[9]US 2009/0114386,Hartog等人。
[10]WO 2009/056855,Hartog等人。
[11]WO 2007/049004,Hill等人。
[12]Zhiqiang Zhao等人,“Improved Demodulation Scheme for Fiber OpticInterferometers Using an Asymmetric 3x3 Coupler(使用非对称的3×3耦合器的光纤干涉仪的改善的解调方案)”,“《J.Lightwave Technology》(光波技术)”,第13卷,第11号,第2059-2068页,1997年11月。
[13]US 5,946,429,Huang等人。
[14]WO 2006/130499,Gysling等人。
Claims (14)
1.一种光纤分布式声学感测系统,包括:
光学感测光纤,其被布置成在使用中用于接收脉冲光信号;
用于接收的器件,其用于在所述脉冲光信号沿着所述光学感测光纤行进时接收来自沿着所述光学感测光纤的反向散射的和/或反射的光,所述光依赖于沿着所述光学感测光纤入射的声波扰动被反向散射和/或反射;以及
用于处理的器件,其用于处理所接收的光以测量来自沿着所述光学感测光纤的长度的所接收的光的相对相位、频率和振幅来检测所述声波扰动,其中,对沿着所述光学感测光纤的长度进行的所述相对相位、频率和振幅的测量是同步的以提高信号灵敏度。
2.根据权利要求1所述的系统,其中,所述光学感测光纤是标准的电信光纤电缆。
3.根据权利要求1或2所述的系统,其中,所述用于处理的器件还被布置成以几十kHz的速度测量所接收的光的相位调制。
4.根据任一前述权利要求所述的系统,其中,所述系统还包括用于校准的器件,所述用于校准的器件用于校准所述用于处理的器件。
5.根据任一前述权利要求所述的系统,其中,所述光学感测光纤沿着待被监测的结构或在待被监测的区域中进行部署。
6.根据任一前述权利要求所述的系统,其中,由所述光学感测光纤接收的所述脉冲光信号的光频率被稍微改变以提高沿着所述光学感测光纤反向散射或反射的光的灵敏度。
7.根据权利要求6所述的系统,还包括光调制器和滤光器,所述光调制器用于在所述脉冲光信号中产生边频带,所述滤光器被配置成能够控制地选择一个或更多个调制边频带,并从而改变输入至所述光学感测光纤的光的频率。
8.根据任一前述权利要求所述的系统,其中,所述用于接收的器件包括干涉仪,所述干涉仪被布置成在使用中接收来自沿着所述光学感测光纤的反向散射光和/或反射光,所述干涉仪包括至少两个光路,在所述至少两个光路之间存在光路长度差,所述反向散射光和/或反射光在所述干涉仪中进行干涉以产生干涉分量,以及其中,所述用于处理的器件包括用于测量所述干涉分量的多个光电探测器和被布置成从所述干涉分量确定光学相位角数据的处理器。
9.一种光纤分布式声学感测方法,所述方法包括:
将脉冲光信号输入到光学感测光纤;
在所述脉冲光信号沿着所述光学感测光纤行进时,接收来自沿着所述光学感测光纤的反向散射的和/或反射的光,所述光依赖于沿着所述光学感测光纤入射的声波扰动被反向散射和/或反射;以及
处理所接收的光以测量来自沿着所述光学感测光纤的长度的所接收的光的相对相位、频率和振幅来检测声波扰动,其中,沿着所述光学感测光纤的长度进行的所述相对相位、频率和振幅的测量是同步的以提高信号灵敏度。
10.根据权利要求9所述的方法,其中,所述处理还包括以几十kHz的速度测量所接收的光的相位调制。
11.根据权利要求9或10所述的方法,其中,所述相对相位、频率和振幅数据被组合以提供相干场图像。
12.根据权利要求9至11中任一项所述的方法,还包括沿着待被监测的结构或在待被监测的区域中部署所述光学感测光纤。
13.根据权利要求9至12中任一项所述的方法,还包括改变输入至所述光学感测光纤的所述脉冲光信号的光频率以提高沿着所述光学感测光纤反向散射或反射的光的灵敏度。
14.根据权利要求13所述的方法,还包括在所述脉冲光信号中产生边频带,且能够控制地选择一个或更多个调制边频带,从而改变输入至所述光学感测光纤的光的频率。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0908990A GB0908990D0 (en) | 2009-05-27 | 2009-05-27 | Optical sensor |
GB0908990.5 | 2009-05-27 | ||
GB0912051.0 | 2009-07-11 | ||
GB0912051A GB0912051D0 (en) | 2009-07-11 | 2009-07-11 | Optical sensor |
CN201080033359.9A CN102713528B (zh) | 2009-05-27 | 2010-05-27 | 光学感测的方法及装置 |
PCT/GB2010/050889 WO2010136810A2 (en) | 2009-05-27 | 2010-05-27 | Method and apparatus for optical sensing |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201080033359.9A Division CN102713528B (zh) | 2009-05-27 | 2010-05-27 | 光学感测的方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114563026A true CN114563026A (zh) | 2022-05-31 |
Family
ID=43064812
Family Applications (11)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610206234.0A Active CN105910633B (zh) | 2009-05-27 | 2010-05-27 | 光学传感器及使用方法 |
CN202111530935.7A Pending CN114674351A (zh) | 2009-05-27 | 2010-05-27 | 光学感测的方法及装置 |
CN202111530933.8A Pending CN114563029A (zh) | 2009-05-27 | 2010-05-27 | 光学感测的方法及装置 |
CN202111530920.0A Pending CN114563027A (zh) | 2009-05-27 | 2010-05-27 | 光学感测的方法及装置 |
CN201610225290.9A Active CN105890637B (zh) | 2009-05-27 | 2010-05-27 | 光学感测的方法及装置 |
CN202111530932.3A Pending CN114563028A (zh) | 2009-05-27 | 2010-05-27 | 光学感测的方法及装置 |
CN201080032395.3A Active CN102639966B (zh) | 2009-05-27 | 2010-05-27 | 光学传感器及使用方法 |
CN201080033359.9A Active CN102713528B (zh) | 2009-05-27 | 2010-05-27 | 光学感测的方法及装置 |
CN202111530899.4A Pending CN114563025A (zh) | 2009-05-27 | 2010-05-27 | 光学感测的方法及装置 |
CN202111530902.2A Pending CN114563026A (zh) | 2009-05-27 | 2010-05-27 | 光学感测的方法及装置 |
CN202111530934.2A Pending CN114563030A (zh) | 2009-05-27 | 2010-05-27 | 光学感测的方法及装置 |
Family Applications Before (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610206234.0A Active CN105910633B (zh) | 2009-05-27 | 2010-05-27 | 光学传感器及使用方法 |
CN202111530935.7A Pending CN114674351A (zh) | 2009-05-27 | 2010-05-27 | 光学感测的方法及装置 |
CN202111530933.8A Pending CN114563029A (zh) | 2009-05-27 | 2010-05-27 | 光学感测的方法及装置 |
CN202111530920.0A Pending CN114563027A (zh) | 2009-05-27 | 2010-05-27 | 光学感测的方法及装置 |
CN201610225290.9A Active CN105890637B (zh) | 2009-05-27 | 2010-05-27 | 光学感测的方法及装置 |
CN202111530932.3A Pending CN114563028A (zh) | 2009-05-27 | 2010-05-27 | 光学感测的方法及装置 |
CN201080032395.3A Active CN102639966B (zh) | 2009-05-27 | 2010-05-27 | 光学传感器及使用方法 |
CN201080033359.9A Active CN102713528B (zh) | 2009-05-27 | 2010-05-27 | 光学感测的方法及装置 |
CN202111530899.4A Pending CN114563025A (zh) | 2009-05-27 | 2010-05-27 | 光学感测的方法及装置 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111530934.2A Pending CN114563030A (zh) | 2009-05-27 | 2010-05-27 | 光学感测的方法及装置 |
Country Status (8)
Country | Link |
---|---|
US (12) | US9140582B2 (zh) |
EP (4) | EP4174448A3 (zh) |
CN (11) | CN105910633B (zh) |
AU (2) | AU2010252746B2 (zh) |
BR (2) | BRPI1010668B1 (zh) |
CA (8) | CA2763389C (zh) |
GB (19) | GB2516781B (zh) |
WO (2) | WO2010136810A2 (zh) |
Families Citing this family (182)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010076281A2 (en) | 2008-12-31 | 2010-07-08 | Shell Internationale Research Maatschappij B.V. | Method for monitoring deformation of well equipment |
GB2479101B (en) | 2009-02-09 | 2013-01-23 | Shell Int Research | Method of detecting fluid in-flows downhole |
WO2010090660A1 (en) | 2009-02-09 | 2010-08-12 | Shell Oil Company | Areal monitoring using distributed acoustic sensing |
CN105910633B (zh) * | 2009-05-27 | 2019-10-29 | 希里克萨有限公司 | 光学传感器及使用方法 |
US9109944B2 (en) | 2009-12-23 | 2015-08-18 | Shell Oil Company | Method and system for enhancing the spatial resolution of a fiber optical distributed acoustic sensing assembly |
WO2011079107A2 (en) | 2009-12-23 | 2011-06-30 | Shell Oil Company | Detecting broadside and directional acoustic signals with a fiber optical distributed acoustic sensing (das) assembly |
US8605542B2 (en) * | 2010-05-26 | 2013-12-10 | Schlumberger Technology Corporation | Detection of seismic signals using fiber optic distributed sensors |
US9140815B2 (en) | 2010-06-25 | 2015-09-22 | Shell Oil Company | Signal stacking in fiber optic distributed acoustic sensing |
US8584519B2 (en) * | 2010-07-19 | 2013-11-19 | Halliburton Energy Services, Inc. | Communication through an enclosure of a line |
WO2012030814A2 (en) | 2010-09-01 | 2012-03-08 | Schlumberger Canada Limited | Distributed fiber optic sensor system with improved linearity |
US9146151B2 (en) * | 2010-11-18 | 2015-09-29 | Optasense, Inc. | Pulse labeling for high-bandwidth fiber-optic distributed acoustic sensing with reduced cross-talk |
US20120152024A1 (en) * | 2010-12-17 | 2012-06-21 | Johansen Espen S | Distributed acoustic sensing (das)-based flowmeter |
WO2012084997A2 (en) | 2010-12-21 | 2012-06-28 | Shell Internationale Research Maatschappij B.V. | Detecting the direction of acoustic signals with a fiber optical distributed acoustic sensing (das) assembly |
EP2656125A4 (en) | 2010-12-21 | 2018-01-03 | Shell Oil Company | System and method for making distributed measurements using fiber optic cable |
CA2829092C (en) | 2011-03-09 | 2019-02-26 | Shell Internationale Research Maatschappij B.V. | Integrated fiber optic monitoring system for a wellsite and method of using same |
GB2489749B (en) | 2011-04-08 | 2016-01-20 | Optasense Holdings Ltd | Fibre optic distributed sensing |
US9052230B2 (en) * | 2011-05-13 | 2015-06-09 | Chevron U.S.A. Inc | Industrial process monitoring and imaging |
CN103534435B (zh) | 2011-05-18 | 2016-10-26 | 国际壳牌研究有限公司 | 用于保护围绕井套管的环形空间中的管道的方法和系统 |
GB201109372D0 (en) | 2011-06-06 | 2011-07-20 | Silixa Ltd | Method for locating an acoustic source |
AU2012271016B2 (en) | 2011-06-13 | 2014-12-04 | Shell Internationale Research Maatschappij B.V. | Hydraulic fracture monitoring using active seismic sources with receivers in the treatment well |
CA2839212C (en) | 2011-06-20 | 2019-09-10 | Shell Internationale Research Maatschappij B.V. | Fiber optic cable with increased directional sensitivity |
GB2492802A (en) | 2011-07-13 | 2013-01-16 | Statoil Petroleum As | Using distributed acoustic measurements for surveying a hydrocarbon producing well and for compensating other acoustic measurements |
CN103733088B (zh) | 2011-08-09 | 2016-07-06 | 国际壳牌研究有限公司 | 用于测量地震振动器的地震参数的方法和设备 |
CN102313141A (zh) * | 2011-09-16 | 2012-01-11 | 电子科技大学 | 一种管道泄露检测用光纤振动传感系统 |
JP5948035B2 (ja) * | 2011-10-05 | 2016-07-06 | ニューブレクス株式会社 | 分布型光ファイバ音波検出装置 |
CN103988089B (zh) | 2011-12-15 | 2017-12-05 | 国际壳牌研究有限公司 | 用光纤分布式声感测(das)组合检测横向声信号 |
RU2612957C2 (ru) | 2012-01-06 | 2017-03-14 | Шлюмбергер Текнолоджи Б.В. | Скважинное размещение оптического волокна для сейсмических исследований |
US20130229649A1 (en) * | 2012-03-01 | 2013-09-05 | Ming-Jun Li | Optical brillouin sensing systems |
US9383476B2 (en) | 2012-07-09 | 2016-07-05 | Weatherford Technology Holdings, Llc | In-well full-bore multiphase flowmeter for horizontal wellbores |
GB201212701D0 (en) * | 2012-07-17 | 2012-08-29 | Silixa Ltd | Structure monitoring |
US10088353B2 (en) | 2012-08-01 | 2018-10-02 | Shell Oil Company | Cable comprising twisted sinusoid for use in distributed sensing |
GB2546937B (en) * | 2012-11-02 | 2017-11-29 | Silixa Ltd | Combining seismic survey and DAS fluid flow data for improved results |
GB201219797D0 (en) | 2012-11-02 | 2012-12-19 | Silixa Ltd | Acoustic illumination for flow-monitoring |
WO2014083989A1 (ja) | 2012-11-30 | 2014-06-05 | ニューブレクス株式会社 | 3次元位置計測装置 |
US9459363B2 (en) | 2012-12-06 | 2016-10-04 | Pgs Geophysical As | Method and system of performing geophysical surveys with autonomous underwater vehicles |
RU2516346C1 (ru) * | 2012-12-11 | 2014-05-20 | Общество с ограниченной ответственностью "Т8" (ООО "Т8") | Устройство для мониторинга виброакустической характеристики протяженного объекта |
US9954609B2 (en) * | 2012-12-31 | 2018-04-24 | Network Integrity Systems Inc. | Alarm system for an optical network |
US20140202240A1 (en) * | 2013-01-24 | 2014-07-24 | Halliburton Energy Services, Inc. | Flow velocity and acoustic velocity measurement with distributed acoustic sensing |
US20140230536A1 (en) * | 2013-02-15 | 2014-08-21 | Baker Hughes Incorporated | Distributed acoustic monitoring via time-sheared incoherent frequency domain reflectometry |
JP5697699B2 (ja) * | 2013-03-08 | 2015-04-08 | キヤノン株式会社 | ラマン散乱計測装置およびラマン散乱計測方法 |
US9377551B2 (en) | 2013-05-22 | 2016-06-28 | Schlumberger Technology Corporation | Method of borehole seismic surveying using an optical fiber |
NO335878B1 (no) | 2013-06-10 | 2015-03-16 | Read As | Fiberoptisk og elektrisk seismikksensorkabel for tilegnelse og overføring av informasjon om seismiske hendelser registrert av flere multikomponentgeofoner i et undergrunnsreservoar |
WO2014201313A1 (en) * | 2013-06-13 | 2014-12-18 | Schlumberger Canada Limited | Fiber optic distributed vibration sensing with directional sensitivity |
PL2816323T3 (pl) | 2013-06-18 | 2020-04-30 | Siemens Aktiengesellschaft | Sposób i urządzenie do pomiaru akustycznego otoczenia włókna szklanego |
GB2515574A (en) * | 2013-06-28 | 2014-12-31 | Tgs Geophysical Company Ltd | Distributed optical sensing |
CA2917583C (en) | 2013-08-30 | 2018-05-01 | Halliburton Energy Services, Inc. | Distributed acoustic sensing system with variable spatial resolution |
US10337316B2 (en) | 2013-08-30 | 2019-07-02 | Halliburton Energy Services, Inc. | Distributed acoustic sensing system with variable spatial resolution |
EP3044554B1 (en) | 2013-09-13 | 2023-04-19 | Silixa Ltd. | Fibre optic cable for a distributed acoustic sensing system |
US9377559B2 (en) * | 2013-09-16 | 2016-06-28 | Baker Hughes Incorporated | Acoustic sensing system and method of acoustically monitoring a tool |
US9316762B2 (en) | 2013-10-09 | 2016-04-19 | Halliburton Energy Services, Inc. | Geo-locating positions along optical waveguides |
GB201318254D0 (en) | 2013-10-15 | 2013-11-27 | Silixa Ltd | Optical fiber cable |
US20150114628A1 (en) * | 2013-10-24 | 2015-04-30 | Baker Hughes Incorporated | Downhole Pressure/Thermal Perturbation Scanning Using High Resolution Distributed Temperature Sensing |
US9617847B2 (en) * | 2013-10-29 | 2017-04-11 | Halliburton Energy Services, Inc. | Robust optical fiber-based distributed sensing systems and methods |
RU2549540C1 (ru) * | 2013-12-24 | 2015-04-27 | Федеральное государственное бюджетное учреждение науки "Институт океанологии им. П.П. Ширшова Российской академии наук" (ИО РАН) | Устройство мониторинга состояния трубопроводов большой длины, в том числе подводных трубопроводов |
US9488716B2 (en) * | 2013-12-31 | 2016-11-08 | Google Inc. | Microphone autolocalization using moving acoustic source |
GB2522654B (en) | 2014-01-31 | 2021-03-03 | Silixa Ltd | Method and system for determining downhole object orientation |
EP2910977B1 (en) * | 2014-02-21 | 2020-08-05 | Sercel | Method for monitoring an electrical power supply line comprised in a seismic cable, corresponding system, computer program product and non-transitory computer-readable carrier medium |
GB201403626D0 (en) * | 2014-02-28 | 2014-04-16 | Silixa Ltd | Submersible pump monitoring |
GB2539807B (en) | 2014-02-28 | 2020-07-22 | Halliburton Energy Services Inc | Interferometric high fidelity optical phase demodulation |
CA2938526C (en) | 2014-03-24 | 2019-11-12 | Halliburton Energy Services, Inc. | Well tools with vibratory telemetry to optical line therein |
EP3143440B1 (en) | 2014-05-16 | 2024-02-28 | Silixa Limited | Method and system for downhole object location and orientation determination |
DE102014107101A1 (de) * | 2014-05-20 | 2015-11-26 | Technische Universität München | Wellenleiterinterferometer zur Messung einer spektralen Information |
RU2562689C1 (ru) * | 2014-06-02 | 2015-09-10 | Общество с ограниченной ответственностью "Научно-технический центр Т8" (ООО "Т8 НТЦ") | Распределенный датчик акустических и вибрационных воздействий |
CA2954620C (en) | 2014-07-10 | 2021-07-13 | Schlumberger Canada Limited | Distributed fiber optic monitoring of vibration to generate a noise log to determine characteristics of fluid flow |
JP6535006B2 (ja) * | 2014-08-07 | 2019-06-26 | 古河電気工業株式会社 | 光ファイバセンサ、地震探査方法、石油、天然ガス貯留層分布の計測方法、歪み検知方法および地層の割れ目位置特定方法 |
CN104197999A (zh) * | 2014-09-26 | 2014-12-10 | 哈尔滨工业大学 | 光纤多相流量计 |
GB201421470D0 (en) | 2014-12-03 | 2015-01-14 | Silixa Ltd | Range extension for optical fiber sensing systems |
US10451475B2 (en) | 2015-01-07 | 2019-10-22 | Schlumberger Technology Corporation | Gauge length optimization in distributed vibration sensing |
US10113935B2 (en) * | 2015-01-08 | 2018-10-30 | Nec Corporation | Distributed multi-channel coherent optical fiber sensing system |
GB201500596D0 (en) | 2015-01-14 | 2015-02-25 | Qinetiq Ltd | Multiplexed fibre sensor |
CN107209052B (zh) | 2015-01-21 | 2019-08-23 | 光纳株式会社 | 分布型光纤声波检测装置 |
GB2536052A (en) * | 2015-03-06 | 2016-09-07 | Schlumberger Holdings | Optical Sensor |
GB201503861D0 (en) * | 2015-03-06 | 2015-04-22 | Silixa Ltd | Method and apparatus for optical sensing |
US9628314B1 (en) * | 2015-04-15 | 2017-04-18 | The United States Of America As Represented By The Secretary Of The Navy | Digital I/Q reprocessing demodulator (DIRD) |
WO2016178255A1 (en) | 2015-05-05 | 2016-11-10 | Filippo Bastianini | Double frequency conversion apparatus for sourcing radiations having an intrinsically stable wavelength-shift that is quickly tuneable within an extended range, in particular for use in brillouin analysers |
WO2016209279A1 (en) * | 2015-06-26 | 2016-12-29 | Halliburton Energy Services, Inc. | Downhole sensing using solitons in optical fiber |
GB2546717B (en) * | 2015-07-10 | 2021-04-14 | Silixa Ltd | Improved sensitivity optical fiber sensing systems |
GB201513867D0 (en) * | 2015-08-05 | 2015-09-16 | Silixa Ltd | Multi-phase flow-monitoring with an optical fiber distributed acoustic sensor |
WO2017039605A1 (en) * | 2015-08-31 | 2017-03-09 | Halliburton Energy Services, Inc. | Methods and systems employing a flow prediction model that is a function of perforation cluster geometry, fluid characteristics, and acoustic activity |
US10393921B2 (en) | 2015-09-16 | 2019-08-27 | Schlumberger Technology Corporation | Method and system for calibrating a distributed vibration sensing system |
CA2995348C (en) | 2015-10-19 | 2020-02-25 | Halliburton Energy Services, Inc. | Distributed acoustic sensing systems and methods employing multiple pulse widths |
US9887771B2 (en) * | 2015-10-23 | 2018-02-06 | International Business Machines Corporation | Bandwidth throttling |
US20170275986A1 (en) * | 2015-11-05 | 2017-09-28 | Halliburton Energy Services Inc. | Fluid flow metering with point sensing |
WO2017096421A1 (en) * | 2015-12-08 | 2017-06-15 | Hawk Measurement Systems Pty. Ltd. | Improved optical fiber sensing system |
CN105588586B (zh) * | 2015-12-11 | 2018-08-21 | 电子科技大学 | 一种u型传感光纤部署结构的光纤分布式传感系统 |
US10359302B2 (en) | 2015-12-18 | 2019-07-23 | Schlumberger Technology Corporation | Non-linear interactions with backscattered light |
WO2017116383A1 (en) | 2015-12-28 | 2017-07-06 | Halliburton Energy Services, Inc. | Distributed optical sensing using compressive sampling |
TWI730037B (zh) * | 2016-01-26 | 2021-06-11 | 日商富士軟片和光純藥股份有限公司 | 光硬化方法,及用於該光硬化方法之化合物和組成物 |
JP6358277B2 (ja) * | 2016-03-04 | 2018-07-18 | 沖電気工業株式会社 | 光ファイバ歪み及び温度測定装置並びに光ファイバ歪み及び温度測定方法 |
US11199084B2 (en) | 2016-04-07 | 2021-12-14 | Bp Exploration Operating Company Limited | Detecting downhole events using acoustic frequency domain features |
US11530606B2 (en) | 2016-04-07 | 2022-12-20 | Bp Exploration Operating Company Limited | Detecting downhole sand ingress locations |
CN105738268B (zh) * | 2016-05-10 | 2017-06-16 | 河海大学 | 复杂环境下水工程渗流性态一体化监测系统及监测方法 |
US10162245B2 (en) | 2016-06-02 | 2018-12-25 | Nec Corporation | Distributed acoustic sensing system based on delayed optical hybrid phase demodulator |
GB201610996D0 (en) * | 2016-06-23 | 2016-08-10 | Optasense Holdings Ltd | Fibre optic sensing |
US20180031734A1 (en) * | 2016-08-01 | 2018-02-01 | Chevron U.S.A. Inc. | System and method of calibrating downhole fiber-optic well measurements |
GB2566209B (en) * | 2016-09-30 | 2022-04-06 | Halliburton Energy Services Inc | Optical wireless rotary joint |
US10481408B2 (en) * | 2016-09-30 | 2019-11-19 | Christie Digital Systems (Usa), Inc. | Apparatus for reducing coherence of a laser beam |
GB2566910B (en) | 2016-10-13 | 2021-08-25 | Halliburton Energy Services Inc | Systems and methods to utilize a sensor to provide spatial resolution in downhole leak detection |
WO2018093365A1 (en) * | 2016-11-17 | 2018-05-24 | Halliburton Energy Services, Inc. | Switchable distributed acoustic sensing system for wellbore environment |
EP3343194B1 (en) * | 2016-12-28 | 2019-08-28 | ID Quantique S.A. | Measuring device and method for optical fibers |
SE540630C2 (en) * | 2016-12-30 | 2018-10-09 | 3Eflow Ab | A method and apparatus for flow measurement in a fluid distribution system having a number of fluid tap units |
GB201700266D0 (en) * | 2017-01-06 | 2017-02-22 | Silixa Ltd | Method and apparatus for optical sensing |
US11111780B2 (en) | 2017-02-21 | 2021-09-07 | Halliburton Energy Services, Inc. | Distributed acoustic sensing system with phase modulator for mitigating faded channels |
US11366244B2 (en) | 2017-02-23 | 2022-06-21 | Halliburton Energy Services, Inc. | Distributed acoustic sensing system with a polarization control device for improving signal-to-noise ratio |
GB2560522B (en) | 2017-03-13 | 2022-03-16 | Aiq Dienstleistungen Ug Haftungsbeschraenkt | Dynamic sensitivity distributed acoustic sensing |
EP3583296B1 (en) | 2017-03-31 | 2021-07-21 | BP Exploration Operating Company Limited | Well and overburden monitoring using distributed acoustic sensors |
CN109150310A (zh) * | 2017-06-28 | 2019-01-04 | 中国人民解放军61905部队 | 基于现有光缆的临时通信方法 |
CN107178359B (zh) * | 2017-06-28 | 2023-10-24 | 广东迅维科技发展有限公司 | 一种带光缆的连续油管实时智能测井系统 |
AU2018321150A1 (en) | 2017-08-23 | 2020-03-12 | Bp Exploration Operating Company Limited | Detecting downhole sand ingress locations |
EA202090867A1 (ru) | 2017-10-11 | 2020-09-04 | Бп Эксплорейшн Оперейтинг Компани Лимитед | Обнаружение событий с использованием признаков в области акустических частот |
US10935417B2 (en) | 2017-10-26 | 2021-03-02 | Aiq Dienstleistungen Ug (Haftungsbeschränkt) | Distributed acoustic sensing system using different coherent interrogating light patterns and corresponding sensing method |
US10330526B1 (en) | 2017-12-06 | 2019-06-25 | Saudi Arabian Oil Company | Determining structural tomographic properties of a geologic formation |
CN108387251B (zh) * | 2018-01-22 | 2020-07-14 | 大连理工大学 | 一种光纤光栅解调仪器及方法 |
CN108426592A (zh) * | 2018-01-29 | 2018-08-21 | 江苏深光通信科技有限公司 | 基于π/4移相调制的光纤传感解调及其抗偏振衰弱方法 |
CN108279069B (zh) * | 2018-02-09 | 2019-07-30 | 东北大学 | 一种基于螺旋形干涉图像特征提取技术的光学相位差解调方法 |
US11243321B2 (en) | 2018-05-04 | 2022-02-08 | Chevron U.S.A. Inc. | Correcting a digital seismic image using a function of speed of sound in water derived from fiber optic sensing |
CN108413259B (zh) * | 2018-05-17 | 2024-06-18 | 钦州学院 | 一种基于光纤传感的流体输送管道在线监测系统 |
KR102048459B1 (ko) * | 2018-05-21 | 2019-11-25 | 한국과학기술연구원 | 이벤트 고속 검출 및 정밀 측정이 가능한 이중 브릴루앙 분포형 광섬유 센싱 시스템 및 브릴루앙 산란을 사용한 센싱 방법 |
US10837804B2 (en) | 2018-06-28 | 2020-11-17 | Corning Incorporated | Enhanced microbend sensor |
WO2020006561A1 (en) | 2018-06-29 | 2020-01-02 | California Institute Of Technology | Multi-beam optical phased array |
CN112747847B (zh) * | 2018-07-02 | 2021-10-15 | 上海交通大学 | 光波导压力测量系统 |
WO2020032878A1 (en) * | 2018-08-08 | 2020-02-13 | Aselsan Elektroni̇k Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ | Extinction ratio free phase sensitive optical time domain reflectometry based distributed acoustic sensing system |
GB2576920B (en) * | 2018-09-06 | 2022-07-06 | Univ Cranfield | Fluid sensing system and methods |
NL2021638B1 (en) | 2018-09-14 | 2020-05-06 | Technobis Group B V | Optical signal processing system |
CN110965994A (zh) * | 2018-09-27 | 2020-04-07 | 中国石油天然气股份有限公司 | 井筒泄漏检测方法 |
DE102018124435A1 (de) * | 2018-10-03 | 2020-04-09 | Nkt Photonics Gmbh | Verteilte Messvorrichtung |
US20200110193A1 (en) * | 2018-10-09 | 2020-04-09 | Yibing ZHANG | Methods of Acoustically and Optically Probing an Elongate Region and Hydrocarbon Conveyance Systems That Utilize the Methods |
WO2020090582A1 (ja) * | 2018-10-29 | 2020-05-07 | 京セラ株式会社 | 計測装置 |
CN109211356B (zh) * | 2018-11-09 | 2023-10-10 | 珠海任驰光电科技有限公司 | 一种基于移频技术的光纤干涉水位传感器及传感方法 |
US20220018980A1 (en) * | 2018-11-13 | 2022-01-20 | Fiber Sense Pty Ltd | Method and system for distributed fibre optic sensing |
US11859488B2 (en) | 2018-11-29 | 2024-01-02 | Bp Exploration Operating Company Limited | DAS data processing to identify fluid inflow locations and fluid type |
GB201820331D0 (en) | 2018-12-13 | 2019-01-30 | Bp Exploration Operating Co Ltd | Distributed acoustic sensing autocalibration |
CN111398901B (zh) * | 2019-01-03 | 2023-01-20 | 中国科学院上海光学精密机械研究所 | 一种扰动源多维空间定位系统和方法 |
CN109632076A (zh) * | 2019-01-31 | 2019-04-16 | 电子科技大学 | 长距离光纤分布式声波传感的放大系统及方法 |
US10962408B2 (en) * | 2019-03-07 | 2021-03-30 | Saudi Arabian Oil Company | Quasi-fundamental-mode operated multimode fiber for distributed acoustic sensing |
CN111693131A (zh) * | 2019-03-14 | 2020-09-22 | 中国科学院上海光学精密机械研究所 | 一种基于分布式光纤声传感器的信号处理方法 |
US10725157B1 (en) * | 2019-04-05 | 2020-07-28 | Rockwell Automation Technologies, Inc. | Industrial safety sensor |
US20220299481A1 (en) * | 2019-04-22 | 2022-09-22 | King Abdullah University Of Science And Technology | Signal processing algorithm for detecting red palm weevils using optical fiber |
US11365958B2 (en) * | 2019-04-24 | 2022-06-21 | Saudi Arabian Oil Company | Subterranean well torpedo distributed acoustic sensing system and method |
US11079260B2 (en) * | 2019-06-25 | 2021-08-03 | Saudi Arabian Oil Company | Pipe cross-sectional fiber optic multiphase apparatus |
CN110344816B (zh) * | 2019-07-16 | 2023-05-09 | 中国石油大学(华东) | 一种基于分布式光纤声音监测的油气井出砂监测方法 |
CN110730042B (zh) * | 2019-07-30 | 2021-02-19 | 深圳先进技术研究院 | 一种通信方法及装置 |
WO2021026432A1 (en) | 2019-08-07 | 2021-02-11 | Saudi Arabian Oil Company | Determination of geologic permeability correlative with magnetic permeability measured in-situ |
CN110530500B (zh) * | 2019-09-20 | 2021-08-06 | 中国人民解放军国防科技大学 | 一种基于补偿干涉的光纤水听器阵列结构 |
CA3154435C (en) | 2019-10-17 | 2023-03-28 | Lytt Limited | Inflow detection using dts features |
WO2021073741A1 (en) | 2019-10-17 | 2021-04-22 | Lytt Limited | Fluid inflow characterization using hybrid das/dts measurements |
JP7363915B2 (ja) * | 2019-10-29 | 2023-10-18 | 日本電気株式会社 | 音響センサ |
WO2021093974A1 (en) | 2019-11-15 | 2021-05-20 | Lytt Limited | Systems and methods for draw down improvements across wellbores |
US11105659B2 (en) | 2019-11-19 | 2021-08-31 | Korea Institute Of Science And Technology | Dual Brillouin distributed optical fiber sensor and sensing method using Brillouin scattering which allow high-speed event detection and precise measurement |
US12019196B2 (en) | 2019-12-18 | 2024-06-25 | Pgs Geophysical As | Marine survey data acquisition at a tow line |
CN113218494A (zh) * | 2020-01-21 | 2021-08-06 | 中国科学院上海光学精密机械研究所 | 一种分布式光纤声传感系统及信号处理方法 |
GB2619422B (en) | 2020-02-21 | 2024-05-29 | Silixa Ltd | Long range optical fiber sensing systems |
WO2021249643A1 (en) | 2020-06-11 | 2021-12-16 | Lytt Limited | Systems and methods for subterranean fluid flow characterization |
EP4168647A1 (en) | 2020-06-18 | 2023-04-26 | Lytt Limited | Event model training using in situ data |
CN111912439A (zh) * | 2020-08-17 | 2020-11-10 | 电子科技大学中山学院 | 一种线性调频的分布式光纤传感装置及方法 |
CN111986450A (zh) * | 2020-08-21 | 2020-11-24 | 廊坊开发区中油新星电信工程有限公司 | 一种分布式周界安防系统 |
CN111951505B (zh) * | 2020-08-25 | 2022-02-08 | 青岛大学 | 基于分布式光纤系统的围栏振动入侵定位和模式识别方法 |
CN112098039B (zh) * | 2020-09-08 | 2021-06-18 | 中国科学院力学研究所 | 一种高超声速流场脉动密度测量系统及测量方法 |
CN112097806B (zh) * | 2020-09-22 | 2021-09-24 | 北京航空航天大学 | 一种全同弱光栅反射信号信噪分离方法 |
RU2765692C1 (ru) * | 2020-09-28 | 2022-02-02 | Акционерное Общество "Институт "Оргэнергострой" | Извещатель охранный волоконно-оптический с линейной частью с разомкнутым интерферометром с двумя плечами |
IL278789A (en) * | 2020-11-17 | 2022-06-01 | Teldor Cables & Systems Ltd | Diffuse sensing of vibrations on optical fibers |
CN112664179A (zh) * | 2020-12-31 | 2021-04-16 | 核工业北京地质研究院 | 一种钻孔分层试验过程中定位导水裂隙的装置及方法 |
US11840919B2 (en) | 2021-01-04 | 2023-12-12 | Saudi Arabian Oil Company | Photoacoustic nanotracers |
US20220247488A1 (en) * | 2021-02-02 | 2022-08-04 | Huawei Technologies Co., Ltd. | Method and system inspecting fibered optical communication paths |
CN112910566A (zh) * | 2021-02-04 | 2021-06-04 | 北京信维科技股份有限公司 | 基于cwdm光时域反射仪高效测量的方法及系统 |
US11644351B2 (en) | 2021-03-19 | 2023-05-09 | Saudi Arabian Oil Company | Multiphase flow and salinity meter with dual opposite handed helical resonators |
CN113223259B (zh) * | 2021-05-13 | 2022-10-04 | 太原理工大学 | 一种可变结构的光纤周界安防系统 |
CN113267642B (zh) * | 2021-05-25 | 2022-11-29 | 海南赛沐科技有限公司 | 一种全海深海流分布的监测方法及系统 |
GB202108396D0 (en) * | 2021-06-11 | 2021-07-28 | Optasense Holdings Ltd | Fibre optic sensing |
GB202109964D0 (en) * | 2021-07-09 | 2021-08-25 | Univ Oxford Innovation Ltd | Interferometric displacement measurement apparatus |
US11879328B2 (en) | 2021-08-05 | 2024-01-23 | Saudi Arabian Oil Company | Semi-permanent downhole sensor tool |
CN114297133B (zh) * | 2021-11-26 | 2024-03-29 | 军事科学院系统工程研究院网络信息研究所 | 路径可编程多功能微波光子信号处理方法 |
US11860077B2 (en) | 2021-12-14 | 2024-01-02 | Saudi Arabian Oil Company | Fluid flow sensor using driver and reference electromechanical resonators |
US12000278B2 (en) | 2021-12-16 | 2024-06-04 | Saudi Arabian Oil Company | Determining oil and water production rates in multiple production zones from a single production well |
US12085687B2 (en) | 2022-01-10 | 2024-09-10 | Saudi Arabian Oil Company | Model-constrained multi-phase virtual flow metering and forecasting with machine learning |
US12092779B2 (en) * | 2022-01-31 | 2024-09-17 | Halliburton Energy Services, Inc. | Simultaneous distributed acoustic sensing with multiple gauge lengths |
IT202200004667A1 (it) | 2022-03-11 | 2022-06-11 | Sestosensor S R L | Rivelatore di fase e polarizzazione per sensori acustici distribuiti a fibre ottiche ed interrogatore basato sullo stesso |
IT202200012014A1 (it) | 2022-06-07 | 2023-12-07 | Sestosensor S R L | Rivelatore interferometrico a miscelazione (interferodina) ed interrogatore per sensori distribuiti a fibre ottiche basato sullo stesso |
KR102693702B1 (ko) * | 2022-06-27 | 2024-08-08 | 한전케이디엔주식회사 | 에너지 자립형 음파발생 장치를 이용한 해저케이블 고장위치 식별 시스템 및 방법 |
US11867049B1 (en) | 2022-07-19 | 2024-01-09 | Saudi Arabian Oil Company | Downhole logging tool |
CN115112770B (zh) * | 2022-07-21 | 2024-05-03 | 东北大学秦皇岛分校 | 一种光声成像装置及方法 |
US11913329B1 (en) | 2022-09-21 | 2024-02-27 | Saudi Arabian Oil Company | Untethered logging devices and related methods of logging a wellbore |
Family Cites Families (187)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1338952U (zh) | ||||
US3474253A (en) * | 1966-06-02 | 1969-10-21 | Us Navy | Method and apparatus for optically detecting acoustic disturbances |
US3754275A (en) | 1971-09-17 | 1973-08-21 | Amf Inc | Method and apparatus for correlating a pipeline inspection record to known external locations |
US4138659A (en) * | 1977-04-01 | 1979-02-06 | Johnson Sven J | Sonic motor |
US4342907A (en) * | 1977-12-12 | 1982-08-03 | Pedro B. Macedo | Optical sensing apparatus and method |
US4443700A (en) * | 1980-02-01 | 1984-04-17 | Pedro B. Macedo | Optical sensing apparatus and method |
DE3036951C2 (de) | 1980-09-30 | 1982-11-25 | Kraftwerk Union AG, 4330 Mülheim | Verfahren zur Schallemissionsprüfung von aus Stahl bestehenden Behältern oder Rohrleitungen, insbesondere für Kernreaktoranlagen |
US4388622A (en) | 1981-04-15 | 1983-06-14 | The United States Of America As Represented By The Secretary Of The Army | Double sideband linear frequency modulation system for radar applications |
JPS5948664A (ja) | 1982-09-13 | 1984-03-19 | Sumitomo Electric Ind Ltd | 光学式ハイドロフオンシステム |
GB2147758B (en) | 1983-08-24 | 1987-08-05 | Plessey Co Plc | Optical detecting and/or measuring |
US4697926A (en) * | 1985-02-08 | 1987-10-06 | The Board Of Trustees Of The Leland Stanford Junior University | Coherent distributed sensor and method using short coherence length sources |
US4770535A (en) * | 1985-02-08 | 1988-09-13 | The Board Of Trustees Of The Leland Stanford Junior University | Distributed sensor array and method using a pulsed signal source |
US4699513A (en) * | 1985-02-08 | 1987-10-13 | Stanford University | Distributed sensor and method using coherence multiplexing of fiber-optic interferometric sensors |
US4825424A (en) * | 1985-10-21 | 1989-04-25 | Plessey Overseas Limited | Sensing systems |
GB2191909B (en) * | 1986-06-19 | 1989-12-20 | Plessey Co Plc | Acoustic transducer |
US4697456A (en) | 1986-10-02 | 1987-10-06 | Maser Kenneth R | Leakage test for liquid containment |
GB2197953B (en) * | 1986-11-27 | 1990-06-06 | Plessey Co Plc | Acoustic sensor |
US4983034A (en) * | 1987-12-10 | 1991-01-08 | Simmonds Precision Products, Inc. | Composite integrity monitoring |
DE3828943A1 (de) * | 1988-08-26 | 1990-03-01 | Toledo Werk Gmbh | Kraftmessvorrichtung |
US5177633A (en) * | 1989-10-12 | 1993-01-05 | Massachusetts Institute Of Technology | Optical parametric oscillator wideband frequency comb generator |
US5121340A (en) * | 1990-06-08 | 1992-06-09 | Campbell Scientific, Inc. | Multi-level probe and system for measurement of physical conditions in liquid-containing tanks |
US5218197A (en) * | 1991-05-20 | 1993-06-08 | The United States Of America As Represented By The Secretary Of The Navy | Method and apparatus for the non-invasive measurement of pressure inside pipes using a fiber optic interferometer sensor |
US5194847A (en) | 1991-07-29 | 1993-03-16 | Texas A & M University System | Apparatus and method for fiber optic intrusion sensing |
US5633494A (en) * | 1991-07-31 | 1997-05-27 | Danisch; Lee | Fiber optic bending and positioning sensor with selected curved light emission surfaces |
US5412474A (en) | 1992-05-08 | 1995-05-02 | Smithsonian Institution | System for measuring distance between two points using a variable frequency coherent source |
US5355208A (en) | 1992-06-24 | 1994-10-11 | Mason & Hanger National, Inc. | Distributed fiber optic sensor for locating and identifying remote disturbances |
DE4230748C2 (de) * | 1992-09-14 | 1997-01-16 | Heidenhain Gmbh Dr Johannes | Interferometrisches Meßverfahren sowie für seine Durchführung geeignete Laserinterferometeranordnung |
US5471334A (en) * | 1992-10-21 | 1995-11-28 | Nippon Telegraph And Telephone Corporation | Method and apparatus for monitoring noise figure of optical amplifier |
US5417112A (en) | 1993-01-11 | 1995-05-23 | Tdw Delaware, Inc. | Apparatus for indicating the passage of a pig moving within an underground pipeline |
DE4314488C2 (de) * | 1993-05-03 | 1997-11-20 | Heidenhain Gmbh Dr Johannes | Interferometrisches Meßverfahren für Absolutmessungen sowie dafür geeignete Laserinterferometeranordnung |
GB9324333D0 (en) | 1993-11-26 | 1994-01-12 | Sensor Dynamics Ltd | Measurement of one or more physical parameters |
DE9318404U1 (de) | 1993-12-01 | 1994-02-10 | GESO Gesellschaft für Sensorik, geotechnischen Umweltschutz und mathematische Modellierung mbH Jena, 07743 Jena | Einrichtung zum Bestimmen von Temperaturen an und in ausgedehnten Objekten |
DE19506180C1 (de) | 1995-02-09 | 1996-06-05 | Geso Ges Fuer Sensorik Geotech | Verfahren zur Kontrolle und Überwachung des Zustandes von Deichen, Dämmen, Wehren oder dergleichen |
US6157893A (en) * | 1995-03-31 | 2000-12-05 | Baker Hughes Incorporated | Modified formation testing apparatus and method |
US5636021A (en) * | 1995-06-02 | 1997-06-03 | Udd; Eric | Sagnac/Michelson distributed sensing systems |
US5657823A (en) * | 1995-11-13 | 1997-08-19 | Kogure; Eiji | Near surface disconnect riser |
EP0793079B1 (en) * | 1996-02-29 | 2003-06-11 | The Boeing Company | Fiber coupled interferometric displacement sensor |
TW323415B (en) * | 1996-11-29 | 1997-12-21 | Defence Dept Chung Shan Inst | The time-division multiplexing of polarization-insensitive fiber optic Michelson interferometric sensors |
US6082193A (en) * | 1997-04-11 | 2000-07-04 | Pure Technologies Ltd. | Pipeline monitoring array |
GB9626099D0 (en) | 1996-12-16 | 1997-02-05 | King S College London | Distributed strain and temperature measuring system |
US6178036B1 (en) | 1997-01-14 | 2001-01-23 | California Institute Of Technology | Opto-electronic devices and systems based on brillouin selective sideband amplification |
US6055391A (en) * | 1997-02-10 | 2000-04-25 | Xerox Corporation | Vibration detection and control system for printers |
JP3468779B2 (ja) * | 1997-05-19 | 2003-11-17 | アンリツ株式会社 | 光増幅器評価方法及び光増幅器評価装置 |
US6631224B2 (en) * | 1997-06-06 | 2003-10-07 | Novera Optics, Inc. | Tunable filter with core mode blocker |
US6256090B1 (en) * | 1997-07-31 | 2001-07-03 | University Of Maryland | Method and apparatus for determining the shape of a flexible body |
DE19738651A1 (de) * | 1997-09-04 | 1999-03-11 | Alsthom Cge Alcatel | Vorrichtung zur Ermittlung der Temperatur eines Objekts und Verfahren zur Herstellung einer solchen Vorrichtung |
GB9720980D0 (en) | 1997-10-02 | 1997-12-03 | Furukawa Research & Engineerin | Distributed sensing apparatus |
GB9721473D0 (en) | 1997-10-09 | 1997-12-10 | Sensor Dynamics Ltd | Interferometric sensing apparatus |
US5978739A (en) * | 1997-10-14 | 1999-11-02 | Stockton; Thomas R. | Disconnect information and monitoring system for dynamically positioned offshore drilling rigs |
US6923273B2 (en) * | 1997-10-27 | 2005-08-02 | Halliburton Energy Services, Inc. | Well system |
JPH11237287A (ja) * | 1998-02-20 | 1999-08-31 | Mitsubishi Heavy Ind Ltd | 温度分布計測装置 |
US6212003B1 (en) * | 1998-02-23 | 2001-04-03 | Anritsu Corporation | Optical amplifier evaluating method and optical amplifier evaluating apparatus |
US6097478A (en) * | 1998-04-02 | 2000-08-01 | Mcdermott Technology, Inc. | Fiber optic acoustic emission sensor |
US6097486A (en) | 1998-04-03 | 2000-08-01 | The Board Of Trustees Of The Leland Stanford Junior University | Fiber optic acoustic sensor array based on Sagnac interferometer |
AU746996B2 (en) * | 1998-06-26 | 2002-05-09 | Weatherford Technology Holdings, Llc | Fluid parameter measurement in pipes using acoustic pressures |
US6354147B1 (en) * | 1998-06-26 | 2002-03-12 | Cidra Corporation | Fluid parameter measurement in pipes using acoustic pressures |
CN1140785C (zh) * | 1998-06-26 | 2004-03-03 | 塞德拉公司 | 用于测量管道内的不稳定压力的非插入式纤维光学压力传感器 |
US6105430A (en) * | 1998-07-02 | 2000-08-22 | The United States Of America As Represented By The Secretary Of The Interior | Inspection of concrete structures using sonic tomography |
US6522797B1 (en) * | 1998-09-01 | 2003-02-18 | Input/Output, Inc. | Seismic optical acoustic recursive sensor system |
US6449046B1 (en) * | 1999-05-17 | 2002-09-10 | Chung-Shan Institute Of Science And Technology | Optically amplified WDM/TDM hybrid polarization-insensitive fiber-optic interferometric sensor system |
US6691584B2 (en) * | 1999-07-02 | 2004-02-17 | Weatherford/Lamb, Inc. | Flow rate measurement using unsteady pressures |
US6536291B1 (en) * | 1999-07-02 | 2003-03-25 | Weatherford/Lamb, Inc. | Optical flow rate measurement using unsteady pressures |
CA2316131A1 (en) * | 1999-08-17 | 2001-02-17 | Baker Hughes Incorporated | Fiber optic monitoring of sand control equipment via tubing string |
GB9921970D0 (en) * | 1999-09-16 | 1999-11-17 | Univ London | An optical interferometer sensor array |
US6571027B2 (en) | 1999-10-07 | 2003-05-27 | Peter W. E. Smith | Method and devices for time domain demultiplexing of serial fiber bragg grating sensor arrays |
AU2002246492A1 (en) * | 2000-06-29 | 2002-07-30 | Paulo S. Tubel | Method and system for monitoring smart structures utilizing distributed optical sensors |
US6674928B2 (en) * | 2000-08-01 | 2004-01-06 | The United States Of America As Represented By The Secretary Of The Navy | Optical sensing device containing fiber Bragg gratings |
US6426496B1 (en) | 2000-08-22 | 2002-07-30 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | High precision wavelength monitor for tunable laser systems |
GB2367890B (en) | 2000-10-06 | 2004-06-23 | Abb Offshore Systems Ltd | Sensing strain in hydrocarbon wells |
US6466706B1 (en) * | 2000-10-11 | 2002-10-15 | The United States Of America As Represented By The Secretary Of The Navy | Pulsed system and method for fiber optic sensor |
US20030072051A1 (en) * | 2000-10-16 | 2003-04-17 | Myers Michael H. | Orthogonal-code, photonic multiplexing |
US6687008B1 (en) * | 2000-10-19 | 2004-02-03 | Kla-Tencor Corporation | Waveguide based parallel multi-phaseshift interferometry for high speed metrology, optical inspection, and non-contact sensing |
US6782150B2 (en) * | 2000-11-29 | 2004-08-24 | Weatherford/Lamb, Inc. | Apparatus for sensing fluid in a pipe |
US6550342B2 (en) | 2000-11-29 | 2003-04-22 | Weatherford/Lamb, Inc. | Circumferential strain attenuator |
US6785004B2 (en) * | 2000-11-29 | 2004-08-31 | Weatherford/Lamb, Inc. | Method and apparatus for interrogating fiber optic sensors |
US6587798B2 (en) | 2000-12-04 | 2003-07-01 | Weatherford/Lamb, Inc. | Method and system for determining the speed of sound in a fluid within a conduit |
US20020080450A1 (en) * | 2000-12-27 | 2002-06-27 | Hait John N. | Fully photonic, high-speed, reduced-energy-density, burst generator |
US20020131111A1 (en) * | 2001-03-16 | 2002-09-19 | Hait John N. | Hyper-dense, multi-wavelength packet method |
US20020131108A1 (en) * | 2001-03-16 | 2002-09-19 | Hait John N. | Filtered, hyper-dense, wave-division-multiplexing method |
EP1381878B1 (en) * | 2001-03-22 | 2007-05-09 | Nautronix (Holdings) PLC | Positioning system |
US20020181038A1 (en) * | 2001-06-01 | 2002-12-05 | Hait John N. | Photonic data stabilization |
NO322809B1 (no) * | 2001-06-15 | 2006-12-11 | Schlumberger Technology Bv | Anordning og fremgangsmate for a overvake og styre utplassering av utstyr pa havbunnen |
AU2002324484B2 (en) * | 2001-07-12 | 2007-09-20 | Sensor Highway Limited | Method and apparatus to monitor, control and log subsea oil and gas wells |
US7009710B2 (en) * | 2001-08-20 | 2006-03-07 | Agilent Technologies, Inc. | Direct combination of fiber optic light beams |
AU2002356803A1 (en) | 2001-10-16 | 2003-04-28 | James N. Blake | Optical interferometric sensor with optical error compensation |
US7059172B2 (en) * | 2001-11-07 | 2006-06-13 | Weatherford/Lamb, Inc. | Phase flow measurement in pipes using a density meter |
US7359803B2 (en) * | 2002-01-23 | 2008-04-15 | Cidra Corporation | Apparatus and method for measuring parameters of a mixture having solid particles suspended in a fluid flowing in a pipe |
AU2003217981A1 (en) * | 2002-03-08 | 2003-09-22 | Lightwave Electronics | Amplifiers and light sources employing s-band erbium-doped fiber and l-band thulium-doped fiber with distributed suppression of amplified spontaneous emission (ase) |
US6940543B2 (en) * | 2002-03-12 | 2005-09-06 | Eastman Kodak Company | Wireless transfer of at least one digital image file between a first device and a second device |
JP2003293797A (ja) * | 2002-04-08 | 2003-10-15 | Minebea Co Ltd | 電子制御スロットルモータ用軸受 |
CN1271422C (zh) * | 2002-05-23 | 2006-08-23 | 输入/输出公司 | 基于gps的水下拖缆定位系统 |
DE10226575A1 (de) | 2002-06-14 | 2004-01-08 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Erzeugen von HF-Signalen zum Bestimmen eines Abstandes und/oder einer Geschwindigkeit eines Objektes |
WO2004005968A2 (en) | 2002-07-03 | 2004-01-15 | Sensor Highway Limited | Pulsed deployment of a cable through a conduit located in a well |
GB0216259D0 (en) * | 2002-07-12 | 2002-08-21 | Sensor Highway Ltd | Subsea and landing string distributed sensor system |
CN1180237C (zh) | 2002-07-12 | 2004-12-15 | 天津大学 | 一种宽带光源信号检测方法及检测器 |
US6847034B2 (en) * | 2002-09-09 | 2005-01-25 | Halliburton Energy Services, Inc. | Downhole sensing with fiber in exterior annulus |
WO2004029671A2 (en) * | 2002-09-26 | 2004-04-08 | Prime Photonics, Inc. | Active q-point stabilization for linear interferometric sensors |
GB2394041B (en) | 2002-10-07 | 2006-03-01 | Sensor Highway Ltd | A method to monitor temperature in a vessel |
JP3930023B2 (ja) * | 2002-11-01 | 2007-06-13 | 欣増 岸田 | 分布型光ファイバセンサシステム |
GB2396011A (en) | 2002-12-02 | 2004-06-09 | Abb Offshore Systems Ltd | Analysing noise generated by fluid flow inside production tubing of a well |
GB2408327B (en) | 2002-12-17 | 2005-09-21 | Sensor Highway Ltd | Use of fiber optics in deviated flows |
GB0230207D0 (en) | 2002-12-27 | 2003-02-05 | Thompson Martin | Leak locator |
CA2416171A1 (en) | 2003-01-13 | 2004-07-13 | Pure Technologies Ltd. | Pipeline monitoring system |
WO2004065912A2 (en) * | 2003-01-21 | 2004-08-05 | Cidra Corporation | Apparatus and method for measuring unsteady pressures within a large diameter pipe |
GB0302434D0 (en) * | 2003-02-03 | 2003-03-05 | Sensor Highway Ltd | Interferometric method and apparatus for measuring physical parameters |
GB2403797A (en) * | 2003-05-16 | 2005-01-12 | Radiodetection Ltd | Fibre optic cable detection |
GB2401738A (en) * | 2003-05-16 | 2004-11-17 | Radiodetection Ltd | Optical fibre sensor |
US7038784B2 (en) | 2003-06-20 | 2006-05-02 | Northrop Grumman Corporation | Calculation of sensor array induced phase angle independent from demodulation phase offset of phase generated carrier |
WO2005003713A2 (en) * | 2003-06-24 | 2005-01-13 | Cidra Corporation | Contact-based transducers for characterizing unsteady pressures in pipes |
US7245385B2 (en) * | 2003-06-24 | 2007-07-17 | Cidra Corporation | Characterizing unsteady pressures in pipes using optical measurement devices |
US7672794B2 (en) * | 2003-06-24 | 2010-03-02 | Expro Meters, Inc. | System and method for operating a flow process |
US7488929B2 (en) | 2003-08-13 | 2009-02-10 | Zygo Corporation | Perimeter detection using fiber optic sensors |
DE10338952A1 (de) * | 2003-08-25 | 2005-03-24 | Jäger, Frank-Michael | Anordnung zur Identifikation von Körpern in Rohrleitungen |
US20050100414A1 (en) * | 2003-11-07 | 2005-05-12 | Conocophillips Company | Composite riser with integrity monitoring apparatus and method |
US7127132B1 (en) | 2004-03-08 | 2006-10-24 | Ifos, Inc. | Cascade fiber-optic grating-based sensor apparatus and method |
GB0407982D0 (en) * | 2004-04-08 | 2004-05-12 | Wood Group Logging Services In | "Methods of monitoring downhole conditions" |
GB0409865D0 (en) * | 2004-05-01 | 2004-06-09 | Sensornet Ltd | Direct measurement of brillouin frequency in distributed optical sensing systems |
GB2414543B (en) | 2004-05-25 | 2009-06-03 | Polarmetrix Ltd | Method and apparatus for detecting pressure distribution in fluids |
JP2005345137A (ja) | 2004-05-31 | 2005-12-15 | Fujikura Ltd | 侵入者検知装置 |
US7480056B2 (en) * | 2004-06-04 | 2009-01-20 | Optoplan As | Multi-pulse heterodyne sub-carrier interrogation of interferometric sensors |
US7283216B1 (en) * | 2004-06-22 | 2007-10-16 | Np Photonics, Inc. | Distributed fiber sensor based on spontaneous brilluoin scattering |
EP1615011A1 (en) * | 2004-07-08 | 2006-01-11 | Shell Internationale Researchmaatschappij B.V. | Method and system for obtaining physical data by means of a distributed fiber optical sensing cable |
US7327472B2 (en) * | 2004-07-23 | 2008-02-05 | Nusensors, Inc. | High temperature, minimally invasive optical sensing modules |
US7274441B2 (en) * | 2004-08-06 | 2007-09-25 | The United States Of America Represented By The Secretary Of The Navy | Natural fiber span reflectometer providing a virtual differential signal sensing array capability |
US7271884B2 (en) * | 2004-08-06 | 2007-09-18 | The United States Of America Represented By The Secretary Of The Navy | Natural fiber span reflectometer providing a virtual phase signal sensing array capability |
US7030971B1 (en) * | 2004-08-06 | 2006-04-18 | The United States Of America Represented By The Secretary Of The Navy | Natural fiber span reflectometer providing a virtual signal sensing array capability |
US7268863B2 (en) * | 2004-08-06 | 2007-09-11 | The United States Of America As Represented By The Secretary Of The Navy | Natural fiber span reflectometer providing a spread spectrum virtual sensing array capability |
US8074720B2 (en) * | 2004-09-28 | 2011-12-13 | Vetco Gray Inc. | Riser lifecycle management system, program product, and related methods |
US7328741B2 (en) * | 2004-09-28 | 2008-02-12 | Vetco Gray Inc. | System for sensing riser motion |
GB0424305D0 (en) | 2004-11-03 | 2004-12-01 | Polarmetrix Ltd | Phase-disturbance location and measurement in optical-fibre interferometric reflectometry |
EP1854186B1 (en) * | 2004-12-16 | 2016-11-09 | Vectronix AG | Pulsed laser diode and all fibre power amplifier |
US7397976B2 (en) * | 2005-01-25 | 2008-07-08 | Vetco Gray Controls Limited | Fiber optic sensor and sensing system for hydrocarbon flow |
US7336365B2 (en) * | 2005-02-11 | 2008-02-26 | Optoplan As | Method and apparatus for suppression of crosstalk and noise in time-division multiplexed interferometric sensor systems |
US7697795B2 (en) | 2005-03-04 | 2010-04-13 | British Telecommunications Public Limited Company | Acoustic modulation |
WO2010120258A2 (en) | 2005-03-17 | 2010-10-21 | Cidra Corporation | An apparatus and method of processing data to improve the performance of a flow monitoring system |
US7480460B2 (en) * | 2005-03-29 | 2009-01-20 | University Of New Brunswick | Dynamic strain distributed fiber optic sensor |
US7222534B2 (en) | 2005-03-31 | 2007-05-29 | Pgs Americas, Inc. | Optical accelerometer, optical inclinometer and seismic sensor system using such accelerometer and inclinometer |
US7477711B2 (en) | 2005-05-19 | 2009-01-13 | Mks Instruments, Inc. | Synchronous undersampling for high-frequency voltage and current measurements |
WO2006130499A2 (en) | 2005-05-27 | 2006-12-07 | Cidra Corporation | An apparatus and method for fiscal measuring of an aerated fluid |
US7327462B2 (en) * | 2005-08-17 | 2008-02-05 | Litton Systems, Inc. | Method and apparatus for direct detection of signals from a differential delay heterodyne interferometric system |
EP1922527A1 (en) * | 2005-08-17 | 2008-05-21 | CiDra Corporation | A system and method for providing a compositional measurement of a mixture having entrained gas |
JP2009506330A (ja) * | 2005-08-26 | 2009-02-12 | ゼテテック インスティテュート | 波面干渉における大気の乱れによる影響の測定及び補正のための装置及び方法 |
GB0521713D0 (en) | 2005-10-25 | 2005-11-30 | Qinetiq Ltd | Traffic sensing and monitoring apparatus |
US7339678B2 (en) | 2005-11-09 | 2008-03-04 | Northrop Grumman Corporation | Method and system of using odd harmonics for phase generated carrier homodyne |
JP4706475B2 (ja) | 2005-12-28 | 2011-06-22 | 日立電線株式会社 | 光学式センサを用いた測定方法 |
JP4761258B2 (ja) * | 2006-01-27 | 2011-08-31 | 国立大学法人 東京大学 | 光ファイバ特性測定装置及び光ファイバ特性測定方法 |
JP2007240287A (ja) | 2006-03-08 | 2007-09-20 | Yokogawa Electric Corp | 光ファイバ歪測定装置 |
GB0605066D0 (en) * | 2006-03-14 | 2006-04-26 | Schlumberger Holdings | Method and apparatus for monitoring structures |
JP2009530614A (ja) * | 2006-03-16 | 2009-08-27 | デューク ユニバーシティ | フーリエ領域光コヒーレンス・トモグラフィーに基づく実時間直角位相投影を実行するための方法、システム及びコンピュータプログラム製品 |
DE102006023588B3 (de) | 2006-05-17 | 2007-09-27 | Sächsisches Textilforschungsinstitut eV | Verwendung eines multifunktionalen, sensorbasierten Geotextilsystems zur Deichertüchtigung, für räumlich ausgedehntes Deichmonitoring sowie für die Gefahrenerkennung im Hochwasserfall |
US7391674B2 (en) | 2006-07-26 | 2008-06-24 | Western Geco L.L.C. | Methods and systems for determining orientation of seismic cable apparatus |
GB2440952B (en) * | 2006-08-16 | 2009-04-08 | Schlumberger Holdings | Measuring brillouin backscatter from an optical fibre using digitisation |
GB2441154B (en) * | 2006-08-24 | 2009-02-18 | Schlumberger Holdings | Measuring brillouin backscatter from an optical fibre using channelisation |
EP1895328A1 (en) * | 2006-08-31 | 2008-03-05 | Bp Exploration Operating Company Limited | Seismic survey method |
CN100430557C (zh) * | 2006-09-18 | 2008-11-05 | 湖南科技大学 | 基于分布式光纤传感监测堤坝渗流的模拟装置 |
GB2442486B (en) * | 2006-10-06 | 2009-01-07 | Schlumberger Holdings | Measuring brillouin backscatter from an optical fibre using a tracking signal |
GB2442745B (en) * | 2006-10-13 | 2011-04-06 | At & T Corp | Method and apparatus for acoustic sensing using multiple optical pulses |
GB2442746B (en) * | 2006-10-13 | 2011-04-06 | At & T Corp | Method and apparatus for acoustic sensing using multiple optical pulses |
GB2443661B (en) | 2006-11-08 | 2011-08-31 | Polarmetrix Ltd | Detecting a disturbance in the phase of light propogating in an optical waveguide |
JP5223681B2 (ja) | 2006-12-28 | 2013-06-26 | 住友電気工業株式会社 | 流動体の物理量測定方法及び制御方法 |
GB2445364B (en) | 2006-12-29 | 2010-02-17 | Schlumberger Holdings | Fault-tolerant distributed fiber optic intrusion detection |
US8094841B2 (en) | 2007-01-17 | 2012-01-10 | The Regents Of The University Of California | Apparatus and method using capacitive detection with inherent self-calibration |
GB0705240D0 (en) * | 2007-03-14 | 2007-04-25 | Qinetiq Ltd | Phase based sensing |
US7930580B2 (en) * | 2007-07-11 | 2011-04-19 | Altasens, Inc. | Controlling timing dependencies in a mixed signal system-on-a-chip (SOC) |
JP5192742B2 (ja) | 2007-07-25 | 2013-05-08 | 住友大阪セメント株式会社 | ブリルアン散乱測定装置 |
US7946341B2 (en) | 2007-11-02 | 2011-05-24 | Schlumberger Technology Corporation | Systems and methods for distributed interferometric acoustic monitoring |
JP4612038B2 (ja) | 2007-11-19 | 2011-01-12 | 富士通株式会社 | 光増幅装置および光伝送システム |
CA2704837C (en) * | 2007-11-30 | 2016-08-09 | Shell Internationale Research Maatschappij B.V. | Real-time completion monitoring with acoustic waves |
GB2456300B (en) | 2008-01-08 | 2010-05-26 | Schlumberger Holdings | Monitoring system for pipelines or risers in floating production installations |
DE102008023777B4 (de) * | 2008-05-15 | 2011-08-25 | LIOS Technology GmbH, 51063 | Vorrichtung zur ortsaufgelösten Temperaturmessung |
US7859654B2 (en) * | 2008-07-17 | 2010-12-28 | Schlumberger Technology Corporation | Frequency-scanned optical time domain reflectometry |
GB2462096A (en) | 2008-07-23 | 2010-01-27 | Schlumberger Holdings | Monitoring of a pipeline pig using external acoustic sensors |
GB0815297D0 (en) | 2008-08-21 | 2008-09-24 | Qinetiq Ltd | Conduit monitoring |
US8120781B2 (en) * | 2008-11-26 | 2012-02-21 | Zygo Corporation | Interferometric systems and methods featuring spectral analysis of unevenly sampled data |
RU2482449C2 (ru) | 2008-11-27 | 2013-05-20 | Ньюбрекс Ко., Лтд. | Распределенный оптоволоконный датчик |
US8087119B2 (en) | 2008-12-03 | 2012-01-03 | Saudi Arabian Oil Company | Pipeline pig with internal flow cavity |
GB2467177A (en) | 2009-01-27 | 2010-07-28 | Sensornet Ltd | Sensing inside and outside tubing |
US20100200743A1 (en) * | 2009-02-09 | 2010-08-12 | Larry Dale Forster | Well collision avoidance using distributed acoustic sensing |
GB2479101B (en) * | 2009-02-09 | 2013-01-23 | Shell Int Research | Method of detecting fluid in-flows downhole |
GB2469709B (en) * | 2009-02-17 | 2013-09-25 | Schlumberger Holdings | Optical monitoring of fluid flow |
GB0905986D0 (en) | 2009-04-07 | 2009-05-20 | Qinetiq Ltd | Remote sensing |
CN105910633B (zh) * | 2009-05-27 | 2019-10-29 | 希里克萨有限公司 | 光学传感器及使用方法 |
GB0919906D0 (en) * | 2009-11-13 | 2009-12-30 | Qinetiq Ltd | Improvements to distributed fibre optic sensing |
GB201103254D0 (en) * | 2011-02-25 | 2011-04-13 | Qinetiq Ltd | Distributed acoustic sensing |
GB201109372D0 (en) * | 2011-06-06 | 2011-07-20 | Silixa Ltd | Method for locating an acoustic source |
GB201212701D0 (en) * | 2012-07-17 | 2012-08-29 | Silixa Ltd | Structure monitoring |
US9677957B2 (en) * | 2012-11-27 | 2017-06-13 | Senek Instrument LLC | Serial fiber Bragg grating interrogator with a pulsed laser for reflection spectrum measurement |
-
2010
- 2010-05-27 CN CN201610206234.0A patent/CN105910633B/zh active Active
- 2010-05-27 GB GB1419112.6A patent/GB2516781B/en active Active
- 2010-05-27 CN CN202111530935.7A patent/CN114674351A/zh active Pending
- 2010-05-27 EP EP22199440.3A patent/EP4174448A3/en active Pending
- 2010-05-27 GB GB1416571.6A patent/GB2515679B/en active Active
- 2010-05-27 GB GB1412510.8A patent/GB2513044B/en active Active
- 2010-05-27 AU AU2010252746A patent/AU2010252746B2/en active Active
- 2010-05-27 WO PCT/GB2010/050889 patent/WO2010136810A2/en active Application Filing
- 2010-05-27 CN CN202111530933.8A patent/CN114563029A/zh active Pending
- 2010-05-27 CN CN202111530920.0A patent/CN114563027A/zh active Pending
- 2010-05-27 GB GB1421510.7A patent/GB2518541B/en active Active
- 2010-05-27 GB GB1419594.5A patent/GB2517323B/en active Active
- 2010-05-27 US US13/322,448 patent/US9140582B2/en active Active
- 2010-05-27 CA CA2763389A patent/CA2763389C/en active Active
- 2010-05-27 GB GB1419116.7A patent/GB2517100B/en active Active
- 2010-05-27 GB GB1414505.6A patent/GB2514699B/en active Active
- 2010-05-27 GB GB1419009.4A patent/GB2516779B/en active Active
- 2010-05-27 CA CA3175370A patent/CA3175370A1/en active Pending
- 2010-05-27 CN CN201610225290.9A patent/CN105890637B/zh active Active
- 2010-05-27 CA CA3175447A patent/CA3175447A1/en active Pending
- 2010-05-27 GB GB1502005.0A patent/GB2519462B/en active Active
- 2010-05-27 GB GB1421508.1A patent/GB2517614B/en active Active
- 2010-05-27 GB GB1120619.0A patent/GB2482642B/en active Active
- 2010-05-27 CA CA3100498A patent/CA3100498A1/en active Pending
- 2010-05-27 BR BRPI1010668-5A patent/BRPI1010668B1/pt active IP Right Grant
- 2010-05-27 GB GB1419107.6A patent/GB2516780B/en active Active
- 2010-05-27 GB GB1421509.9A patent/GB2518767B/en active Active
- 2010-05-27 GB GB1419120.9A patent/GB2516782B/en active Active
- 2010-05-27 CN CN202111530932.3A patent/CN114563028A/zh active Pending
- 2010-05-27 CA CA2763391A patent/CA2763391C/en active Active
- 2010-05-27 CA CA3175365A patent/CA3175365A1/en active Pending
- 2010-05-27 CN CN201080032395.3A patent/CN102639966B/zh active Active
- 2010-05-27 CA CA3035948A patent/CA3035948C/en active Active
- 2010-05-27 US US13/322,449 patent/US9541425B2/en active Active
- 2010-05-27 CN CN201080033359.9A patent/CN102713528B/zh active Active
- 2010-05-27 AU AU2010252747A patent/AU2010252747B2/en active Active
- 2010-05-27 CN CN202111530899.4A patent/CN114563025A/zh active Pending
- 2010-05-27 CN CN202111530902.2A patent/CN114563026A/zh active Pending
- 2010-05-27 EP EP21217662.2A patent/EP4024008A1/en active Pending
- 2010-05-27 CN CN202111530934.2A patent/CN114563030A/zh active Pending
- 2010-05-27 CA CA2977253A patent/CA2977253C/en active Active
- 2010-05-27 GB GB1120615.8A patent/GB2482641B/en active Active
- 2010-05-27 EP EP10737370.6A patent/EP2435796B1/en active Active
- 2010-05-27 GB GB1415258.1A patent/GB2515415B/en active Active
- 2010-05-27 BR BRPI1010670A patent/BRPI1010670A8/pt not_active Application Discontinuation
- 2010-05-27 WO PCT/GB2010/050888 patent/WO2010136809A2/en active Application Filing
- 2010-05-27 GB GB1421507.3A patent/GB2518766B/en active Active
- 2010-05-27 EP EP10734803.9A patent/EP2435795B1/en active Active
- 2010-05-27 GB GB1422080.0A patent/GB2519001B/en active Active
- 2010-05-27 GB GB1419110.0A patent/GB2517322B/en not_active Withdrawn - After Issue
-
2015
- 2015-03-19 US US14/662,940 patent/US9541426B2/en active Active
-
2016
- 2016-02-19 US US15/048,315 patent/US9804021B2/en active Active
- 2016-09-27 US US15/277,347 patent/US10048115B2/en active Active
- 2016-12-05 US US15/368,945 patent/US10393572B2/en active Active
- 2016-12-05 US US15/368,954 patent/US10393573B2/en active Active
-
2017
- 2017-10-06 US US15/727,389 patent/US10393574B2/en active Active
-
2019
- 2019-07-11 US US16/508,522 patent/US11079269B2/en active Active
-
2021
- 2021-06-30 US US17/364,595 patent/US11802789B2/en active Active
-
2023
- 2023-09-21 US US18/370,974 patent/US20240011824A1/en active Pending
- 2023-09-21 US US18/370,963 patent/US20240011823A1/en active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11802789B2 (en) | Method and apparatus for optical sensing | |
AU2022203821B2 (en) | Method and apparatus for optical sensing | |
US20240012760A1 (en) | Method and Apparatus for Optical Sensing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |