JP2009506330A - 波面干渉における大気の乱れによる影響の測定及び補正のための装置及び方法 - Google Patents

波面干渉における大気の乱れによる影響の測定及び補正のための装置及び方法 Download PDF

Info

Publication number
JP2009506330A
JP2009506330A JP2008528200A JP2008528200A JP2009506330A JP 2009506330 A JP2009506330 A JP 2009506330A JP 2008528200 A JP2008528200 A JP 2008528200A JP 2008528200 A JP2008528200 A JP 2008528200A JP 2009506330 A JP2009506330 A JP 2009506330A
Authority
JP
Japan
Prior art keywords
array
measurement
phase
wavefront
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008528200A
Other languages
English (en)
Inventor
ヒル,ヘンリー,エイ.
Original Assignee
ゼテテック インスティテュート
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ゼテテック インスティテュート filed Critical ゼテテック インスティテュート
Publication of JP2009506330A publication Critical patent/JP2009506330A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02034Interferometers characterised by particularly shaped beams or wavefronts
    • G01B9/02038Shaping the wavefront, e.g. generating a spherical wavefront
    • G01B9/02039Shaping the wavefront, e.g. generating a spherical wavefront by matching the wavefront with a particular object surface shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • G01B9/02005Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using discrete frequency stepping or switching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • G01B9/02057Passive reduction of errors by using common path configuration, i.e. reference and object path almost entirely overlapping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/0207Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/06Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

測定ビームと基準ビームの相対的な波面についての情報を含む干渉信号のアレイを生成する波面干渉システムを操作する方法であって、干渉信号のアレイから、最初に位相測定値の第1のアレイを、2度目に位相測定値の第2のアレイを計算することと、位相変化率のアレイを決定するために位相測定値の第1のアレイと第2のアレイの差異を計算することと、位相変化率のアレイから、波面干渉システム内での大気の乱れによる影響の測度である大気による乱れ影響値のアレイを計算することとを含む方法。

Description

本発明は概して、光学素子の製造、光学系の組み立て及び試験、及び半導体ウェハと集積回路(IC)等の多層構造の製造に応用例のある波面センサの分野に関する。
本願は、参照することにより本書に組み込まれている2005年8月26日に出願された米国仮出願番号第60/711,952号の利益を主張する。
(関連出願)「干渉分光法における対象によって反射される/散乱されるビームのフィールドの共役直角位相の成分の共同測定及び時間遅延測定のための装置及び方法(Apparatus and Method for Joint and Time Delayed Measurements of Components of Conjugated Quadratures of Fields of Reflected/Scattered Beams by an Object in Interferometry)」(ZI−57)と題される2005年8月16日に出願された米国特許出願番号第11/204,758号、「波面干渉における振動の影響及び環境の影響の削減及び補正のための装置及び方法(Apparatus and Methods for Reduction and Compensation of Effects of Vibrations and of Environmental Effects in Wavefront Interferometry)」(ZI−71)と題される2006年8月8日に出願された米国特許出願番号第11/463,036号、「同調速度が高速で、同調範囲が拡張された連続同調可能外部空洞ダイオードレーザソース(Continuously Tunable External Cavity Diode Laser Sources with High Tuning Rates and Extended Tuning Ranges)」(ZI−72)と題される2006年7月12日に出願された米国特許出願番号第11/457,025号、及び「同調速度及び切り替え速度が高速で、同調範囲が拡張された連続同調可能外部空洞ダイオードレーザソース(Continuously Tunable External Cavity Diode Laser Sources with High Tuning and Switching Rates and Extended Tuning Ranges)」(ZI−78)と題される2006年6月19日に出願された米国特許出願番号第60/805,104号の全てが参照され、本書に組み込まれる。
位相シフト干渉法は、光学における進歩(Progress In Optics)XXVIII、Ed.E.Wolf編集(エルスヴィエアサイエンスパブリッシャーズ(Elsevier Science Publishers)1990年)、「干渉分光法における高度評価技法(Advanced Evaluation Techniques In Interferometry)」と題されるJ.Schwiderによる総説に説明されるような気体の固有特性から対象の変位に及ぶ種々の物理パラメータを測定する確立された方法である。Schwiderの記事の内容は、参照することによりそれらの全体として文書に組み込まれている。干渉法による波形センサは、ある領域または二次元区域全体で相対位相の空間分布を測定するため、つまり二次元区域全体で物理パラメータを測定するために位相シフト干渉計(PSI)を利用できる。
PSIを利用する干渉法による波面センサは、通常、空間的にコヒーレントな光源からなり、空間的にコヒーレントな光源は2つのビーム、つまり異なる長さの光学経路を移動してから後で再結合される基準ビームと測定ビームとに分割される。2つのビームの波面の間の相対位相差は、インターフェログラムとして知られている二次元の強度パターンまたは干渉シグナルとして呈される。PSIは、通常、3つまたは4つ以上の公知の位相シフトを導入する基準ビームの経路内に要素を有する。位相のそれぞれについて検出器を用いて強度パターンを検出することによって、基準ビーム波面と測定ビーム波面の相対位相差の分布は、基準ビームまたは測定ビームのどちらかの減衰とは無関係に定量的に決定できる。
圧電駆動ミラー等の位相シフト方法を使用するホモダイン検波方法は、それ以外の場合静的な条件下で高品質の測定を達成するために幅広く使用されてきた。一時的事象または高速事象の測定は、従来の技術では、超高速位相シフト、つまり測定は、事象のタイムスケール及び対応する検出器の読み出し速度よりはるかに速く、本質的に瞬間的な測定により必要とされる情報を獲得するために使用できる位相シフト装置及び方法のどちらかを必要としていた。
波面干渉計の基準経路と測定経路における大気の乱れによる影響は、縞コントラストを削減し、測定された波面プロファイルで統計誤差を生じさせる。本質的に瞬間的な測定は、縞コントラストに対する大気の乱れによる影響を削減するために従来の技術で使用される。しかしながら、従来の技術の本質的に瞬間的な測定の技法は統計誤差の規模を削減しない。したがって、従来の技術の本質的に瞬間的な測定の技法に基づく波面干渉における大気の乱れによるの統計的な影響は、波面プロファイルの多くの統計的に無関係な本質的に瞬間的な測定を平均化することによって従来の技術で大幅に削減される。
電気干渉信号値の本質的に同時の測定値の獲得を目的とする空間位相シフトの複数の方法が、従来の技術で開示されてきた。1983年に、SmytheとMooreは、同時検出のために多くのカメラ上に3つまたは4つの位相シフトされた画像を生じさせるために一連の従来のビームスプリッタと偏光光学部品が使用される空間位相シフト方法を発表した。米国特許番号第4,575,248号、第5,589,938号、第5,663,793号、第5、777,741号、及び第5,883,717号等の多くの米国特許が、複数のカメラが複数のインターフェログラムを検出するために使用されるSmytheとMooreの方法の変形を開示している。
これらの方法の問題点の1つは、位相シフトされた画像を生成するために、複数のカメラが必要とされる、あるいは複数の画像を記録する単一のカメラと複雑な光学配置が必要とされるという点である。複数のカメラまたは複数の画像を記録する1台のカメラを使用することの不利な点及び制限は、例えば、両方とも「干渉分光法における対象により反射され/散乱され、透過されるビームのフィールドの共役直角位相の共同測定のための装置及び方法(Apparatus and Method for Joint Measurements of Conjugated Quadratures of Fields of Reflected/Scattered and Transmitted Beams by an Object in Interferometry)」と題される、共同所有された米国仮特許出願番号第60/442,858号(ZI−47)と、米国特許出願番号第10/765,368号(ZI−47)に説明され、扱われている。米国仮特許出願番号第60/442,858号(ZI−47)と米国特許出願番号第10/765,368号(ZI−47)の両方とも、Henry A.Hillによるものであり、それぞれの内容は参照することによりそれらの全体として本書に組み込まれている。
また、ホモダイン検出方法のための4つの同時位相シフト画像の生成のための代替技法も、J.E.Millerd及びN.J.Brockによって「干渉分光法において波面の分割、結像及び測定の方法及び装置(Methods And Apparatus For Splitting,Imaging And Measuring Wavefronts In Interferometry)」と題される米国特許番号第6,304,330B1号に開示されている。米国特許番号第6,304,330B1号に開示されている技法は、1つのビームを4つのビームに分割するためのホログラフィック技法を使用する。4つのビームは単一のマルチピクセル検出器によって検出される。単一のマルチピクセル検出器を位相シフトされた4つの画像を同時に記録するために使用した1つの結果として、検出器のためのフレームレートが、同じ画像解像度で単一のマルチピクセル検出器上に位相シフトされた単一の画像を記録するPSIと比較して約4という因数で削減される。米国特許番号第6,304,303B1号に説明されている技法での複数のビームの生成が、干渉計の非混合ビームで実行されるので、米国特許番号第6,304,303B1号の代替技法が、例えばトワイマン・グリーン型の干渉計に最も容易に適用可能であることがさらに観察されている。
複数の同時位相シフト画像の同等物を生成するための別の代替技法も、インターフェログラムのパターンに空間搬送周波数を誘導するために傾いた参照波を使用して達成され、例えば、「放射線、特に光放射の直接位相測定のための方法、及び該方法を実行するための装置(Method For Direct Phase Measurement Of Radiation,Particularly Light Radiation, And Apparatus For Performing The Method)」と題される米国特許番号第5,155,363号でH.Steinbichler及びJ.Gutjahrによって開示されている。複数の同時位相シフト画像の同等物を生成するためのこの別の代替技法は、基準フィールドと測定フィールドの相対位相が、検出器のピクセル間隔に関してゆっくりと変化することを必要とする。
傾斜参照波を使用して複数の同時位相シフト画像の同等物を生成するための別の代替技法は、ザイゴ株式会社(Zygo Corporation)の獲得技術製品Flashphase(商標)でも使用される。FlashPhase(商標)で実行されるステップは、最初に強度またはインターフェログラムの単一のフレームを獲得し、次に二次元有限フーリエ変換(FFT)によって二次元の複雑な空間周波数マップを生成してから、フィルタを生成し、そのフィルタを使用して一次信号を隔離し、それから逆二次元FFTによって位相マップまたは波面マップにフィルタにかけた空間周波数マップを逆転する。獲得技術製品FlashPhase(商標)は計算上複雑であるが、それは今日の強力なコンピュータでは非常に高速である。
気体の屈折率に関係する困難な手順は、未知の長さまたは可変長の基準経路と測定経路の上での、制御されていない温度と圧力を用いた屈折率変動の補正である。例の状況は、フィゾーとトワイマン・グリーン干渉計、及び光学素子の製造で、及びICのマイクロリソグラフィ製造で利用されるような高精度直線変位干渉分光法にある。例えば、N.Bobroffによる「乱気流及び非線形性からのレーザ干渉分光法の残留誤差(Residual Errors in Laser Interferometry From Air Turbulence And Nonlinearity)」と題される記事、応用光学(Appl.Opt.)26(13)、2676−2682(1987年)、及びやはりN.Bobroffによる「変位測定干渉分光法の最近の進展(Recent Advances In Displacement Measuring Interferometry)」と題される記事、測定化学及び技術(Measurement Science & Tech.)4(9)、907から926(1993年)を参照する。
前述された引用された参考資料に注記されるように、気体中での干渉法による変位測定は環境上の不確実性、特に空気圧と温度の変化に左右され、湿度の変化の結果生じるような空気組成の不確実性及び気体中の乱気流の影響に左右される。このような要因が、変位を測定するために使用される光の波長を改変する。通常の状態では、例えば、空気の屈折率は約1.0003であり、約1x10−5から1x10−4の変動がある。多くの応用例では、空気の屈折率は0.1ppm(100万分の1)未満から0.001ppm未満の相対精度で公知でなければならず、これら2つの相対精度は、1メートルの干渉法による変位測定値の場合、それぞれ100nmと1nm未満という変位測定精度に相当する。
技術では、位相が制御されて時間とともに変化する位相推定のヘテロダイン方法が頻繁に参照される。例えば、公知の形式の従来のヘテロダイン距離測定干渉計では、放射源は、わずかに異なる光周波数(例えば、2MHz)を有する2つの垂直に偏光されたビームを発する。このケースでの干渉法による受信機は、通常、時間変化する干渉信号を測定するために直線偏光子と光検出器から構成されている。信号はビート周波数で発振し、信号の位相は相対位相差に相当する。ヘテロダイン距離測定干渉分光法の従来の技術の追加の代表的な例は、G.E.Sommargren及びM.Schahamに発行された米国特許番号第4,688,940号(1987年)に教示されている。これらの公知の形の干渉法による計測学は、干渉計の基準経路と測定経路における気体の屈折率の変動を補正しない。
屈折率の変動を検出する1つの方法は、測定経路に沿って圧力と温度の変化を測定し、測定経路の光学経路長に対する影響を計算することである。この計算を達成するための数学方程式は、F.E.Jonesによる「空気の反射率(The Refractivity Of Air)」と題される記事、J.Res.NBS 86(1)、27ページ(1981年)に開示されている。技法の実現は、W.T.Estlerによる「空気中の高精度変位干渉分光法(High−Accuracy Displacement Interferometry In Air)」と題される記事、応用光学(Appl.Opt.)、24(6)、808ページ(1985年)に説明されている。この技法は近似値を提供し、扱いづらく、空気密度のゆっくりとした大局的な変動を補正する。
基準経路及び/または測定経路上で変動する屈折率の影響を検出する別のさらに直接的な方法は、多波長距離測定による。基本的な原理は以下のように理解されてよい。干渉計及びレーザレーダが、最も多くの場合戸外で基準と対象の間の光学経路長を測定する。光学経路長は、屈折率と、ビームが横断する物理経路の積分された積である。屈折率は波長に伴い変化するが、物理的な経路は波長とは無関係であるという点で、一般的には、計器が少なくとも2つの波長を利用するならば、光学経路長、特に屈折率の変動の貢献から物理経路長を決定することが可能である。波長に伴った屈折率の変動は分散として技術で知られており、この技法は多くの場合分散技法と呼ばれる。
2つの波長距離測定システムの例は、「空気屈折率の変化を測定するためのロングアーム2色干渉計(Long−Arm Two−Color Interferometer For Measuring The Change of Air Refractive Index)」と題されているY.Zhu、H.Matsumoto、T.O’ishiによる記事、SPIE 1319、複合システムの光学(Optics in Complex Systems)、538ページ(1990年)に説明されている。Zhuらのシステムは1064nm波長のYAGレーザと632nmのHeNeレーザを、直角位相検出とともに利用する。Zhuらの干渉計はサブミクロン変位干渉分光法を必要とする応用例での解像度が不十分である。
マイクロリソグラフィのための2波長高精度干渉分光法システムの例は、A.Ishidaに発行された米国特許番号第4,948,254号(1990年)によって表されている。類似した装置は、Ishidaにより「乱気流により誘発される誤差を排除するために第2の高調光を使用する2波長変位測定干渉計(Two Wavelength Displacement−Measuring Interferometer Using Second−Harmonic Light To Eliminate Air−Turbulence−Induced Errors)」、日本応用物理学ジャーナル(Jpn.J.Appl.Phys.)28(3)、L473から475(1989年)と題される記事に説明されている。記事の中では、2波長分散検出を用いて屈折率の変動によって引き起こされる誤差を排除する変位測定干渉計が開示されている。しかしながら、対象の運動が、位相の高速変動を生じさせ、屈折率の変動の影響を正確に検出することを困難にする。
S.A.Lisによる「乱気流補正のある干渉法の測定システム(Interferometric Measuring System With Air Turbulence Compensation)」と題される米国特許番号第5,404,222号では、屈折率変動を検出、補正するための分散技法を利用する2波長干渉計が開示されている。Ishidaによって日本応用物理学ジャーナル(Jpn.J.Appl.Phys.)(前記に引用された)の中で教示されるものに関して、このシステムの主要な新しいアイデアは、位相検出手段の精度を高めるために第2のBBO倍増結晶を追加することである。追加のBBO結晶は、正確に異なる2の因数(a factor of two different)である波長を有する2つのビームを光学的に干渉することを可能にする。結果として生じる干渉は、屈折率に直接的に依存するが、段運動とは実質的には無関係である位相を有する。
単一軸干渉計に対して多波長高精度干渉技法を適用すると、かなりの複雑さと費用が生じる。分散干渉法の適用が、大気の乱れによる影響を補正するためにそれぞれの検出器ピクセルの大きなアレイの各ピクセルに対応する基準ビーム経路と測定ビーム経路にとって必要とされる、波面センサに対する多波長高精度干渉法技法の応用例では、かなりの複雑さと費用が何倍も倍加される。
Henry A.Hill及びP.de Grootによる「マルチプルパス干渉分光法を使用して空気の屈折率を測定するためのスーパーヘテロダイン方法及び装置(Superheterodyne Method And Apparatus For Measuring The Refractive Index Of Air Using Multiple−Pass Interferometry)」と題される米国特許番号第5,764,362号、及びPeter de Groot及びHenry A. Hillによる「電子周波数多重を使用して空気の屈折率を補正するためのスーパーヘテロダイン干渉計及び方法(Superheterodyne Interferometer And Methods For Compensating The Refractive Index Of Air Using Electronic Frequency Multiplication)」と題される米国特許番号第5,838,485号では、スーパーヘテロダイン法に基づいて2つの2波長距離測定システムが説明されている。2つの引用された特許のうちの第1の引用特許はマルチプルパス干渉分光法に基づき、第2の引用特許は電子周波数多重に基づいている。米国特許第5,764,362号と第5,838,485号に説明されている非分散技法を適用すると、波面センサの検出器ピクセルの大きなアレイの各ピクセルに対応する基準ビーム経路と測定ビーム経路のための複雑な干渉法による光学構成及び/または電子信号処理が必要になるであろう。
直線変位干渉計によって経験される大気の乱れによる影響の補正のための非分散装置及び方法は、Henry A.Hillによる「干渉分光法における気体の時間変動性の光学特性の補正のための方法及び装置(Method and Apparatus For Compensation Of Time−varying Optical Properties of Gas In Interferometry)」と題される米国特許番号第6,839,141B2号に説明されている。米国特許番号第6,839,141B2号は、第1のビームと第2のビームの伝搬の方向に対する測定された大気の乱れによる影響を使用することによって第1のビームに対する気体の乱流の影響を補正する。米国特許番号第6,839,141B2号に説明される非分散技法を、波面干渉に対して適用すると、それぞれの波面センサの検出器ピクセルの大きなアレイの各ピクセルに対応する基準ビーム経路と測定ビーム経路のために角度干渉計が追加されることが必要とされるであろう。
直線変位干渉計における気体の乱流影響の補正のための別の非分散装置及び方法は、Henry A.Hillによる「干渉計経路内での反射率摂動の補正(Compensation of Refractivity Perturbations In An Interferometer Path)」と題される米国特許出願番号第10/701,759号(公報番号第20040141185A1号)に説明されている。米国特許出願番号第10/701,759号は、第1のビームの測定経路を通過する気体のセルがその後第2のビームの測定経路を通って移送される、空間的に分離された第1のビームと第2のビームの相対的な測定経路長に対する単一の波長で測定された大気の乱れによる横断方向の差動影響を使用することによって、干渉計システムのビームの光学経路長に対する気体の乱流影響を補正する。横断方向の差動影響は、それぞれ、2つの電気干渉信号値が同時に取得される2台の直線変位干渉計からの2つの電気干渉信号値の差異に相当する。干渉計システムは、測定対象の向きの変化を監視し、干渉計システムのビームに対する大気の影響の決定することで向きの変化の影響を補正するために角度干渉計も備える。干渉計システムはさらに、測定対象が、測定された横断方向の差動影響の決定において仮定される図から測定対象の影響を補正するために、例えばリソグラフィックツールのステージミラー等の干渉計システムの使用中に走査されるときに、別の放射源から測定対象の表面図を獲得しなければならない。
大気の乱れによる影響についての情報は、時間の関数としての測定された横断方向の差動影響の調査、測定対象の向きの変化の影響の補正、及び測定対象の向きの変化の影響に補正された横断方向差動影響の時間に関して以後の合計または積分によって米国特許出願第10/701,759号で取得される。例えば、期間がほぼ1秒以上となることがある等、測定対象の向きの変化の影響に補正された横断方向の差動影響の時間に関して測定及び総和または積分について必要とされる期間は、大気の乱れによる影響の統計的に大幅な削減を達成するために大気の乱れによる影響の変化のための特性時間に比べて長くなければならない。それぞれのステージミラーの位置が連続的に監視される、リソグラフィックツールの位置計測学システムを段階分けする等の応用例では、長い期間は一般的にはリソグラフィックツールのスループットに影響を及ぼさない。しかしながら、それぞれの測定対象の連続監視が通常測定対象表面を試験するための手順の一部ではない波面干渉に対する応用例では、必要とされる期間はスループットの削減につながる可能性がある。また、前記段落に注記された特性の結果として、米国特許出願番号第10/701,759号の波面干渉に対する適用は困難な逆の問題に遭遇する。つまり、情報が求められている波面は、波面情報を取得するために大気の乱れによる影響の補正が実行されなければならない一方、大気による乱れによる影響を補正するために情報の決定前に明らかでなければならない。
米国特許番号第10/701,759号において大気の乱れによる影響が決定される統計精度は、期間の長さ、および第1のビームと第2のビームの基準ビーム経路と測定ビーム経路に対応する2つの気体のコラム密度から取得される大気の乱れによる影響についての情報に直接関連している。
統計的精度が改善され、従来の技術の分散技法の複雑さを導入しない波面干渉における大気の乱れによる影響の補正のための非分散技法が有利になるであろうことは前記資料から明らかである。非分散技法が、相対的な波面測定を表す共役直角位相の測定されたアレイを生成するために必要とされる測定を超えて、追加の測定またはかなりの追加の測定を必要とすることなく、複雑さに関してこれらの条件を満たすならば有利であろうことがさらに明らかである。つまり、相対的な波面測定を表す共役直角位相のアレイを取得するために必要とされるものを超えて追加の時間またはかなりの時間を必要としなかった。
波面干渉の干渉法による測定の精度に対する大気の乱れによる影響及び気体の特性に関する他の変化の測定及び補正のための非分散干渉法による装置及び方法が説明されている。大気の乱れによる影響及び他の変化は、干渉計の基準経路及び/または測定経路における気体の屈折率に影響を及ぼし、以後単に大気の乱れによる影響と呼ばれる。装置及び方法は、フィゾー干渉計及びトワイマン・グリーン干渉計等の波面センサに適用できる。
本書に説明されている多様な実施形態の非分散干渉法による装置及び方法は、干渉計システム内の基準ビーム経路と測定ビーム経路のアレイに対する大気の乱れによる影響の時間的な第1の導関数の測定値を生成する。干渉計システムによる相対波面の測定値に対する大気の乱れによる影響の同時期に起こる測定値は、大気の乱れによる影響の時間の第1の導関数の二次元の反転により生成される。二次元反転の二次元領域は、測定されている波面の対応する二次元サイズによって決定される2つの尺度に対応する。大気の乱れによる影響の同時期に測定された値は、相対的な波面の測定値に対する大気の乱れによる影響を補正するための手順で使用される。
大気の乱れによる影響の時間の第1の導関数は、基準ビーム経路と測定ビーム経路における気体の流れが波面干渉計の基準ビーム経路と測定ビーム経路に垂直な非ゼロ成分を有する大気による乱れの測定された差動時間影響を使用するフィゾー干渉計またはトワイマン・グリーン干渉計等の波面干渉計を用いて測定される。差動影響の測定は、それぞれの波面を測定するために波面干渉計で使用される同じ波長で行われる。しかしながら、非分散技法の差動影響は、それぞれの波面を測定するために波面干渉計で使用される波長とは異なる波長で行われるであろう。
測定された大気の乱れによる影響の統計上の精度は、大気の乱れによる影響の単一の測定値のための二次元反転の二次元領域の大きさによって部分的に決定され、大気の乱れによる影響の空間周波数によって部分的に決定される。
環境上の変化の補正は、それぞれが「振動の影響、及び波面干渉における環境上の影響の削減及び補正のための装置及び方法(Apparatus and Methods for Reduction and Compensation of Effects of Vibrations and of Environmental Effects in Wavefront Interferometry)」と題される、共同所有された米国仮特許出願番号第60/706,268号(ZI−71)及び米国特許出願番号第11/463,036号(ZI−71)に説明されている装置及び手段を使用して、本発明の多様な実施形態において部分的に行われる。仮特許出願番号第60/706,268号(ZI−71)及び米国特許出願番号第11/463,036号(ZI−71)は、ともにHenry A.Hillによるものであり、それぞれの内容は参照することによりその全体として本書に組み込まれている。
本書に説明されている装置及び方法は、例えば光学素子及びウェハの表面等の測定対象の通常の処理サイクルの間に計測学ツールにオンラインで適用できる。
気体の反射率に対する乱流及び他の変化の影響は、横断方向の空間解像度、つまり電気干渉信号値のアレイを生成するために使用されるマルチピクセル検出器のピクセル対ピクセルの間隔で決定される、基準ビーム経路と測定ビーム経路の方向に垂直な方向で測定される横断方向の空間波長のほぼ逆数、あるいは逆数未満の空間周波数を示す因数
Figure 2009506330
によって測定され、補正される。電気干渉信号値のアレイの生成で使用される横断方向でのピクセルのアレイのサイズによって決定される尺度の順序の横断方向の空間波長での測定と補正の効果的な長い波長遮断がある。測定及び補正のための効果的な長い波長遮断に対応する尺度は、例えば1台または複数の波長モニタを使用する等、環境状態の測定値の使用によって測定、補正できる乱流及び他の変化の影響に好意的である。
一般的には、一態様では、本発明は、基準物質からの基準ビームと、測定物質からの反射測定ビームとを結合し、結合ビームを生成する波面干渉計と、前記結合されたビームを受け取り、アレイの干渉シグナルを生成するための検出システムと、前記アレイの干渉シグナルを測定し、初めに第1アレイの位相測定値を計算し、次に第2アレイの位相測定値を計算し、位相変化の値を決定するために前記第1アレイと前期第2アレイの位相測定値の違いを計算し、アレイの位相変化の値から前記波面干渉計による大気の乱れによる影響を検出することで、アレイの大気の乱れによる影響値を計算するようプログラムされたデータ処理装置と、を備える波面干渉システムであることを特長とする。
他の実施形態は以下の特長の1つまたは複数を含む。前記データ処理装置は、前記波面干渉システムにより得られた位相測定から大気の乱れによる影響を取り除くために、前記アレイの干渉シグナルから得られたアレイの位相測定値から前記アレイの大気の乱れによる影響値を減算するようプログラムされる。前記波面干渉計は、フィゾー干渉計である。 前記波面干渉計は、トワイマン・グリーン干渉計である。前記検出システムは、構成要素として検出用アレイを含む。前記アレイの干渉シグナルは、2次元アレイの干渉シグナルであり、前記第1アレイ及び前記第2アレイの位相測定値は、両方とも2次元アレイによる。前記データ処理装置は、アレイの位相変化の割合を逆転することにより、アレイの大気の乱れによる影響を計算するようプログラムされている。前記波面干渉計は、動作中に前記基準測定ビームと前記反射測定ビームとが通過する気体を有し、 前記データ処理装置は、気体の速度に対応する値を逆転させたアレイの位相変化の割合から得た値で除算することで、大気の乱れによる影響値を計算するようにプログラムされている。前記波面干渉計の中に気体流量モニタを備え、前記データ処理装置は、前記気体流量モニタによって測定した気体の流量より気体の速度成分を決定するようにプログラムされ、前記気体の速度に対応する値は、決定された前記気体の速度成分から導かれる。前記データ処理装置は、相互相関技術を用いることにより前記気体の速度成分を決定するためにプログラムされ、前記アレイの干渉シグナルから求められるアレイの位相変化の割合を計算し、前記気体の速度に対応する値は、定められた前記気体の速度成分から求められる。前記アレイの位相変化の割合は、前記アレイの大気の乱れによる影響の第1時間導関数である。前記アレイの位相測定値から前記アレイの大気の乱れによる影響値を減算した値は、前記第1アレイの位相測定値又は前記第二アレイの位相測定値のいずれかと同時に得られる。前記アレイの位相測定値から前記アレイの大気の乱れによる影響値を減算した値は、前記第1アレイの位相測定値と前記第2アレイの位相測定値からなる群より選択される一つから導かれる。 前記データ処理装置は、前記波面干渉計の動作を制御するコントローラを含む。前記データ処理装置は、前記反射測定ビームのフィールドの共役直角位相を決定するために前記アレイの干渉シグナルを使用するようにプログラムされる。前記データ処理装置は、前記波面干渉計を制御し、マルチホモダイン法を利用することにより前記アレイの干渉シグナルを処理するようにプログラムされる。
一般的には、他の態様において、本発明は波面干渉システムを操作する方法を特色とする。この方法は、基準物質からの基準ビームと、測定物質からの反射測定ビームとを結合し、結合ビームを生成するステップと、前記結合ビームを受け取り、そこからアレイの干渉シグナルを生成するステップと、前記アレイの干渉シグナルに基づき、最初に第1アレイの位相測定値を計算し、次に第2アレイの位相測定値を計算するステップと、アレイの位相変化の割合を決定するために、前記第1アレイの位相測定値と前記第2アレイの位相測定値の差異を計算するステップと、前期アレイの位相変化の割合から、前記波面干渉システム内の大気の乱れによる影響を測定し、アレイの大気の乱れによる影響値を計算するステップと、を含む。
他の実施形態は以下の特長の1つまたは複数を含む。方法は、前記アレイの干渉シグナルは、前記波面干渉システムより得られる位相測定値から大気の乱れの影響を取り除くために、前記アレイの干渉シグナルから得られるアレイの位相測定値から前記アレイの大気の乱れによる影響値を減算するステップを含む。前記アレイの干渉シグナルは、2次元アレイの干渉シグナルであり、前記第1アレイ及び前記第2アレイの位相測定は、両方とも2次元アレイである。前記アレイの位相変化の割合を逆転することで、前記アレイの大気の乱れによる影響値を計算する。前記波面干渉計は、動作中に前記基準測定ビームと前記反射測定ビームとが通過する気体を有し、前記方法は、気体の速度に対応する値を逆転させたアレイの位相変化の割合から得た値で除算することで、大気の乱れによる影響値を計算する。前記波面干渉計の中の気体流量を測定するステップと、測定された前記気体流量から、前記気体の速度成分を決定するステップと、を含み、前記気体の速度に対応する値は、決定された前記気体の速度成分から導かれる。また、相互相関技術を用いることにより前記気体の速度成分を決定するステップと、前記アレイの干渉シグナルから求められるアレイの位相変化の割合を計算するステップと、を含み、前記気体の速度に対応する値は、定められた前記気体の速度成分から求められる。前記アレイの位相変化の割合は、前記アレイの大気の乱れによる影響の第1時間導関数である。前記アレイの位相測定値から前記アレイの大気の乱れによる影響値を減算した値は、前記第1アレイの位相測定値又は前記第二アレイの位相測定値のいずれかと同時に得られる。前記アレイの位相測定値から前記アレイの大気の乱れによる影響値を減算した値は、前記第1アレイの位相測定値と前記第2アレイの位相測定値からなる群より選択される一つから導かれる。前記データ処理装置は、前記反射測定ビームのフィールドの共役直角位相を決定するために前記アレイの干渉シグナルを使用し、前記第1アレイの位相測定値と前記第2アレイの位相測定値とを計算する。
一般的には、さらに別の態様では、本発明は、測定ビームと基準ビームの相対波面についての情報を含むアレイの干渉シグナルを生成する波面干渉システムを操作する方法であって、前記アレイの干渉シグナルから、初めに第1アレイの位相測定値を計算し、次に第2アレイの位相測定値を計算するステップと、アレイの位相変化の割合を決定するために前記第1アレイの位相測定値と前記第2アレイの位相測定値との差異を計算するステップと、前期アレイの位相変化の割合から、前記波面干渉システム内の大気の乱れによる影響を測定し、アレイの大気の乱れによる影響値を計算するステップと、を含む。
本発明の少なくとも1つの実施形態の優位点は、影響についての情報の獲得、及び波面干渉における大気の乱れによる影響の補正である。
本発明の少なくとも1つの実施形態の別の優位点は、影響についての情報の獲得及び統計的精度が改善された大気の乱れによる影響の補正である。
本発明の少なくとも1つの実施形態の別の優位点は、影響について取得される情報及び大気の乱れによる影響の補正の統計的精度は、部分的には、測定されている波面の断面積に相当する断面積のある気体の体積からの情報に基づいているという点である。
本発明の少なくとも1つの実施形態の別の優位点は、大気影響の測定が、基準ビームと測定ビームの対応する相対波面の測定に必要とされる同じ期間で達成できるという点である。
本発明の少なくとも1つの実施形態の別の優位点は、基準フレーム内の動作による振動及び環境上の変化の影響の削減であり、基準物質上の点と、測定物質上の対応する点の間の光学経路長は光ビームの基準周波数で2πを法として一定の値で維持される。
本発明の少なくとも1つの実施形態の別の優位点は、それが振動及び環境上の変化に対して本質的な感度の削減を示すという点である。
本発明の少なくとも1つの実施形態の別の優位点は、それが、周期的誤差として出現する振動及び環境上の変化の影響の補正のための手順を可能にするという点である。
本発明の少なくとも1つの実施形態の別の優位点は、基準物質と測定物質上の対応する点の間の物理的な経路長の差異を制御することによって振動及び環境上の変化の影響を削減することである。
本発明の少なくとも1つの実施形態の別の優位点は、基準フレーム内で動作しているときに得られる信号対ノイズ比が、振動及び環境上の変化の存在下で同時の複数の位相シフトされた画像を生成するための従来の技法を用いる等、基準フレーム内で動作していないときに得られる信号対ノイズ比より一般的に大きいという点である。
本発明の少なくとも1つの実施形態の別の優位点は、基板の一次元画像、二次元画像、または三次元画像が、相対的に高速の走査速度の走査モードで動作しているときに干渉法による計測学システムによって得られてよいという点である。画像は、反射された及び/または散乱された、あるいは透過されたフィールドの共役直角位相の一次元、二次元、または三次元のアレイを備える。
本発明の少なくとも1つの実施形態の別の優位点は、基板により反射された及び/または散乱された、あるいは透過されたフィールドの共役直角位相の決定で使用される情報が共同で取得される、あるいは実質的に共同で、つまりそれぞれ同時にまたは同じ平均回数で取得されるという点である。
本発明の少なくとも1つの実施形態の他の優位点は、走査モードで動作し、ビ・ホモダインまたはクアド・ホモダインのどちらかの検出方法を使用しているときに共同で得られるフィールドの共役直角位相が感度、つまり二次以上の影響においてにすぎない感度を、走査中のさまざまなときに結像されている基板内または基板上の点に共役した共焦点顕微鏡法システムで使用されるピンホールの共役セットの特性でのピンホール対ピンホールの変動の影響にまで削減したという点である。
本発明の少なくとも1つの実施形態の他の優位点は、走査モードで動作し、ビ・ホモダインまたはクアド・ホモダインどちらかの検出方法を使用しているときに共同で得られるフィールドの共役直角位相が感度、つまり二次以上の影響においてにすぎない感度を、走査中のさまざまなときに結像されている基板内または基板上の点に共役した共役ピクセルのセット内での特性のピクセル対ピクセルの変動の影響にまで削減したという点である。
本発明の少なくとも1つの実施形態の他の優位点は、走査モードで動作し、ビ・ホモダインまたはクアド・ホモダインどちらかの検出方法を使用しているときに共同で得られるフィールドの共役直角位相が感度、つまり二次以上の影響においてにすぎない感度を、干渉計システムへの入力ビームのパルスまたはパルスシーケンスのそれぞれのセットのパルス対パルスの変動の影響にまで削減したという点である。
本発明の少なくとも1つの実施形態の他の優位点は、干渉法による計測学システムのためのスループットが、単位時間あたりで結像される基板内及び/または基板上の点の数に関して強化されることである。
本発明の少なくとも1つの実施形態の他の優位点は、干渉法による計測学システムで得られる基板の一次元、二次元または三次元の画像でのシステマチックな誤差の削減である。
本発明の少なくとも1つの実施形態の他の優位点は、感度、つまり二次以上の影響においてにすぎない感度を結像されている基板内または基板上の点のオーバレイ誤差にまで削減したこと、及び干渉法による計測学システムを使用して結像される基板内及び基板上の点ごとにそれぞれの電気的な干渉値の獲得中のマルチピクセル検出器の共役ピクセルの共役画像である。オーバレイ誤差は、ビ・ホモダインまたはクアド・ホモダインのどちらかの検出方法のために結像されている点を基準にした、共役検出器ピクセルのそれぞれのセットの4つの共役画像のセット内の誤差である。
本発明の少なくとも1つの実施形態の他の優位点は、入力ビーム成分の位相がヒ゛・ホモダインまたはクアド・ホモダインのどちらかの検出方法の周波数符号化モードまたは時間符号化モードで動作しているときに測定された共役直角位相に影響を及ぼさないという点である。
本発明の少なくとも1つの実施形態の他の優位点は、2πを法とした位相測定値に基づいて基準物質と測定物質の間の位置、向き及び/または変形の相対的な変化を測定することである。
本発明の少なくとも1つの実施形態の他の優位点は、共役直角位相の測定されたアレイの中の回転及び変形の影響を含む、振動及び環境上の変化の残留影響を補正することである。
本発明の少なくとも1つの実施形態の別の優位点は、2πを法として位相測定値に基づいて基準物質と測定物質の間の位置、向き及び/または変形の相対的な変化の測定値を使用して基準物質と測定物質の相対的な位置、向き及び/または変形を制御することである。
本発明の1つまたは複数の実施形態の詳細は、添付図面及び以下の説明に述べられている。本発明の他の特長、目的及び優位点は、説明と図面及び請求項から明らかとなる。
光学素子、光学アセンブリ、及びマイクロリソグラフィのマスクとウェハの表面の検査では、高速、高解像度及び信号対ノイズ比が高い高精密度のイメージングが必要とされている。信号対ノイズ比の高い高解像度イメージングを達成するための1つの技法は、干渉法による計測学システムである。しかしながら、一般的には、高解像度イメージングによる高信号対ノイズ比の獲得は、結像されている基板内/及び基板上の点ごとに反射され及び/または散乱され、あるいは透過されるビームのフィールドの共役直角位相を獲得する必要性によって、データレートを部分的に制限する。共役直角位相の決定は、結像されている基板内及び/または基板上の各点ごとに少なくとも3つの電気干渉信号値を測定することを必要とする(同書、Schwiderによる記事の第7項を参照)。
点ごとに少なくとも3つの干渉信号値を獲得することは、振動、環境上の変化及び大気による乱れの許容できるレベルに対して、及びサイズがほぼ100nm以下まで下がったアーチファクトを有する測定物質の画像生成でどのくらい大きな走査速度を利用できるのかに対して厳しい制限を課す。本発明の多様な実施形態は、振動、環境上の変化及び/または大気の乱れによる影響の削減及び/または補正の結果として複数ホモダインの検出方法を適用するために振動、環境上の変化及び/または大気の乱れのレベルに対する厳しい制限を緩和する。本発明の多様な実施形態は、複数ホモダイン検出方法の適用のための測定された波面で、及び複数の位相シフトされた画像の本質的に瞬間的な測定値を生成する方法で取り込まれる大気の乱れによる影響の統計的誤差をさらに削減する。
最初に、例えば縞コントラストに対する影響が、測定された電気干渉信号値の既定のアレイ及び振動、環境上の変化及び後に補正される大気の乱れの結果として生じる残留影響において削減される等、測定済みの量で振動及び環境上の変化の影響が削減される本発明の多様な実施形態の一般的な説明が行われる。基準ビーム及び測定ビームの相対的な波面についての情報を含む共役直角位相の対応するアレイから得られるアレイの位相は、本発明の多様な実施形態で測定され、振動及び環境上の変化のそれぞれの一次影響が排除されるか、あるいは大幅に削減される。加えて、共役直角位相の対応するアレイの位相のアレイの位相変化率の対応するアレイが測定され、振動及び環境上の変化のそれぞれの一次影響は排除されるか、あるいは大幅に削減される。アレイの位相及びアレイに対応する位相変化の割合のための振動及び環境上の変化のそれぞれの一次影響は、他からはっきりと区別できる。つまり同量ではない。したがって、アレイの位相は、振動及び環境上の変化のそれぞれの均等で、より高次の影響に対応する誤差を含み、アレイの位相変化の割合は、振動及び環境上の変化の影響の変化率のためのそれぞれの均等で、より高次の影響に対応する誤差を含む。
アレイの位相及びアレイの位相変化の割合は、複数ホモダイン検出技法を使用するときに測定済みの電気干渉信号値のアレイの共通のセットから得られてよい。アレイの位相に関連する平均時間及びアレイに対応する位相変化の割合に関連する平均時間は、それぞれの情報を獲得するために使用される方法に応じて同じである、または異なる可能性がある。
振動及び環境上の変化の残りの一次、二次及び高次の影響が決定され、2つのアレイのそれぞれから特定のレベルまで削減される。位相変化率の結果として生じるアレイは、無作為なまたは確率論的な位相変化率の二次元アレイである。確率論的な位相変化率の二次元アレイは、検出プロセス及び電気干渉信号値の信号処理で部分的に発生する統計誤差が加わった不均一なガス組成の影響を含む大気の乱れによる影響の結果である。これ以降、不均一なガス組成を含む大気の乱れによる影響は、大気の乱れによる影響と呼ばれる。
確率論的位相変化率の二次元アレイに対する大気の乱れの寄与は、おもに大気の乱れによる影響の時間に関して第1導関数に相当する。第1導関数は、高次影響に対する本来の感度が削減された状態で測定される。大気の乱れによる影響の時間に関する第1導関数は、それぞれの基準ビーム経路と測定ビーム経路に平均的に直交する気体流量の速度の局所成分に平行である空間座標に関する影響の第1導関数に、気体流量の速度によって関連付けられる。気体の速度は速度成分の大きさである。速度成分の方向及び気体流量の速度は、一般的には、確率論的なアレイの位相変化の割合の中及び基準ビーム経路と測定ビーム経路内の長手方向上の場所の関数となる。
確率論的な位相変化の測定済みの二次元アレイは、第1に気体流量のそれぞれの平均速度で乗算される確率論的な位相変化の二次元アレイを取得するために反転され、第2に、気体流量のそれぞれの平均速度で乗算される確率論的な位相変化の二次元アレイは、確率論的な位相変化の測定された二次元アレイを得るために気体流量のそれぞれの平均速度で除算される。気体流量のそれぞれの平均速度は、気体流量のそれぞれの平均速度で乗算された確率論的位相変化の対応する二次元アレイに平行である。確率論的位相変化率の測定された二次元アレイの反転に使用されてよいさまざまな手順がある。不均一な平均的な気体流量速度に適用可能な一般的な手順及び均一の平均気体流量速度のための手順の2つの例が本書に説明されている。第1の手順と第2の手順とは、気体流量の平均速度が波面全体で一定であり、それぞれの波面の断面形状がそれぞれ矩形と円形である確率論的な位相変化率の測定された二次元アレイの反転に適用できる。確率論的位相変化の決定された二次元アレイは、以後、大気の乱れによる影響を補正するために、対応する共役直角位相のアレイの位相の測定されたアレイから差し引かれる。
共役直角位相の測定されたアレイは、本書に説明されている複数ホモダイン検出技法、または米国特許番号第4,575,248号、第5,155,363号、第5,589,938号、第5,663,793号、第5,777,741号、第5,883,717号、及び第6,304,330B1号等の、本書に引用される従来の技術の本質的に瞬間的な測定の技法を使用して取得されてよい。
測定用の測定ビーム経路と基準ビーム経路、及びピクセルjに関連する基準経路の中の気体の影響Ψは、測定ビーム経路と基準ビーム経路のそれぞれの体積での屈折率δ(x’,y’,z’,t)=[n(x’,y’,z’,t)−1]の積分に等しい。つまり、以下の式1で表される。なお、影響Ψは、乱流及びガス組成の非等方性の分布の影響を含む。
[式1]
Figure 2009506330
ガス組成の非等方性の分布の影響は、最初に2つの成分を備える気体について作成される。任意の数の成分の結果が、2つの成分のケースについて導出される結果から誘導することによって取得できる。測定ビーム経路と基準ビーム経路jでのガス組成の非等方性の分布の影響を追跡調査するために、気体のある成分の特定の屈折率は以下の式2で表されることがもっとも便利であり、この場合のρは気体成分の密度である。
[式2]
Figure 2009506330
2つの気体成分aとbの混合物のためのローレンツ−ローレンス(Lorentz−Lorenz)の関係は、非常に優れた条件に対して以下の式2で表され、ここで、下付き記号aとbがそれぞれの成分を示している[例えば、K.E.Ericksonによる「長パス屈折計を用いる大気拡散の不変性の調査(Investigation of Invariance of Atmospheric Dispersion with a Long−Path Refractometer)」と題される記事、JOSA 52、777から780ページ(1962年)を参照すること]。
[式3]
Figure 2009506330
特定の屈折率に関して書き直された式(1)は式4で示される。
[式4]
Figure 2009506330
Ψの時間導関数、つまり∂Ψj/∂tはホモダイン検出方法を使用して測定される。本発明の第1の実施形態の2ホモダイン検出方法は、参照されている米国仮特許出願第60/442,858号(ZI−47)、米国特許出願番号第10/765,368号(ZI−47)、米国仮特許出願番号第60/706,268号(ZI−71)、及び米国特許出願番号第11/463,036号に説明されているホモダイン検出方法の変形である。本書に説明されている2ホモダイン検出方法の変形は、Ψの影響を含む位相の二次元アレイの測定値が、例えばタイプ(∂Ψ/∂t)τ及び(∂Ψ/∂t)τの二次の項のような、二次及び高次の項まで正確になるように構成されており、ここではτは位相の測定済みのアレイを獲得するために使用されるホモダイン検出によって設定されるタイムスケールである。ビ・ホモダイン検出方法の変形も、Ψを含む位相の測定されたアレイを取得するために使用される電気干渉信号値の同じアレイから得られる(∂Ψ/∂t)の測定された値も、例えばタイプ(∂Ψ/∂t)(∂Ψ/∂t)τと(∂Ψ/∂t)τの二次項等、二次または高次の項まで正確であるように構成される。ビ・ホモダイン検出方法の変形の場合、及び本書の特定の実施形態で使用される2ホモダイン検出方法の変形の場合、τの典型的な値は、それぞれのCCD検出器のフレームレートの逆数である。
特定の他の実施形態では、アレイの位相が本書に参照される本質的に瞬間的な位相測定技法によって得られるときに、τの値は、アレイの位相の測定のために、例えば1μs未満等、本来はゼロである。しかしながら、複数ホモダイン技法と本質的に瞬間的な位相測定技法との両方の場合、アレイの位相の変化率の測定のためのτの対応する典型的な値はそれぞれのCCD検出器のフレームレートの逆数である。
式(4)によって表されている大気または気体の影響の対応する変化率は、以下の式5で示される。
[式5]
Figure 2009506330
質量保存は以下の式6で示され、この場合u(x’,y’,z’,t)は気体の速度であり、▽・sはベクトルsの発散である。
[式6]
Figure 2009506330
気体成分aとbのそれぞれに式6を適用すると、式5は以下の式7のように書き直される。なお、ここでは、気体成分aとbの速度が同じであると仮定される。
[式7]
Figure 2009506330
式7の右側の積分は、以下の式8のように変形することができる。
[式8]
Figure 2009506330
なお、式8の右側の第3の項は、z’での積分の限度でのuz’=0であるため、ゼロに等しい。
測定ビーム経路と基準ビーム経路jのx次元とy次元が、式8の二重積分因数の変化率の対応するスケールよりずっと少ないケースの場合、式8の中の残りの2つの項は次式9の近似式で表すことができる。、
[式9]
Figure 2009506330
なお、ここでは、∇とuはそれぞれの横断方向の成分、つまりz軸に直交である成分である。次のステップでは、式9は、uの局所平均値<u、基準ビーム経路と測定ビーム経路jの体積での平均に関して、次式10のように表される。
[式10]
Figure 2009506330
あるいは式4で示されたΨの定義をもって次式11のように示される。
[式11]
Figure 2009506330
平均速度<uは、一般的にはxとyの関数、つまりjの関数であり、<uの値は、統計的にまたは平均的に以下の式12
となるように選択される。
[式12]
Figure 2009506330
式12によって表される条件を使用する<uの定義によって、速度uを測定経路と基準経路jの積分の量で定数として取り扱うことの一次影響は削除または排除することができ、(u−<u)の分散、つまり(u−<u)・(u−<u)の加重平均に関連する二次影響と、高次の影響だけが∂Ψ/∂t=−∇・<uΨを表すために残る。これは重要な優位点である。誘導によって、式11の右側の項−∇・<uΨは任意の数の気体成分を含むように拡張される。
<u の決定
速度uの成分は、いくつかの異なった方法で決定できる。例えば、気体速度は1つまたは複数の気体流量計を使用して実験によって監視できる。次にuの測定値は、例えばxとyの直交多項式またはべき級数を備える関数と、及び<uを計算するために使用される関数と適合される。
気体速度データも、情報の測定された境界条件タイプと関連する計算方法を使用して決定できる。計算方法の例は、気体流量計から等の入力データとともに市販されている計算流体力学プログラムを使用して気体速度を求めることである。このようなプログラムの一例は、CD−アダプコグループ(CD−adapco Group)(メルビル、ニューヨーク(Melville,NY.))から入手できるStar−CDである。一般的には、計算流体力学はシステム内の別々の場所と時刻のセットで、流体(例えば、密度、温度)の微分方程式関連のパラメータの1つまたは複数のセットを解くことによって複雑なシステムの中の流体力学問題を解決する。
多くの場合メッシュと呼ばれる別々の場所のセットは、通常、システムの物理的な構造に従って定義される。微分方程式(複数の場合がある)は、通常、例えば初期システム状態を記述するユーザ定義の境界値のセットを解決の前に入力されることを必要とする。これらは、速度プロファイル、初期温度プロファイル、またはメッシュの特定の部分の温度等の任意のパラメータの境界条件を含むことができる。その結果、適切なメッシュを決定し、境界条件を入力することにより、測定ビーム経路と基準ビーム経路内のさまざまな場所で気体速度及び/または他のパラメータの値を計算的に求めることができる。
気体速度データは、干渉分光法測定値自体、または本発明の多様な実施形態の干渉計とは異なる干渉分光法測定値に基づいて決定することもできる。∂Ψ/∂tの測定値の相互関連係数、つまり次式13で示されると考えられる。ここで、式13の右辺の平均はjによって追跡調査される空間の領域の小区分上にある。
[式13]
Figure 2009506330
相互関連手順の基本は、干渉計の中で基準ビーム経路と測定ビーム経路全体で移動する気体のセルのアンサンブルとして気体乱流を表すことによって発見的に理解されてよい。気体のセルは、一般的に角運動量と弱い散逸機構を備える。角運動量と弱い散逸機構の結果、セルが空間内で点を渡すために要する時間と比較して、相対的に長い寿命を有する。セルの相対的に長い寿命のため、大気の乱れによる影響での観察される変化は、セルの進化に起因するのではなく、測定ビーム経路と基準ビーム経路でのセルの移送に主に起因する、優れた近似に対してである。
大気による乱れの構造の相対的に長い寿命のため、相互関連係数は、セルがある測定ビーム経路と基準ビーム経路から別の測定ビーム経路と基準ビーム経路に通るために要する特徴的な時間によって決定される構造を示す。Cj,j′(t′)の方向は対応する<uの方向に対応する最大値であり、Cj,j′(t′)の中の対応するピークのt’の値は
Figure 2009506330
の規模を決定するために使用され、dj,j′は測定ビーム経路と基準ビーム経路jとj’の間の距離である。
j,j′ (t′)のフーリエ変換
速度<uの方向と規模は、Cj,j′(t′)の二次元FFTの特性から決定されてもよい。Cj,j′(t′)の二次元FFTの非ゼロ周波数でのピークが、対応する<uと、計算
Figure 2009506330
で使用されるt’の対応する値の方向を決定する。
時間導関数∂Ψ /∂tと発散−∇ ・[<u Ψ ]の測定値
時間導関数∂Ψ/∂tのアレイは、2つの異なる平均時間または同じ平均時間に相当する位相測定値の2つのアレイ間の差異として測定される。[高次の時間導関数は、位相測定値の3つまたは4つ以上のアレイを使用して、∂Ψ/∂tのさらに正確な値を取得するために使用されてよい。]位相測定値のアレイの獲得は「位相測定値のアレイの獲得(Acquisition of an Array of Phase Measurements)」と題される本書の以後の項に説明されている。位相測定値は、本書の「電気干渉信号(Electrical Interference Signal)」と題される項に説明されるように共役直角位相の測定値から取得される。振動の影響及び環境上の影響の削減及び補正は、「振動の影響及び環境上の影響の削減及び補正(Reduction and Compensation for Effects of Vibration and Environmental Effects)と題される科目の中で本書に説明されるような共役直角位相の測定のために達成される。発散−∇・[<uΨ]は、方程式(10)を仕様する時間導関数及び前述されたように取得された<uの値から得られる。
−∇ ・[<u Ψ ]の反転
<uが、それについての情報が所望される波面全体で一定ではない一般的なケースの場合、反転は、[<uΨ]が優れた近似非回転に対してであることを認識し、[<uΨ]をスカラー関数Φ(x,y)、つまり∇Φの傾きとして表すことによって達成される。結果として生じる式は、次式14で表される。
[式14]
Figure 2009506330
式14は、静電学のポワゾン方程式と同じ数学形式を有する。[例えば、J.D.Jacksonによる第2版「古典電気磁気学(Classical Electrodynamics)」(Wiley 1975年)と題されている本の例えば第1.7項を参照すること。]静電学の分野で作成されてきたさまざまな手順の数が、波面上で結果として生じる大気による乱れ寄与Ψの平均値がゼロに等しいという境界条件でΦ(x,y)のための式14を解くために使用できる。
大気による乱れ寄与Ψは、以下の式15で示すことができる。
[式15]
Figure 2009506330
矩形波面断面全体での−∇ ・[<u Ψ ]:<u 定数の反転
矩形波面全体での<u定数のケースでは、時間導関数∂Ψ/∂tから取得される発散−∇・[<uΨ]の反転は、一連の直交関数に関してΨ=Ψ(x,y)を表すことによって実行されてよい。二次元フーリエ級数表現の使用は反転のための方法を簡略例で示すために説明されている。また反転は二次元有限フーリエ変換(FFT)を使用して実行することもできるであろう。二次元フーリエ吸収の表現は、0、0,k=2π/L、及びk=2π/Lyのために、次式16で示される。
[式16]
Figure 2009506330
ここで、Ψ(x,y)は、影響がゼロという平均値を有するように定義される大気の乱れによる影響を表すので、係数anmとbnmは実数であり、平均的にa00=0である。
発散−∇・[<uΨ]は、以下の結果を伴うΨ(x,y)の級数表現のために式16を使用して生成される。
[式17]
Figure 2009506330
式17は、次式18のように式17でcos(nkx+mky)及びsin(nkx+mky)の係数を再定義することによって短縮形で書くことができる。
[式18]
Figure 2009506330
このとき、a’nmとb’nmは、それぞれ次式19で示される。
[式19]
Figure 2009506330
係数a’nmとb’nmは、−∇・[<uΨ]の測定値の二次元フーリエ級数表現によって求められる。次に係数anmとbnmは、a00のケースを除き、式19を使用して、測定済みの係数a’nmとb’nmから生成される。式16の後の説明に留意されるように、Ψ(x,y)はゼロという平均値を有する大気の乱れによる影響を表すので、平均的にa00=0である。
円形波面断面全体での−∇ ・[<u Ψ ]☆<u 定数の変換
円形波面全体での<u定数のケースでは、時間導関数∂Ψ/∂tから得られる発散[<uΨ]の−∇・[<uΨ]の反転は、円形波面区間のケースのゼルニケ多項式に関して、Ψ=Ψ(x,y)を表すことによって実行されてよい。ゼルニケ多項式の拡大は、次式20のように示される。なお、ここでZはゼルニケ多項式であり、順位指数jとcjは定数である。
[式20]
Figure 2009506330
本書で使用されるゼルニケ多項式は、「ゼルニケ多項式及び大気による乱れ(Zernike polynomials and atmospheric turbulence)」J.Opt.Soc.Am,第66巻、207から211ページ(1976年)と題される記事の中でR.J.Nollによって使用されるゼルニケ多項式と同じである。多項式は以下の式21で示される。
[式21]
Figure 2009506330
ここで、以下の式22のように示される。
[式22]
Figure 2009506330
なお、nとmの値は整数であり、0n、及び(n−m)は偶数値の整数である。指数jはモード順序付け番号であり、nとmの関数である。第1の10個のゼルニケ多項式が、ρとθの関数として、及び矩形座標ηとζの関数として以下の式23で示され、ゼルニケ多項式Z(ρ,θ)は表1のように一覧表示される。
[式23]
Figure 2009506330
Figure 2009506330
それぞれのモード直交性関係は次式24で表される。
[式24]
Figure 2009506330
ここではδjj1はクロネッカーのデルタ関数であり、次式25のように示される。
[式25]
Figure 2009506330
ゼルニケ多項式の傾きについては、傾き▽Zがゼルニケ多項式の線形結合として表現されるベクトルであるNollによる引用された参考資料(上記参照)の「ゼルニケ導関数(Zernike Derivatives)」と題される項が参照され、次式26で示される。なお、
Figure 2009506330

Figure 2009506330
はそれぞれx方向とy方向での単位ベクトルである。
[式26]
Figure 2009506330
行列要素γ jj’とγ jj’は、直角座標で最も容易に表され、以下の式27及び式28で表される。
[式27]
Figure 2009506330
[式28]
Figure 2009506330
行列要素γ jj’とγ jj’の例は、本書引用するNoll(上記参照)の表II及び表III、本書のゼルニケ導関数行列要素γ jj’を示す次表2及びゼルニケ導関数行列要素γ jj’を示す次表3に一覧表示されている。行列要素は以下の規則で構築できる。
Figure 2009506330
γ jj’
a)すべての大きさは以下により示される。
mとm’≠0の場合、[(n+1)(n’+1)]1/2
mまたはm’=0の場合、[2(n+1)(n’+1)]1/2
b)非ゼロ要素は、mまたはm’=0の場合を除き、両方が偶数または両方が奇数のjとj’の場合である。
c)特定のmの場合、m’=m±1だけが非ゼロ行列要素を示す。
d)すべての行列要素は正である。
Figure 2009506330
γ jj
a)すべての大きさはγ jj’と同じである。
b)非ゼロ要素は、mまたはm’=0の場合を除き、偶数/奇数または奇数/偶数のどちらかであるjとj’の場合である。mまたはm’=9のとき、奇数のjまたはj’だけが非ゼロ結果を示す。
c)m’=m±1は非ゼロの結果を示す。
d)すべてのmとm’=0要素は正である。
m’=m+1及び奇数jのある要素は負である。
m’=m−1及び偶数のjのある要素は負である。
他のすべての要素は正である。
発散−∇・[<uΨ]は、結果が以下になるΨ(x,y)のゼルニケ多項式表現の場合、式20より次式29で表される。
[式29]
Figure 2009506330
係数cは、−∇・[<uΨ]を、式29に表されるゼルニケ多項式級数で表現することにより決定される。平均的に
Figure 2009506330
がゼロという平均値を有する大気の乱れによる影響を表すので、係数c=0である。
位相測定値のアレイの獲得
本発明を組み込む多様な実施形態の一般的な説明は、最初に、結合を行う、または実質的に結合を行うために複数ホモダイン検出方法が使用される干渉法による計測学システム、及び測定物質により反射される/散乱されるあるいは伝達される/散乱されるビームのフィールドの共役直角位相の成分の時間遅延測定について示される。図1に示すように、干渉法による計測学システムは、干渉計10と、ソース18と、検出器70と、電子プロセッサ兼コントローラ80と、測定物質または基板60とを備えて図表で示されている。ソース18は、周波数符号化、偏光符号化、時間符号化、または空間符号化、あるいはそのなんらかの組み合わせを使用して符号化される1つまたは複数の成分を備えるビーム24を生成する。干渉計計測学システムは、波長モニタがGary E.Sommargrenによる「気体の屈折率の測定のための装置(Apparatus For The Measurement Of The Refractive Index Of Gas)」と題される米国特許番号第4,733,967号に説明されているような干渉計に基づいている大規模な環境上の変化の測定及び補正のために、1台または複数の波長モニタ(図1には不図示)をさらに備えてよい。波長モニタは、例えば、干渉分光法計測学システムの基準ビーム経路と測定ビーム経路の中では等方性ではない環境の影響の補正で使用できる。
周波数符号化は、参照される米国仮特許出願番号第60/442,858号(ZI−47)と米国特許出願番号第10/765,368号(ZI−47)に説明されている。偏光符号化は、内容が参照することによりその全体として本書に組み込まれている、ともに「干渉分光学におけるオブジェクトにより散乱/反射された直交偏光ビームのフィールドの共同測定のための装置及び方法(Apparatus and Method for Joint Measurement of Fields of Scattered/Reflected Orthogonally Polarized Beams by an Object in Interferometry)」と題され、ともにHenry A.Hillによる共同所有された米国仮特許出願番号第60/459,425号(ZI−50)号と、米国特許出願番号第10/816,180号(ZI−50)に説明されている。空間符号化は、内容が参照することによりその全体として本書に組み込まれている、ともに「干渉分光法におけるオブジェクトにより反射される/散乱されるおよび伝達される/散乱されるビームフィールドの共役直角位相の成分の結合および時間遅延測定のための装置及び方法(Apparatus and Method for Joint And Time Delayed Measurements of Components of Conjugated Quadratures of Fields of Reflected/Scattered and Transmitted/Scattered Beams by an Object in Interferometry)と題され、Henry A.Hillによる共同所有された米国仮特許出願番号第60/602,046号(ZI−57)および米国仮特許出願番号第11/204,758号(ZI−57)に説明されている。空間符号化は、内容が参照することによりその全体として本書に組み込まれている、ともに「適応反射光学面を用いる反射光学イメージングシステム及び反射屈折イメージングシステム(Catoptric and Catadioptric Imaging System With Adaptive Catoptric Surfaces)」と題され、ともにHenry A.Hillによる共同所有された米国仮特許出願番号第60/501,666号(ZI−54)と米国特許出願番号第10/938,408号(ZI−54)に説明されている。
入力ビーム24は、それぞれ1つまたは複数の符号化成分を備える成分24Aと24Bで形成される。ビーム24Aと24Bのさまざまな成分の偏光の相対的な向きは平行または直交、あるいは最終使用応用例の要件に従ってなんらかの他の角度となってよい。測定ビーム成分24Bと基準ビーム成分24Aは空間的に分離されている、または空間的に同一の広がりを持つかのどちらかであるが、入力ビーム24の測定ビーム成分24Bは空間で同一の広がりを持ち、対応する基準ビーム成分24Aは空間で同一の広がりを持ち、測定ビーム成分の対応する成分の時間ウィンドウ関数と同じ時間ウィンドウ関数を有する。
基板60に入射する測定ビーム30Aはビーム24Bから直接的に、または干渉計10の中でのどちらかで生成される。測定ビーム30Bは基板60によって反射/散乱される、あるいは伝達/散乱される測定ビーム30Aの一部として生成される反射測定ビームである。反射測定ビーム30Bは、出力ビーム34を形成するために干渉計10の中の基準ビーム24Aと結合される。
出力ビーム34は、好ましくは複数ホモダイン検出方法のための電気干渉信号を信号72として発生させるための量子プロセスによって検出器70により検出される。検出器70は、混合ビームを形成するためにビーム34の基準測定ビーム成分と反射測定ビーム成分の共通の偏光状態を選択するためのアナライザをさらに備えてよい。代わりに、干渉計10は、ビーム34が混合ビームとなるように基準測定ビーム成分と反射測定ビーム成分の共通の偏光状態を選択するためのアナライザを備えてよい。
実際には、既知の位相シフトが、ホモダイン検出方法で使用される符号化方法に応じて1つまたは複数の技法により、出力ビーム34の符号化された基準ビーム成分と測定ビーム成分間に導入される。1つの技法では、位相シフトは、電子プロセッサ兼はコントローラ80から信号74の成分によって制御されるように、ソース18によって入力ビーム24の一定の対応する符号化された基準ビーム成分と測定ビーム成分の間に導入される。別の技法では、位相シフトは、干渉計10の中での基準物質と測定物質間の非ゼロ光学経路差の結果として一定の他の対応する符号化された基準ビーム成分と測定ビーム成分の間に導入され、対応する周波数シフトが本発明の第1の実施形態の説明の対応する部分に説明されるような電子プロセッサ兼コントローラ80からの信号74の成分によって制御されるように、ソース18によって入力ビーム成分24Aと24Bの特定の他の符号化された成分に導入される。さらに別の技法では、位相シフトが、本発明の第1の実施形態の説明の対応する部分に説明されるような電子プロセッサ兼コントローラ80によって制御されるように、基準物質と測定物質の相対的な変換の結果として、他の特定の他の対応する符号化された基準ビーム成分と測定ビーム成分の間に導入される。
本発明のさまざまな実施形態の入力ビーム要件を満たすためにソース18を構成する複数の方法がある。干渉計10がフィゾーまたはトワイマン・グリーン型干渉計等の干渉計である応用例の場合、複数ホモダイン検出方法のための基準物質と測定物質の相対的な変換により導入される位相シフトを使用して、あるいは使用しなくても周波数符号化及び時間符号化の組み合わせが使用できる。
本発明のさまざまな実施形態の入力ビーム要件を満たすようにソース18を構成するための複数の方法の説明を続行すると、ソース18はパルス化されたソース及び/またはシャッターを備えてよい。共同所有された米国仮特許出願番号第60/602,046号(ZI−57)と米国特許出願番号第11/204,758号(ZI−57)に説明されるような1つまたは複数の周波数を備えるパルス化されたソースを生成するための多くの異なる方法がある。ソース18は、入力ビーム24のために空間的に分離されているビームである同一の広がりを持つ測定ビームと同一の広がりを持つ基準ビームを形成するため、あるいは本発明の多様な実施形態で必要とされるように入力ビーム24のために同一の広がりを持つビームを形成するために2つまたは3つ以上の符号化された成分を備える出力ビームを生成するために例えばビームスプリッタを使用して構成されてよい。
ソース18は、参照されている米国仮特許出願番号第60/602,046号(ZI−57)と第60/442,858号(ZI−47)、米国特許出願番号第10/765,368号(ZI−47)及び米国特許出願番号第11/204,758号(ZI−57)に説明されている、例えば音響光学変調器(AOM)のような他の技法を使用して構成されてよい。ソース18は、それぞれが「同調速度が高速で、同調範囲が拡大された連続同調可能外部空洞ダイオードレーザソース(Continuously Tunable External Cavity Diode Laser Sources With High Tuning Rates And Extended Tuning Ranges)」と題される米国仮特許出願番号第60/699,951号(ZI−72)と第60/805,104号(ZI−78)及び米国特許出願番号第11/457,025号(ZI−72)に説明されるような外部空洞ダイオードレーザソース(ECDL)の空洞内ビーム偏向器を使用して構成されてもよい。米国仮特許出願番号第60/699,951号(ZI−72)はHenry A.Hillにより、米国仮特許出願番号第60/805,104号(ZI−72)と米国特許出願番号第11/457,025号はH.A.Hill、S.Hamann、及びP.Shiffletにより、それぞれの内容は参照することによりその全体として本書に組み込まれている。
本発明の第1の実施形態は図2に示され、基準フレーム及び基準光周波数fまたは対応する基準波長λを用いて操作され、表面64上の点と測定物質60上の対応する点の間の相対的な光学経路長は、参照光周波数fで2πを法として一定に維持される。第1の実施形態は、基準物質と測定物質62と60の相対的な変換により導入される位相シフトを使用して、あるいは使用せずに、時間符号化と周波数符号化の組み合わせに基づいたホモダイン検出方法を使用するフィゾー干渉計として構成される干渉計10を備える。本発明の多様な実施形態で使用されるホモダイン検出方法は、波面プロファイルについての情報だけではなく、振動、環境上の変化、及び大気の乱れによる影響についての情報も取得するように構成される。
図2では、ソース18は、選択された周波数値と、存在する可能性のある振動及び環境上の変化の影響の周波数に比較して好ましくは高いスイッチング周波数の間で切り替えられる単一の周波数成分のある入力ビーム2を生成する。図3で示される第1の実施形態のソース18は、参照される米国仮特許出願番号第60/699,951号(ZI−72)と第60/805,104号(ZI−78)及び米国特許出願番号第11/457,025号(ZI−72)に説明されるようなECDLを備える。加えて、入力ビーム24の基準ビーム成分と測定ビーム成分は、第1の実施形態のための空間で同一の広がりを持つ。
ECDLは、コヒーレント光源と分散システムを備える連続同調可能外部空洞ソースである。分散システムは、コヒーレント光源からの選択された波長を、回折及び/または屈折のどちらかによりコヒーレント光源に戻るように導く。分散システムを備える外部空洞の2つの特長は、分散システムに入射するビームの側面方向のせん断に対する外部空洞の二重通過経路長の一次感度と、分散システムの分散要素に入射するビームの伝搬方向での変更に対する選択された波長の一次感度である。ECDLは、2つの特長の第2だけを利用する従来の技術と比較して高速の同調速度と、拡大した同調範囲を備える連続同調可能外部空洞ダイオードレーザソースを取得するためにこれらの特長の両方を利用する。
リトロー構成でECDLとして構成されるソース18は、図3に示すように、回折格子212を備えている。ECDLはレーザソース210と、ビーム形成光学部品216と、ビーム偏向器240と250と、電子プロセッサ兼コントローラ80とをさらに備える。出力ビームはビーム24である。
ソース210とビーム形成光学部品216は、ビーム214の成分として空洞内部平行ビームを生成する。ビーム214の平行成分はビーム偏向器140に入射し、その一部はビーム220の偏向成分として偏向される。ビーム220の偏向ビーム成分の一部は、以後、ビーム218の偏向ビーム成分としてビーム偏向器250によって偏向される。
図3に示されるリトロー空洞構成の場合、ビーム218の偏向成分の一部はビーム218の回折成分として回折される。図3の外部空洞を通るソース210までのビーム218の回折ビーム成分の経路は、図3の右側に伝搬する空洞内部成分の成分に一致する。ソース210に入射するビーム218の回折ビーム成分の一部は、ソース210の左側の反射器による反射後にソース210の空洞によって二重通過される。二重通過ビームはビーム214の平行ビーム成分の成分に一致する。
図3に示されるリトロー空洞構成の場合も、ソース210に入射するビーム218の回折ビーム成分の第2の部分が、出力ビーム24としてソース210の左側の反射器によって伝達される。
分散システムを用いる外部空洞の2つの特長は、空洞内部ビームの伝搬方向でのビームせん断と変更の両方を生じさせるビーム偏向器240と250の導入と使用により利用される。ビーム偏向器240と250によって生成される空洞内部ビームの伝搬方向でのビームせん断及び変更の量は、電子プロセッサ兼コントローラ80からの信号74の成分によって制御される。ビーム偏向器240と250は、電気光学変調器(EOM)またはAOMのどちらかを備えてよい。ECDLの特性は、EOMとして構成されるビーム偏向器240と250のための複屈折媒質として使用されるさまざまな媒質のセットについて表4に一覧表示されている。
周波数と波長における同調範囲はそれぞれ
Figure 2009506330
と2△λに等しいことを留意する。なお、応答時間τは、外部空洞のさまざまな長手方向のモード間でのモードホッピングなしでECDLの周波数を変更するための応答時間である。
表4はEOMビーム偏向器を用いるECDLの性能特性を示したものである。
Figure 2009506330
代わりに、第1の実施形態におけるソース18の関数は図4で示されるようなマスタ−スレーブソース構成を使用することによって供給されてよい。図4に示すように、レーザ1118の周波数は、それぞれマスタレーザ118とスレーブレーザ1118の周波数間の周波数差異を制御するために信号74の成分としてサーボフィードバックによって制御される。レーザ118の周波数は、電子プロセッサ兼コントローラ80からの信号74の成分によって制御される。レーザ118によって生成されるビーム120の第1の部分は、出力ビーム24の第1の成分として非偏光ビームスプリッタ148によって伝達され、ビーム120の第2の部分はビーム1124の第1の成分として非偏光ビームスプリッタ148によって反射される。レーザ1118によって生成されるビーム1120の第1の部分は、ビーム1122としてのミラー190によって反射される。ビーム1122の第1の部分は、出力ビーム24の第2の成分として非偏光ビームスプリッタ148によって反射され、ビーム1122の第2の部分はビーム124の第2の成分として非偏光ビームスプリッタ148によって伝達される。
ビーム124の成分は、ビーム124が混合ビームではない場合に検出器内での偏光に関して混合され、好ましくは電気干渉信号1172を発生させるための量子プロセスによって検出器1182で検出される。ビーム120と1120の周波数の差異は、電気干渉信号1172の周波数に相当する。周波数の差異はエラー信号を発生させるために電子プロセッサ兼コントローラ80によって決定される値に比較される。エラー信号は、信号74のサーボ制御信号成分を生成し、レーザ118の周波数を基準にしてレーザ1118の周波数を制御するために電子プロセッサ兼コントローラ80によって使用される。
図2に関して、干渉計10は非偏光ビームスプリッタ144と、基準面64のある基準物質62と、測定物質60と、トランスデューサ150と152と、検出器70、170及び182と、電子プロセッサ兼コントローラ80とを備える。入力ビーム24は非偏光ビームスプリッタ144に入射し、その第1の部分はビーム132として透過され、その第2の部分はモニタビーム124として反射される。その後、ビーム132は基準物質62に入射し、その第1の部分はビーム132の反射基準ビーム成分としてオブジェクト62の表面64によって反射され、その第2の部分はビーム130の測定成分として透過される。ビーム130の測定ビーム成分は測定物質に入射し、その部分はビーム130の反射測定ビーム成分として反射される/散乱される。ビーム130の反射測定ビーム成分は基準物質62に入射し、その一部はビーム132の反射測定ビーム成分として透過される。ビーム134の反射された基準ビーム成分と測定ビーム成分は、次にビームスプリッタ144に入射し、その一部は出力ビーム34として反射される。
第1の実施形態の説明を続けると、出力ビーム34は非偏光ビームスプリッタ146に入射し、その第1の部分と第2の部分はそれぞれビーム138と140としてそれぞれ透過され、反射される。ビーム138は、ゲート制御されるビームとしてビーム142を生成するために必要とされる場合、シャッター168による透過の後に、好ましくは、電気干渉信号72を発生させるための量子プロセスによって検出器70によって検出される。シャッター168は、電子プロセッサ兼コントローラ80によって制御される。シャッターの機能は、代わりに検出器70の中に一体化されたシャッターによって供給される。電気干渉信号72は表面64の表面プロファイルの差異及び測定物質60の反射面についての情報を含む。
ビーム140は検出器170に入射し、好ましくは、電気干渉信号172を発生させ、混合ビームとしてそれぞれの透過ビームを生成するための量子プロセスによって検出器170によって検出される。ビーム140が混合ビームではない場合、ビームは検出器170による検出の前に混合ビームを形成するために検出器170内のアナライザを通される。検出器170は、高速検出器のそれぞれが1つまたは複数のピクセルを備えてよい1台または複数の高速検出器を備える。1台または複数の高速検出器のそれぞれの感光領域はビーム140の波面の部分と重複する。電気干渉信号172は、高速検出器のそれぞれに入射するビーム140の波面の部分に対応する位置での基準物質と測定物質62と60の間の光学経路長の相対的な変化についての情報を含む。電気干渉信号172に含まれる情報は、基準フレームを確立し、維持するため、及び相対的な向きの変化及び/または基準物質と測定物質62と60の変形を検出するために、電子プロセッサ兼コントローラ80によって処理され、使用される。
ビーム124は、検出器182に入射し、好ましくは、電気干渉信号184を発生させるための量子プロセスによって検出される。電気干渉信号184は、信号74の成分を通してビーム24の振幅を監視し、制御するために電子プロセッサ兼コントローラ80によって処理され、使用される。
優位点は、電気干渉信号172が、電気干渉信号72を処理するために電子プロセッサ兼コントローラ80によって使用される複数ホモダイン検出方法に適合するホモダイン検出方法を使用して電子プロセッサ兼コントローラ80によって処理されるという点である。特に、第1の実施形態が電気干渉信号72の処理のためにN3の位相シフト値のシーケンスに基づいて複数ホモダイン検出方法を使用するように構成される場合、電気干渉信号172を処理するために使用されるホモダイン検出方法は、位相シフト値のシーケンスの選択に対して、及び電気干渉信号72の処理に対して制限を課さないために、N3の位相シフト値の同じシーケンスと動作するように構成される。
電気干渉信号172を処理するために使用されるホモダイン検出方法は、共役直角位相の成分の共同の測定値が測定され、複数ホモダイン検出方法で時間符号化が使用され、基準フレームの使用である、複数ホモダイン検出方法の特性を利用する。加えて、ホモダイン検出方法は、それぞれの検出器のサンプリング時間及び積分時間に関して複数ホモダイン検出方法とは異なる。ソース18の切り替え時間及び検出器170のサンプリング時間または積分時間は、振動及び環境上の変化の影響の帯域幅の逆数よりずっと少ない。検出器70のサンプリング時間または積分時間は、系統的な誤差原因と統計誤差原因の両方を含む信号対雑音の懸念事項に基づいている。したがって、振動の影響及び環境上の変化の影響に起因する基準物質と測定物質62と60の間の光学経路長の変更についての情報は、検出器70のサンプリング時間または積分時間に対して、あるいは電気干渉信号72の処理に対して制限を課すことなく取得できる。
電気干渉信号172を処理するために使用されるホモダイン検出方法は、電気干渉信号値172が第1の実施形態の基準フレームで獲得されるのを利用する単一ホモダイン検出方法の変形に相当する。基準フレームでは、共役直角位相の位相はフィードバックシステムによってゼロに、または実質的にゼロに維持される。結果として、それぞれの共役直角位相の1つの成分だけが、基準物質と測定物質62と60の相対的な変位における変化を検出するために監視される必要がある。それぞれの共役直角位相の1つの成分は名目上ゼロに等しく、相対的な光学経路長の変化に対する感度で極値を示す成分に相当する。共役直角位相の2つの成分に相当する、入力ビーム24の2つの成分の周波数の差異に関連する位相シフトはπ/2であるので、2つのそれぞれの、つまり連続的な干渉信号値間の対応する差異は、相対的な光学経路長の変化に対する感度の極値を有する共役直角位相の成分についての情報を第1の実施形態に含む。情報は、±の形をとる、本発明の第1の実施形態の説明でさらに説明される共役直角位相の成分である。
ソース18として使用されるECDLの光周波数の値は、それぞれEOMビーム偏向器140と150のための駆動電圧VとVとして電子プロセッサ兼コントローラ80から信号74の成分によって制御される。V、VとECDLの光周波数の関係性は、米国仮特許出願番号第60/699,951号(ZI−72)と第60/805,104号(ZI−78)及び米国特許出願番号第11/457,025号(ZI−72)に説明されている。基準周波数
Figure 2009506330
の値は、例えば振動に起因する基準物質と測定物質の変化の間の物理的な経路長
Figure 2009506330
の差異として、及び例えば環境上の変化に起因する基準物質と測定物質間の測定ビームの光学経路内での例えば気体等の屈折媒質の屈折率として変化する。振動及び環境上の影響に起因する相対的な光学経路長の変化は、電気干渉信号172の共役直角位相の成分、及び光学経路長が2πを法として一定に保たれるように電圧VとVを制御することによって基準周波数
Figure 2009506330
の値を制御するためのエラー信号として使用される測定済みの変更を監視することによって検出される。基準周波数
Figure 2009506330
または物理的な経路長
Figure 2009506330
についての実知識は必要とされない。
既定の基準フレームでは、電気干渉信号72の位相に関するビーム24の周波数の変化率が、ホモダイン検出方法を実現するために必要とされる。その変化率は
Figure 2009506330
として示され、ビーム24の周波数の変化は電気干渉信号72を表す共役直角位相の中でπ位相シフトを導入するために必要とされる。π位相シフト変化
Figure 2009506330
あたりの周波数変化率は、最初にECDLの周波数変化の関数として電気干渉信号値の値を測定し、次に
Figure 2009506330
の値について電気干渉信号72を表す共役直角位相の測定済みの時間シーケンスを分析することによって決定される。
Figure 2009506330
の測定値は、電気干渉信号72のための単一ホモダイン検出方法または複数ホモダイン検出方法のどちらかの実現で使用される。
Figure 2009506330
の値の知識が先験的に必要とされず、前記に留意されたように、実際の物理経路長差異
Figure 2009506330

Figure 2009506330
の決定で測定されないことに留意することが重要である。
Figure 2009506330
の実際の値が周波数として測定または使用される必要はないが、電圧V1,πとV2,πとの変化の対応する値が測定され、後に使用されることに留意することも重要である。したがって、実際の物理経路長差異lは測定されず、ECDLの周波数変化への、VとVの変化の変換に関する知識なしにV1,πとV2,πの知識から決定できない。
駆動電圧VとVの波形は好ましくは矩形関数である。図5に示されているのはビーム24の対応する周波数である。2つの異なる周波数値の間のビーム24の周波数の対応する二進変調は、基準ビームと測定ビームの時間符号化で使用され、特にマスタレーザ118とスレーブレーザ1118として構成されるソース18を使用するとき等、2つの周波数成分を生成しない。複数ホモダイン検出方法の場合、矩形関数の期間はεとγの二進状態によって定められる期間よりずっと少ない[式30に関して本書に示されるεとγの説明を参照すること]。
図2に示すように、位相シフトは入力ビーム24の成分の周波数をシフトすることを用いて、または電子プロセッサ兼コントローラ80からのそれぞれ信号154と156によって制御されるトランスデューサ150と152によって基準物質62の変換及び/または回転によって生じる位相シフトと連動してのどちらかで達成される。図2の平面から外に位置付けられる(図では不図示)第3のトランスデューサは、トランスデューサ150と152によって生じる角度方向の変化に直交する基準物質62の角度方向で変化を生じさせるために使用される。
基準フレーム内で操作することによって、検出器70のための積分時間またはサンプリング時間は、直線変位及び/または回転変位の影響を生じさせる振動の影響及び環境上の影響とは無関係に電気干渉値72のアレイを分析することから得られる共役直角位相のための信号対ノイズ比を最適化するために選択できる。基準フレームでは、測定物質60は、直線変位及び/または回転変位の影響に関して、基準物質62に関して固定されている。したがって、シャッター168または検出器70内のシャッターによって制御される積分時間またはサンプリング時間は、直線変位及び/または回転変位の影響を生じさせる振動及び環境上の変化の特性時間に比較して長い可能性がある。回転及び変形、ならびに環境上の変化の傾きの影響は、トランスデューサを使用することによって、測定物質60を基準にして基準物質62の回転及び/または変形によって削減できる、及び/または電気信号値の測定済みのアレイの処理で補正できる。
振動及び環境上の変化の影響の削減のための帯域幅は、ソース18のほぼ最大周波数スイッチング時間であり、米国仮特許出願番号第60/699,951号(ZI−72)と第60/805,104号(ZI−78)及び米国特許出願番号第11/457,025号(ZI−72)に説明されているECDL等のソースの場合ほぼ1MHzである。ECDLの波長は、例えば可視または赤外線にあってよい。信号の獲得と処理に関して、反射測定ビームのフィールドの共役直角位相は、電気干渉信号72の少なくとも3つの測定のセットを行うことにより達成される。単一ホモダイン検出方法では、位相シフトの公知のシーケンスは、電気干渉信号72の少なくとも3つの測定値の獲得では、出力ビーム34の基準ビーム成分と反射測定ビーム成分の間で導入される。共同で使用されている4つの位相シフト値のシーケンスは0、π/4、π/2、及び3π/2である。参考のため、単一ホモダイン検出方法の位相シフト値のセットのための反射された/散乱されたフィールドの共役直角位相を抽出するために使用されるデータ処理手順は、例えば、内容が参照することにより全体として本書に組み込まれている、Henry A.Hillによる「走査干渉近視野共焦点顕微鏡法(Scanning Interferometric Near−Field Confocal Microscopy)」と題される米国特許番号第6,445,453号(ZI−14)に説明される対応する手順と同じである。処理手順は同書にSchwiderによっても説明される。
電気干渉信号
ビ・ホモダイン検出方法は、取得された各電気干渉信号値に単一の検出器要素と、2つの符号化された成分を備える干渉計システムに対する入力ビームとを使用し、各符号化された成分は共役直角位相の成分に相当する。符号化は、参照される米国仮特許出願番号第60/442,858号(ZI−47)と米国特許出願番号第10/765,368号(ZI−47)に説明されるような周波数符号化、参照される米国仮特許出願番号第60/459,425号(ZI−50)と米国特許出願番号第10/816,180号(ZI−50)に説明されるような偏光符号化、参照される米国仮特許出願番号第60/602,046号(ZI−57)と米国特許出願番号第11/204,758号(ZI−57)に説明されるような時間符号化、及び参照される米国仮特許出願番号第60/501,666号(ZI−54)と米国特許出願番号第10/938,408号(ZI−54)に説明されるような空間符号化を利用してよい。
基準ビームの1つの符号化成分と、測定ビームの対応する符号化成分は、検出器要素に協約した測定物質内または上の点から反射された及び/または散乱されたフィールド、または透過されたフィールドのどちらかを備える対応する測定ビームのフィールドの共役直角位相の第1の成分に対応する電気干渉信号成分を生成するために使用される。基準ビームの第2の符号化成分と、測定ビームの対応する符号化成分は、フィールドの共役直角位相のそれぞれの第2の成分に相当する第2の電気干渉信号成分を生成するために使用される。共役直角位相の第1の成分と第2の成分についての情報は、基準ビームの2つの符号化された成分が空間で同一の広がりを有し、測定ビームの2つの対応する符号化された成分が空間内で同一の広がりを有し、また干渉計システム内の同じまたは実質的に同じ時間ウィンドウ関数を有する結果として共同で得られる。
ホモダイン検出方法は、2台の検出器と、4つの電気信号値を取得するために4つの同一の広がりを持つ測定ビームと対応する基準ビームとを干渉計システム内に同時に備える干渉計システムに対する入力ビームとを使用し、電気干渉信号の各測定値は、基板上または基板内の点によって反射される及び/または散乱される、あるいは透過されるかのどちらかのビームのフィールドの共役直角位相の共同測定値のために共役直角位相の2つの直交成分についての情報を同時に含む。1つの検出器要素は、2つの電気干渉信号値を取得するために使用され、第2の検出器要素は4つの電気干渉信号値の内の他の2つを取得するために使用される。
4つの同一の広がりを持つ測定ビーム及び対応する基準ビームは、4つの周波数成分を備える入力ビームを使用することによって同時に干渉計システム内で生成され、各周波数成分は測定ビーム及び対応する基準ビームに対応する。4つの周波数成分の周波数差異は、4つの周波数成分が2つの異なる検出器要素に入射する2つのビームにアナライザによって分解されるほどであり、2つのビームのそれぞれが2つの異なる周波数成分を備え、周波数差異は検出器の周波数帯域幅に比較して大きい。第1の検出器要素に入射する2つの周波数成分の内の1つが、検出器要素に共役した測定物質内または測定物質上の点から反射される及び/または散乱あるいは透過されるかのどちらの遠視野または近視野のどちらかを備え、対応する測定ビームのフィールドの共役直角位相の第1の成分に対応する電気干渉信号成分を生じさせるために使用される。第1の検出器要素に入射する2つの周波数成分の第2は、フィールドの共役直角位相のそれぞれの第2の成分に対応する第2の電気干渉信号成分を生成するために使用される。周波数成分または共役直角位相の成分に関する第2の検出器要素の説明は、第1の検出器要素に関する対応する説明と同じである。
共役直角位相の第1の成分と第2の成分についての情報は、4つの周波数成分が空間内で同一の広がりを持ち、干渉計システム内で同じ時間ウィンドウ関数を有する結果として共同で相応して取得される。走査モードで動作するときの時間ウィンドウ関数は、干渉計システムへの入力ビーム24の周波数成分のウィンドウ関数またはそれぞれの包絡線に相当する。
本発明の多様な実施形態で使用される単一ホモダイン検出方法と2ホモダイン検出方法を参照すると、少なくとも3つの電気干渉信号値のセットが、結像されている基板60上及び/または基板内の点ごとに取得される。結像されている基板上及び/または基板内の単一の点のためのフィールドの共役直角位相を取得するために使用される、qが整数である少なくとも3つの電気干渉信号値S、j=1,2,3...,qのセットは、以下の式30によりスケール係数内の単一ホモダイン検出方法と2ホモダイン検出方法のために表現される。
[式30]
Figure 2009506330
ここでは
Figure 2009506330

Figure 2009506330
は、振動、環境上の変化、及び/または基準物質と測定物質62と60の間の傾きによって生じる位相シフトの影響を含む。係数AとAは入力ビームの第1の周波数成分と第2の周波数成分に対応する基準ビームの振幅を表現する。係数BとBはそれぞれ基準ビームAとAに対応する背景ビームの振幅を表現する。係数CとCはそれぞれ基準ビームAとAに対応する反射測定ビームの振幅を表現する。Pは電気干渉信号値S、及びε=±1、及びγ=±1を取得するために検出器70によって使用される積分期間中に入力ビームの第1の周波数成分の積分された強度を表現する。1から−1、または−1から1のεとγの値の変化は、それぞれの基準ビームと測定ビームの相対位相の変化に相当する。係数ξ、ζ及びηは、基板60上及び/または基板60内の点の生成で使用される場合のサイズと形状、及びそれぞれ基準ビーム、背景ビーム及び反射測定ビームのための基板60上及び/または基板60内の点に対応する4つの検出器ピクセルの共役セットの感度等の4つのピンホールの共役セットの特性の変動の影響を表現する。
εとγの値のセットは、4つの位相シフト値のセットを使用するときの単一ホモダイン検出方法の場合の表5に一覧表示されている。スケジュール1として以下の表5に一覧表示されているεとγの値に対応する位相シフトアルゴリズムは、0、π/2、π、及び3π/2という4つの位相シフト値の標準的なセットに基づいたアルゴリズムに相当する。対応する単一ホモダイン検出方法は、振動と環境上の変化の影響のフーリエスペクトルの成分に対する、ゼロ周波数値での感度のピークのある振動と環境上の変化の影響に対する一次感度を示す。
表5は単一ホモダイン検出方法:スケジュール1である。
Figure 2009506330
振動と環境上の変化の影響に対する二次感度を示す5つの位相シフト値に基づいた位相シフトアルゴリズムは、Appl.Opt.22、3421から3432ページ(1983年)「デジタル波面測定干渉分光法:いくつかの系統誤差原因(Digital wave−front measuring interferometry:some systematic error sources)」と題される記事の中でJ.Schwider、R.Burow、K.−E.Elssner、J.Grzanna、R.Spolaczyk及びK.Merkelによって紹介された[J.Opt.Soc.Am.A12、354から365ページ(1995年)「位相シフト干渉分光法の振動(Vibration in phase−shifting interferometry)」と題される記事の中のP.de Grootによる説明も参照すること]。5つの位相シフト値に基づいた位相シフトアルゴリズムは二次感度に加えて、振動と環境上の変化の影響のフーリエスペクトルの成分に対する非ゼロ周波数値での感度のピークを示す。5つの位相シフト値に基づいた位相シフトアルゴリズムは、App.Opt.26、2504から2506ページ(1987年)「デジタル位相シフト干渉分光法:単純な誤差補正位相計算アルゴリズム(Digital phase−shifting interferometry:a simple error−compensating phase calculation algorithm)」と題される記事の中でP.Hariharan、B.F.Oreb及びT.Eijuによって、及び光学ショップ試験(Optical Shop Testing)、D.Malacara編集(Wiley,ニューヨーク(New York)、1992年)「位相シフト干渉分光法(Phase shifting interferometry)」と題される記事の中でJ.E.Breivenkamp及びJ.H.Bruningによって後に広められた。一次感度に比較した二次感度で表現される優位点は、位相ステッピングを実行する圧電トランスデューサを精密に較正する上での問題のため、及び高速球状空洞とともに生じる厄介な問題のために、大きな開口干渉分光法にとって重要であった。
例えば、第1のセット、0、π/2、−π/2、及び±π、及び第2のセットπ/2、0、±π、及び−π/2等の、また振動及び環境上の変化の影響に対する二次感度だけを示す単一ホモダイン検出方法で使用するための本書に開示されている4つの位相シフト値のセットがある。位相シフトの第2のセット0、π/2、−π/2、及び±πに対応するεとγの値のセットは、スケジュール2として以下の表6に一覧表示されている。表6に一覧表示される位相シフト値の第1のセットに基づいたアルゴリズムは、振動及び環境上の変化の影響のフーリエスペクトルの成分の非ゼロ周波数値での感度にピークがある振動及び環境上の変化の影響に対する二次感度だけを示す。
表6は単一ホモダイン検出方法:スケジュール2である。
Figure 2009506330
表7は、ビ・ホモダイン検出方法:スケジュール3として、参照される米国仮特許出願番号第60/442,858号(ZI−47)と米国特許出願番号第10/765,368号(ZI−47号)の表1と同じである位相シフトの標準セット0、π/2、π及び3π/2に対応する2ホモダイン検出方法のεとγの値のセットを一覧表示する。
Figure 2009506330
表7に一覧表示されているεとγの値のセットを使用するビ・ホモダイン検出方法は、振動及び環境上の変化の影響のフーリエスペクトルの成分に対するゼロ周波数値で感度のピークがある振動及び環境上の変化の影響に対する一次感度を示す。
本書に開示されているεとγの値のセットがあり、その例は、qが偶数の整数値であるq個の位相シフト値のシーケンスについて、振動と環境上の変化の影響のフーリエスペクトルの成分に対する非ゼロ周波数値での感度にピークのある、振動と環境上の変化の影響に対する二次感度を示すビ・ホモダイン検出方法のためのスケジュール4として表8に一覧表示されている。振動と環境上の変化の影響に対する二次感度があるかどうかに関するビ・ホモダイン検出方法の特性は、jの値についてのεγの対称特性、つまりj=(q+1)/2で決定される。振動と環境上の変化の影響に対する二次感度は、本発明の第1の実施形態の説明でさらに説明される。
表8は、ビ・ホモダイン検出方法:スケジュール4に関し、jの4による周期性を示したものである。
Figure 2009506330
要約すると、表5に示されるεとγの単一ホモダインセット及び表7に示されるεとγのビ・ホモダインセットは、振動と環境上の変化の影響のフーリエスペクトルの成分に対するゼロ周波数値での感度にピークのある、振動と環境上の変化に対するそれぞれの測定済みの共役直角位相の一次感度につながり、表6に示されるεとγの単一ホモダインセットと表8に示されるεとγのビ・ホモダインセットは、q=4及び8という値について、ほぼゼロ周波数の振動と環境上の変化の影響のフーリエスペクトルの成分に対する非ゼロ周波数値での感度にピークがある、振動と環境上の変化に対するそれぞれの測定済みの共役直角位相の二次感度につながる。表5、表6、表7及び表8に関するこれらの特性は、周期的誤差として、振動及び環境上の変化の影響の表現または出現に関する特性だけではなく、本発明の第1の実施形態の以後の説明でも展開する。
表8の最初4行は、行2と行4の単純な順列により表7から得られることに留意する。表8に示されているεとγのスケジュールは、j周期が4であるjの中で周期的である。したがって、表8に示されるεとγのスケジュールの長さは、周期的な構造を再生することによって、必要に応じて、長さを容易に延ばすことができる。類似する説明は表5、表6、及び表7のεとγのスケジュールにも当てはまる。
|A|/|A1|の比率がjに、またはPの値に依存していないことが式30で仮定される。これは、振幅AについてPをPj,mで置換することによって第1の実施形態で達成できるが、本発明の範囲または精神のどちらかを逸脱することなく重要な特長を予測するためにSの表現を簡略化するために、AとAに対応する反射測定ビームの振幅の比率がjに、またはPの値に依存していないことも式30で仮定される。しかしながら、比率|C|/|C|は、AとAに対応する測定ビーム成分の振幅の比率が比率|A|/|A|と異なるときには、比率|A|/|A|と異なる。
ビーム34、式30の対応する基準ビーム成分と反射測定ビーム成分の間の相対的な位相シフトの制御による
Figure 2009506330
は、以下で表す式31のように変形しても良い。
[式31]
Figure 2009506330
ここでは、関係性
Figure 2009506330
は、本発明の範囲または精神のどちらかを逸脱することなく使用されたことに留意する。
εの変化の場合の位相
Figure 2009506330
の変化と、γの変化の場合の位相
Figure 2009506330
の変化は、背景ビームがどこで、どのように生成されるのかに応じて実施形態のπと異なってよい。因数
Figure 2009506330

Figure 2009506330
(として書かれてよく、ここでは位相差
Figure 2009506330
は位相
Figure 2009506330
と同じである、つまり
Figure 2009506330
であることに留意することは、背景ビームの影響を評価する上で貴重である場合がある。
式31の検査から、共役直角位相
Figure 2009506330
の成分に対応する式31の中の項が、εは表7の中のεの値に関してj=2.5の回りで反対称であるので、ゼロという平均値を有し、j=2.5の回りで反対称であり、εは表8の中のεの値に関してj=(q+1)/2の回りで反対称であるので、ゼロという平均値を有し、q=4,8,...の場合j=(q+1)/2の回りで反対称である矩形関数であることは明らかである。加えて、式31の中の共役直角位相
Figure 2009506330
の成分に対応する式31の中の項は、γが表7と表8の両方の中のγのそれぞれの値に関してj=(q+1)/2の回りで反対称の関数であるため、ゼロという平均値を有し、q=4,8,...の場合にj=(q+1)/2の回りで反対称である矩形関数である。Q=4及び8という値のためのビ・ホモダイン検出方法の設計による別の重要な特性は、εとγがj=1,2,...,qの範囲で直交である、つまり表7と表8の両方の対応するεとγの値に関して
Figure 2009506330
であるので、共役直角位相
Figure 2009506330

Figure 2009506330
の項がj=1,2,...,qの範囲で直交であるという点である。
共役直角位相
Figure 2009506330
Figure 2009506330

についての情報は、信号値Sに適用される重み関数
Figure 2009506330
が表8に示されるεとγのスケジュール、式31中の共役直角位相項の対称性の特性と直交性の特性、及び以下のデジタルフィルタを使用して、(上記のJ.Schwider、R.Burow、K.−E.Elssner、J.Grzanna、R.Spolaczyk、及びK.Merkelによって紹介される5つの位相シフト方法とは異なる)複数ホモダイン検出方法でq=5のケースについて取得され、以下の式32及び式33のように表される。
[式32]
Figure 2009506330
[式33]
Figure 2009506330
なお、ここでξ’jとP’jは、ζjとPを表現するためにデジタルフィルタで使用される値であり、重み関数
Figure 2009506330
は以下の式34で定義される。
[式34]
Figure 2009506330
半値での重み関数
Figure 2009506330
の全幅は、重み関数を使用していないときにq=4のケースのための対応する有効幅と同じ幅である、△j=3であることに留意する。
式32及び式33のパラメータは次式35で表される。
[式35]
Figure 2009506330
式32及び式33のパラメータは、共役直角位相の決定を完了するために決定される必要がある。式35に示されるパラメータは、例えば基準ビームと測定ビームの相対位相にπ/2位相シフトを導入し、共役直角位相の測定を反復することによって測定できる。第2の測定値からの
Figure 2009506330
に対応する共役直角位相の振幅の比率で除算される第1の測定値からの
Figure 2009506330
に対応する共役直角位相の振幅比率は、以下の式36に等しい。
[式36]
Figure 2009506330
式32と33中の特定の因数は、スケール係数の中で4という名目値、例えば、次式37を有することに留意する。
[式37]
Figure 2009506330
また、平均値が
Figure 2009506330
であると仮定すると、スケール係数は、それぞれξ’/ηとξ’/ζの比率の平均値に相当する。式32及び式33中の特定の他の因数は、q=5という値の場合にゼロという名目値、例えば、次式38を有する。
[式38]
Figure 2009506330
また、残りの因数は次式39で表される。
[式39]
Figure 2009506330
このとき、q=5という値について、ほぼゼロから余弦因数のほぼ4倍に及ぶ名目規模、及びそれぞれの位相の特性に応じて因数(P/P’)(ξζ/ξ’ )の平均値または(P/P’)(ζη/ξ’ )の平均値のどちらかを有する。それぞれの測定ビームの位相の第1の近似まで追跡調査しない位相のある背景の部分の場合、式39に一覧表示されている項のすべての大きさはほぼゼロに等しい。それぞれの測定ビームの位相の第1の近似まで追跡調査する位相のある背景の部分の場合、式39に一覧表示されている項の大きさは余弦因数の約4倍、及び因数(P/P’)(ξζ/ξ’ )の平均値及びまたは因数(P/P’)(ζη/ξ’ )の平均値のどちらかになる。
式32と式33との2つの最大の項は、一般的には因数(|A+|A)と(|B+|B)とを有する項である。しかしながら、対応する項は、因数として(|A+|A)を有する項にξ’値を選択すること及び式32と式33とに示されるような因数として(|B+|B)を有する項のためにζ値を設計することによって実質的に排除される。
背景の影響からの最大の寄与は、基準測定ビームと、測定ビーム30Aによって生成される背景ビームの部分の間の干渉項に対する寄与によって表現される。背景の影響のこの部分は、背景の部分の対応する共役直角位相を、ゼロに等しく設定されるビーム34の帰還ビーム成分で測定する、つまり、基板60が取り除かれた状態で、及び|A|=0または|A|=0のどちらかで、及び逆の場合も同じでそれぞれの電気干渉信号Sを測定することによって測定できる。背景の影響の部分の測定された共役直角位相は、必要とされる場合、最終用途応用例でそれぞれの背景影響を有益に補正するために使用できる。
背景振幅2ξζ|A||B|及び位相
Figure 2009506330
の影響からの最大寄与、つまり基準ビームと、測定ビーム30Aによって生成される背景ビームの部分の間の干渉項についての情報は、基板60が取り除かれた状態で、及び|A|=0または|A|=0のどちらか、及び逆の場合も同じ、及びSの測定済値を分析するフーリエを用いて、基準ビームと測定ビーム30Aの間の相対的な位相シフトの関数として
Figure 2009506330
のためにSを計算することによって取得されてよい。
3つの特許のそれぞれがHenry A.Hillによる、「背景振幅の削減及び補正のある共焦点干渉顕微鏡法のための方法及び装置(Method And Apparatus For Confocal Interference Microscopy With Background Amplitude Reduction and Compensation)」と題される共同で所有された米国特許番号第5,760,901号(ZI−05)、「背景及び前景の光源からの焦点ずれ光信号からの焦点画像の区別のための方法及び装置(Method and Apparatus for Discrimination In−Focus Images from Out−of−Focus Light Signals from Background and Foreground Light Sources)」と題される第5,915,048号(ZI−02)、及び第6,480,285B1号(ZI−08)に説明されるような本発明の範囲または精神のどちらかから逸脱しないで背景ビームの影響を削減する及び/または補正するために他の技法が組み込まれてよい。3つの特許のそれぞれの内容は参照することによりその全体として本書に組み込まれている。
ξ’の値の選択は、干渉計システム内に基準ビームだけがある状態でj=1,2,...,qの場合にSを測定することによって取得されてよい、j=1,2,...,qの場合の係数ξについての情報に基づいている。本発明の特定の実施形態では、これは単に入力ビームの測定ビーム成分をブロックすることに相当し、特定の他の実施形態では、これは基板60が取り除かれた状態でj=1,2,...,qの場合にSを単に測定することに相当してよい。
ξ’の値のセットの正確性の試験は、式32と式33中の(|A+|A)の項が、q=5という値についてどの程度までゼロであるのかである(「周期的誤差としての振動及び環境上の変化の影響の解釈」)として本書に題される項の以後の説明を参照すること)。
j=1,2,...,qの場合の係数ξηについての情報は、|A|=0または|A|=0のどちらかで、それぞれのq個の共役検出器ピクセルに対応する点を越えてアーチファクトを走査し、それぞれ共役直角位相成分
Figure 2009506330
または
Figure 2009506330
を測定することによって取得されてよい。
Figure 2009506330
または
Figure 2009506330
項の振幅の変化は、jの関数としてのξηの変動に相当する。j=1,2,...,qの場合の係数ξηについての情報は、例えば干渉計システム10の1つまたは複数の要素の安定性を監視するために使用されてよい。
検出器70は、各感光ピクセルを、インターライン転送の瞬間に積算された電荷がシフトされる閉塞された記憶ピクセルと対にするアーキテクチャで構成されたCCDを備えてよい。インターライン転送は、<1μsで発生し、1つの画像フレームの奇数フィールドと偶数フィールドを分離する。同期シャッターとして操作されるシャッター68ともに使用される場合、ミリ秒以下という、例えばSとSj+1の対応する電気干渉信号値の隣接する積分が、回線転送の瞬間のどちらかの側で記録できる。インタレースされた電気干渉信号値は、次にそれぞれのCCDのフレームレートで読み出されてよい。このCCD構成の読み出しシステムを用いると、q=4での電気信号値のシーケンスの獲得を完了するための時間はフレーム読み出し速度の逆数に等しい。
インターライン転送アーキテクチャで構成されたCCDを使用する優位点が、ビーム24の周波数を、例えば1MHz等の高い速度で切り替えることができる、米国仮特許出願番号第60/699,951号(ZI−72)と第60/805,104号(ZI−78)及び米国特許出願番号第11/457,025号(ZI−72)に説明されているECDLに基づくソース18の使用により、本発明の種々の実施形態で可能であることは重要である。
ビ・ホモダイン検出方法は、フィールドの共役直角位相の決定のためのロバストな技法である。式32及び33に関して説明の中で留意されたように、因数(|A+|A)と(|B+|B)のある項は、qという偶数値の場合に実質的にはゼロであるので、第1に、共役直角位相
Figure 2009506330

Figure 2009506330
は、それぞれ式32及び33で表されるように、それぞれデジタルでフィルタにかけられた
Figure 2009506330

Figure 2009506330
での一次項である。
第2に、式32及び33の因数の係数
Figure 2009506330

Figure 2009506330
は同一である。したがって、ξの一次変動及び(P/P’)と(ξ /ξ’ )等の正規化の一次誤差が二次または高次だけに入る、振幅及び位相に関する反射測定ビームと基準ビーム間の干渉項のきわめて正確な測定値、つまりフィールドの共役直角位相のきわめて正確な測定値が測定できる。この特性は大きな優位点につながる。また、q個の電気干渉信号値の各セットからの共役直角位相の各成分
Figure 2009506330

Figure 2009506330
への寄与は、同じウィンドウ関数を有するため、共同で決定された値として取得される。
ビ・ホモダイン技法の他の特徴的な特長は、式32及び33より明らかである。つまり、式37の第1の方程式に対応する、それぞれ式32及び33の共役直角位相
Figure 2009506330

Figure 2009506330
の係数は、ξ’の仮定される値での誤差に関係なく同一であり、式38の最後の式に対応する、それぞれ式32と33の共役直角位相
Figure 2009506330

Figure 2009506330
の係数はξ’に仮定される値の誤差に関係なく同一である。したがって、共役直角位相に相当する位相のきわめて精密な値が、ξの一次変動で測定でき、(P/P’)と(ξ /ξ’ )等の正規化の一次誤差は何らかの高次影響を通してのみ入る。
2ホモダイン技法のさらに他の特徴的な特長は、
Figure 2009506330
の場合、式32及び式33より明らかであり、それぞれ式32及び式33の右側の因数の誤差は、以下の式40及び式41で表される。
[式40]
Figure 2009506330
[式41]
Figure 2009506330
この誤差が、
Figure 2009506330

Figure 2009506330
の適切な比率から位相
Figure 2009506330
を計算する上で相殺する。したがって、共役直角位相に対応する位相
Figure 2009506330
のきわめて精密な値は、基板影響の一次影響で測定できる走査モードで動作しているときに何らかの高次影響を通してのみ入る。
フィールドの共役直角位相は2ホモダイン検出方法を使用するときに共同で取得されるので、フィールドの共役直角位相の単一ホモダイン検出で考えられる状況とは異なり、位相冗長性の結果として位相を追跡調査する際の誤差の可能性の大幅な削減があることも明らかである。
振動の影響及び環境上の影響の削減及び補正
振動と環境上の変化の影響の出現は、
Figure 2009506330
が、基準物質62と測定物質60の間の振動、環境上の変化、傾きの影響及び大気の乱れによる影響を備える式32及び式33で
Figure 2009506330
を表すことによって決定される。
この式32及び式33は、それぞれ以下の式42及び式43のように書き直される。
[式42]
Figure 2009506330
[式43]
Figure 2009506330
式42及び式43は、次に短縮形として、式44及び式45で表される。
[式44]
Figure 2009506330
[式45]
Figure 2009506330
なお、式44及び式45において、それぞれ以下の式46〜式59で表される。
[式46]
Figure 2009506330
[式47]
Figure 2009506330
[式48]
Figure 2009506330
[式49]
Figure 2009506330
[式50]
Figure 2009506330
[式51]
Figure 2009506330
[式52]
Figure 2009506330
[式53]
Figure 2009506330
[式54]
Figure 2009506330
[式55]
Figure 2009506330
[式56]
Figure 2009506330
[式57]
Figure 2009506330
[式58]
Figure 2009506330
[式59]
Figure 2009506330
ここで、要素
Figure 2009506330

Figure 2009506330

Figure 2009506330
及び
Figure 2009506330
は、非複数ホモダイン検出方法の場合ゼロであり、概して複数ホモダイン検出方法の場合非ゼロである。
共役直角位相の位相
Figure 2009506330
は、次式60として、式44と式45との
Figure 2009506330
解と
Figure 2009506330
解とから得られる。
[式60]
Figure 2009506330
また、誤差
Figure 2009506330

Figure 2009506330

Figure 2009506330

Figure 2009506330

Figure 2009506330
及び
Figure 2009506330
に起因する
Figure 2009506330
の中の誤差
Figure 2009506330
は、特異性の処理を回避する次式61を使用して取得され、この結果は次式62で表される。
[式61]
Figure 2009506330
[式62]
Figure 2009506330
式62中の誤差
Figure 2009506330

Figure 2009506330

Figure 2009506330
及び
Figure 2009506330
は、式を得るために誤差
Figure 2009506330

Figure 2009506330

Figure 2009506330

Figure 2009506330

Figure 2009506330

Figure 2009506330

Figure 2009506330
及び
Figure 2009506330
であるさらに多くの根本的な量である、次式63で表される。
[式63]
Figure 2009506330
ここでは、次式64及び式65で表される一次項が示される。
[式64v
Figure 2009506330
[式65]
Figure 2009506330
周期的誤差の点での式63の解釈は、
Figure 2009506330
に比例する引数のある三角関数という点で、因数
Figure 2009506330

Figure 2009506330
及び
Figure 2009506330
の式で補助される。
このとき、次式66〜式68が成立する。
[式66]
Figure 2009506330
[式67]
Figure 2009506330
[式68]
Figure 2009506330
振動及び環境上の変化の、周期的誤差としての影響の解釈
因数
Figure 2009506330
のある先頭の項が
Figure 2009506330
であることは式66から、因数
Figure 2009506330
のある先頭の項が
Figure 2009506330
であることは式67から、因数
Figure 2009506330
のある先頭の項が
Figure 2009506330
であることは式68から、それぞれ明らかである。したがって、式63を参照すると、振動及び環境上の変化の影響はゼロ空間周波数で周期的誤差の形で、位相
Figure 2009506330
の第2の高調波での共役直角位相として存在する。また周期的誤差が、ξ’とP’の値の選択での誤差によって決定される誤差
Figure 2009506330

Figure 2009506330
によって生成する位相
Figure 2009506330
の第1の高調波で共役直角位相として出現することも留意する。[式50及び51参照。]
振動及び環境上の変化の影響、及びξ’とP’の値の選択における誤差の影響を、位相
Figure 2009506330
の高調波として表現される周期的誤差に変換することは、振動及び環境上の変化の影響を理解する、削減する及び補正することに関して、前述された検出方法の使用の大きな優位点に相当する。
基準フレーム内で動作することによって削減される周期的誤差
Figure 2009506330
ゼロ番目の高調波として出現する周期的誤差は
Figure 2009506330
の固定されたオフセットに相当し、このようにして波面干渉での問題を呈さない。
Figure 2009506330
の固定オフセットは、ピストン型の光学収差に相当する。
Figure 2009506330
の第2の高調波で共役直角位相の成分として出現する周期的誤差の振幅は、対応する電気信号値の獲得中に存在する振動及び環境上の変化の特性によって決定される。周期的誤差のこれらの振幅は、基準物質及び測定物質によって形成される空洞の光学経路長が基準周波数
Figure 2009506330
の制御によって2πを法とした一定の値でまたは一定の値の近くで維持される基準フレームで操作することによって本発明の第1の実施形態で削減される。
電気干渉信号172は、対応する共役直角位相の成分の1つの変化について処理され、成分の1つの測定された変化は、ソース18の基準周波数を制御するためのエラー信号と
して電子プロセッサ兼コントローラ80によって使用される。
mod2π常数の値又はその近傍での空洞の光学経路長の維持は、代わりに、エラー信号でトランスデューサ150と152によってソース18の基準周波数と空洞の相対物理長を制御することの組み合わせで達成されてよい(図2参照)。一般的にはソース18の周波数応答よりもゆっくりとした周波数応答を有するトランスデューサ150と152は、基準周波数が制御されてよい範囲を拡張するために有益に使用されてよい。
電子プロセッサ兼コントローラ80によって電気干渉信号172を処理することによって検出される基準物質と測定物質の振動、環境上の変化、及び非ゼロ大気の乱れによる影響に起因する相対向きの変化の寄与は、対応するエラー信号を発生させるために電子プロセッサ兼コントローラ80によって使用される。対応するエラー信号は、トランスデューサ150と152によって基準物質と測定物質62と60の相対向きを制御するために電子プロセッサ兼コントローラ80によって使用されてよい。
電子プロセッサ兼コントローラ80によって電気干渉信号172を処理することによって検出される基準物質と測定物質の振動、環境上の変化、及び非ゼロ大気の乱れによる影響に起因する相対変形の変化の寄与は、他の対応するエラー信号を発生させるために電子プロセッサ兼コントローラ80によって使用される。他の対応するエラー信号は、基準物質62にトルクを導入するために補強されたトランスデューサ150と152によって基準物質と測定物質62と60の相対的な変形を制御するために、電子プロセッサ兼コントローラ80によって使用されてよい。補強されたトランスデューサ150と152以外の追加のトランスデューサは、最終使用応用例で有益に使用されてよい。
基準フレーム内で操作することの主要な優位点は、基準フレームはアクティブサーボ制御システムによって維持されるので、ソース18及びトランスデューサ150と152との線形性と較正が問題であるという点である。トランスデューサの線形性及び較正は、従来の技術の波面干渉において概して問題である。
別の優位点は、電子プロセッサ兼コントローラ80によって電気干渉信号172を処理することによって検出されるエラー信号が、空洞の特性の制御においてエラー信号として使用され、周期的誤差の振幅を制限するために使用されるかどうかに関係なく監視できるという点である。周期的誤差の振幅は、式52〜式57を使用して電子プロセッサ兼コントローラ80による、時間の関数としてオンラインで計算される。周期的誤差の1つまたは複数の計算された振幅が、それぞれの事前に設定された値に到達すると、シャッター168が閉じられる。したがって、検出器70によって使用される積分期間に対応するウィンドウの長さは、事前に設定された値を超えないようにするために、周期的誤差の振幅を制限するためにシャッター168によって制御される。
空洞の特性の測定された変化に基づいた周期的誤差の補正
振動、環境上の変化の影響、非ゼロ大気の乱れによる影響、及びξ’の値の選択での誤差の影響によって発生する周期的誤差の影響の補正は、複数のさまざまな方法で対処されてよい。つまり、以後補正を行わずに、基準フレームで操作することによって削減される影響、基準フレームで操作することにより削減される影響及び振動と環境上の変化の影響によって生じる周期的誤差の残りの影響及び空洞の特性の変化として測定される振動、環境上の変化の残りの影響及び非ゼロ大気の乱れによる影響、測定された残りの影響から計算される対応する周期的誤差の振幅、及び周期的誤差の影響を補正するために使用される周期的誤差の計算された振幅、及び測定された影響に起因する周期的誤差の振幅、及び周期的誤差の影響を補正するために使用される周期的誤差の測定された振幅などである。
振動、環境上の変化の残りの影響、及び基準フレームで操作するときに存在する非ゼロ大気の乱れによる影響の寄与は、電子プロセッサ兼コントローラ80によって電気干渉信号172を処理することによって検出され、測定される。測定された残りの影響は、式52〜57を使用してそれぞれの周期的誤差の振幅を計算するために電子プロセッサ兼コントローラ80によって使用される。 それぞれの周期的誤差の計算された振幅は、以後、周期的誤差の影響を補正するために使用される。
周期的誤差の測定された振幅に基づいた周期的誤差の補正
周期的誤差の振幅は、基準ビームと測定ビームの相対的な波面に傾きを生じさせることで測定される。周期的誤差は、傾きによる位相
Figure 2009506330
に対する寄与の第1の高調波と第2の高調波として測定される。周期的誤差の測定された振幅は、以後、周期的誤差の影響を補正するために使用される。
周期的誤差の振幅の測定は、特定の傾き値及び向きによって生じる空間周波数と偶然に一致する基準物質と測定物質の相対的な周期的表面構造の影響を補正するために複数の異なる傾きについて反復されてよい。
式63より、位相の誤差にかかる次式69を得た。
[式69]
Figure 2009506330
式69は、一次影響に相当する項が示される次式70に変形することができる。
[式70]
Figure 2009506330
単一ホモダイン検出方法
電気干渉信号値が共役直角位相の単一の成分についての情報を含む単一ホモダイン検出方法の場合、積εγ=0である(表5及び表6参照)。結果として、次式71が得られる(式56〜59参照)。
[式71]
Figure 2009506330
また、式70は、次式72と表せる。
[式72]
Figure 2009506330
ゼロ空間周波数での周期的誤差が、
Figure 2009506330
の一定のオフセットまたは基準ビーム波面と測定ビーム波面での差異の特性を決定する上で重要ではないピストン型の光学収差に相当することに留意する。しかしながら、そのオフセットは振動、環境上の変化の影響及び非ゼロ大気の乱れによる影響を、後述されるように削減するためのエラー信号として特定のケースで使用できる。
表8スケジュール1として一覧表示されるεとγの値に対応する位相シフトアルゴリズムは、0、π/2、π及び3π/2という4つの位相シフト値の標準セットに基づいたアルゴリズムに相当する。対応する単一ホモダイン検出方法は、式72に従って、振動、環境上の変化の影響、及び非ゼロ大気の乱れによる影響のフーリエスペクトルの成分のためのゼロ周波数値で感度のピークがある、振動と環境上の変化の影響に対する一次感度を示す。光学経路長の一定の変化率の場合、
Figure 2009506330

Figure 2009506330
は一定の変化率に比例する[式53及び式54参照]。
位相シフトの第2のセット0、π/2、−π/2及び±πに対応するεとγの値のセットは、単一ホモダイン検出方法のためのスケジュール2として表6に一覧表示されている。表6に一覧表示されている位相シフト値の第1のセットに基づいたアルゴリズムは、式72に従って、振動、環境上の変化の影響及び非ゼロ大気による乱れ影響のフーリエスペクトルの成分に対する非ゼロ周波数値で感度のピークがある振動と環境上の変化の影響に対する二次感度だけを示す。光学経路長の一定の変化率の場合、
Figure 2009506330
である[式53及び式54参照]。結果として、振動、環境上の変化の影響、及び非ゼロ大気の乱れによる影響は、二次及び高次の影響を通してのみ式72の因数
Figure 2009506330
に寄与する。式55及び式56に示されるような
Figure 2009506330

Figure 2009506330
の特性のため、振動、環境上の変化の影響及び非ゼロ大気による乱れ影響は、二次及び高次影響を通して式72の因数
Figure 2009506330
に寄与する。
したがって、表6に一覧表示されている位相シフト0、π/2、−π/2、及び±πの第2のセットに対応するεとγの値に基づいた単一ホモダイン検出方法の優位点は、振動、環境上の変化の影響、及び非ゼロ大気の乱れによる影響に対する固有の感度が削減されることである。
ビ・ホモダイン検出方法
表7はスケジュール3として、参照されている米国仮特許出願番号第60/442,858号(ZI−47)と米国特許出願番号第10/765,368号(ZI−47)の中の表1と同じである位相シフトの標準セット0、π/2、π、及び3π/2に対応する、ビ・ホモダイン検出方法のεとγの値のセットを一覧表示している。表7に一覧表示されているεとγの値のセットを使用するビ・ホモダイン検出方法は、式70に従って、振動、環境上の変化の影響及び非ゼロ大気の乱れによる影響のフーリエスペクトルの成分に対するゼロ周波数値に感度のピークがある振動、環境上の変化の影響及び非ゼロ大気の乱れによる影響に対する一次感度を示す。
光学経路長の一定の変化率の場合、
Figure 2009506330
である[式53及び式54参照]。結果として、振動と環境上の変化の影響は、二次影響及び高次影響を通してのみ式70の中の因数

Figure 2009506330
に寄与する。式55及び式56に示されるような
Figure 2009506330

Figure 2009506330
の特性のため、振動、環境上の変化の影響、及び非ゼロ大気による乱れ影響は、二次影響及び高次影響を通して式72中の因数
Figure 2009506330
に寄与する。
また、光学経路長の一定の変化率の場合、
Figure 2009506330
Figure 2009506330
に寄与する。
しかしながら、
Figure 2009506330

Figure 2009506330
は光学経路長の一定の変化率に比例する[式56及び式59参照]。結果として、式70の因数
Figure 2009506330
は、光学経路長の一定の変化率に対して一次感度を有する。
本書に開示されているεとγの値のセットがあり、その例は、q=4,8,...であるq個の位相シフト値のシーケンスのために式70に従って振動及び環境上の変化の影響のフーリエスペクトルの成分の非ゼロ周波数値での感度にピークがある振動、環境上の変化の影響及び非ゼロ平均大気の乱れによる影響に対する二次感度を示すビ・ホモダイン検出方法についてスケジュール4として表8に一覧表示されている。振動、環境上の変化の影響及び非ゼロ大気の乱れによる影響に対する二次感度があるかどうかに関するビ・ホモダイン検出方法の特性は、jの値、つまりj=(q+1)/2の回りでのεとγの対称特性により決定される。
光学経路長の一定の変化率の場合、δb21=δb12=0である[式53及び式54参照]。結果として、振動、環境上の変化の影響及び非ゼロ大気の乱れによる影響は、二次影響または高次影響を通してのみ式70の中の因数
Figure 2009506330
に寄与する。式55及び式56に示されているようなδb11とδb22の特性のために、振動、環境上の変化の影響、及び非ゼロ大気の乱れによる影響は、二次影響及び高次影響を通して式72中の因数
Figure 2009506330
に寄与する。
光学経路長の一定の変化率に加えて、δc21=δc12=0である[式57及び式58参照]。結果として、振動、環境上の変化の影響及び非ゼロ大気の乱れによる影響は、二次影響及び高次影響を通してのみ方程式(70)の中の因数
Figure 2009506330
に寄与する。
しかしながら、光学経路長の一定の変化率の場合δc11=δc22=0である[式56及び式59参照]。結果として、振動、環境上の変化の影響、及び非ゼロ大気の乱れによる影響は二次影響及び高次影響を通してのみ式70中の因数
Figure 2009506330
に寄与する。
したがって、q=4,8...であるq個の位相シフト値のシーケンスのために表8に一覧表示されるεとγの値に基づいたビ・ホモダイン検出方法の優位点は、振動及び環境上の変化の影響に対して本来の感度が削減されることである。
本書に開示されているεとγの値のセットがあり、その例は、q=5位相シフト値のシーケンスのために式70に従って、式32及び式33によって示されるデジタルフィルタ、及び式34によって示される重み関数
Figure 2009506330
、振動及び環境上の変化の影響のフーリエスペクトルの成分の非ゼロ周波数値での感度にピークがある振動、環境上の変化の影響及び非ゼロ平均大気の乱れによる影響に対する二次感度を示すビ・ホモダイン検出方法についてスケジュール4として表8に一覧表示されている。振動、環境上の変化の影響及び非ゼロ大気の乱れによる影響に対する二次感度があるかどうかに関するビ・ホモダイン検出方法の特性は、
Figure 2009506330
の値の回りでのεγ
Figure 2009506330
の対称特性により決定される。
光学経路長の一定の変化率の場合、δb21=δb12=0である[式53及び式54参照]。結果として、振動、環境上の変化の影響、及び非ゼロ大気の乱れによる影響は二次影響及び高次影響を通してのみ式70中の因数
Figure 2009506330
に寄与する。式55及び式56に示されるようなδb11とδb22の特性のため、振動、環境上の変化の影響、及び非ゼロ平均大気の乱れによる影響は二次影響及び高次影響を通して式72中の因数
Figure 2009506330
に寄与する。
加えて、光学経路長の一定の変化率の場合δc21=δc12=0である[式57及び式58参照]。結果として、振動、環境上の変化の影響、及び非ゼロ大気の乱れによる影響は二次影響及び高次影響を通してのみ式70中の因数
Figure 2009506330
しかしながら、光学経路長の一定の変化率の場合δc11=δc22=0である[式56及び式59参照]。結果として、振動、環境上の変化の影響、及び非ゼロ大気の乱れによる影響は二次影響及び高次影響を通してのみ式70中の因数
Figure 2009506330
に寄与する。
したがって、q=5位相シフト値のシーケンス、式32及び式33によって示されるデジタルフィルタ、及び式34によって示される重み関数
Figure 2009506330
について表8に一覧表示されているεとγの値に基づいたビ・ホモダイン検出方法の優位点は、振動、環境上の変化の影響、及び非ゼロ平均大気の乱れによる影響に対する本来の感度が削減されることである。
要約すると、表5に示されるεとγの単一ホモダインセットと、表7に示されるεとγのビ・ホモダインセットは、振動と環境上の変化の影響のフーリエスペクトルの成分に対するゼロ周波数値での感度にピークがある振動と環境上の変化に対するそれぞれの測定された共役直角位相の一次感度につながる。対照的に、表6に示されるεとγの単一ホモダインセット、表8に示されるεとγのビ・ホモダインセットは、q=4とQ=8という値の場合、表8に示されるεとγの2ホモダインセットはq=5という値、式32及び式33によって示されるデジタルフィルタ、及び式34によって示される重み関数
Figure 2009506330
の場合、ほぼゼロ周波数の振動と環境上の変化の影響のフーリエスペクトルの成分に対する非ゼロ周波数値での感度にピークがある振動と環境上の変化の影響に対するそれぞれの測定された共役直角位相の二次感度及び高次感度につながる。
確率論的位相変化率の二次元アレイ
確率論的位相変化率の二次元アレイについての情報は、信号値Sに適用される重み関数
Figure 2009506330
、表8に示されるεとγのスケジュール、式31中の共役直角位相項の対称性の特性と直交性の特性、及び以下のデジタルフィルタを使用して、(上記のJ.Schwider、R.Burow、K.−E.Elssner、J.Grzanna、R.Spolaczyk、及びK.Merkelによって紹介される5つの位相シフト方法とは異なる)複数ホモダイン検出方法でq=5のケースについて次式73及び74が得られる。
[式73]
Figure 2009506330
[式74]
Figure 2009506330
なお、ここで次式75及び式76が成り立ち、
[式75]
Figure 2009506330
[式76]
Figure 2009506330
δは、
Figure 2009506330
の場合に、
Figure 2009506330
、符号
Figure 2009506330
)で評価される
Figure 2009506330
の一定の変化率に起因する1による指数jの増分あたりの位相
Figure 2009506330
の変化であり、符号
Figure 2009506330
は、
Figure 2009506330
の場合に
Figure 2009506330
の符号に等しい。重み関数
Figure 2009506330

Figure 2009506330
の回りの反対称関数であり、重み関数
Figure 2009506330
の半値での全幅△jは、式34によって示される重み関数
Figure 2009506330
のための同じ幅である、△j=3である。
式73及び式74から、δの一次影響を次式77及び式78で表すことができる。
[式77]
Figure 2009506330
[式78]
Figure 2009506330
このとき、タイプ(∂Ψj/∂tτ)と(∂Ψj/∂t)τ)の二次項が、式77及び式78中で相殺することに留意する。
式77及び式78は、本発明の第1の実施形態で測定される共役直角位相から取得される
Figure 2009506330

Figure 2009506330
の測定済みの値を使用して確率論的な位相変化率の測定された二次元アレイを生じさせるための変化率δについて解かれ、結果は次式79の通りとなる。
[式79]
Figure 2009506330
ビ・ホモダイン検出技法は、総和によって表される式77及び式78中の因数は同一であるので、例えばピクセル対ピクセル感度の変動について生じる誤差に関してロバストである。このため、次式80が得られる。
[式80]
Figure 2009506330
確率論的位相変化率−△・[<uΨ]のアレイの決定のための説明の残りの部分は、位相の対応するアレイの決定のために第1の実施形態で示される説明の対応する部分と同じである。
フィールドの共役直角位相が共同で獲得される量であった結果としてのビ・ホモダイン検出方法の多くの優位点がある。1つの優位点は、結像されている基板内または基板上の点のオーバレイ誤差の、及び干渉法による遠視野及び/または近視野共焦点顕微鏡法及び非共焦点顕微鏡法を使用して結像される基板内及び/または基板上での各点の4つの電気干渉信号値の獲得中のマルチピクセル検出器の共役ピクセルの共役画像の影響に対して感度が削減されることである。オーバレイ誤差は、結像されている点を基準にした共役検出器ピクセルの各セットの4つの共役画像のセット内の誤差である。
別の優位点は、走査モードで操作しているときに、走査中のさまざまなときに結像されている基板内または基板上の点に共役した共焦点顕微鏡法システムで使用されるピンホールの共役セットの特性でのピンホール対ピンホールの変動の影響に対する感度が削減されることである。
別の優位点は、走査モードで操作しているときに、走査中のさまざまなときに結像されている基板内または基板上の点に共役した共役ピクセルのセット内の特性のピクセル対ピクセルの変動の影響に対する感度が削減されることである。
別の優位点は、走査モードで操作しているときに、干渉計システムへの入力ビーム24のパルスシーケンスのそれぞれの共役セットのパルスシーケンス変動に対するパルスシーケンスの影響に対する感度が削減されることである。
マルチピクセル検出器の共役ピンホールと共役ピクセルのセットのマルチピクセル検出器のピンホールとピクセルは、ピンホールのアレイの隣接ピンホール及び/またはマルチピクセル検出器の隣接ピクセルを備えていてもよく、あるいはピンホールのアレイからの選択されたピンホール及び/またはピクセルのアレイからのピクセルを備えていてもよく、選択されたピンホール間の分離は整数のピンホール空間であり、それぞれのピクセルのアレイ間の分離は、側面方向及び/または長手方向の解像度及び信号対雑音比を損失することなく整数のピクセル空間に対応する。対応する走査速度は、測定物質60上の点の空間が、マルチピクセル検出器の読み出し速度で除算される共役ピンホールのセット及び/または共役ピクセルのセットに共役する整数回数に等しくなるであろう。この特性により、単位時間あたりに結像される基板内及び/または基板上の点の数に関して、干渉法による遠視野または近視野の共焦点または非共焦点顕微鏡法のスループットが大きく高まる。
本発明の多様な実施形態で使用されるクアド・ホモダイン検出方法を参照すると、電気干渉信号値のセットは結像されている基板上及び/または基板内の点ごとに取得される。振動と環境上の変化の影響に関するクアド・ホモダイン検出方法の特性は、本発明の範囲及び精神から逸脱することなく振動と環境上の変化の影響に関する特長を示すためにqが4に等しいケースについて本書で展開される。qが4に等しい場合の結果は、qが8、12,...に等しいケースに容易に拡張できる。結像されている基板上及び/または基板内の単一の点のためにフィールドの共役直角位相を取得するために使用される4に等しい電気干渉信号値Sの対応するセットは、以下の式によりスケール係数の中のクアド・ホモダイン検出のために表現され、以下の式81〜式84で表される。
[式81]
Figure 2009506330
[式82]
Figure 2009506330
[式83]
Figure 2009506330
[式84]
Figure 2009506330
なお、ここでは係数A、A、A及びAは、入力ビーム24のそれぞれ第1の周波数成分、第2の周波数成分、第3の周波数成分及び第4の周波数成分に対応する基準ビームの振幅を表現する。係数B、B,B及びBは、それぞれ基準ビームA、A、A及びAに対応する背景ビームの振幅を表現する。係数C、C、C及びCは、それぞれ基準ビームA、A、A及びAに対応する反射測定ビームの振幅を表現する。P1とP2は、入力ビーム24のそれぞれ第1のウィンドウと第2のウィンドウの中の第1の周波数成分の積分された強度を表現する。εとγの値は表7と表8に一覧表示されている。クアド・ホモダイン検出方法のための係数ξ、ζ、及びηの説明は、ビ・ホモダイン検出方法のξ、及びζj、ηに示される説明の対応する部分と同じである。
式81〜式84では、|A|/|A|及び|A|/|A|の率がjまたはPの値に依存していないと仮定される。本発明の範囲と思想のどちらかから逸脱することなく、重要な特長を予測するためにSの表現を簡略化すると、|A|/|A|及び|A|/|A|に対応する反射測定ビームの振幅の比率がjまたはPの値に依存していないことも式81〜8484中で仮定される。しかしながら、それぞれ|A|/|A|及び|A|/|A|に対応する測定ビーム成分の振幅の比率が比率|A|/|A|及び|A|/|A|と異なるときに、比率|C|/|C|及び|C|/|C|はそれぞれ|A|/|A|及び|A|/|A|とは異なるであろう。
ビーム32の対応する基準ビーム成分と測定ビーム成分の間の相対位相シフトの制御により
Figure 2009506330
であることを留意すると、式81〜式84は、それぞれ式85〜式88と表すことができる。
[式85]
Figure 2009506330
[式86]
Figure 2009506330
[式87]
Figure 2009506330
[式88]
Figure 2009506330
なお、ここでは、関係性
Figure 2009506330

Figure 2009506330
、及び
Figure 2009506330
は、本発明の範囲または思想のどちらかから逸脱することなく使用されてきた。
共役直角位相
Figure 2009506330

Figure 2009506330
についての情報は、信号値S:j=1,2,3,4に適用される以下のデジタルフィルタによって表されるような共役直角位相の対称特性と反対称特性、及び直交性特性を使用して取得され、次式89及び式90で表される
[式89]
Figure 2009506330
[式90]
Figure 2009506330
ここで、クアド・ホモダイン検出方法のξ’及びP’の説明は、2ホモダイン検出方法におけるξ’とP’jについて示される対応する説明と同じである。式85〜式90を使用して、共役直角位相
Figure 2009506330

Figure 2009506330
の成分を含むフィルタにかけられた量について次式91及び92が得られる。
[式91]
Figure 2009506330
[式92]
Figure 2009506330
なお、次式93及び式94が成立し、パラメータは式95〜式97で表される。
[式93]
Figure 2009506330
[式94]
Figure 2009506330
[式95]
Figure 2009506330
[式96]
Figure 2009506330
[式97]
Figure 2009506330
このパラメータは、特定の最終使用応用例のための共役直角位相の決定を完了するために決定される必要がある。式95〜式97によって示されるパラメータは、例えば、式35によって指定される量を測定することに関するビ・ホモダイン検出方法について説明される手順に類似する手順によって測定できる。
振動、環境上の変化の影響、及び大気の乱れによる影響に関連しない懸念事項に関するクアド・ホモダイン検出方法の残りの説明は、ビ・ホモダイン検出方法のために示される説明の対応する部分と同じである。
振動と環境上の変化の影響の出現は、
Figure 2009506330
が基準物質62と測定物質60の間の振動、環境上の変化、傾きの影響、非ゼロ平均大気の乱れによる影響を備える場合に
Figure 2009506330
を式91及び式92で表し、振動、環境上の変化の影響及び非ゼロ平均大気の乱れによる影響の対応する影響を決定するために本書で単一ホモダイン検出方法とビ・ホモダイン検出方法に関して使用される同じ手順に従うことによって決定される。クアド・ホモダイン検出方法のために得られた結果は、ビ・ホモダイン検出方法について示される特性と実質的に同じである特性を示す。
本発明の特定の実施形態は、ビ・ホモダイン検出方法の代わりにクアド・ホモダイン検出方法を使用してよい。図1に示される装置に基づく実施形態のような他の実施形態の場合、対応する他の実施形態は図1に図示される装置の変形を使用する。本発明の第1の実施形態で使用されるような装置の変形では、干渉計10は、例えば各感光ピクセルを、回線間転送の瞬間に積算された電荷がシフトされる閉塞ピクセルと組にするアーキテクチャで構成されるCCD、あるいは直視プリズムまたは二色性のビームスプリッタ等の分散要素を含むように改良される。分散要素付きで構成されると、第2の検出器がさらにシステムに追加される。
分散要素の組み込みに基づいた装置の変形の説明は、ともに「ピンホールアレイビームスプリッタを組み込む干渉法による共焦点顕微鏡法(Interferometric Confocal Microscopy Incorporating Pinhole Array Beam−Splitter)」と題され、ともにHenry A.Hillによる、共同で所有された米国仮特許出願番号第60/442,982号(ZI−45)と米国特許出願番号第10/765,229号(ZI−45)の対応するシステムについて示される説明の対応する部分と同じである。両方の内容は参照することにより全体として本書に組み込まれている。装置の対応する変形は、直線変位干渉計等の干渉計を備える本発明の多様な実施形態にも使用される。
クアド・ホモダイン検出を使用するときにフィールドの共役直角位相が共同で取得されるので、フィールドの共役直角位相の単一ホモダイン検出で考えられる状況とは異なり、位相冗長性の結果として位相を追跡調査する上で誤差の可能性が大幅に削減されることも明らかである。
フィールドの共役直角位相が共同で獲得される量であった結果としてクアド・ホモダイン検出の数多くの優位点がある。
ビ・ホモダイン検出方法に関連するクアド・ホモダイン検出方法の1つの優位点は、スループットの2の係数の増加である。
別の優位点は、結像されている基板内または基板上の点のオーバレイ誤差、及び結像されるオブジェクト内の及び/またはオブジェクト上の各点の4つの電気干渉信号値の獲得中に、マルチピクセル検出器のピクセルの共役セットのピクセルの共役画像の影響に対する感度が削減される点である。オーバレイ誤差は、結像されている点を基準にした、共役検出器ピクセルのそれぞれのセットの4つの共役画像のセット内の誤差である。
別の優位点は、走査モードで操作しているときに、干渉計システムに対する入力ビーム24のおのおののウィンドウが結合した束のウィンドウ変形に対するウィンドウの影響に対する感度が削減されることである。
別の優位点は、走査モードで操作しているときに、4つの電気干渉信号を発生させるためにソースの2つのウィンドウだけが必要とされるので、スループットの上昇があるという点である。
本発明の第2の実施形態は、図6に概略して図示されている。第1の実施形態は、基準物質と測定物質62と1060の相対的な変換によって、あるいは位相変調器1022と1122によって生じる位相シフトを使用する、あるいは使用しない偏光符号化、時間符号化及び周波数符号化の組み合わせに基づいたホモダイン検出方法を使用するトワイマン・グリーン干渉計として構成される干渉計10を備える。位相変調器1022と1122は、電子プロセッサ兼コントローラ80からの信号1074の成分によって制御される。第2の実施形態は、さらに基準フレーム及び基準光周波数
Figure 2009506330
で操作され、面64上の点と測定物質1060上の対応する点の間の相対的な光学経路長は基準光周波数
Figure 2009506330
で2πを法として一定に維持される。ホモダイン検出方法は、振動及び環境上の変化に対して本来の感度が削減されることを示す。
図6では、ソース18は2つの直交偏光成分を含む入力ビーム224を生成し、各偏光成分は、選択された周波数値と、存在する可能性のある振動と環境上の変化の影響の周波数に比べて好ましくは高いスイッチング周波数の間で切り替えられる単一の周波数成分を備える。ソース18の説明は、本発明の第1の実施形態のソース18の説明と同じであり、さまざまな周波数成分の間でビーム224の偏光状態を回転させるためにEOMとアナライザが追加される。
図6を参照すると、干渉計10は、偏光ビームスプリッタ144と、基準面64を備えた基準物質62と、測定物質1060と、トランスデューザ150と152と、検出器70、170、及び182と、電子プロセッサ兼コントローラ80とを備える。入力ビーム224は非偏光ビームスプリッタ148上に入射し、その第1の部分はビーム24上で透過され、その第2の部分はモニタビーム1224として反射される。ビーム24は偏光ビームスプリッタ144に入射され、その第1の部分はビーム232の測定ビーム成分として透過され、その第2の部分はビーム1232の基準ビーム成分として反射される。第1の部分と第2の部分はそれぞれ図6の平面に平行に、及び垂直に偏光される。ビーム232の測定ビーム成分は、その後レンズ1062に入射し、ビーム230の測定成分として透過される。ビーム230の測定ビーム成分は測定物質1060に入射し、その部分はビーム230の反射測定ビーム成分として反射される。測定物質1060の反射面は、図6の曲線状の表面として示されている。ビーム230の反射測定ビーム成分はレンズ1062に入射し、ビーム232の平行反射測定ビーム成分として透過される。ビーム232の反射測定ビーム成分は次に偏光ビームスプリッタ144に入射し、出力ビーム34の測定ビーム成分として反射される。
ビーム1232の反射ビーム成分は、ビーム1236の基準ビーム成分として位相変調器1122によって透過されるビーム1234の基準ビーム成分として位相変調器1022によって透過される。ビーム1236の基準ビーム成分は、ビーム1236の反射基準ビーム成分として基準物質68によって反射される。ビーム1236の反射基準ビーム成分は、それぞれビーム1234と1232の反射基準ビーム成分として位相変調器1122と1022によって透過される。ビーム1232の反射基準ビーム成分は、偏光ビームスプリッタ144に入射し、出力ビーム34の基準ビーム成分として偏光ビームスプリッタ144によって透過される。
第2の実施形態の説明を続行すると、出力ビーム34は非偏光ビームスプリッタ146に入射し、その第1の部分と第2の部分がそれぞれビーム138と140としてそれぞれ透過され、反射される。ビーム138は、ゲート制御されたビームとしてビーム142を生成するために必要とされる場合、好ましくは、シャッター168による透過の後に電気干渉信号72を発生させるための量子プロセスによって検出器70によって検出される。シャッター168は電子プロセッサ兼コントローラ80によって制御される。代わりに、シャッターの機能は検出器70に一体化されるシャッターによって供給されてよい。電気干渉信号72は、基準物質68の表面と測定物質1060の反射面の表面プロファイルの差異についての情報を含む。
ビーム140は検出器170に入射し、好ましくは混合ビームとしてそれぞれの透過ビームを生成するために電気干渉信号172を発生させるための量子プロセスによって検出器170により検出される。ビーム140が混合ビームではない場合、それは検出器170によって検出前に混合ビームを形成するために検出器170内のアナライザを通過する。検出器170は、高速検出器のそれぞれが1個または複数のピクセルを備えてよい1台または複数の高速検出器を備える。1台または複数の高速検出器のそれぞれの感光領域は、ビーム140の波面の一部に重複する。
電気干渉信号172は、高速検出器のそれぞれに入射するビーム140の波面の部分に対応する位置にある基準物質と測定物質68と1060の間の光学経路長の相対変化についての情報を含む。電気干渉信号172に含まれる情報は、基準フレームを確立し、維持するため、及び基準物質と測定物質68と1060の相対的な向き及び/または変形の変化を検出するために、電子プロセッサ兼コントローラ80によって処理され、使用される。電気干渉信号172と、電子プロセッサ兼コントローラ80による以後の処理の説明は、本発明の第1の実施形態の説明の対応する部分と同じである。
ビーム1244は検出器182に入射し、好ましくは電気干渉信号184を発生させるための量子プロセスによって検出される。電気干渉信号184は、信号74の成分によってビーム224の成分の振幅を監視し、制御するために電子プロセッサ兼コントローラ80によって処理され、使用される。
図6に示すように、位相シフトは、入力ビーム24の成分の周波数をシフトすること、あるいは本発明の第1の実施形態の基準物質62を並進させ及び/または回転させるために使用されるトランスデューサ等のトランスデューサによって、または位相変調器1022と1122によって基準物質68の並進及び/または回転によって生じる位相シフトと連動してのどちらかで達成される。位相変調器1022と1122は電子プロセッサ兼コントローラ80からの信号1074の成分によって制御されるように、透過されるビームの直交に偏向された成分の位相を変調する。電子プロセッサ兼コントローラ80からのそれぞれの信号154と156によって制御されるトランスデューサ150と152がレンズ1062の位置および方向を制御する。図6の平面から外に位置付けられる(図では不図示)第3のトランスデューサは、トランスデューサ150と152によって生じる角度方向の変化に直交する基準物質62の角度方向で変化を生じさせるために使用される。
第2の実施形態の残りの説明は、本発明の第1の実施形態の説明の対応する部分と同じである。
電気干渉信号72の獲得のための2つの異なるモードが説明されている。説明される第1のモードは、第1の実施形態と第2の実施形態のオブジェクト60と1060が、画像情報が所望される場所に対応する固定された位置の間で進められるステップアンドステアモードである。2つのモードは走査モードである。2つの異なるモードの説明は、本発明を具現化する波面計測学システムを使用する計測学システム900の概略図が示されている図2に関して行われる。ソース910はソースビームを生成し、本発明の第1の実施形態と第2の実施形態に説明されるような波面計測学システム914は、可動ステージ918によってサポートされ、測定ビーム912を測定物質916に向ける。ソース910は、図1に示されているソース18と同じである。波面計測学システム914と測定物質916の間に位置する測定ビーム912は、図1に示されるような測定ビーム成分30Aと30Bに対応する。
ステージ918の相対位置を決定するために、干渉分光法システム920は、基準ビーム922を、波面計測学システム914の上に取り付けられているミラー924に向け、測定ビーム926を段918に取り付けられているミラー928に向ける。干渉分光法システム920によって測定される位置の変更は、測定物質916の上の測定ビーム912の相対的な位置の変化に相当する。干渉分光法システム920は、測定916に関する測定ビーム912の相対的な位置を示す測定信号932をコントローラ930に送信する。コントローラ930は、段918を支え、位置決めする基部936に出力信号934を送信する。干渉分光法システム920は、例えば直線変位干渉計と角変位干渉計、及びキャップゲージを備えてよい。
コントローラ930は、波面計測学システム914に、例えば信号934を使用して測定物質916の領域上で測定ビーム912を走査させることができる。結果として、コントローラ930は、システムの他の構成要素に測定物質の異なる領域についての情報を生成するように命令する。
測定物質916の一次元プロファイル、二次元プロファイルまたは三次元プロファイルを生成するためのステップアンドステアモードでは、コントローラ930は段階918を所望される位置に並進し、電気干渉信号値の少なくとも3つのアレイのセットを獲得する。電気干渉信号の少なくとも3つのアレイのシーケンスの獲得後に、コントローラ930は段階918の次に所望される位置のための手順を繰り返す。測定物質916の上昇及び角度方向は、基部936によって制御される。
電気干渉信号値が、1つまたは複数の方向で走査される段918の位置で取得される、電気干渉信号値の獲得のための第2のモードが次に説明される。走査モードでは、ソース910はコントローラ930からの信号938によって制御されるときにパルス化される。ソース910は、画像情報が所望される測定物質916上及び/または中の位置で、例えば図2の検出器70に対応する検出器のピクセルの共役画像の登録に対応するときにパルス化される。
持続時間つまりビームパルスシーケンスτp1の「パルス幅」、あるいは連続走査モードの結果としてソース910によって生じる検出器の対応する積分時間に対する制限がある。パルス幅τp1は、走査方向での空間解像度の制限値を以下の式98で表される下限、に部分的に制限するパラメータであり、vは走査速度である。例えば、τp1=50nsecという値、V=0.20m/secという走査速度の場合、走査方向での空間解像度の制限値τρ1vは、以下の式99で表される。
[式98]
Figure 2009506330
[式99]
Figure 2009506330
パルス幅τp1は、ビ・ホモダイン検出で使用できる最小周波数差異も決定する。共役直角位相のフィールド間の干渉から、電気干渉信号に何の寄与もないためには、最小周波数空間
Figure 2009506330
が次式100として表される。なお、τp1=50nsecの例の場合、1/τp1=20MHzである。
[式100]
Figure 2009506330
入力ビーム912の周波数は、出力ビームの基準ビーム成分と反射測定ビーム成分の間で所望される位相シフトを生じさせる周波数に対応するためにコントローラ930からの信号938により制御される。電気干渉信号値の獲得のための第1のモードまたはステップアンドステアモードでは、少なくとも3つの電気干渉値のセットに対応する少なくとも3つの電気干渉信号値のセットが検出器の共通ピクセルによって生成される。電気干渉信号の獲得のための第2のつまり走査モードでは、少なくとも3つの電気干渉信号値のセットが検出器の共通ピクセルによって生成されない。したがって、獲得の走査モードでは、ピクセル効率の差異が、ビ・ホモダイン検出方法及びクアド・ホモダイン検出方法の前記説明で説明されるコントローラ930による信号処理で補正される。フィールドの共役直角位相の共同測定値はビ・ホモダイン検出方法とクアド・ホモダイン検出方法の説明に前述されたようなコントローラ930によって生成される。
本発明の第3の実施形態は、参照される米国特許番号第5,760,901号に説明されるような干渉法による遠視野共焦点顕微鏡を備える干渉計10付きの、図1の干渉計システムを備える。第3の実施形態では、干渉計システムは複数ホモダイン検出方法を使用するように構成される。米国特許番号第5,760,901号の実施形態は、反射モードまたは透過モードのどちらかで動作するように構成される。第3の実施形態は、米国特許番号第5,760,901号の背景削減特長のために、背景の影響を削減した。
本発明の第4の実施形態は、参照される米国特許番号第6,480,285B1号に説明されるような干渉法による遠視野共焦点顕微鏡を備える干渉計10付きの、図1の干渉計システムを備える。第5の実施形態では、干渉計システムは、複数ホモダイン検出方法を使用するように構成されている。米国特許番号第6,480,285B1号の実施形態は、反射モードまたは透過モードのどちらかで動作するように構成されている。第4の実施形態は、米国特許番号第6,480,285B1号の背景削減特長のために背景の影響が削減されている。
本発明の第5の実施形態は、米国特許番号第6,445,453号に説明されるような干渉法による近視野共焦点顕微鏡を備える干渉計10付きの、図1の干渉計システムを備える。第5の実施形態では、干渉計システムは複数ホモダイン検出方法を使用するように構成されている。米国特許番号第6,445,453号の実施形態は反射モードまたは透過モードどちらかで動作するように構成されている。特に米国特許番号第6,445,453号の第5の実施形態は、測定ビームが基準ビームから分離され、非共焦点イメージングシステムによって結像されている測定物質に入射する、透過モードで動作するように構成されている。したがって、本発明の第5の実施形態は、測定ビームのための非共焦点構成での複数ホモダイン検出方法の適用に相当する。
干渉計10は、差動平面鏡干渉計、二重通過干渉計、マイケルソン型干渉計及び/または複数ホモダイン検出のために構成されるC.Zanoniによる、VDI Berichte Nr.749,93−106(1989年)「距離及び測定野測定のための差動干渉計配置:原理、優位点、及び応用例(Differential Interferometer Arrangements For Distance And Angle Measurements:Principles,Advantages And Applications)」と題される記事に説明されるような類似装置等の任意のタイプの干渉計をさらに備えてよい。干渉計10は、すべてがHenry A.Hillによる、「受動ゼロせん断干渉計(Passive Zero Shear Interferometers)」と題される米国特許出願番号第10/207,314号に説明されるような受動ゼロせん断平面鏡干渉計、または「平面鏡オブジェクトまでの角度方向及び距離の干渉法による測定のための装置及び方法(Apparatus And Method For Interferometric Measurements Of Angular Orientation And Distance To A Plane Mirror Object)」と題される米国特許出願番号第09/852,369号、及び「角度及び距離を測定するための動的ビームステアリングアセンブリを有する干渉分光法システム(Interferometry System Having A Dynamic Beam Steering Assembly For Measuring Angle And Distance)」と題される米国特許第6,271,923号に説明されるような動的ビームステアリング要素付きの干渉計も備えてよい。米国特許及びZanoniによる記事に説明されるような干渉法による装置を備える本発明の実施形態の場合、説明されている干渉計は、複数ホモダイン検出のために構成され、実施形態は非共焦点型である構成に相当する。
前述されるアルゴリズム及び数学計算が、完全に干渉分光法システムの中の適切にプログラムされたプロセッサ及びコントローラによって実行できる、あるいはそれらは別のデータ処理装置を利用して、あるいは別のデータ処理装置によって独占的に実行できることが理解されなければならない。
他の実施形態は添付請求項の範囲内にある。
ホモダイン検出方法を使用する干渉法による計測学システムの図である。 ホモダイン検出方法を使用し、基準物質と測定物質の相対変換により導入される位相シフトを使用して、あるいは使用しないで動作するように構成される、フィゾータイプの干渉法による計測学システムの概略図である。 外部空洞内のビーム偏向器付きの外部空洞ダイオードレーザ(ECDL)の概略図である。 マスタスレーブモードで動作している2つのレーザを備えるソースの該略図である。 外部空洞内にビーム偏向器を備えたECDLからの出力ビームの周波数の時間特性を示すグラフである。 基準物質と測定物質間の光学経路長の差異の変調とともに動作するように構成されたホモダイン検出方法を使用するトワイマン・グリーンタイプの干渉計システムの概略図である。 干渉法による計測学システム、及び測定物質を走査するための走査システムの図である。

Claims (28)

  1. 動作中、基準物質からの基準ビームと、測定物質からの反射測定ビームとを結合し、結合ビームを生成する波面干渉計と、
    前記結合されたビームを受け取り、アレイの干渉シグナルを生成するための検出システムと、
    前記アレイの干渉シグナルを測定し、初めに第1アレイの位相測定値を計算し、次に第2アレイの位相測定値を計算し、位相変化の値を決定するために前記第1アレイと前期第2アレイの位相測定値の違いを計算し、アレイの位相変化の値から前記波面干渉計による大気の乱れによる影響を検出することで、アレイの大気の乱れによる影響値を計算するようプログラムされたデータ処理装置と、
    を備える、波面干渉システム。
  2. 前記データ処理装置は、前記波面干渉システムにより得られた位相測定から大気の乱れによる影響を取り除くために、前記アレイの干渉シグナルから得られたアレイの位相測定値から前記アレイの大気の乱れによる影響値を減算するようプログラムされる、
    請求項1に記載の波面干渉システム。
  3. 前記波面干渉計は、フィゾー干渉計である、
    請求項1に記載の波面干渉システム。
  4. 前記波面干渉計は、トワイマン・グリーン干渉計である、
    請求項1に記載の波面干渉システム。
  5. 前記検出システムは、構成要素として検出用アレイを含む、
    請求項1に記載の波面干渉システム。
  6. 前記アレイの干渉シグナルは、2次元アレイの干渉シグナルであり、
    前記第1アレイ及び前記第2アレイの位相測定値は、両方とも2次元アレイによる、
    請求項1に記載の波面干渉システム。
  7. 前記データ処理装置は、アレイの位相変化の割合を逆転することにより、アレイの大気の乱れによる影響を計算するようプログラムされている、
    請求項1に記載の波面干渉システム。
  8. 前記波面干渉計は、動作中に前記基準測定ビームと前記反射測定ビームとが通過する気体を有し、
    前記データ処理装置は、気体の速度に対応する値を逆転させたアレイの位相変化の割合から得た値で除算することで、大気の乱れによる影響値を計算するようにプログラムされている、
    請求項7に記載の波面干渉システム。
  9. 前記波面干渉計の中に気体流量モニタを備え、
    前記データ処理装置は、前記気体流量モニタによって測定した気体の流量より気体の速度成分を決定するようにプログラムされ、
    前記気体の速度に対応する値は、決定された前記気体の速度成分から導かれる、
    請求項8に記載の波面干渉システム。
  10. 前記データ処理装置は、相互相関技術を用いることにより前記気体の速度成分を決定するためにプログラムされ、前記アレイの干渉シグナルから求められるアレイの位相変化の割合を計算し、
    前記気体の速度に対応する値は、定められた前記気体の速度成分から求められる、
    請求項8に記載の波面干渉システム。
  11. 前記アレイの位相変化の割合は、前記アレイの大気の乱れによる影響の第1時間導関数である、
    請求項1に記載の波面干渉システム。
  12. 前記アレイの位相測定値から前記アレイの大気の乱れによる影響値を減算した値は、前記第1アレイの位相測定値又は前記第二アレイの位相測定値のいずれかと同時に得られる、
    請求項2に記載の波面干渉システム。
  13. 前記アレイの位相測定値から前記アレイの大気の乱れによる影響値を減算した値は、前記第1アレイの位相測定値と前記第2アレイの位相測定値からなる群より選択される一つから導かれる、
    請求項2に記載の波面干渉システム。
  14. 前記データ処理装置は、前記波面干渉計の動作を制御するコントローラを含む、
    請求項1に記載の波面干渉システム。
  15. 前記データ処理装置は、前記反射測定ビームのフィールドの共役直角位相を決定するために前記アレイの干渉シグナルを使用するようにプログラムされる、
    請求項1に記載の波面干渉システム。
  16. 前記データ処理装置は、前記波面干渉計を制御し、マルチホモダイン法を利用することにより前記アレイの干渉シグナルを処理するようにプログラムされる、
    請求項1に記載の波面干渉システム。
  17. 基準物質からの基準ビームと、測定物質からの反射測定ビームとを結合し、結合ビームを生成するステップと、
    前記結合ビームを受け取り、そこからアレイの干渉シグナルを生成するステップと、
    前記アレイの干渉シグナルに基づき、最初に第1アレイの位相測定値を計算し、次に第2アレイの位相測定値を計算するステップと、
    アレイの位相変化の割合を決定するために、前記第1アレイの位相測定値と前記第2アレイの位相測定値の差異を計算するステップと、
    前期アレイの位相変化の割合から、前記波面干渉システム内の大気の乱れによる影響を測定し、アレイの大気の乱れによる影響値を計算するステップと、
    を含む波面干渉システムの操作方法。
  18. 前記アレイの干渉シグナルは、前記波面干渉システムより得られる位相測定値から大気の乱れの影響を取り除くために、前記アレイの干渉シグナルから得られるアレイの位相測定値から前記アレイの大気の乱れによる影響値を減算するステップを含む、
    請求項17に記載の方法。
  19. 前記アレイの干渉シグナルは、2次元アレイの干渉シグナルであり、
    前記第1アレイ及び前記第2アレイの位相測定は、両方とも2次元アレイである、
    請求項17に記載の方法。
  20. 該アレイの位相変化の割合を逆転することで、前記アレイの大気の乱れによる影響値を計算する、
    請求項17に記載の方法。
  21. 前記波面干渉計は、動作中に前記基準測定ビームと前記反射測定ビームとが通過する気体を有し、
    前記方法は、気体の速度に対応する値を逆転させたアレイの位相変化の割合から得た値で除算することで、大気の乱れによる影響値を計算するステップを含む、
    請求項20に記載の方法。
  22. 前記波面干渉計の中の気体流量を測定するステップと、
    測定された前記気体流量から、前記気体の速度成分を決定するステップと、
    を含み、
    前記気体の速度に対応する値は、決定された前記気体の速度成分から導かれる、
    請求項21に記載の方法。
  23. 相互相関技術を用いることにより前記気体の速度成分を決定するステップと、
    前記アレイの干渉シグナルから求められるアレイの位相変化の割合を計算するステップと、
    を含み、
    前記気体の速度に対応する値は、定められた前記気体の速度成分から求められる、
    請求項21に記載の方法。
  24. 前記アレイの位相変化の割合は、前記アレイの大気の乱れによる影響の第1時間導関数である、
    請求項17に記載の方法。
  25. 前記アレイの位相測定値から前記アレイの大気の乱れによる影響値を減算した値は、前記第1アレイの位相測定値又は前記第二アレイの位相測定値のいずれかと同時に得られる、
    請求項18に記載の方法。
  26. 前記アレイの位相測定値から前記アレイの大気の乱れによる影響値を減算した値は、前記第1アレイの位相測定値と前記第2アレイの位相測定値からなる群より選択される一つから導かれる、
    請求項18に記載の方法。
  27. 前記データ処理装置は、前記反射測定ビームのフィールドの共役直角位相を決定するために前記アレイの干渉シグナルを使用し、前記第1アレイの位相測定値と前記第2アレイの位相測定値とを計算する、
    請求項17に記載の方法。
  28. 測定ビームと基準ビームの相対波面についての情報を含むアレイの干渉シグナルを生成する波面干渉システムを操作する方法であって、
    前記アレイの干渉シグナルから、初めに第1アレイの位相測定値を計算し、次に第2アレイの位相測定値を計算するステップと、
    アレイの位相変化の割合を決定するために前記第1アレイの位相測定値と前記第2アレイの位相測定値との差異を計算するステップと、
    前期アレイの位相変化の割合から、前記波面干渉システム内の大気の乱れによる影響を測定し、アレイの大気の乱れによる影響値を計算するステップと、
    を備える方法。
JP2008528200A 2005-08-26 2006-08-24 波面干渉における大気の乱れによる影響の測定及び補正のための装置及び方法 Pending JP2009506330A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US71195205P 2005-08-26 2005-08-26
PCT/US2006/033256 WO2007025147A2 (en) 2005-08-26 2006-08-24 Apparatus and method for measurement and compensation of atmospheric turbulence effects in wavefront interferometry

Publications (1)

Publication Number Publication Date
JP2009506330A true JP2009506330A (ja) 2009-02-12

Family

ID=37772440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008528200A Pending JP2009506330A (ja) 2005-08-26 2006-08-24 波面干渉における大気の乱れによる影響の測定及び補正のための装置及び方法

Country Status (5)

Country Link
US (1) US7460245B2 (ja)
EP (1) EP1917496A4 (ja)
JP (1) JP2009506330A (ja)
TW (1) TW200714870A (ja)
WO (1) WO2007025147A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200072306A (ko) * 2018-12-12 2020-06-22 주식회사 내일해 측정 대상 물체의 3차원 형상 정보 생성 방법
WO2021054097A1 (ja) * 2019-09-18 2021-03-25 株式会社フジキン 濃度測定装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5523664B2 (ja) * 2007-11-06 2014-06-18 株式会社ミツトヨ 干渉計
GB2516779B (en) * 2009-05-27 2015-04-01 Silixa Ltd Optical sensor
GB201006593D0 (en) 2010-04-20 2010-06-02 Phase Focus Ltd Characteristic determination
US8558890B2 (en) 2010-08-12 2013-10-15 Goodrich Corporation Aerial reconnaissance camera system with atmospheric dispersion correction
AT520258B1 (de) * 2017-07-26 2022-02-15 Univ Wien Tech Verfahren zur spektroskopischen bzw. spektrometrischen Untersuchung einer Probe
US11237059B1 (en) * 2020-12-14 2022-02-01 Gerchberg Ophthalmic Dispensing, PLLC Totagraphy: Coherent diffractive/digital information reconstruction by iterative phase recovery using special masks
CA3232526A1 (en) * 2021-09-21 2023-03-30 National Research Council Of Canada Optical beamforming and interferometry using digital source modulation

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU528882B2 (en) * 1978-09-26 1983-05-19 Commonwealth Scientific And Industrial Research Organisation Producing anhydrous aluminium chloride
US4575248A (en) * 1984-06-18 1986-03-11 Itek Corporation Wavefront sensor employing novel D.C. shearing interferometer
US4733967A (en) * 1987-03-19 1988-03-29 Zygo Corporation Apparatus for the measurement of the refractive index of a gas
JPH0198902A (ja) * 1987-10-12 1989-04-17 Res Dev Corp Of Japan 光波干渉測長装置
DE3930632A1 (de) * 1989-09-13 1991-03-14 Steinbichler Hans Verfahren zur direkten phasenmessung von strahlung, insbesondere lichtstrahlung, und vorrichtung zur durchfuehrung dieses verfahrens
EP0561015A1 (de) * 1992-03-17 1993-09-22 International Business Machines Corporation Interferometrische Phasenmessung
US5412474A (en) * 1992-05-08 1995-05-02 Smithsonian Institution System for measuring distance between two points using a variable frequency coherent source
US5404222A (en) * 1994-01-14 1995-04-04 Sparta, Inc. Interferametric measuring system with air turbulence compensation
JP3295583B2 (ja) * 1994-12-19 2002-06-24 シャープ株式会社 光学装置および該光学装置を用いた頭部搭載型ディスプレイ
US5589938A (en) * 1995-07-10 1996-12-31 Zygo Corporation Method and apparatus for optical interferometric measurements with reduced sensitivity to vibration
US5663793A (en) * 1995-09-05 1997-09-02 Zygo Corporation Homodyne interferometric receiver and calibration method having improved accuracy and functionality
US5883717A (en) * 1996-06-04 1999-03-16 Northeastern University Optical quadrature interferometry utilizing polarization to obtain in-phase and quadrature information
US5915048A (en) * 1996-06-05 1999-06-22 Zetetic Institute Method and apparatus for discriminating in-focus images from out-of-focus light signals from background and foreground light sources
US5838485A (en) * 1996-08-20 1998-11-17 Zygo Corporation Superheterodyne interferometer and method for compensating the refractive index of air using electronic frequency multiplication
US5764362A (en) * 1996-08-20 1998-06-09 Zygo Corporation Superheterodyne method and apparatus for measuring the refractive index of air using multiple-pass interferometry
US6480285B1 (en) * 1997-01-28 2002-11-12 Zetetic Institute Multiple layer confocal interference microscopy using wavenumber domain reflectometry and background amplitude reduction and compensation
US5760901A (en) * 1997-01-28 1998-06-02 Zetetic Institute Method and apparatus for confocal interference microscopy with background amplitude reduction and compensation
GB9802688D0 (en) * 1998-02-06 1998-07-29 Marconi Gec Ltd Improvements in or relating to sound detection
US6271923B1 (en) * 1999-05-05 2001-08-07 Zygo Corporation Interferometry system having a dynamic beam steering assembly for measuring angle and distance
TW558642B (en) * 1999-08-02 2003-10-21 Zetetic Inst Scanning interferometric near-field confocal microscopy
US6304330B1 (en) * 1999-10-06 2001-10-16 Metrolaser, Inc. Methods and apparatus for splitting, imaging, and measuring wavefronts in interferometry
US7043082B2 (en) * 2000-01-06 2006-05-09 Canon Kabushiki Kaisha Demodulation and phase estimation of two-dimensional patterns
WO2001088468A1 (en) * 2000-05-17 2001-11-22 Zygo Corporation Interferometric apparatus and method
FR2817030B1 (fr) * 2000-11-17 2003-03-28 Centre Nat Rech Scient Procede et dispositif d'imagerie microscopique interferentielle d'un objet a haute cadence
US6847452B2 (en) * 2001-08-02 2005-01-25 Zygo Corporation Passive zero shear interferometers
TWI259898B (en) * 2002-01-24 2006-08-11 Zygo Corp Method and apparatus for compensation of time-varying optical properties of gas in interferometry
JP2006505778A (ja) * 2002-11-04 2006-02-16 ザイゴ コーポレーション 干渉計経路内の屈折度の摂動の補正
WO2004068186A2 (en) 2003-01-27 2004-08-12 Zetetic Institute Interferometric confocal microscopy incorporating a pihnole array beam-splitter
US7084983B2 (en) * 2003-01-27 2006-08-01 Zetetic Institute Interferometric confocal microscopy incorporating a pinhole array beam-splitter
WO2004090465A2 (en) * 2003-04-01 2004-10-21 Zetetic Institute Apparatus and method for joint measurement of fields of scattered/reflected or transmitted orthogonally polarized beams by an object in interferometry
US7057738B2 (en) * 2003-08-28 2006-06-06 A D Technology Corporation Simultaneous phase-shifting Fizeau interferometer
US7355722B2 (en) * 2003-09-10 2008-04-08 Zetetic Institute Catoptric and catadioptric imaging systems with adaptive catoptric surfaces
US7221461B2 (en) * 2004-08-13 2007-05-22 Zygo Corporation Method and apparatus for interferometric measurement of components with large aspect ratios
WO2006023406A2 (en) * 2004-08-16 2006-03-02 Zetetic Institute Apparatus and method for joint and time delayed measurements of components of conjugated quadratures of fields of reflected/scattered and transmitted/scattered beams by an object in interferometry
US20070014319A1 (en) * 2005-07-15 2007-01-18 Zetetic Institute Continuously Tunable External Cavity Diode Laser Sources With High Tuning And Switching Rates And Extended Tuning Ranges
US7405832B2 (en) * 2005-08-08 2008-07-29 Zetetic Institute Apparatus and methods for reduction and compensation of effects of vibrations and of environmental effects in wavefront interferometry

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200072306A (ko) * 2018-12-12 2020-06-22 주식회사 내일해 측정 대상 물체의 3차원 형상 정보 생성 방법
KR102150110B1 (ko) 2018-12-12 2020-08-31 주식회사 내일해 측정 대상 물체의 3차원 형상 정보 생성 방법
WO2021054097A1 (ja) * 2019-09-18 2021-03-25 株式会社フジキン 濃度測定装置
JP7492269B2 (ja) 2019-09-18 2024-05-29 株式会社フジキン 濃度測定装置

Also Published As

Publication number Publication date
EP1917496A2 (en) 2008-05-07
WO2007025147A2 (en) 2007-03-01
US7460245B2 (en) 2008-12-02
TW200714870A (en) 2007-04-16
EP1917496A4 (en) 2010-07-28
US20070046951A1 (en) 2007-03-01
WO2007025147A3 (en) 2009-05-07

Similar Documents

Publication Publication Date Title
JP4951189B2 (ja) 周波数変換位相シフト干渉計測法
EP1451524B1 (en) Phase-shifting interferometry method and system
JP2009506330A (ja) 波面干渉における大気の乱れによる影響の測定及び補正のための装置及び方法
US7933025B2 (en) Sinusoidal phase shifting interferometry
US20110149298A1 (en) Spatial wavefront analysis and 3d measurement
TWI401414B (zh) 相移干涉方法及系統
US7948637B2 (en) Error compensation in phase shifting interferometry
US10635049B2 (en) Ellipsometry device and ellipsometry method
US7177029B2 (en) Stroboscopic interferometry with frequency domain analysis
US7405832B2 (en) Apparatus and methods for reduction and compensation of effects of vibrations and of environmental effects in wavefront interferometry
US20070121115A1 (en) Apparatus and method for reducing effects of coherent artifacts and compensation of effects of vibrations and environmental changes in interferometry
Ahmad et al. Quantitative phase microscopy and tomography with spatially incoherent light
Yassien Comparative study on determining the refractive index profile of polypropylene fibres using fast Fourier transform and phase-shifting interferometry
Schmit et al. White-light interferometry with reference signal
Trolinger Ultrahigh resolution interferometry
Schwider Multiple beam Fizeau interferometer with filtered frequency comb illumination
Sivakumar et al. Measurement of surface profile in vibrating environment with instantaneous phase shifting interferometry
Ge et al. High-precision 2D-angle measurement interferometer
Cochran III Limitations of phase-measuring interferometry for surface characterization and testing: a review
KR100858447B1 (ko) 광위상간섭측정법 및 그 시스템
Hsu et al. High-resolution imaging of biological cell with fiber-based composite interferometer
Helen et al. Polarization phase shifting in white-light interferometry
Osman et al. Measurement of grain–wall contact forces in a granular bed using frequency-scanning interferometry
Tung et al. Fast surface profiling using monochromatic phase and fringe order in white-light interferometry
EP1058810A1 (en) Apparatus and methods for measuring intrinsic optical properties of a gas