CN114540714B - 一种改善含铜取向硅钢磁性能的方法 - Google Patents

一种改善含铜取向硅钢磁性能的方法 Download PDF

Info

Publication number
CN114540714B
CN114540714B CN202210190394.6A CN202210190394A CN114540714B CN 114540714 B CN114540714 B CN 114540714B CN 202210190394 A CN202210190394 A CN 202210190394A CN 114540714 B CN114540714 B CN 114540714B
Authority
CN
China
Prior art keywords
silicon steel
oriented silicon
copper
nitrogen
improving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210190394.6A
Other languages
English (en)
Other versions
CN114540714A (zh
Inventor
陈嘉麟
王雅楠
王子航
庄强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202210190394.6A priority Critical patent/CN114540714B/zh
Publication of CN114540714A publication Critical patent/CN114540714A/zh
Application granted granted Critical
Publication of CN114540714B publication Critical patent/CN114540714B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

本发明涉及一种改善含铜取向硅钢磁性能的方法,包括步骤:S1:炼钢、二次精炼及连铸后得到成分如下的板坯(按重量百分比计):C 0.040‑0.055%、Si3.00‑3.40%、Mn 0.1‑0.30%、ALs 0.006%‑0.030%、Cu 0.4%‑0.7%、N 0.006%‑0.012%、S≤0.025%,其余为Fe及不可避免的杂质;S2:将板坯进行热轧及一次冷轧;S3:一次冷轧后,于温度为800‑900℃、氢气分压与水蒸气分压比为0.2‑0.5的氮气和氢气的湿气氛保护下进行脱碳退火,使得含铜取向硅钢中氧含量为700‑900ppm;S4:脱碳退火后进行二次冷轧,然后冷涂氧化镁隔离剂;S5:冷涂氧化镁隔离剂后,进行高温退火、出炉、拉伸平整退火。本发明所述改善含铜取向硅钢磁性能的方法,使得含铜取向硅钢的磁感应强度B8不小于1.9T,提高了含铜取向硅钢的磁性能,增加了吨钢利润,拓宽了含铜取向硅钢的应用。

Description

一种改善含铜取向硅钢磁性能的方法
技术领域
本发明涉及取向硅钢制造领域技术领域,特别是涉及一种改善含铜取向硅钢磁性能的方法。
背景技术
在晶粒取向硅钢制造领域中高斯晶粒的大小和位相,是评判取向硅钢磁性能好坏的主要依据之一。所谓高斯晶粒,指的是具有{110}<001>单一织构的晶粒,日本称之为“HiB”,欧美称之为“COE”(cube-on-edge)。要获得位相足够准确的高斯晶粒(与轧向偏离角小于5°),必须依靠钢中的夹杂物来抑制正常初次再结晶晶粒的异常长大,而使数量极少(占比小于5%)高斯晶粒异常长大,并顺利吞并其他非高斯晶粒。在所有夹杂物中,ALN(氮化铝)是理想的夹杂物(抑制剂)。在高温退火升温阶段,由于其独特的析出方向性特征,可以有效抑制初次晶粒长大,并促进高斯晶粒的生长。然而,现有的取向硅钢的制造工艺得到的含铜取向硅钢冶钢成分中ALs(酸溶铝)的含量较少、使得取向硅钢基体内形成的ALN含量较低、抑制能力较差,导致了制得的含铜取向硅钢磁性能较差。
发明内容
本发明的目的是解决上述问题,提供一种能够提高ALN夹杂量、增强抑制效果进而改善含铜取向硅钢磁性能的方法。
为了解决上述技术问题,本发明采用的技术方案,如下所述:
一种改善含铜取向硅钢磁性能的方法,包括步骤:
S1:炼钢、二次精炼及连铸后得到成分如下的板坯(按重量百分比计):C 0.040-0.055%、Si 3.00-3.40%、Mn 0.1-0.30%、ALs 0.006%-0.030%、Cu 0.4%-0.7%、N0.006%-0.012%、S≤0.025%,其余为Fe及不可避免的杂质;
S2:将所述板坯进行热轧及一次冷轧;
S3:一次冷轧后,于温度为800-900℃、氢气分压与水蒸气分压比为0.2-0.5的氮气和氢气的湿气氛保护下进行脱碳退火,使得含铜取向硅钢中氧含量为700-900ppm;
S4:脱碳退火后进行二次冷轧,然后冷涂氧化镁隔离剂;
S5:冷涂氧化镁隔离剂后,进行高温退火、出炉、拉伸平整退火。
优选地,步骤S5中,所述高温退火包括步骤:
在纯氮气保护氛围下一次升温至800-900℃,一次保温,使得含铜取向硅钢的吸氮量为10-100ppm;在氮气和氢气混合气体氛围下二次升温至1100-1200℃,然后在纯氮气下进行二次保温;二次保温后,冷却至800-1000℃,然后在纯氮气保护氛围下继续冷却至出炉。
优选地,步骤S2中,热轧之前还包括炼钢连铸,所述热轧与一次冷轧处理之间还包括酸洗。
优选地,步骤S2中,所述一次冷轧后含铜取向硅钢的厚度为0.6-0.63mm。
优选地,步骤S4中,所述二次冷轧后含铜取向硅钢的厚度为0.1-0.265mm。
优选地,步骤S4中,所述冷涂氧化镁隔离剂选用的氧化镁隔离剂成分包括硅钢级MgO 5~12%,TiO2 0.22~0.8%,B 0.15~0.32%,Re 0.03~0.09%,余量为水;其中硅钢级氧化镁25℃时的CAA值为90~145sec。
优选地,步骤S5中,二次升温过程中所述氮气和氢气混合气体中,氢气与氮气的重量比为3:1或1:1。
进一步优选地,步骤S5中,二次升温过程中所述氮气和氢气混合气体中,氢气与氮气的重量比为3:1。
优选地,步骤S5中,所述一次保温的时间为2.5-2h,以排干氧化镁隔离剂中水分;所述二次保温的时间为15-20h,以将含铜取向硅钢中非金属元素基本净化完全。
优选地,步骤S5后还包括激光刻痕和精整。所述激光刻痕的目的是细化磁畴,进一步提高含铜取向硅钢的磁性能,所述精整目的是将激光刻痕后的钢板进行整理排版。所述激光刻痕选用的钢的磁感应强度B8不小于1.91T。
本发明产生的有益效果至少包括:
与现有技术相比较,本发明所述改善含铜取向硅钢磁性能的方法首先制造ALs含量为0.006%-0.030%的板坯,然后通过对脱碳退火工艺进行改进,提高了含铜取向硅钢中的氧含量,为提高高温退火工艺中氮元素的吸收量提供基础;同时高温退火步骤中一次升温步骤在纯氮气保护氛围下进行,增加气氛氮势,增加了含铜取向硅钢中氮的吸收量,进而促进了ALs与更多的氮元素结合形成更多的ALN夹杂来抑制正常晶粒的长大,从而获得具有准确位相的高斯晶粒,提高产品磁性能。由实施例可知,本发明所述改善含铜取向硅钢磁性能的方法使得含铜取向硅钢的磁感应强度B8不小于1.9T,提高了含铜取向硅钢的磁性能,增加了吨钢利润,拓宽了含铜取向硅钢的应用。
附图说明
图1是本发明加工工艺流程图;
图2是本发明另外一种加工工艺流程图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
实施例1
图1是本发明加工工艺流程图,参照图1所示,包括步骤:
首先用500kg真空转炉火电炉炼钢,钢水经过二次精炼和连铸后,获得成分如下的板坯(按重量百分比计):0.040%C,3.00%Si,0.1%Mn,0.006%ALs,0.4%Cu,0.001%N,0.02%S,其余为Fe及不可避免的杂质;
之后将所述板坯加热至1200℃进行热轧,保温3h,终轧温度为900-1000℃;然后进行酸洗、一次冷轧使得钢的厚度为0.63mm,氧含量为700ppm;
脱碳退火:将一次冷轧后钢置于高温炉中,在纯氮气氛围下加热至700℃,保温10min;
二次冷轧至厚度为0.265mm,再利用涂覆机在二次冷轧后钢表面均匀地冷涂氧化镁隔离剂;其中采用的氧化镁隔离剂成分包括:5%硅钢级MgO,0.22%TiO2,0.15%B,0.03%Re,余量为水;其中硅钢级氧化镁的25℃时CAA值为90sec;需要说的是,所述CAA值为采用柠檬酸法测得的硅钢级氧化镁的柠檬酸活性值;
高温退火:一次升温至800℃后,一次保温2h;二次升温至1100-1200℃,二次保温20h,之后冷却,出炉,最后拉伸平整退火;其中,二次升温过程中所述氮气和氢气混合气体中,氢气与氮气的重量比为3:1;冷却时,先缓慢冷却至800-1000℃,再在纯氮气保护氛围下继续冷却,冷却后出炉,进行拉伸平整退火。
实施例2
首先用500kg真空转炉火电炉炼钢,钢水经过二次精炼和连铸后,获得成分如下的板坯(按重量百分比计):0.055%C,3.40%Si,0.30%Mn,0.030%ALs,0.7%Cu,0.012%N,0.025%S,其余为Fe及不可避免的杂质;
之后将所述板坯加热至1280℃进行热轧,保温2.5h,终轧温度为950-980℃;然后进行酸洗、一次冷轧使得钢的厚度为0.60mm,氧含量为900ppm;
脱碳退火:将一次冷轧后钢置于高温炉中,在纯氮气氛围下加热至900℃,保温8min;
二次冷轧至厚度为0.10mm,再利用涂覆机在二次冷轧后钢表面均匀地冷涂氧化镁隔离剂;其中采用的氧化镁隔离剂成分包括:12%硅钢级MgO,0.8%TiO2,0.32%B,0.09%Re,余量为水;其中硅钢级氧化镁的22℃时CAA值为145sec;
高温退火:一次升温至850℃后,一次保温2.5h;二次升温至1100-1200℃,二次保温15h,之后冷却,出炉,最后拉伸平整退火;其中,二次升温过程中所述氮气和氢气混合气体中,氢气与氮气的重量比为1:1;冷却时,先缓慢冷却至800-1000℃,再在纯氮气保护氛围下继续冷却,冷却后出炉,进行拉伸平整退火。
实施例3
首先用500kg真空转炉火电炉炼钢,钢水经过二次精炼和连铸后,获得成分如下的板坯(按重量百分比计):0.050%C,3.00%Si,0.20%Mn,0.015%ALs,0.5%Cu,0.006%N,0.022%S,余量为Fe及不可避免的杂质;
之后将所述板坯加热至1260℃进行热轧,保温2.2h,终轧温度为950-980℃;然后进行酸洗、一次冷轧使得钢的厚度为0.62mm,氧含量为800ppm;
脱碳退火:将一次冷轧后钢置于高温炉中,在纯氮气氛围下加热至850℃,保温9min;
二次冷轧至厚度为0.20mm,再利用涂覆机在二次冷轧后钢表面均匀地冷涂氧化镁隔离剂;其中采用的氧化镁隔离剂成分包括:6%硅钢级MgO,0.5%TiO2,0.25%B,0.06%Re,余量为水;其中硅钢级氧化镁的22℃时CAA值为130sec;
高温退火:一次升温至850℃后,一次保温2.5h;二次升温至1100-1200℃,二次保温18h,之后冷却,出炉,最后拉伸平整退火;其中,二次升温过程中所述氮气和氢气混合气体中,氢气与氮气的重量比为1:1;冷却时,先缓慢冷却至800-1000℃,再在纯氮气保护氛围下继续冷却,冷却后出炉,进行拉伸平整退火。
实施例4
图2是本发明另外一种加工工艺流程图,参照图2所示,本实施例与实施例1相比较,区别在于,拉伸平整退火后,还包括选取磁感应强度B不小于1.91的取向硅钢进行激光刻痕,然后再将激光刻痕后的取向硅钢进行精整以整齐排版。
对比例1
采用常规流程制造的取向硅钢。
对上述实施例1-3以及对比例1制得的取向硅钢,进行磁感应强度测试。测试结果如表1所示。
表1取向硅钢磁感应强度的测试表
Figure BDA0003524337050000061
Figure BDA0003524337050000071
参照表1,本发明实施例1-3制得的取向硅钢的磁性能均大于对比例1制得的含铜取向硅钢的磁性能,且铁损量均小于对比例1制得的含铜取向硅钢;因此,采用本发明所述改善含铜取向硅钢的磁感应强度增强,提高了吨钢的利润,为含铜取向硅钢的制造及应用提供了新思路。
实施例5
为了验证脱碳退火步骤处理后钢中的氧含量,对高温退火步骤中钢中氮元素吸收量的影响,提供实施例5。具体地:
脱碳退火前工艺一致,且选用ALs含量为200ppm-250ppm的样品,将所述样品在不同的分压比以及不同温度下进行脱碳退火;
然后将采用不同参数进行脱碳退火的样品,采用相同高温退火工艺进行处理;其中,按照氧含量的不同将样品进行分类,具体地:400-500ppm为A类,500-600ppm为B类,600-700ppm为C类,700-800ppm为D类,>800ppm为E类,每一类样品取1块300mm x板宽大小的试样;每一类钢板切成面积为30mm x 300mm样片5片,每片试样编号,编号规则为类别+序号,比如:A1-A5,B1-B5,C1-C5,D1-D5,E1-E5共40片;
本发明实施例中高温退火:一次升温温度分别为700℃、750℃、800℃、850℃和900℃,将上述40片全部放入高温炉中,自700℃开始,温度每上升50摄氏度保温10min后,分别取出一个编号的样品进行测试。
分别测量脱碳退火后样品中的氧含量、脱碳退火后样品中氮含量(也即高温退火前样品中氮含量)以及高温退火后样品中的氮含量,以高温退火前后样品中氮元素的增加量表示氮元素的吸收水平;测试结果如表2所示。
表2不同脱碳退火方案对应不同高温退火温度对样品中氮元素吸收量影响的测试数据表
Figure BDA0003524337050000081
如表2所示,A、B组样品基本未吸氮,少数样品中氮元素增加可能为检测误差或样品本身成分的不均匀性所致;
C组试样在800℃以上温度有轻微的吸氮现象;
D、E组试样吸氮现象显著,尤其是800℃以上温度时,吸氮量超过30ppm。
因此,验证了本发明脱碳退火工艺中,温度优选为800-900℃、氢气分压与水蒸气分压比为0.2-0.5,使得钢中氧含量为700-900ppm的合理性。
在上述实验结论的基础上,将D和E类氧含量的钢卷装入罩式退火炉中,采用900℃以前纯氮气氛保护工艺进行高温退火(其他工艺按照现有工艺执行),得到的磁性结果如下(刻痕后):
Figure BDA0003524337050000091
本发明优选地的脱碳退火工艺参数,得到的氧含量为700-900ppm的样品,在高温退火工艺中具有较高的吸氮量,提高了ALN的含量,进一步验证了,本发明所述含铜取向硅钢磁性能的方法,提高了含铜取向硅钢的磁性能。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的优选的实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (6)

1.一种改善含铜取向硅钢磁性能的方法,其特征在于,包括步骤:
S1:炼钢、二次精炼及连铸后得到成分如下的板坯,按重量百分比计,C 0.040-0.055%、Si 3.00-3.40%、Mn 0.1-0.30%、ALs 0.006%-0.030%、Cu 0.4%-0.7%、N0.006%-0.012%、S≤0.025%,其余为Fe及不可避免的杂质;
S2:将所述板坯进行热轧及一次冷轧;
S3:一次冷轧后,于温度为800-900℃、氢气分压与水蒸气分压比为0.2-0.5的氮气和氢气的湿气氛保护下进行脱碳退火,使得含铜取向硅钢中氧含量为700-900ppm;
S4:脱碳退火后进行二次冷轧,然后冷涂氧化镁隔离剂;
S5:冷涂氧化镁隔离剂后,进行高温退火、出炉、拉伸平整退火;
所述高温退火包括步骤:
在纯氮气保护氛围下一次升温至800-900℃,一次保温,使得含铜取向硅钢的吸氮量为10-100ppm;在氮气和氢气混合气体氛围下二次升温至1100-1200℃,氢气与氮气的重量比为3:1或1:1;然后在纯氮气下进行二次保温;二次保温后,冷却至800-1000℃,然后在纯氮气保护氛围下继续冷却至出炉;所述一次保温的时间为2.5-2h;所述二次保温的时间为15-20h。
2.根据权利要求1所述的改善含铜取向硅钢磁性能的方法,其特征在于,步骤S2中,热轧之前还包括炼钢连铸,所述热轧与一次冷轧处理之间还包括酸洗。
3.根据权利要求1所述的改善含铜取向硅钢磁性能的方法,其特征在于,步骤S2中,一次冷轧后含铜取向硅钢的厚度为0.6-0.63mm。
4.根据权利要求1所述的改善含铜取向硅钢磁性能的方法,其特征在于,步骤S4中,二次冷轧后含铜取向硅钢的厚度为0.1-0.265mm。
5.根据权利要求1所述的改善含铜取向硅钢磁性能的方法,其特征在于,步骤S4中,所述冷涂氧化镁隔离剂选用的氧化镁隔离剂成分包括硅钢级MgO 5~12%,TiO2 0.22~0.8%,B 0.15~0.32%,Re 0.03~0.09%,余量为水;其中硅钢级氧化镁25℃时的CAA值为90~145sec。
6.根据权利要求1所述的改善含铜取向硅钢磁性能的方法,其特征在于,步骤S5后还包括激光刻痕和精整。
CN202210190394.6A 2022-02-28 2022-02-28 一种改善含铜取向硅钢磁性能的方法 Active CN114540714B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210190394.6A CN114540714B (zh) 2022-02-28 2022-02-28 一种改善含铜取向硅钢磁性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210190394.6A CN114540714B (zh) 2022-02-28 2022-02-28 一种改善含铜取向硅钢磁性能的方法

Publications (2)

Publication Number Publication Date
CN114540714A CN114540714A (zh) 2022-05-27
CN114540714B true CN114540714B (zh) 2022-12-27

Family

ID=81661532

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210190394.6A Active CN114540714B (zh) 2022-02-28 2022-02-28 一种改善含铜取向硅钢磁性能的方法

Country Status (1)

Country Link
CN (1) CN114540714B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115478216A (zh) * 2022-08-31 2022-12-16 安阳钢铁股份有限公司 一种取向硅钢及其制备方法
CN116065006B (zh) * 2022-11-29 2023-08-22 无锡普天铁心股份有限公司 一种改善二次冷轧取向硅钢表面质量的梯度脱碳退火方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4311151C1 (de) * 1993-04-05 1994-07-28 Thyssen Stahl Ag Verfahren zur Herstellung von kornorientierten Elektroblechen mit verbesserten Ummagnetisierungsverlusten
CN101545072B (zh) * 2008-03-25 2012-07-04 宝山钢铁股份有限公司 一种高电磁性能取向硅钢的生产方法
CN101643881B (zh) * 2008-08-08 2011-05-11 宝山钢铁股份有限公司 一种含铜取向硅钢的生产方法
CN103882289A (zh) * 2014-03-25 2014-06-25 新万鑫(福建)精密薄板有限公司 用一般取向钢原料制造高磁感冷轧取向硅钢的生产方法
CN105420597B (zh) * 2015-11-26 2017-11-21 武汉钢铁有限公司 一种含铜低温高磁感取向硅钢的生产方法
CN106399819B (zh) * 2016-06-16 2018-12-28 马鞍山钢铁股份有限公司 一种取向硅钢及其制备方法
CN107858494B (zh) * 2017-11-23 2019-07-16 武汉钢铁有限公司 低温高磁感取向硅钢的生产方法
CN109112283A (zh) * 2018-08-24 2019-01-01 武汉钢铁有限公司 低温高磁感取向硅钢的制备方法

Also Published As

Publication number Publication date
CN114540714A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
KR101963990B1 (ko) 방향성 전기 강판 및 그 제조 방법
TWI622655B (zh) 無方向性電磁鋼板及其製造方法
JP5479448B2 (ja) 高電磁気性能の方向性珪素鋼の製造方法
JP6844125B2 (ja) 方向性電磁鋼板の製造方法
US9816152B2 (en) Manufacture method of high-efficiency non-oriented silicon steel with excellent magnetic performance
CN114540714B (zh) 一种改善含铜取向硅钢磁性能的方法
CN100381598C (zh) 一种取向硅钢及其生产方法和装置
CN101654757B (zh) 涂层半工艺无取向电工钢板及制造方法
KR101389248B1 (ko) 방향성 전자기 강판의 제조 방법
EP3719160B1 (en) Non-oriented electrical steel sheet with excellent magnetism and manufacturing method therefor
WO2011115120A1 (ja) 方向性電磁鋼板の製造方法
JP2012126989A (ja) 方向性電磁鋼板の製造方法
KR101676630B1 (ko) 방향성 전기강판 및 그 제조방법
CN110218853B (zh) 制备低温高磁感取向硅钢的工艺方法
JP7221481B2 (ja) 方向性電磁鋼板およびその製造方法
JP7159595B2 (ja) 方向性電磁鋼板の製造方法
WO2022210998A1 (ja) 無方向性電磁鋼板
JP2009209428A (ja) 著しく磁束密度が高い方向性電磁鋼板の製造方法
CN114645202A (zh) 一种高取向度GOSS织构Fe-3%Si材料的获得方法
JP7053848B2 (ja) 方向性電磁鋼板およびその製造方法
EP4174194A1 (en) Production method for grain-oriented electrical steel sheet
KR102513027B1 (ko) 방향성 전기강판 및 그의 제조방법
JP6863310B2 (ja) 方向性電磁鋼板の製造方法
JP2023058067A (ja) 無方向性電磁鋼板
CN114867882A (zh) 取向电工钢板及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant