CN114645202A - 一种高取向度GOSS织构Fe-3%Si材料的获得方法 - Google Patents

一种高取向度GOSS织构Fe-3%Si材料的获得方法 Download PDF

Info

Publication number
CN114645202A
CN114645202A CN202210246046.6A CN202210246046A CN114645202A CN 114645202 A CN114645202 A CN 114645202A CN 202210246046 A CN202210246046 A CN 202210246046A CN 114645202 A CN114645202 A CN 114645202A
Authority
CN
China
Prior art keywords
texture
annealing
orientation
goss
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210246046.6A
Other languages
English (en)
Other versions
CN114645202B (zh
Inventor
徐党委
王军
孔德南
王海燕
程官江
武宝庆
欧阳瑜
黄重
王新志
夏志升
张苓志
管刘辉
王中岐
梁梦斐
何晓波
张振申
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anyang Iron and Steel Co Ltd
Anyang Iron and Steel Group Co Ltd
Original Assignee
Anyang Iron and Steel Co Ltd
Anyang Iron and Steel Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anyang Iron and Steel Co Ltd, Anyang Iron and Steel Group Co Ltd filed Critical Anyang Iron and Steel Co Ltd
Priority to CN202210246046.6A priority Critical patent/CN114645202B/zh
Publication of CN114645202A publication Critical patent/CN114645202A/zh
Application granted granted Critical
Publication of CN114645202B publication Critical patent/CN114645202B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1238Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

本发明公开了一种高取向度GOSS织构Fe‑3%Si材料及制备方法,该生产方法主要包括:炼钢、板坯连铸、热连轧、常化、酸洗、冷轧、脱碳渗氮退火、涂氧化镁隔离剂、高温罩式退火、平整拉伸退火。本方法主要通过关键工序工艺与其板织构相匹配的原理,显著提高成品Goss织构取向度。通过保留铸坯柱状晶,使大量{100}面织构的保留下来,热轧工序在剪切力作用使轧板次表层获得位向准确的Goss织构。脱碳渗氮退火,通过退火温度、渗氮量匹配以提高退火后{111}<112>、{114}<841>织构强度,并且保证初次再结晶晶粒均匀性。高温退火时,有利织构{111}<112>、{114}<841>为Goss织构的长大提供了非常有利条件,最终成品板Goss织构取向度偏离角≤4°。

Description

一种高取向度GOSS织构Fe-3%Si材料的获得方法
技术领域
本发明涉及金属材料制备技术领域,特别涉及一种全流程具有高取向度Goss织构Fe-3%Si材料的获得方法。
背景技术
Goss织构即具有{110}<001>取向型织构,位向准确的Goss织构晶粒在其<100>方向有优良的磁化性能,因此含有高取向度Goss织构的板材具有高电阻率、高磁导率、磁致伸缩低等特性,此类材料在电力、电器、军工等领域具有极高的应用价值。
中国发明专利(公开号:CN110607496B)提出一种具有Goss织构的Fe-Si合金的制备方法,利用固体渗硅法,在氩气氛围下进行将硅粉固体扩散的方法进行渗透,在板材的表面形成厚度约为50μm的、致密的渗硅层,最后制备出Fe-6.5%Si合金,此制备方法虽比较新颖,实际大批量生产操作难度大,尤其在固体渗硅流程,所以,到目前为止在工业上广泛应用,该方法主要涉及Fe-6.5%Si合金制备。
中国发明专利(公开号:CN110055393A)提出一种低温高磁感取向硅钢带生产方法,通过原料成分和热轧终轧温度的变化程度来调整脱碳退火的均热温度和渗氮工艺,实现脱碳退火后一次晶粒尺寸和AlN抑制剂的匹配,得到低温高磁感取向硅钢,其主要通过AlN析出物以及晶粒大小,得到高磁感取向硅钢;不涉及工序织构、以及成品织构控制对最终成品磁性能的作用。
中国发明专利(公开号:CN112522609A)提出一种含复合抑制剂的高磁感取向硅钢及生产方法通过加入Cu,形成含Cu复合抑制剂;在氧化镁添加剂中加入MgSO4与Cu生成后天抑制剂,形成双抑制剂体系,实现高磁感取向硅钢材料的制备,该生产方法主要强调含Cu复合抑制剂对高磁感取向硅钢材料的制备的作用;不涉及工序过程材料织构、以及成品织构控制对最终成品磁性能的影响,为此,我们提出一种高取向度GOSS织构Fe-3%Si材料的获得方法。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种高取向度GOSS织构Fe-3%Si材料的获得方法,解决上述背景技术中存在的技术问题。
(二)技术方案
为实现以上目的,本发明通过以下技术方案予以实现:
一种高取向度GOSS织构Fe-3%Si材料的获得方法,其化学成分控制(质量百分比%):C:0.38%~0.80%,Si:3.01%~3.95%,Mn:0.050%~0.180%,S:0.003%~0.006%,Als:0.20%~0.035%,N:0.0050%~0.0130%,Sn:0.01%~0.10%,B:0.0020%~0.0060%,余量为Fe及不可避免的杂质。
该生产方法主要包括:炼钢—板坯连铸机—热连轧—常化—酸洗—冷轧—脱碳渗氮退火—涂氧化镁隔离剂—高温罩式退火—平整拉伸。其中:
1.铁水预处理:脱硫采用钢包喷粉法,将CaO+钝化镁混合粉末通过高速气流喷吹到铁液内,将铁水S含量脱除到0.0020%以下,扒渣必须干净,减少渣中Mn、S等元素带入。
2.转炉炼钢工序,废钢采用专用洁净用钢,废钢比控制在10%~21%,转炉终点成分:[C]0.035-0.050%,[P]≤0.015%,[Mn]≤0.09%,[S]≤0.005%;炉渣碱度R控制3.5以上。
3.RH精炼工序,成分精确控制,其中Als成分采用多次少量加入方式,可按要求范围上限控制,运送以及浇铸过程中Als有所损耗,保证成品成分控制在合格范围内。
4.连铸工序,铸坯厚度210mm~230mm,铸坯低倍要求柱状晶比例≥40%,等轴晶晶粒均匀且细小;不使用电磁搅拌,使板坯柱状晶大量{100}织构完整保留。
5.热轧工序,加热温度1120~1200℃,精轧出口温度800~980℃;精轧压下率94%~96%,轧制后材料厚度2.1mm~2.5mm。通过高温大压下使得热轧板厚度1/4位置到中心形成较强的{100}<011>织构,其锋锐度f(g)≥10,轧制过程在剪切力作用下,沿板厚方向次表层获得较多位向精确Goss织构,其锋锐度f(g)≥6。
6.常化工序,采用2段式常化工艺,第一段常化温度:1050~1150℃,第二段常化温度890~960℃。常化后部分{100}<011>织构转变为{114}<841>,Goss织构位向趋于准确。
7.冷轧工序,冷轧采用时效轧制工艺,时效温度150~250℃,压下率80%~92%。冷轧后获得较强的γ线织构以及{100}<001>、{112}<011>等织构,其中γ线织构锋锐度f(g)≥10。
8.脱碳渗氮退火,脱碳退火均热段温度750~860℃,脱碳后C≤25ppm;渗氮均热段温度700~800℃,渗氮量150~300ppm。脱碳渗氮板织构平均晶粒尺寸18~25μm。退火后γ线织构、{100}<001>、{112}<011>等转变为{111}<112>、{114}<841>等织构,其织构强度f(g)≥12;退火板含少量Goss织构,但Goss织构位向偏离角不大于7°。
9.高温罩式退火,退火升温速率为10~15℃/h,退火温度1200℃,气氛为25Vol%氢气+75Vol%氮气,当达到二次再结晶温度将混合气体切换为纯氢气。
10.平整拉伸,钢卷出罩式退火炉后自然冷却,钢卷由于受到应力的作用,表面出现隆起变形等缺陷,需要将冷却后的钢卷进行平整拉伸,平整拉伸温度为600℃~800℃,拉伸伸长率0.28%~0.70%。检验拉伸后材料的Goss织构取向度,采用EBSD检验设备来检验成品Goss晶粒的位向偏离角。
(三)有益效果
通过热轧、常化、冷轧、脱碳退火、高温退火工序的织构精准控制方法,大大提高成品GOSS织构位向准确性,提高成品材料磁性能。
附图说明
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
图1为本发明一种高取向度GOSS织构Fe-3%Si材料中热轧板织构图;
图2为本发明一种高取向度GOSS织构Fe-3%Si材料中冷轧板织构ODF图;
图3为本发明一种高取向度GOSS织构Fe-3%Si材料中冷脱碳渗氮板织构图;
图4为本发明一种高取向度GOSS织构Fe-3%Si材料中成品板Goss织构极图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。此外,下文为了描述方便,所引用的“上”、“下”、“左”、“右”等于附图本身的上、下、左、右等方向一致,下文中的“第一”、“第二”等为描述上加以区分,并没有其他特殊含义。
针对现有技术中存在的问题,本发明提供一种高取向度GOSS织构Fe-3%Si材料的获得方法,其化学成分按质量百分比:C:0.038%~0.080%,Si:3.01%~3.95%,Mn:0.050%~0.180%,S:0.003%~0.006%,Als:0.020%~0.035%,N:0.0050%~0.0130%,Sn:0.01%~0.10%,B:0.0020%~0.0060%,余量为Fe及不可避免的杂质。该生产方法主要流程:炼钢—连铸—热连轧—常化—酸洗—冷轧—脱碳渗氮退火—涂氧化镁隔离剂—高温罩式退火—平整拉伸退火。本方法主要依据关键工序工艺与其板织构的匹配性原理,具体:
a.连铸工序,铸坯厚度210mm~230mm,板坯凝固组织要求柱状晶比例≥40%,不使用电磁搅拌,使含大量{100}织构的柱状晶保留下来。
b.热轧工序,加热温度1120~1200℃,精轧出口温度≥920℃;轧制后材料厚度2.1mm~2.5mm。获得板厚1/4位置到中心形成较强的{100}<011>织构,其锋锐度f(g)≥10,次表层获得位向准确的Goss织构。
c.冷轧工序,冷轧采用时效轧制,时效温度100~250℃,冷轧压下率80%~92%。通过调整冷轧压缩比获得较强的α线织构以及较强的{111}<110>。
d.脱碳渗氮退火,脱碳后C≤25ppm,渗氮量150~300ppm。脱碳后平均晶粒尺寸18~25μm、{111}<112>、{114}<841>织构强度要高f(g)≥12。
e.高温罩式退火,退火升温速率为10~15℃/h,退火温度1200℃,气氛为20Vol%~40Vol%氢气+60Vol%~80Vol%氮气。其特征在于,最终成品Goss织构取向度偏离角≤3°。
实施例
按设定化学成分冶炼钢水,具体成分如表1所示,连铸采用双流板坯连铸机,铸坯采用热直装方式,入炉前铸坯温度在500~700℃,加热温度1140~1180℃,轧制模式采用1+5模式,粗轧温度980~1020℃;精轧终轧温度840~920℃;卷曲温度550~570℃;热轧板织构如图1所示;
常化工序,第一段常化温度1100℃,第二段常化温度900℃,1100℃-900℃保温时间1.5~2.5min。冷过程轧整体压下率为80~92%,采用5道次可逆轧制,其中2~4道次采用毛化辊进行时效轧制,时效温度最高213℃。将2.3mm厚度热轧卷板扎成0.26mm厚度冷轧卷板,γ线织构织构锋锐度f(g)=10.1;冷轧板织构如图2所示。
脱碳渗氮退火:脱碳退火均热段温度750~860℃,脱碳后C≤25ppm;渗氮均热段温度700~800℃,渗氮量150~200ppm。退火后{111}<112>织构含量20%~35%、{114}<841>织构含量45%~58%,其织构强度f(g)=5;脱碳渗氮板织构如图3所示。
高温罩式退火,退火温度1200℃,气氛为25Vol%氢气+75Vol%氮气,当达到二次再结晶温度将混合气体切换为纯氢气;最终成品Goss织构如图4所示。
采用上述方法制备获得5次,得到成品即为实施例1-5所得。
实施例 C Si Mn P S Als N Sn B
1 0.052 3.25 0.138 0.024 0.008 0.0243 0.0095 0.053 0.0044
2 0.060 3.21 0.120 0.022 0.007 0.0286 0.0054 0.053 0.0020
3 0.051 3.25 0.113 0.024 0.006 0.0232 0.0068 0.054 0.0034
4 0.049 3.26 0.129 0.025 0.006 0.0259 0.0073 0.056 0.0021
5 0.062 3.30 0.106 0.026 0.007 0.0295 0.0095 0.052 0.0047
表1:本发明实施例化学成分wt%
Figure BDA0003544634510000051
表2:本发明实施例关键工艺参数
Figure BDA0003544634510000052
表3:本发明实施例织构控制参数
本领域技术人员可以理解附图只是一个优选实施场景的示意图,附图中的模块或流程并不一定是实施本专利所必须的。
本领域技术人员可以理解实施场景中的装置中的模块可以按照实施场景描述进行分布于实施场景的装置中,也可以进行相应变化位于不同于本实施场景的一个或多个装置中。上述实施场景的模块可以合并为一个模块,也可以进一步拆分成多个子模块。
以上公开的仅为本专利的具体实施场景,但是,本专利并非局限于此,任何本领域的技术人员能思之的变化都应落入本专利的保护范围。

Claims (8)

1.一种高取向度GOSS织构Fe-3%Si材料,其特征在于,该材料的化学成分按质量百分比:C:0.038%~0.080%,Si:3.01%~3.95%,Mn:0.050%~0.180%,S:0.003%~0.006%,Als:0.020%~0.035%,N:0.0050%~0.0130%,Sn:0.01%~0.10%,B:0.0020%~0.0060%,余量为Fe及不可避免的杂质。
2.根据权利要求1所述的一种高取向度GOSS织构Fe-3%Si材料的获得方法,其特征在于,该方法包括以下步骤:
连铸工序:铸坯厚度210mm~230mm,板坯凝固组织要求柱状晶比例≥40%,不使用电磁搅拌,使含大量{100}织构的柱状晶保留下来;
热轧工序:加热温度1120~1200℃,精轧出口温度≥920℃,获得板厚1/4位置到中心形成{100}<011>织构,次表层获得位向准确的Goss织构;
冷轧工序:冷轧采用时效轧制,时效温度100~250℃,冷轧压下率80%~92%,通过调整冷轧压缩比获得α线织构以及{111}<110>织构;
脱碳渗氮退火:脱碳后C≤25ppm,渗氮量150~300ppm;
高温罩式退火:退火升温速率为10~15℃/h,退火温度1200℃。
3.根据权利要求2所述的一种高取向度GOSS织构Fe-3%Si材料的获得方法,其特征在于:所述热轧工序步骤中,轧制后材料厚度2.1mm~2.5mm。
4.根据权利要求2所述的一种高取向度GOSS织构Fe-3%Si材料的获得方法,其特征在于:所述脱碳渗氮退步骤中,脱碳后平均晶粒尺寸18~25μm、{111}<112>、{114}<841>织构强度要高f(g)≥12。
5.根据权利要求2所述的一种高取向度GOSS织构Fe-3%Si材料的获得方法,其特征在于:所述高温罩式退火步骤中,气氛为20Vol%~40Vol%氢气+60Vol%~80Vol%氮气,当达到二次再结晶温度将混合气体切换为纯氢气。
6.根据权利要求2-5任一所述的一种高取向度GOSS织构Fe-3%Si材料的获得方法,其特征在于:该方法还包括:
平整拉伸:钢卷出罩式退火炉后自然冷却,将冷却后的钢卷进行平整拉伸,平整拉伸温度为600℃~800℃,拉伸伸长率0.28%~0.70%。
7.根据权利要求6所述的一种高取向度GOSS织构Fe-3%Si材料的获得方法,其特征在于:所述连铸工序前,需要先经过转炉炼钢工序,所述转炉炼钢工序:废钢采用专用洁净用钢,废钢比控制在10%~21%。
8.根据权利要求7所述的一种高取向度GOSS织构Fe-3%Si材料的获得方法,其特征在于:所述转炉炼钢工序过程中,转炉终点成分:[C]0.035-0.050%,[P]≤0.015%,[Mn]≤0.09%,[S]≤0.005%,炉渣碱度R控制3.5以上。
CN202210246046.6A 2022-03-14 2022-03-14 一种高取向度GOSS织构Fe-3%Si材料的获得方法 Active CN114645202B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210246046.6A CN114645202B (zh) 2022-03-14 2022-03-14 一种高取向度GOSS织构Fe-3%Si材料的获得方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210246046.6A CN114645202B (zh) 2022-03-14 2022-03-14 一种高取向度GOSS织构Fe-3%Si材料的获得方法

Publications (2)

Publication Number Publication Date
CN114645202A true CN114645202A (zh) 2022-06-21
CN114645202B CN114645202B (zh) 2023-05-05

Family

ID=81994503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210246046.6A Active CN114645202B (zh) 2022-03-14 2022-03-14 一种高取向度GOSS织构Fe-3%Si材料的获得方法

Country Status (1)

Country Link
CN (1) CN114645202B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115478135A (zh) * 2022-09-06 2022-12-16 东北大学 一种具有强{100}取向柱状晶的高硅钢薄带的制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211232A (ja) * 1989-09-28 1991-09-17 Nippon Steel Corp 磁束密度の高い一方向性珪素鋼板の製造方法
CN101768697A (zh) * 2008-12-31 2010-07-07 宝山钢铁股份有限公司 用一次冷轧法生产取向硅钢的方法
CN102041440A (zh) * 2011-01-16 2011-05-04 首钢总公司 一种高磁感取向硅钢的生产方法
CN102560236A (zh) * 2010-12-17 2012-07-11 鞍钢股份有限公司 一种普通取向硅钢的制备方法
CN102618783A (zh) * 2011-01-30 2012-08-01 宝山钢铁股份有限公司 一种高磁感取向硅钢的生产方法
CN103255274A (zh) * 2012-08-10 2013-08-21 新万鑫(福建)精密薄板有限公司 一般取向硅钢由两次冷轧改为一次冷轧的生产方法
CN103882289A (zh) * 2014-03-25 2014-06-25 新万鑫(福建)精密薄板有限公司 用一般取向钢原料制造高磁感冷轧取向硅钢的生产方法
CN103911545A (zh) * 2014-04-14 2014-07-09 国家电网公司 一种强高斯织构占有率高磁感取向电工钢带的制备方法
WO2015096430A1 (zh) * 2013-12-27 2015-07-02 东北大学 一种取向高硅电工钢的制备方法
CN109097677A (zh) * 2018-08-07 2018-12-28 东北大学 一种高磁感取向高硅钢板薄带及其制备方法
CN109112283A (zh) * 2018-08-24 2019-01-01 武汉钢铁有限公司 低温高磁感取向硅钢的制备方法
CN112301192A (zh) * 2020-10-13 2021-02-02 安阳钢铁股份有限公司 一种低碳含量冷轧无取向硅钢镀锌机组立式退火工艺
CN113667895A (zh) * 2021-08-19 2021-11-19 安钢集团冷轧有限责任公司 一种消除冲压用冷轧板快速出现拉伸应变痕的方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211232A (ja) * 1989-09-28 1991-09-17 Nippon Steel Corp 磁束密度の高い一方向性珪素鋼板の製造方法
CN101768697A (zh) * 2008-12-31 2010-07-07 宝山钢铁股份有限公司 用一次冷轧法生产取向硅钢的方法
WO2010075797A1 (zh) * 2008-12-31 2010-07-08 宝山钢铁股份有限公司 用一次冷轧法生产取向硅钢的方法
CN102560236A (zh) * 2010-12-17 2012-07-11 鞍钢股份有限公司 一种普通取向硅钢的制备方法
CN102041440A (zh) * 2011-01-16 2011-05-04 首钢总公司 一种高磁感取向硅钢的生产方法
CN102618783A (zh) * 2011-01-30 2012-08-01 宝山钢铁股份有限公司 一种高磁感取向硅钢的生产方法
CN103255274A (zh) * 2012-08-10 2013-08-21 新万鑫(福建)精密薄板有限公司 一般取向硅钢由两次冷轧改为一次冷轧的生产方法
WO2015096430A1 (zh) * 2013-12-27 2015-07-02 东北大学 一种取向高硅电工钢的制备方法
CN103882289A (zh) * 2014-03-25 2014-06-25 新万鑫(福建)精密薄板有限公司 用一般取向钢原料制造高磁感冷轧取向硅钢的生产方法
CN103911545A (zh) * 2014-04-14 2014-07-09 国家电网公司 一种强高斯织构占有率高磁感取向电工钢带的制备方法
CN109097677A (zh) * 2018-08-07 2018-12-28 东北大学 一种高磁感取向高硅钢板薄带及其制备方法
CN109112283A (zh) * 2018-08-24 2019-01-01 武汉钢铁有限公司 低温高磁感取向硅钢的制备方法
CN112301192A (zh) * 2020-10-13 2021-02-02 安阳钢铁股份有限公司 一种低碳含量冷轧无取向硅钢镀锌机组立式退火工艺
CN113667895A (zh) * 2021-08-19 2021-11-19 安钢集团冷轧有限责任公司 一种消除冲压用冷轧板快速出现拉伸应变痕的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
肖丽俊: "薄板坯连铸连轧工艺下Hi-B钢的组织及织构", 《工程科学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115478135A (zh) * 2022-09-06 2022-12-16 东北大学 一种具有强{100}取向柱状晶的高硅钢薄带的制备方法
CN115478135B (zh) * 2022-09-06 2024-02-02 东北大学 一种具有强{100}取向柱状晶的高硅钢薄带的制备方法

Also Published As

Publication number Publication date
CN114645202B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
EP4206353A1 (en) High-grade non-oriented silicon steel and production method therefor
KR101404101B1 (ko) 고 자기유도를 가지는 무방향성 규소강의 제조 방법
US9816152B2 (en) Manufacture method of high-efficiency non-oriented silicon steel with excellent magnetic performance
CN100381598C (zh) 一种取向硅钢及其生产方法和装置
WO2021027797A1 (zh) 一种高磁感取向硅钢及其制造方法
CN106702260B (zh) 一种高磁感低铁损无取向硅钢及其生产方法
EP3719160B1 (en) Non-oriented electrical steel sheet with excellent magnetism and manufacturing method therefor
CN110735088A (zh) 一种薄板坯生产的无取向硅钢及其制造方法
JP2018505962A (ja) 方向性電磁鋼板およびその製造方法
CN103695619A (zh) 一种高磁感普通取向硅钢的制造方法
TW201608035A (zh) 優異之磁氣特性之無方向性電磁鋼板
CN101654757A (zh) 涂层半工艺无取向电工钢板及制造方法
CN111057821B (zh) 一种无取向电工钢及其制备方法、应用
CN113403537B (zh) 无取向硅钢及其生产方法
CN105950992A (zh) 一种采用一次冷轧法制造的晶粒取向纯铁及方法
CN108504926A (zh) 新能源汽车用无取向电工钢及其生产方法
US20230257860A1 (en) Method of producing a non-oriented electrical steel sheet
CN114574761B (zh) 无取向电工钢及其制备方法
CN105296849A (zh) 一种大型发电机转子用无取向电工钢及生产方法
CN1803389B (zh) 无方向性电磁钢板的制造方法和原料热轧钢板
CN111139407A (zh) 一种优化的低铁损高磁感取向电工钢生产方法
CN114645202A (zh) 一种高取向度GOSS织构Fe-3%Si材料的获得方法
JP2000129410A (ja) 磁束密度の高い無方向性電磁鋼板
CN113528969A (zh) 一种超高磁感无取向硅钢及其制造方法和在汽车发电机生产中的应用
CN109182907B (zh) 一种无头轧制生产半工艺无取向电工钢的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant