WO2010075797A1 - 用一次冷轧法生产取向硅钢的方法 - Google Patents
用一次冷轧法生产取向硅钢的方法 Download PDFInfo
- Publication number
- WO2010075797A1 WO2010075797A1 PCT/CN2009/076317 CN2009076317W WO2010075797A1 WO 2010075797 A1 WO2010075797 A1 WO 2010075797A1 CN 2009076317 W CN2009076317 W CN 2009076317W WO 2010075797 A1 WO2010075797 A1 WO 2010075797A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- annealing
- oriented silicon
- cold rolling
- silicon steel
- steel
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 91
- 229910000976 Electrical steel Inorganic materials 0.000 title claims abstract description 50
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 35
- 238000005097 cold rolling Methods 0.000 title claims abstract description 33
- 238000000137 annealing Methods 0.000 claims abstract description 74
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000000203 mixture Substances 0.000 claims abstract description 21
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 19
- 238000005098 hot rolling Methods 0.000 claims abstract description 14
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 11
- 238000009749 continuous casting Methods 0.000 claims abstract description 8
- 229910052802 copper Inorganic materials 0.000 claims abstract description 7
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 7
- 230000009467 reduction Effects 0.000 claims abstract description 6
- 238000010521 absorption reaction Methods 0.000 claims abstract description 5
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 5
- 229910052718 tin Inorganic materials 0.000 claims abstract description 5
- 238000007670 refining Methods 0.000 claims abstract description 4
- 238000003723 Smelting Methods 0.000 claims abstract description 3
- 238000005261 decarburization Methods 0.000 claims description 49
- 229910000831 Steel Inorganic materials 0.000 claims description 45
- 239000010959 steel Substances 0.000 claims description 45
- 238000010438 heat treatment Methods 0.000 claims description 40
- 230000008569 process Effects 0.000 claims description 32
- 238000010606 normalization Methods 0.000 claims description 13
- 230000001681 protective effect Effects 0.000 claims description 12
- 238000005096 rolling process Methods 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 238000009628 steelmaking Methods 0.000 claims description 4
- 241000949477 Toona ciliata Species 0.000 claims 1
- 230000002349 favourable effect Effects 0.000 abstract description 9
- 238000001953 recrystallisation Methods 0.000 abstract description 7
- 239000012535 impurity Substances 0.000 abstract description 5
- 229910052748 manganese Inorganic materials 0.000 abstract description 2
- 238000005266 casting Methods 0.000 abstract 1
- 238000005121 nitriding Methods 0.000 description 55
- 238000005516 engineering process Methods 0.000 description 27
- 239000003112 inhibitor Substances 0.000 description 24
- 239000000126 substance Substances 0.000 description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- 239000010949 copper Substances 0.000 description 7
- 238000005336 cracking Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 230000005674 electromagnetic induction Effects 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 239000010754 BS 2869 Class F Substances 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 235000001513 akia Nutrition 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1233—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1255—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1272—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1277—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
- C21D8/1283—Application of a separating or insulating coating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14775—Fe-Si based alloys in the form of sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B1/30—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process
- B21B1/32—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work
- B21B1/36—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work by cold-rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B9/00—Measures for carrying out rolling operations under special conditions, e.g. in vacuum or inert atmosphere to prevent oxidation of work; Special measures for removing fumes from rolling mills
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
- C21D1/28—Normalising
Definitions
- the present invention relates to a method of producing oriented silicon steel, and more particularly to a method of producing oriented silicon steel by a single cold rolling process. Background technique
- the basic chemical composition is Si (2 ⁇ 5 ⁇ 4 ⁇ 5%), C (0 ⁇ 01 ⁇ 0 ⁇ 10%) ), ⁇ (0 ⁇ 03 ⁇ 0 ⁇ 1%), S (0.012 ⁇ 0 ⁇ 050%), Als (0 ⁇ 01 ⁇ 0 ⁇ 05%), ⁇ (0 ⁇ 003 ⁇ 0 ⁇ 012%), some
- the component system further contains one or more of elements such as Cu, Mo, Sb, Cr, B, Bi, etc., and the balance is iron and inevitable impurity elements;
- the slab is heated to a temperature of about 140 CTC in a special high-temperature heating furnace, and is kept for more than 30 minutes to fully dissolve the favorable inclusions, so as to precipitate a small, dispersed second in the silicon steel matrix in the subsequent hot rolling process.
- a phase point that is, an inhibitor
- pickling is performed to remove the surface scale
- the thickness of the finished product is rolled by one cold rolling or two or more cold rolling methods including intermediate annealing.
- the [C] in the steel plate is removed to the extent that it does not affect the magnetic properties of the finished product (generally should be below 30 ppm); during the high temperature annealing, the steel plate undergoes secondary recrystallization. And the physical and chemical changes such as the formation and purification of the underlying layer of Mg 2 Si0 4 (removing elements harmful to magnetic properties such as S and N in steel), and obtaining oriented silicon steel having high orientation and low iron loss; finally, coated with an insulating coating and Stretch annealing gives oriented silicon steel products in commercial applications.
- Inhibitors are formed from the beginning of steelmaking. In the subsequent processes, the inhibitors all function and must be controlled and adjusted.
- the slab is heated at a high temperature, and the heating temperature is up to 1400 °C, which is the limit level of the traditional heating furnace.
- the control of the temperature drop of the rolling line is also the limit of the existing hot rolling technology;
- the heating furnace needs frequent repair and low utilization rate; at the same time, the burning energy consumption is high; the hot rolling curling is large, which makes the cold rolling process difficult, the finished product rate is low, and the cost is high.
- Russia's VIZ and other plants use medium-temperature oriented silicon steel production technology.
- the slab heating temperature is 1250 ⁇ 1300 °C.
- the chemical composition contains high Cu, with A1N and Cu as inhibitors.
- the inhibitor of this method is similar to the high temperature method and is also a congenital inhibitor.
- the problem of edge cracking caused by high temperature heating can be completely avoided, but the disadvantage is that only general oriented silicon steel can be produced, and high magnetic induction oriented silicon steel cannot be produced.
- the slab is heated below 125 CTC, and the hot rolled sheet is edgeless and has good productivity.
- the inhibitor is obtained by nitriding after decarburization annealing, and is an acquired type of inhibitor, which can produce both general oriented silicon steel products and high magnetic induction oriented silicon steel products.
- the method also solves the problem of hot rolling edge cracking of oriented silicon steel, improves productivity, and reduces production cost. Inhibitors are also acquired, obtained by nitriding.
- the low temperature slab heating technology completely solves the inherent defects of the high temperature slab heating technology, improves the productivity and reduces the cost, and represents the direction of technological development.
- Japanese low-temperature oriented silicon steel technology such as the method described in Japanese Patent No. [211-211232], has a chemical composition of 1: [C] 0. 025% ⁇ 0 ⁇ 075%, Si 2. 5. /. ⁇ 4 ⁇ 5%, S ⁇ O. 015%, Als 0. 010 ⁇ 0 ⁇ 050%, ⁇ 0. 0010 ⁇ 0. 0120%, ⁇ 0. 05 ⁇ 0. 45%, Sn 0. 01 ⁇ 0. The remaining 10% is Fe and inevitable inclusions.
- the slab is heated at 120 CTC or less and then hot rolled, and is rolled to the final product thickness by one cold rolling or two or more intermediate cold rolling methods, and the cold rolling reduction ratio is 80% or more, followed by decarburization.
- Chemical composition 2 is: [C] 0. 025% ⁇ 0 ⁇ 075%, Si 2. 5% ⁇ 4 ⁇ 5%, S ⁇ O. 015%, Als 0. 010 ⁇ 0 ⁇ 050% ⁇ 0 ⁇ 0010 ⁇ 0 ⁇ 0120%, ⁇ : 0 ⁇ 0005 ⁇ 0 ⁇ 0080%, ⁇ 0 ⁇ 05 ⁇ 0 ⁇ 45%, Sn 0. 01 ⁇ 0. 10%, the rest are Fe and unavoidable inclusions.
- the slab is heated at a temperature below 120 CTC, then hot rolled, and rolled to a final product thickness by one cold rolling or two or more intermediate cold rolling methods, and the cold rolling reduction ratio is 80% or more, followed by decarburization annealing and High temperature annealing, nitriding at the beginning of secondary recrystallization of decarburization annealing and high temperature annealing.
- the protective atmosphere is a mixed gas of N 2 , wherein the NH 3 content is more than 1000 ppm, the oxygen potential is ⁇ ⁇ 2 0 / ⁇ 0.04, and the nitriding temperature is 500 ⁇ 900 ° C.
- a weak oxidizing atmosphere is maintained in a temperature range of 600 to 850 °C.
- the technology of the low-temperature oriented silicon steel production technology of the company is the method described in Chinese patent CN1228817A. Its chemical composition: Si 2. 5 - 5%, C 0. 002 ⁇ 0. 075%, Mn 0 05 ⁇ 0 ⁇ 4%, S (or S+0. 503Se) ⁇ 0. 015%, acid soluble A1 0. 010 ⁇ 0 ⁇ 045%, ⁇ 0. 003 ⁇ 0 ⁇ 013%, Sn ⁇ O. 2%, the rest is Fe and unavoidable impurities.
- the steel of the above composition is cast into a thin slab and heated at a temperature of 1150 to 1300 ° C. After hot rolling, normalizing annealing and final cold rolling with a reduction ratio of more than 80% are performed.
- the annealing atmosphere is controlled to make the steel
- the nitrogen uptake is less than 50 ppm. This method is mainly suitable for the production of oriented silicon steel in thin slab continuous casting. No nitriding process was used.
- Chinese patent CN1231703A discloses a method in which the chemical composition system belongs to a low carbon and copper-containing component system, and the production method is basically the same as the aforementioned patent. The difference is that the steel sheet is nitrided after decarburization annealing, and the nitriding temperature is 900 ⁇ 1050 °C, the nitriding amount is less than 50ppm. Suitable for thin slab production of oriented silicon steel.
- the Chinese patent CN1242057A also discloses a method, the chemical composition thereof: Si 2. 5 ⁇ 4. 5%; C 150
- ⁇ 750ppm preferably 250 ⁇ 500ppm; Mn 300 ⁇ 4000ppm, preferably 500 ⁇ 2000ppm; S ⁇ 120ppm, Preferably, 50 to 70 ppm; acid soluble Al 100 to 400 ppm, preferably 200 to 350 ppm; N 30 to 130 ppm, preferably 60 to 100 ppm; Ti ⁇ 50 ppm, preferably less than 30 ppm; and the balance being Fe and unavoidable impurities.
- the slab heating temperature is 1200 ⁇ 1320 °C, and the nitriding temperature is 850 ⁇ 1050 °C. The rest of the process is basically the same as the above two.
- the main point of other patents is that there is a dispersed phase in the hot rolled sheet to facilitate high temperature nitriding.
- the nitriding temperature is 900 to 1000 °C.
- the low temperature technology of Azias Speyer Aliteni is limited to the production of oriented silicon steel by high temperature nitriding and/or thin slab continuous casting.
- the key point is that there is a dispersed phase in the hot rolled sheet, which is convenient for high temperature application.
- Nitriding method, nitriding is simultaneous decarburization and nitriding or nitriding after decarburization.
- Japanese technology focuses on the process of decarburization annealing to secondary recrystallization.
- the nitriding of the steel plate is low, the nitriding temperature is low, and the inhibitor is formed in the early stage of high temperature annealing.
- the European technology is nitriding after decarburization annealing, or Carbon annealing and nitriding are carried out simultaneously, and the nitriding temperature is high; the technology of P0SC0 is suitable for the low carbon and low A1 component system, and nitriding and decarburization are simultaneously performed.
- the slab is heated.
- the temperature is higher, such as around 125 CTC, so it is necessary to control the favorable inclusions in the hot rolled sheet.
- the nitriding is carried out after decarburization or simultaneously with decarburization annealing.
- P0SC0 is also a process of decarburization and nitriding.
- the effect of oxide layer on the surface of steel plate is inevitable.
- the content of A1 in steel is low, and BN is the main inhibitor.
- the instability of B will lead to inhibition.
- the instability of the ability, the stability of the magnetic properties will be greatly affected.
- the high temperature slab heating method produces oriented silicon steel with inherent disadvantages such as high energy consumption, low efficiency of heating furnace, large edge cracking of hot rolled sheet, poor productivity, low cost, etc.
- Low temperature slab heating technology produces oriented silicon steel. These problems can be solved well, and thus have strong development motivation.
- the low temperature slab heating technology disclosed in the patent literature produces oriented silicon steel, which is almost based on the nitriding process.
- the object of the present invention is to provide a method for producing oriented silicon steel by a single cold rolling method, by controlling the normalized cooling process of the hot rolled sheet, utilizing the nitrogen absorption of the slab in the decarburization annealing and high temperature annealing low heat preservation stage to form a sufficient amount.
- the (Al, Si) N is beneficially mixed, and the primary recrystallized structure of the steel sheet can be effectively controlled by using the inhibitory effect on the primary recrystallized grains, which is very stable for obtaining a stable and perfect secondary recrystallized product.
- the present invention overcomes the adverse effects of ammonia nitriding on the underlayer in other patents, and is advantageous for obtaining a good glass film underlayer.
- a method for producing oriented silicon steel by a cold rolling method comprising the steps of:
- the slab of the following composition is obtained: C 0. 035 ⁇ 0 ⁇ 065%, Si 2. 9 ⁇ 4 ⁇ 0%, ⁇ 0. 08 ⁇ 0 ⁇ 18%, S 0. 005 ⁇ 0 ⁇ 012%, Als 0. 015 ⁇ 0 ⁇ 035%, ⁇ 0 ⁇ 0050 ⁇ 0 ⁇ 0130%, Sn 0 ⁇ 001 ⁇ 0 ⁇ 15%, ⁇ 0 ⁇ 010 ⁇ 0 ⁇ 030%, Cu 0. 05 ⁇ 0. 60%, Cr ⁇ 0.2%, the balance being Fe and unavoidable inclusions, by mass percentage;
- the slab is heated to a temperature of 1090 to 1200 ° C, less than 118 CTC, and a temperature of more than 86 CTC is rolled, and rolled into a thickness of 1. 5 ⁇ 3. 5mm thick rolled sheet, coiling temperature of 500 ⁇ 650 ° C;
- annealing temperature 1050 ⁇ 1180 ° C (1 ⁇ 20 seconds) + (850 ⁇ 950 ° C X 30 ⁇ 200 seconds), cooling rate: 10 ° C / s ⁇ 6 (TC / s;
- the cold rolling reduction rate is 75 ⁇ 92%
- the steel sheet rolled to the thickness of the finished product is subjected to decarburization annealing, and a high temperature annealing separator containing MgO as a main component is applied;
- the decarburization temperature control range is 780 to 880 ° C ;
- the protective atmosphere dew point is 40 to 80 ° C ;
- decarburization time 80 ⁇ 350 seconds;
- protective atmosphere mixed gas with N 2 , content: 15 ⁇ 85%; total oxygen on the surface of decarburized plate [0] : 171/t ⁇ [0] ⁇ 313/t (t is the actual thickness of the steel plate, mm ), the nitrogen uptake is 2 ⁇ 10 ppm;
- the oriented silicon steel may be added with MoO. 01 ⁇ 0. 10%, and/or Sb ⁇ 0.2% in terms of mass percentage.
- the plate thickness is 1/4 to 1/3 and the plate thickness is 2/3 to 3/4, Gaussian texture
- the ratio of (110) [001] and cubic texture (001) [110] is controlled at: 0 ⁇ 2 ⁇ ⁇ (110) [001] / ⁇ (001) [1 ⁇ 8, I (110) [001] and I (001) [110] is the intensity of Gaussian texture and cubic texture respectively; preferably: 0.5 ⁇ 1 (
- the normal plate thickness is 1/4 to 1/3 and the plate thickness is 2/3 to 3/4, and the ratio of the number of crystal grains having a Gaussian texture to the total number of crystal grains is ⁇ 5%.
- the billet In the traditional oriented steel production process, in order to form fine and uniform inhibitors such as MnS and AlN during the annealing of hot-rolled or hot-rolled sheets, the billet must be heated to 1350 ⁇ 1400 °C to make the billet coarse.
- the precipitates of MnS and A1N are solid solution, so it is a high temperature heating technology for slabs.
- low-temperature heating technology of oriented silicon steel slabs such as nitriding forming inhibitors
- nitriding forming inhibitors mainly in the following categories: First, adding in high-temperature annealing separators Nitriding chemical composition, and then nitriding the steel strip to form inhibitors such as (Al, Si)N in the high-temperature annealing stage, such as Japanese Patent Laid-Open No. 1-230721, Ping 1 283324, etc.; The nitriding atmosphere of the stage is nitriding. Both of these types have failed to obtain magnetically stable products due to uneven nitriding and the like.
- the present invention utilizes a conventional continuous casting process, and thus the production process of oriented steel using thin slab continuous casting and rolling disclosed in the patents US Pat. No. 6,273,964 B1 and US Pat. No. 6,296,719 B1 is quite different.
- the technology of Azias Speyer Aitelni Company belongs to the patent of high temperature nitriding.
- the nitriding method is also a method of simultaneous nitriding or decarburization and nitriding after decarburization, which is different from the method of the present invention;
- Chinese Patent No. The methods described in 85100664 and 88101506. 7 are established in a conventional process in which the inhibitor is solid solution during heating and controlled to precipitate during the rolling process.
- the actual heating temperature is close to 1300 ° C, which is substantially different from the method of the present invention. .
- the invention realizes the optimization of the texture and favorable inclusion amount of the steel sheet after normalization by adjusting the normalization process of the hot rolled sheet; in the decarburization annealing process, by controlling the nitrogen-hydrogen ratio, temperature, time and dew point in the protective atmosphere, Achieve decarburization and precise control of the oxygen content on the surface of the steel sheet to ensure a good bottom layer; at the same time control the nitrogen-hydrogen ratio in the protective atmosphere to make the steel sheet absorb nitrogen; through the control of the nitrogen-hydrogen ratio in the protective atmosphere at low heat preservation stage in the high-temperature annealing process, Obtain an appropriate amount of inhibitor to ensure the perfection of secondary recrystallization.
- 1 is a schematic view showing a normalized plate thickness of 1/4 to 1/3 and a plate thickness of 2/3 to 3/4;
- FIG. 2 is a control range diagram of a decarburization process that may obtain a good underlayer of the present invention
- Fig. 3 is a schematic view showing the control of the nitrogen uptake of the present invention being greater than or equal to 10 ppm.
- the normalized condition test was carried out using the A component in Table 2 and the hot rolled condition steel in Table 3, and the influence of the normalization process conditions on 1120 ° C X6s + 910 ° C XX s + Y ° C / s on the texture is as shown in Table 5, often The relationship between the process conditions and the magnetic properties is shown in Table 6.
- the normalized condition test was carried out using the A component in Table 2 and the hot rolled condition steel in Table 3, and the normalization process conditions were 1120 ° C X 5s + 910 ° C X 70 + 20 ° C / s, decarburization time, temperature, dew point on magnetic properties.
- the effects of the bottom layer and the bottom layer are shown in Tables 7 and 8.
- the normalized condition test was carried out using the A component in Table 2 and the hot rolled condition steel in Table 3, and the normalization process conditions were 1120 ° C X 5s + 910 ° C X 70 + 20 ° C / s , decarburization 850 ° C X 200 s , dew point + The effect of nitrogen ratio, dew point and time on the magnetic properties in a protective atmosphere at 60 ° C, high temperature annealing and heating temperature of 1000 ° or less is shown in Table 9.
- the steel was made by a 500 kg vacuum furnace, and the chemical composition was as shown in Table 10. Hot rolling was carried out according to the hot rolling conditions shown in C of Table 3; thereafter, the hot rolled sheet was subjected to a process of cooling at 1150 ° C X 5 s + 93 (TCX 70 s + 35 ° C / s). Normalization, strip cold rolling to 0.30mm, 850 °C X200s decarburization, coating MgO release agent, high temperature annealing and annealing, coating the insulation layer, measuring magnetic properties, the results are also listed in Table 10.
- the thickness of the slab is generally 200 ⁇ 250mm. In order to heat evenly, it must be heated for a long time, which can consume energy;
- the method of the present invention effectively solves the above problems, and is compatible with Japan, Korea P0SC0 and Agia Compared with methods such as Speth Aritzelni, the method of the present invention optimizes the size and texture of the inhibitor by normalization, and in the stage of decarburization annealing and high temperature annealing, the steel sheet absorbs nitrogen to form additional (Al, Si) N.
- the favorable inclusions can effectively control the primary recrystallized structure of the steel sheet, which is very advantageous for obtaining a stable and perfect secondary recrystallized finished structure.
- the method does not use special nitriding treatment, and does not require a nitriding device, which is extremely advantageous for the formation of a good underlayer.
- the production of oriented silicon steel by low temperature slab heating technology represents the leading edge technology of oriented silicon steel development.
- the implementation equipment of the method of the invention is a conventional equipment for producing oriented silicon steel, and the realization technology is simple and easy, so it has a good promotion and application prospect.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011502219A JP5939797B2 (ja) | 2008-12-31 | 2009-12-31 | 一回冷間圧延法による方向性珪素鋼の製造方法 |
KR1020117013268A KR101462044B1 (ko) | 2008-12-31 | 2009-12-31 | 1차 냉간 압연 공정을 포함하고 있는 규소 강철의 제조방법 |
RU2011132006/02A RU2469104C1 (ru) | 2008-12-31 | 2009-12-31 | Способ производства текстурированной кремнистой стали с использованием единственной холодной прокатки |
US13/142,955 US9038429B2 (en) | 2008-12-31 | 2009-12-31 | Method for manufacturing grain-oriented silicon steel with single cold rolling |
EP09836084.5A EP2390373B1 (en) | 2008-12-31 | 2009-12-31 | Method for manufacturing grain oriented silicon steel with single cold rolling |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810205181.6 | 2008-12-31 | ||
CN200810205181A CN101768697B (zh) | 2008-12-31 | 2008-12-31 | 用一次冷轧法生产取向硅钢的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010075797A1 true WO2010075797A1 (zh) | 2010-07-08 |
Family
ID=42309829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/076317 WO2010075797A1 (zh) | 2008-12-31 | 2009-12-31 | 用一次冷轧法生产取向硅钢的方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9038429B2 (zh) |
EP (1) | EP2390373B1 (zh) |
JP (1) | JP5939797B2 (zh) |
KR (1) | KR101462044B1 (zh) |
CN (1) | CN101768697B (zh) |
RU (1) | RU2469104C1 (zh) |
WO (1) | WO2010075797A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2552562C2 (ru) * | 2010-09-30 | 2015-06-10 | Баошан Айрон Энд Стил Ко., Лтд. | Способ производства листа из текстурированной электротехнической стали с высокой плотностью магнитного потока |
CN114645202A (zh) * | 2022-03-14 | 2022-06-21 | 安阳钢铁集团有限责任公司 | 一种高取向度GOSS织构Fe-3%Si材料的获得方法 |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102041368A (zh) * | 2011-01-16 | 2011-05-04 | 首钢总公司 | 一种表面质量优异的取向电工钢生产方法 |
CN102127709A (zh) * | 2011-01-16 | 2011-07-20 | 首钢总公司 | 一种低温板坯加热高磁感取向硅钢及制造方法 |
CN102618783B (zh) * | 2011-01-30 | 2014-08-20 | 宝山钢铁股份有限公司 | 一种高磁感取向硅钢的生产方法 |
CN102758127B (zh) * | 2011-04-28 | 2014-10-01 | 宝山钢铁股份有限公司 | 具有优异磁性能和良好底层的高磁感取向硅钢生产方法 |
CN103031420B (zh) * | 2011-09-30 | 2014-12-03 | 宝山钢铁股份有限公司 | 一种磁性能优良的取向硅钢生产方法 |
EP2876173B9 (en) * | 2012-07-20 | 2019-06-19 | Nippon Steel & Sumitomo Metal Corporation | Manufacturing method of grain-oriented electrical steel sheet |
WO2014020369A1 (en) * | 2012-07-31 | 2014-02-06 | Arcelormittal Investigación Y Desarrollo Sl | Method of production of grain-oriented silicon steel sheet grain oriented electrical steel sheet and use thereof |
CN103255274B (zh) * | 2012-08-10 | 2015-06-03 | 新万鑫(福建)精密薄板有限公司 | 一般取向硅钢由两次冷轧改为一次冷轧的生产方法 |
CN103695619B (zh) | 2012-09-27 | 2016-02-24 | 宝山钢铁股份有限公司 | 一种高磁感普通取向硅钢的制造方法 |
CN102899467A (zh) * | 2012-10-23 | 2013-01-30 | 鞍钢股份有限公司 | 促进电工钢薄带有利织构生成的方法 |
CN103834856B (zh) * | 2012-11-26 | 2016-06-29 | 宝山钢铁股份有限公司 | 取向硅钢及其制造方法 |
CN103074476B (zh) * | 2012-12-07 | 2014-02-26 | 武汉钢铁(集团)公司 | 一种分三段常化生产高磁感取向硅钢带的方法 |
KR101480498B1 (ko) * | 2012-12-28 | 2015-01-08 | 주식회사 포스코 | 방향성 전기강판 및 그 제조방법 |
CN103667874A (zh) * | 2013-05-20 | 2014-03-26 | 新万鑫(福建)精密薄板有限公司 | 取向硅钢在高温退火期间缩短在炉时间的生产方法 |
CN103952629B (zh) * | 2014-05-13 | 2016-01-20 | 北京科技大学 | 一种中硅冷轧无取向硅钢及制造方法 |
CN104120233A (zh) * | 2014-07-02 | 2014-10-29 | 东北大学 | 一次轧制制备取向高硅钢板的方法 |
KR101642281B1 (ko) | 2014-11-27 | 2016-07-25 | 주식회사 포스코 | 방향성 전기강판 및 이의 제조방법 |
CN104928567A (zh) * | 2015-06-25 | 2015-09-23 | 宝山钢铁股份有限公司 | 具有良好加工性能的晶粒取向硅钢及其制造方法 |
CN104962816B (zh) * | 2015-07-15 | 2017-10-24 | 东北大学 | 一种极薄取向硅钢板及其短流程制造方法 |
DE102016100648B4 (de) * | 2015-12-23 | 2018-04-12 | Benteler Automobiltechnik Gmbh | Wärmebehandlungsofen sowie Verfahren zur Wärmebehandlung einer vorbeschichteten Stahlblechplatine und Verfahren zur Herstellung eines Kraftfahrzeugbauteils |
WO2017145907A1 (ja) * | 2016-02-22 | 2017-08-31 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
WO2017155057A1 (ja) * | 2016-03-09 | 2017-09-14 | Jfeスチール株式会社 | 方向性電磁鋼板の製造方法 |
CN106282779B (zh) * | 2016-09-29 | 2018-03-13 | 武汉科技大学 | 一种取向高硅钢薄带及其制备方法 |
DE102017220714B3 (de) * | 2017-11-20 | 2019-01-24 | Thyssenkrupp Ag | Optimierung des Stickstofflevels während der Haubenglühung |
DE102017220721A1 (de) * | 2017-11-20 | 2019-05-23 | Thyssenkrupp Ag | Optimierung des Stickstofflevels während der Haubenglühung III |
CN108480587B (zh) * | 2018-02-13 | 2020-02-18 | 鞍钢股份有限公司 | 一种低夹杂缺陷率高磁感取向硅钢的生产方法 |
CN109112395B (zh) * | 2018-08-10 | 2020-02-07 | 全球能源互联网研究院有限公司 | 一种无底层取向超薄带母材及其制备方法 |
CN110257700A (zh) * | 2019-06-02 | 2019-09-20 | 郭慧敏 | 一种取向硅钢钢带或钢板的制造方法 |
CN113308647B (zh) * | 2020-02-27 | 2022-06-28 | 宝山钢铁股份有限公司 | 一种搪瓷用冷轧钢板及其制造方法 |
CN112593053A (zh) * | 2020-12-14 | 2021-04-02 | 海安华诚新材料有限公司 | 一种气耗优化成本较低的取向硅钢高温退火工艺 |
CN113211325B (zh) * | 2021-05-07 | 2022-07-12 | 包头市威丰稀土电磁材料股份有限公司 | 一种物理喷砂方式制备取向硅钢薄带无底层原料的方法 |
CN113198866B (zh) * | 2021-05-07 | 2023-03-17 | 新余钢铁股份有限公司 | 一种薄规格中高牌号无取向硅钢酸轧生产工艺 |
CN116463545A (zh) * | 2022-01-12 | 2023-07-21 | 宝山钢铁股份有限公司 | 一种含铜低温取向硅钢及其制造方法 |
CN114622076A (zh) * | 2022-03-11 | 2022-06-14 | 安阳钢铁股份有限公司 | 一种低温高磁感取向硅钢的制备方法 |
CN114622070A (zh) * | 2022-03-11 | 2022-06-14 | 安阳钢铁股份有限公司 | 一种改善取向硅钢涂层附着性的生产方法 |
CN115161453B (zh) * | 2022-07-08 | 2023-11-03 | 江苏沙钢集团有限公司 | 一种防止冷轧高牌号硅钢边损边裂的制备方法 |
WO2024043063A1 (ja) * | 2022-08-22 | 2024-02-29 | Jfeスチール株式会社 | 焼鈍設備および方向性電磁鋼板の製造方法 |
CN116004961A (zh) * | 2022-12-12 | 2023-04-25 | 湖南华菱涟钢特种新材料有限公司 | 取向硅钢的制备方法及取向硅钢 |
CN116200661A (zh) * | 2023-01-04 | 2023-06-02 | 广东电网有限责任公司 | 一种立方双取向硅钢及其制备方法和应用 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85100664A (zh) | 1985-04-01 | 1986-09-24 | 冶金工业部钢铁研究总院 | 降低普通取向硅钢板坯加热温度的方法 |
JPH01230721A (ja) | 1987-11-20 | 1989-09-14 | Nippon Steel Corp | 磁束密度の高い一方向性珪素鋼板の製造方法 |
JPH01283324A (ja) | 1988-05-11 | 1989-11-14 | Nippon Steel Corp | 磁束密度の高い一方向性電磁鋼板の製造方法 |
EP0420238A2 (en) * | 1989-09-28 | 1991-04-03 | Nippon Steel Corporation | Process for preparing unidirectional silicon steel sheet having high magnetic flux density |
JPH05112827A (ja) | 1988-04-25 | 1993-05-07 | Nippon Steel Corp | 磁気特性、皮膜特性ともに優れた一方向性電磁鋼板の製造方法 |
CN1228817A (zh) | 1996-08-30 | 1999-09-15 | 阿奇亚斯佩丝阿里特尔尼公司 | 用薄钢坯生产具有高的磁性能的晶粒取向电工钢带的工艺 |
CN1231703A (zh) | 1996-09-05 | 1999-10-13 | 阿奇亚斯佩丝阿里特尔尼公司 | 由薄板坯生产晶粒取向电工钢带的方法 |
CN1242057A (zh) | 1996-12-24 | 2000-01-19 | 阿奇亚斯佩丝阿里特尔尼公司 | 具有高磁性能的晶粒取向电工钢片的制造工艺 |
CN1244220A (zh) | 1996-12-24 | 2000-02-09 | 阿奇亚斯佩丝阿里特尔尼公司 | 晶粒取向硅钢的处理工艺 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3287183A (en) * | 1964-06-22 | 1966-11-22 | Yawata Iron & Steel Co | Process for producing single-oriented silicon steel sheets having a high magnetic induction |
JPS53129116A (en) * | 1977-04-18 | 1978-11-10 | Nippon Steel Corp | Oriented electromagnetic steel sheet with excellent magnetic characteristic s |
US4115161A (en) * | 1977-10-12 | 1978-09-19 | Allegheny Ludlum Industries, Inc. | Processing for cube-on-edge oriented silicon steel |
JPS60145318A (ja) * | 1984-01-09 | 1985-07-31 | Kawasaki Steel Corp | 方向性けい素鋼スラブの加熱方法 |
US4997493A (en) * | 1987-11-27 | 1991-03-05 | Nippon Steel Corporation | Process for production of double-oriented electrical steel sheet having high flux density |
DE69032461T2 (de) * | 1989-04-14 | 1998-12-03 | Nippon Steel Corp., Tokio/Tokyo | Verfahren zur Herstellung von kornorientierten Elektrostahlblechen mit hervorragenden magnetischen Eigenschaften |
JPH04341518A (ja) * | 1991-01-29 | 1992-11-27 | Nippon Steel Corp | 極薄手高磁束密度低鉄損一方向性電磁鋼板の製造方法 |
RU2000341C1 (ru) * | 1992-02-07 | 1993-09-07 | Новолипецкий металлургический комбинат им.Ю.В.Андропова | Способ производства изотропной электротехнической стали |
JP2000119817A (ja) * | 1998-10-14 | 2000-04-25 | Sumitomo Metal Ind Ltd | マルテンサイト系ステンレス鋼管 |
JP3659041B2 (ja) * | 1998-12-25 | 2005-06-15 | Jfeスチール株式会社 | 強度変動の極めて小さい高強度冷延鋼板の製造方法 |
RU2223334C2 (ru) * | 2002-03-26 | 2004-02-10 | Открытое акционерное общество "Щелковский металлургический завод" | Способ производства стальных полос для магнитных экранов |
FR2850671B1 (fr) * | 2003-02-05 | 2006-05-19 | Usinor | Procede de fabrication d'une bande d'acier dual-phase a structure ferrito-martensitique, laminee a froid et bande obtenue |
JP4747564B2 (ja) * | 2004-11-30 | 2011-08-17 | Jfeスチール株式会社 | 方向性電磁鋼板 |
CN100381598C (zh) | 2004-12-27 | 2008-04-16 | 宝山钢铁股份有限公司 | 一种取向硅钢及其生产方法和装置 |
CN1743128A (zh) * | 2005-09-29 | 2006-03-08 | 东北大学 | 连铸板坯直接轧制生产取向硅钢带的方法 |
CN1743127A (zh) * | 2005-09-29 | 2006-03-08 | 东北大学 | 薄板坯连铸连轧生产取向硅钢带的方法 |
JP5320690B2 (ja) * | 2006-05-24 | 2013-10-23 | 新日鐵住金株式会社 | 磁束密度の高い方向性電磁鋼板の製造方法 |
-
2008
- 2008-12-31 CN CN200810205181A patent/CN101768697B/zh active Active
-
2009
- 2009-12-31 WO PCT/CN2009/076317 patent/WO2010075797A1/zh active Application Filing
- 2009-12-31 US US13/142,955 patent/US9038429B2/en active Active
- 2009-12-31 RU RU2011132006/02A patent/RU2469104C1/ru active
- 2009-12-31 KR KR1020117013268A patent/KR101462044B1/ko active IP Right Grant
- 2009-12-31 EP EP09836084.5A patent/EP2390373B1/en active Active
- 2009-12-31 JP JP2011502219A patent/JP5939797B2/ja active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85100664A (zh) | 1985-04-01 | 1986-09-24 | 冶金工业部钢铁研究总院 | 降低普通取向硅钢板坯加热温度的方法 |
JPH01230721A (ja) | 1987-11-20 | 1989-09-14 | Nippon Steel Corp | 磁束密度の高い一方向性珪素鋼板の製造方法 |
JPH05112827A (ja) | 1988-04-25 | 1993-05-07 | Nippon Steel Corp | 磁気特性、皮膜特性ともに優れた一方向性電磁鋼板の製造方法 |
JPH01283324A (ja) | 1988-05-11 | 1989-11-14 | Nippon Steel Corp | 磁束密度の高い一方向性電磁鋼板の製造方法 |
EP0420238A2 (en) * | 1989-09-28 | 1991-04-03 | Nippon Steel Corporation | Process for preparing unidirectional silicon steel sheet having high magnetic flux density |
JPH03211232A (ja) | 1989-09-28 | 1991-09-17 | Nippon Steel Corp | 磁束密度の高い一方向性珪素鋼板の製造方法 |
CN1228817A (zh) | 1996-08-30 | 1999-09-15 | 阿奇亚斯佩丝阿里特尔尼公司 | 用薄钢坯生产具有高的磁性能的晶粒取向电工钢带的工艺 |
US6296719B1 (en) | 1996-08-30 | 2001-10-02 | Acciai Speciali Terni S.P.A. | Process for the production of grain oriented electrical steel strip having high magnetic characteristics, starting from thin slabs |
CN1231703A (zh) | 1996-09-05 | 1999-10-13 | 阿奇亚斯佩丝阿里特尔尼公司 | 由薄板坯生产晶粒取向电工钢带的方法 |
US6273964B1 (en) | 1996-09-05 | 2001-08-14 | Acciali Speciali Terni S.P.A. | Process for the production of grain oriented electrical steel strip starting from thin slabs |
CN1242057A (zh) | 1996-12-24 | 2000-01-19 | 阿奇亚斯佩丝阿里特尔尼公司 | 具有高磁性能的晶粒取向电工钢片的制造工艺 |
CN1244220A (zh) | 1996-12-24 | 2000-02-09 | 阿奇亚斯佩丝阿里特尔尼公司 | 晶粒取向硅钢的处理工艺 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2390373A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2552562C2 (ru) * | 2010-09-30 | 2015-06-10 | Баошан Айрон Энд Стил Ко., Лтд. | Способ производства листа из текстурированной электротехнической стали с высокой плотностью магнитного потока |
CN114645202A (zh) * | 2022-03-14 | 2022-06-21 | 安阳钢铁集团有限责任公司 | 一种高取向度GOSS织构Fe-3%Si材料的获得方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2390373B1 (en) | 2020-11-25 |
CN101768697A (zh) | 2010-07-07 |
JP2011518947A (ja) | 2011-06-30 |
KR101462044B1 (ko) | 2014-11-14 |
CN101768697B (zh) | 2012-09-19 |
KR20110093883A (ko) | 2011-08-18 |
US20120000262A1 (en) | 2012-01-05 |
US9038429B2 (en) | 2015-05-26 |
EP2390373A4 (en) | 2016-12-21 |
EP2390373A1 (en) | 2011-11-30 |
JP5939797B2 (ja) | 2016-06-22 |
RU2469104C1 (ru) | 2012-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010075797A1 (zh) | 用一次冷轧法生产取向硅钢的方法 | |
JP2782086B2 (ja) | 磁気特性、皮膜特性ともに優れた一方向性電磁鋼板の製造方法 | |
JP5479448B2 (ja) | 高電磁気性能の方向性珪素鋼の製造方法 | |
CN102758127B (zh) | 具有优异磁性能和良好底层的高磁感取向硅钢生产方法 | |
US10236105B2 (en) | High magnetic induction oriented silicon steel and manufacturing method thereof | |
CN100381598C (zh) | 一种取向硅钢及其生产方法和装置 | |
WO2021027797A1 (zh) | 一种高磁感取向硅钢及其制造方法 | |
CN103695619B (zh) | 一种高磁感普通取向硅钢的制造方法 | |
JP2011518947A5 (zh) | ||
WO2006132095A1 (ja) | 磁気特性が極めて優れた方向性電磁鋼板及びその製造方法 | |
CN101845582A (zh) | 一种高磁感取向硅钢产品的生产方法 | |
CN103534366B (zh) | 具有低铁损和高磁通密度的取向电工钢板及其制造方法 | |
EP3561103A1 (en) | Grain-oriented electrical steel sheet and manufacturing method therefor | |
WO2016098917A1 (ko) | 방향성 전기강판 및 그 제조방법 | |
CN101824582B (zh) | 采用多元抑制剂的取向电工钢板带及其生产方法 | |
KR20200076517A (ko) | 방향성의 전기강판 및 그 제조 방법 | |
KR20150073802A (ko) | 방향성 전기강판 및 그 제조방법 | |
KR102319831B1 (ko) | 방향성 전기강판의 제조방법 | |
WO2024169741A1 (zh) | 一种高磁感取向硅钢及其制造方法 | |
WO2023131223A1 (zh) | 一种磁性能优良的无取向电工钢板及其制造方法 | |
JPH0730395B2 (ja) | 表面脹れ欠陥の無い一方向性電磁鋼板の製造法 | |
JPS6148761B2 (zh) | ||
JPH07110974B2 (ja) | 方向性珪素鉄合金薄帯の製造法 | |
JP2002129236A (ja) | 一方向性電磁鋼板の安定製造方法 | |
CN115747650A (zh) | 一种低温高磁感取向硅钢及提高其磁性能稳定性的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09836084 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011502219 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20117013268 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009836084 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011132006 Country of ref document: RU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13142955 Country of ref document: US |