CN103834856B - 取向硅钢及其制造方法 - Google Patents

取向硅钢及其制造方法 Download PDF

Info

Publication number
CN103834856B
CN103834856B CN201210485329.2A CN201210485329A CN103834856B CN 103834856 B CN103834856 B CN 103834856B CN 201210485329 A CN201210485329 A CN 201210485329A CN 103834856 B CN103834856 B CN 103834856B
Authority
CN
China
Prior art keywords
silicon steel
orientation silicon
finished product
pcrmeability
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210485329.2A
Other languages
English (en)
Other versions
CN103834856A (zh
Inventor
杨国华
刘献东
李国保
杨勇杰
胡卓超
黑红旭
张军
宿德军
孙焕德
吴美洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201210485329.2A priority Critical patent/CN103834856B/zh
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to KR1020177001489A priority patent/KR20170010445A/ko
Priority to RU2015119302A priority patent/RU2636214C2/ru
Priority to PCT/CN2012/001684 priority patent/WO2014078977A1/zh
Priority to EP20178527.6A priority patent/EP3725908A1/en
Priority to EP12888787.4A priority patent/EP2924139B1/en
Priority to MX2015005961A priority patent/MX2015005961A/es
Priority to KR1020157013350A priority patent/KR20150067381A/ko
Priority to US14/646,985 priority patent/US10566119B2/en
Priority to JP2015543225A priority patent/JP6379100B2/ja
Publication of CN103834856A publication Critical patent/CN103834856A/zh
Application granted granted Critical
Publication of CN103834856B publication Critical patent/CN103834856B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Abstract

一种磁性能优异的取向硅钢及其制造方法。本发明通过将取向硅钢成品中D<5mm的小晶粒面积比例控制为不超过3%,并且将取向硅钢成品1.7T磁感下的磁导率和1.5T下的磁导率比值μ17/μ15控制为0.50以上,获得了磁性能出色的取向硅钢。另外,本发明通过采用成分合适的取向硅钢的板坯以及优化的冷轧步骤,在有效降低板坯加热温度和生产成本的同时,较好控制了取向硅钢成品的晶粒尺寸和比例,以及一定磁感范围内的磁导率,保证了二次再结晶具有良好的高斯织构取向,最终稳定获得了磁性能优异的取向硅钢产品。

Description

取向硅钢及其制造方法
技术领域
本发明涉及一种取向硅钢及其制造方法,尤其涉及一种磁性能优异的取向硅钢及其制造方法。
背景技术
取向硅钢被广泛应用于大型变压器等输变电产品中,其是电力行业发展中不可或缺的原材料之一。目前,人们致力于获得磁性能优异的取向硅钢。取向硅钢磁性能的主要技术指标包括磁感和铁损,铁损直接关系到变压器等输变电产品使用时的铁芯损耗,有人称硅钢产品发展的历史其实就是铁损不断下降的历史;磁感即磁感应强度,又称为磁通密度,反映铁磁性材料在磁场中磁化的强弱,而单位磁场强度下磁感的变化值用磁导率表示。在用户使用条件下,硅钢产品性能与外加磁场强度条件息息相关,因此磁导率尤其是变压器等产品工作点附近的磁导率更适于表征产品在一定磁场强度下的磁特性。而根据调研,在取向硅钢相关的公开文献中,与磁导率等磁性能直接相关的研究还很少,而在取向硅钢材料结构对磁导率等关键性能影响方面的研究则更少。
日本专利JP60-59045A和中国专利CN91103357分别公开了通过冷轧时效轧制的方法,可提高取向硅钢成品中晶粒等效圆直径D≤2mm以下的小晶粒数量,从而可降低取向硅钢成品的铁损。但上述专利文献均特指在取向硅钢成品二次再结晶完善的前提下,适当地提高小晶粒数量对降低铁损有利,而且这里的小晶粒应特定理解为与高斯织构方向即(110)[001]方向偏离角度较小的小尺寸晶粒,否则难以达到提高磁性能的效果。因此,仅仅提高取向硅钢成品中小晶粒的数量不应成为判断取向硅钢磁性能提高的标准,这是因为小尺寸晶粒的晶粒取向出现大角度偏离高斯织构方向的可能性很大,其远高于大尺寸晶粒,而大量出现的大角度偏离高斯织构的小晶粒会严重劣化取向硅钢成品的磁性能。相反,晶粒等效圆直径D≥5mm的大晶粒取向与高斯织构的平均偏离角一般在7°以内,因此,在通常情况下,提高取向硅钢成品中大晶粒的数量或面积比例,或者说将小晶粒数量或面积比例控制在一定范围内,可以较好地保证取向硅钢具有良好的磁性能以及磁性能稳定性。
美国专利US7887645B1中提到通过控制取向硅钢热轧板中奥氏体相的比例,增加常化冷速,可以提高磁导率。但该专利中的“磁导率”特指磁场强度在796A/m下的磁感,其并不是通常物理意义上所定义的磁导率。并且该专利的板坯中大量添加Cr,不仅不利于环保,而且不利于稳定获得高磁性能的取向硅钢产品。另外,该专利中推荐在约1400℃的高温下对板坯进行加热,这需要配置专用的加热炉,能耗较高,并且钢坯表面出现化渣,需要对加热设备进行定期清理,影响产量,以及成材率降低、设备维护成本高,不适合推广。
美国专利US5718775A中提到要控制取向硅钢成品在1.0T磁感下的磁导率不低于0.03H/m。但是根据实际技术磁化磁滞回线分析,在较低磁场下,磁感较低时,磁畴畴壁发生移动;随着磁场强度增加,磁感提高,约在1.5~1.9T下时,依靠畴壁移动已经长大的磁畴和尚未被吞并掉的磁畴发生不可逆的转动,使磁化矢量逐渐与磁场方向平行。这个过程一直发生直到所有磁畴的磁化矢量转到与磁场方向平行,此时达到该材料的饱和磁感值Bs。变压器等产品应用的工作点一般设计在1.5~1.7T的磁感范围,因此美国专利US5718775A提出对1.0T磁感下取向硅钢的磁导率控制要求并不具有实际意义。
上述现有技术虽然在改善取向硅钢的磁导率和铁损方面取得了一些进展,但取向硅钢在1.5~1.7T工作磁密下的磁性能仍有较大的改进空间。人们希望开发出在1.5~1.7T工作磁密下具有优异磁性能的取向硅钢,以满足变压器等电子设备的要求。此外,目前的取向硅钢的制造方法还有较大的改进空间,可获得磁性能优异的取向硅钢的制造方法的研发也具有重要的意义以及广阔的应用前景。
发明内容
本发明的目的是提供一种磁性能优异的取向硅钢及其制造方法。本发明人发现,在取向硅钢成品中晶粒尺寸小于5mm(以下简称为D<5mm)的小晶粒面积比例不超过3%、优选不超过2%,并且取向硅钢成品1.7T磁感下的磁导率和1.5T下的磁导率比值μ17/μ15为0.50以上、优选为0.55以上时,可获得磁性能出色的取向硅钢成品。进一步地,本发明人发现,通过采用成分合适的取向硅钢的板坯以及优化的冷轧步骤将取向硅钢成品中D<5mm的小晶粒面积比例控制为不超过3%并且将磁导率比值μ17/μ15控制为0.50以上,可稳定获得磁性能优异的取向硅钢产品。
本发明涉及一种磁性能优异的取向硅钢,该取向硅钢中D<5mm的小晶粒面积比例不超过3%、优选不超过2%;并且该取向硅钢成品1.7T磁感下的磁导率和1.5T下的磁导率比值μ17/μ15为0.50以上、优选0.55以上。
取向硅钢成品中大量出现的偏离高斯织构的小晶粒会严重劣化取向硅钢成品的磁性能,而取向硅钢成品的晶粒尺寸(等效圆直径)D≥5mm的大晶粒取向与高斯织构的平均偏离角一般在7°以内,因此控制D<5mm小晶粒面积比例在一定范围内,即提高取向硅钢成品大尺寸晶粒的面积比例,可以较好的保证取向硅钢具有良好的磁性能以及磁性能稳定性。本发明人发现,在取向硅钢成品中D<5mm的小晶粒面积占总面积比例在3%以内,可大幅提高取向硅钢成品的磁性能优良率以及整卷合格率。进一步地,本发明人发现,在取向硅钢成品1.7T磁感下的磁导率μ17和1.5T下的磁导率μ15的比值μ17/μ15为0.50以上时,充分保证了可稳定获得具有高磁感、低铁损的优良磁性能的取向硅钢产品。
本发明还涉及一种取向硅钢的制造方法,其顺序包括如下步骤:
将取向硅钢的板坯加热到1100~1200℃后进行热轧以获得热轧板;
以85%以上的冷轧压下率对热轧板进行冷轧以获得具有取向硅钢成品的厚度的冷轧板;
对冷轧板进行退火处理以获得取向硅钢成品;其中,
所述取向硅钢的板坯以重量百分比计包含如下成分:2.5~4.0%的Si,0.010~0.040%的酸可溶性铝Als,0.004~0.012%的N,0.015%以下的S;以及
所述取向硅钢成品中晶粒尺寸小于5mm的小晶粒面积比例不超过3%,并且所述取向硅钢成品1.7T磁感下的磁导率和1.5T下的磁导率比值μ17/μ15为0.50以上。
本发明通过在取向硅钢板坯成分中控制Si含量和抑制剂组成元素含量,如Als、N和S含量,可以保证钢板在生产过程中含有足够的氮化物抑制剂,以获得完善的二次再结晶,并提高二次再结晶晶粒在高斯织构方向即(110)[001]方向的取向度。进一步地,在使用本发明的取向硅钢的板坯的情况中,AlN为主要抑制剂,硫化物等具有高固溶温度的抑制剂的产生被抑制。AlN的固溶温度约为1280℃,随着板坯中Al或N的浓度波动略有变化,但都显著低于采用MnS或MnSe作为主要抑制剂系统的固溶温度(参见美国专利US5711825);而且本发明采用抑制剂部分固溶的方法,将板坯的加热温度有效降低至1200℃以下。所谓抑制剂部分固溶是相对于抑制剂完全固溶而言的。抑制剂完全固溶的方法是指被称为抑制剂的钢中微小析出物在热轧前的板坯加热时达到完全固溶的状态,然后在热轧及之后的退火工序中析出并调整析出状态。这种方法存在一个问题,即为了使析出物完全固溶,要求在1350℃以上的高温下进行加热,比一般钢种的板坯加热温度高出约200℃,为此需要专用的加热炉,而且存在熔融氧化铁皮即化渣较多的问题。而采用抑制剂部分固溶的方法,板坯加热温度低于抑制剂完全固溶的温度,板坯加热时钢中抑制剂只达到部分固溶,虽然在热轧后获得的抑制剂强度有所降低,但通过后工序氮化处理可以补充氮化物抑制剂以保证二次再结晶的需要。因此,本发明的方法无需专用的硅钢加热炉,可采用常规碳钢加热炉,与碳钢等其他钢种实现交叉热轧生产,且生产设备及仪器、仪表等控制设备相对于一般取向硅钢生产无变化,因而生产控制和操作简便,无需对生产操作人员增加培训,生产成本降低。
取向硅钢板坯中Si与各抑制剂的含量和基本作用说明如下:
Si:2.5~4.0%。取向硅钢涡流损耗随着Si含量的提高而降低,如果Si含量低于2.5%则无法达到降低涡流损耗的效果;如果Si含量高于4.0%则由于脆性增加而无法进行冷轧批量生产。
酸可溶性铝Als:0.010~0.040%。作为高磁感取向硅钢的主要抑制剂成分,如果酸可溶性铝Als的含量低于0.010%,则无法获得足够的AlN,抑制强度不够,不发生二次再结晶;如果Als的含量高于0.040%,则抑制剂尺寸粗化,抑制效果降低。
N:0.004~0.012%。与酸可溶性铝作用相近,N也作为高磁感取向硅钢的主要抑制剂成分,如果N含量低于0.004%,则无法获得足够的AlN,抑制强度不够;如果N含量高于0.012%,则底层缺陷增加。
S:0.015%以下。如果S含量高于0.015%,则易发生偏聚析出,造成二次再结晶缺陷增加。
另外,本发明采用大压下率(85%以上的冷轧压下率)的冷轧轧制方法,有助于提高冷轧板位错密度,在初次再结晶中形成更多的高斯晶核,并提供更多的有利织构,有利于充分发生二次再结晶和提高二次再结晶晶粒取向度,从而最终显著提高取向硅钢产品的磁性能。此处的冷轧压下率是指冷轧中的压下量与未压下前的厚度的比值。
本发明中的取向硅钢的制造方法可在热轧之后直接进行冷轧,而无需对热轧板进行退火处理,就该点来说,可进一步降低取向硅钢的生产成本,具有较大的潜在效益。
就进一步提高取向硅钢成品的磁性能来说,优选在冷轧前,对热轧板进行热轧板退火处理,其中,热轧板退火处理的退火温度优选为900~1150℃,退火冷却速度优选为20℃/s~100℃/s,如果冷却速度超过100℃/s,则由于快冷后钢中组织均匀性变差,对最终产品磁性能的改善作用降低,而且若采用超过100℃/s的冷却速度进行生产,钢板板形差,很难进行后续生产。通过对热轧板进行热轧板退火处理,可进一步提高初次再结晶时高斯晶核的数量和有利织构的强度,帮助完善二次再结晶,提高取向硅钢成品的磁性能。
本发明的取向硅钢的制造方法中的退火处理可按照传统技术中通常采用的方式进行,比如对冷轧板顺序进行脱碳退火、涂布退火隔离剂、高温退火、涂布绝缘涂层以及热拉伸平整退火,其中退火隔离剂用于防止高温下钢板之间彼此粘结,可使用以MgO等材料为主的原料;绝缘涂层用于提高硅钢表面的绝缘性等,目前广泛采用以铬酐、胶体SiO2和Mg、Al磷酸盐为主的原料。
就进一步提高取向硅钢成品的磁性能来说,优选本发明的取向硅钢的制造方法还包括在高温退火之前对冷轧板进行渗氮处理。本发明通过渗氮处理获得补充的氮化物抑制剂可增强抑制剂浓度,确保生产工艺的后阶段有足够强度的AlN完成对其他位向晶粒生长的抑制作用,从而有利于提高二次再结晶晶粒在高斯织构方向的取向度,显著提高取向硅钢成品的磁性能。
本发明通过采用成分合适的取向硅钢的板坯以及优化的冷轧步骤,将取向硅钢成品中D<5mm的小晶粒面积比例控制为不超过3%,并且将磁导率比值μ17/μ15控制为0.50以上,可稳定获得磁性能优异的取向硅钢产品。
本发明通过将取向硅钢成品中D<5mm的小晶粒面积比例控制为不超过3%,并且将取向硅钢成品1.7T磁感下的磁导率和1.5T下的磁导率比值μ17/μ15控制为0.50以上,获得了磁性能出色的取向硅钢成品。另外,本发明通过采用成分合适的取向硅钢的板坯以及优化的冷轧步骤,在有效降低板坯加热温度和生产成本的同时,较好控制了取向硅钢成品的晶粒尺寸和比例以及一定磁感范围内的磁导率,保证了二次再结晶具有良好的高斯织构取向,最终稳定获得了磁性能优异的取向硅钢产品。
具体实施方式
下面结合实施例对本发明进行更详细地说明,但本发明的保护范围并不限于这些实施例。
实施例1-8和比较例1-5
取向硅钢板坯的组分及重量百分比为C:0.050%,Si:3.0%,Als:0.030%,N:0.007%,S:0.008%,Mn:0.14%,其余为Fe及不可避免的杂质。将板坯在1000-1250℃的加热炉内加热后热轧,轧至2.5mm热轧板厚,对热轧板进行冷轧,以不同的冷轧压下率将热轧板轧制到0.30mm成品厚度后,进行脱碳退火,涂布氧化镁为主要成分的退火隔离剂,成卷后进行高温退火;在最终冷轧后、高温退火二次再结晶之前进行渗氮处理;开卷后经过涂绝缘涂层及拉伸平整退火,得到取向硅钢成品。对取向硅钢成品中D<5mm的小晶粒面积比例以及磁导率比值μ17/μ15与取向硅钢成品的磁性能之间的关系进行了研究,研究结果参见表1。
表1取向硅钢成品中D<5mm的小晶粒面积比例及磁导率比值μ17/μ15对其磁性能的影响
由表1可知,与D<5mm的小晶粒面积比例超过3%或者磁导率比值μ17/μ15小于0.50的比较例1-5相比,取向硅钢成品中D<5mm的小晶粒面积比例不超过3%并且1.7T磁感下的磁导率和1.5T下的磁导率比值μ17/μ15≥0.50的实施例1-8具有更高的磁感以及更低的铁损。进一步地,由表1可知,与实施例6相比,D<5mm的小晶粒面积比例在2%以下的实施例4中的取向硅钢成品的磁性能得到进一步地改善;与实施例4相比,磁导率比值μ17/μ15为0.55的实施例3中的取向硅钢成品的磁性能得到进一步地改善。
实施例9-15和比较例6-14
取向硅钢板坯的组分及重量百分比为C:0.075%,Si:3.3%,Als:0.031%,N:0.009%,S:0.012%,Mn:0.08%,其余为Fe及不可避免的杂质。将板坯在加热炉内以1050~1250℃五种不同的加热温度进行加热后热轧,轧至2.3mm热轧板厚,对热轧板进行冷轧,以不同的冷轧压下率分别轧制到0.20~0.40mm不同规格成品厚度后,进行脱碳退火,涂布氧化镁为主要成分的退火隔离剂,成卷后进行高温退火;在最终冷轧后、高温退火二次再结晶之前进行渗氮处理;开卷后经过涂绝缘涂层及拉伸平整退火,得到取向硅钢成品。对板坯加热温度和冷轧压下率与取向硅钢成品中D<5mm的小晶粒面积比例以及磁导率比值μ17/μ15之间的关系进行了研究,研究结果参见表2。
表2板坯加热温度和冷轧压下率对取向硅钢成品中D<5mm的小晶粒面积比例以及磁导率比值μ17/μ15的影响
由表2可知,在采用本发明中的取向硅钢板坯的情况下,通过在1100~1200℃温度范围内对板坯进行加热后热轧,并且采用85%以上的冷轧压下率,可以保证取向硅钢成品中D<5mm的小晶粒面积比例不超过3%,并且1.7T磁感下的磁导率和1.5T下的磁导率比值μ17/μ15在0.50以上,从而可确保获得磁性能优异的取向硅钢成品。
实施例16-31
取向硅钢板坯的组分及重量百分比为C:0.065%,Si:3.2%,Als:0.025%,N:0.010%,S:0.015%,Mn:0.18%,其余为Fe及不可避免的杂质。将板坯在1150℃加热炉内加热后热轧,轧至3.0mm热轧板厚,对热轧板进行(A)直接冷轧,或者(B)在850~1200℃的温度、以及15-25℃/s的冷却速度下进行热轧板退火,之后以85%的冷轧压下率进行冷轧,轧制到0.30mm成品厚度后,进行脱碳退火,涂布氧化镁为主要成分的退火隔离剂,成卷后进行高温退火;在最终冷轧后、高温退火二次再结晶之前进行渗氮处理;开卷后经过涂绝缘涂层及拉伸平整退火,得到取向硅钢成品。对热轧板退火条件与取向硅钢成品中D<5mm的小晶粒面积比例以及磁导率比值μ17/μ15之间的关系进行了研究,研究结果参见表3。
表3热轧板退火条件对取向硅钢成品中D<5mm的小晶粒面积比例以及磁导率比值μ17/μ15的影响
由表3可知,与未采用热轧板退火的实施例16相比,采用了热轧板退火的实施例17-31降低了取向硅钢成品中D<5mm的小晶粒面积比例或者提高了其磁导率比值μ17/μ15,从而提高了取向硅钢成品的磁性能。进一步地,由表3可知,以900~1150℃的温度、20℃/s以上的冷却速度对热轧板进行退火,可保证μ17/μ15磁导率比值在0.55以上,从而可进一步稳定提高取向硅钢成品的磁性能。
本发明的实验结果证明,在取向硅钢成品中D<5mm的小晶粒面积比例不超过3%,并且取向硅钢成品1.7T磁感下的磁导率和1.5T下的磁导率比值μ17/μ15为0.50以上时,可获得磁性能出色的取向硅钢成品。通过采用本发明中的成分合适的取向硅钢的板坯以及优化的冷轧步骤,可将取向硅钢成品中D<5mm的小晶粒面积比例控制为不超过3%,并且将磁导率比值μ17/μ15控制为0.50以上,从而可稳定获得磁性能优异的取向硅钢产品。
本发明通过将取向硅钢成品中D<5mm的小晶粒面积比例控制为不超过3%,并且将取向硅钢成品1.7T磁感下的磁导率和1.5T下的磁导率比值μ17/μ15控制为0.50以上,获得了磁性能出色的取向硅钢成品。另外,本发明通过采用成分合适的取向硅钢的板坯以及优化的冷轧步骤,在有效降低板坯加热温度和生产成本的同时,较好控制了取向硅钢成品的晶粒尺寸和比例以及一定磁感范围内的磁导率,保证了二次再结晶具有良好的高斯织构取向,最终稳定获得了磁性能优异的取向硅钢产品。

Claims (10)

1.一种取向硅钢,其特征在于,所述取向硅钢中晶粒尺寸小于5mm的小晶粒面积比例不超过3%,并且所述取向硅钢成品1.7T磁感下的磁导率和1.5T下的磁导率比值μ17/μ15为0.50以上。
2.如权利要求1所述的取向硅钢,其特征在于,所述取向硅钢中晶粒尺寸小于5mm的小晶粒面积比例不超过2%。
3.如权利要求1-2中任一项所述的取向硅钢,其特征在于,所述取向硅钢1.7T磁感下的磁导率和1.5T下的磁导率比值μ17/μ15为0.55以上。
4.一种取向硅钢的制造方法,其顺序包括如下步骤:
将取向硅钢的板坯加热到1100~1200℃后进行热轧以获得热轧板;
以85%以上的冷轧压下率对热轧板进行冷轧以获得具有取向硅钢成品的厚度的冷轧板;
对冷轧板进行退火处理以获得取向硅钢成品;其中,
所述取向硅钢的板坯以重量百分比计包含如下成分:2.5~4.0%的Si,0.010~0.040%的酸可溶性铝Als,0.004~0.012%的N,0.015%以下的S;以及
所述取向硅钢成品中晶粒尺寸小于5mm的小晶粒面积比例不超过3%,并且所述取向硅钢成品1.7T磁感下的磁导率和1.5T下的磁导率比值μ17/μ15为0.50以上。
5.如权利要求4所述的取向硅钢的制造方法,其特征在于,所述制造方法还包括:在冷轧前,对所述热轧板进行热轧板退火处理。
6.如权利要求5所述的取向硅钢的制造方法,其特征在于,所述热轧板退火处理的退火温度为900~1150℃,退火冷却速度为20~100℃/s。
7.如权利要求4所述的取向硅钢的制造方法,其特征在于,所述退火处理顺序包括:脱碳退火、涂布退火隔离剂、高温退火、涂布绝缘涂层以及热拉伸平整退火。
8.如权利要求7所述的取向硅钢的制造方法,其特征在于,所述制造方法还包括在所述高温退火之前对所述冷轧板进行渗氮处理。
9.如权利要求4-8中任一项所述的取向硅钢的制造方法,其特征在于,所述取向硅钢成品中晶粒尺寸小于5mm的小晶粒面积比例不超过2%。
10.如权利要求4-8中任一项所述的取向硅钢的制造方法,其特征在于,所述取向硅钢成品1.7T磁感下的磁导率和1.5T下的磁导率比值μ17/μ15为0.55以上。
CN201210485329.2A 2012-11-26 2012-11-26 取向硅钢及其制造方法 Active CN103834856B (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201210485329.2A CN103834856B (zh) 2012-11-26 2012-11-26 取向硅钢及其制造方法
US14/646,985 US10566119B2 (en) 2012-11-26 2012-12-11 Oriented silicon steel and method for manufacturing same
PCT/CN2012/001684 WO2014078977A1 (zh) 2012-11-26 2012-12-11 取向硅钢及其制造方法
EP20178527.6A EP3725908A1 (en) 2012-11-26 2012-12-11 Oriented silicon steel and manufacturing method thereof
EP12888787.4A EP2924139B1 (en) 2012-11-26 2012-12-11 Method for manufacturing an oriented silicon steel
MX2015005961A MX2015005961A (es) 2012-11-26 2012-12-11 Acero al silicio de grano orientado y metodo de fabricacion del mismo.
KR1020177001489A KR20170010445A (ko) 2012-11-26 2012-12-11 방향성 규소강 및 그의 제조방법
RU2015119302A RU2636214C2 (ru) 2012-11-26 2012-12-11 Текстурированная кремнистая сталь и способ ее производства
JP2015543225A JP6379100B2 (ja) 2012-11-26 2012-12-11 方向性ケイ素鋼及びその製造方法
KR1020157013350A KR20150067381A (ko) 2012-11-26 2012-12-11 방향성 규소강 및 그의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210485329.2A CN103834856B (zh) 2012-11-26 2012-11-26 取向硅钢及其制造方法

Publications (2)

Publication Number Publication Date
CN103834856A CN103834856A (zh) 2014-06-04
CN103834856B true CN103834856B (zh) 2016-06-29

Family

ID=50775366

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210485329.2A Active CN103834856B (zh) 2012-11-26 2012-11-26 取向硅钢及其制造方法

Country Status (8)

Country Link
US (1) US10566119B2 (zh)
EP (2) EP2924139B1 (zh)
JP (1) JP6379100B2 (zh)
KR (2) KR20150067381A (zh)
CN (1) CN103834856B (zh)
MX (1) MX2015005961A (zh)
RU (1) RU2636214C2 (zh)
WO (1) WO2014078977A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104328379A (zh) * 2014-11-20 2015-02-04 武汉科技大学 具有高斯织构的取向高硅梯度硅钢薄板及其制备方法
KR102012319B1 (ko) * 2017-12-26 2019-08-20 주식회사 포스코 방향성 전기강판 및 그 제조방법
KR102079771B1 (ko) * 2017-12-26 2020-02-20 주식회사 포스코 방향성 전기강판 및 그의 제조방법
CN110318005B (zh) * 2018-03-30 2021-12-17 宝山钢铁股份有限公司 一种高磁感取向硅钢及其制造方法
KR102249920B1 (ko) * 2018-09-27 2021-05-07 주식회사 포스코 방향성 전기강판 및 그의 제조방법
KR102325005B1 (ko) * 2019-12-20 2021-11-11 주식회사 포스코 무방향성 전기강판 및 그 제조방법
KR102468077B1 (ko) * 2020-12-21 2022-11-16 주식회사 포스코 방향성 전기강판 및 그의 제조방법
CN113776915B (zh) * 2021-07-06 2024-03-08 包头钢铁(集团)有限责任公司 一种显示取向硅钢高温退火试样显微组织的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0339475A2 (en) * 1988-04-23 1989-11-02 Nippon Steel Corporation High-flux density, grain-oriented electrical steel sheet having highly improved watt loss characteristic and process for preparation thereof
EP0588342A1 (en) * 1992-09-17 1994-03-23 Nippon Steel Corporation Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing same
CN1138107A (zh) * 1994-12-05 1996-12-18 川崎制铁株式会社 高磁通密度低铁损晶粒取向的电磁钢板及其制造方法
CN1796587A (zh) * 2004-12-27 2006-07-05 宝山钢铁股份有限公司 一种取向硅钢及其生产方法和装置
US7887645B1 (en) * 2001-05-02 2011-02-15 Ak Steel Properties, Inc. High permeability grain oriented electrical steel
CN102618783A (zh) * 2011-01-30 2012-08-01 宝山钢铁股份有限公司 一种高磁感取向硅钢的生产方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472521A (en) * 1933-10-19 1995-12-05 Nippon Steel Corporation Production method of grain oriented electrical steel sheet having excellent magnetic characteristics
JPS5948934B2 (ja) * 1981-05-30 1984-11-29 新日本製鐵株式会社 高磁束密度一方向性電磁鋼板の製造方法
JPS6059045A (ja) 1983-09-10 1985-04-05 Nippon Steel Corp 鉄損値の少ない一方向性珪素鋼板の製造方法
JPH0791586B2 (ja) * 1990-04-17 1995-10-04 新日本製鐵株式会社 磁気特性の優れた厚い板厚の一方向性電磁鋼板の製造方法
JP2709549B2 (ja) * 1992-04-16 1998-02-04 新日本製鐵株式会社 磁気特性の優れた一方向性電磁鋼板の製造方法
JP3008003B2 (ja) * 1992-04-16 2000-02-14 新日本製鐵株式会社 磁気特性の優れた一方向性電磁鋼板の製造方法
US5858126A (en) * 1992-09-17 1999-01-12 Nippon Steel Corporation Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing same
DE4311151C1 (de) 1993-04-05 1994-07-28 Thyssen Stahl Ag Verfahren zur Herstellung von kornorientierten Elektroblechen mit verbesserten Ummagnetisierungsverlusten
JPH06306474A (ja) * 1993-04-26 1994-11-01 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板の製造方法
JPH07118746A (ja) * 1993-10-25 1995-05-09 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板の安定製造方法
JPH08143962A (ja) * 1994-11-16 1996-06-04 Nippon Steel Corp 磁気特性と被膜性状の優れた一方向性電磁鋼板の製造方法
JP3470475B2 (ja) * 1995-11-27 2003-11-25 Jfeスチール株式会社 極めて鉄損の低い方向性電磁鋼板とその製造方法
IT1299137B1 (it) * 1998-03-10 2000-02-29 Acciai Speciali Terni Spa Processo per il controllo e la regolazione della ricristallizzazione secondaria nella produzione di lamierini magnetici a grano orientato
JP3357602B2 (ja) * 1998-05-15 2002-12-16 川崎製鉄株式会社 磁気特性に優れる方向性電磁鋼板の製造方法
JP3456415B2 (ja) * 1998-05-26 2003-10-14 Jfeスチール株式会社 極めて鉄損の低い高磁束密度方向性電磁鋼板の製造方法
KR100940718B1 (ko) * 2002-12-26 2010-02-08 주식회사 포스코 열연판 소둔 생략에 의한 방향성 전기강판의 제조방법
JP4376151B2 (ja) * 2004-08-09 2009-12-02 相川鉄工株式会社 スクリーン装置
DE102006003279B4 (de) * 2006-01-23 2010-03-25 W.C. Heraeus Gmbh Sputtertarget mit hochschmelzender Phase
JP4823719B2 (ja) * 2006-03-07 2011-11-24 新日本製鐵株式会社 磁気特性が極めて優れた方向性電磁鋼板の製造方法
JP4598702B2 (ja) * 2006-03-23 2010-12-15 新日本製鐵株式会社 磁気特性が優れた高Si含有方向性電磁鋼板の製造方法
KR101062127B1 (ko) * 2006-05-24 2011-09-02 신닛뽄세이테쯔 카부시키카이샤 자속 밀도가 높은 방향성 전자기 강판의 제조 방법
JP5300210B2 (ja) 2006-05-24 2013-09-25 新日鐵住金株式会社 方向性電磁鋼板の製造方法
ITRM20070218A1 (it) * 2007-04-18 2008-10-19 Ct Sviluppo Materiali Spa Procedimento per la produzione di lamierino magnetico a grano orientato
CN101768697B (zh) * 2008-12-31 2012-09-19 宝山钢铁股份有限公司 用一次冷轧法生产取向硅钢的方法
CN102041440B (zh) * 2011-01-16 2012-01-25 首钢总公司 一种高磁感取向硅钢的生产方法
CN102758127B (zh) * 2011-04-28 2014-10-01 宝山钢铁股份有限公司 具有优异磁性能和良好底层的高磁感取向硅钢生产方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0339475A2 (en) * 1988-04-23 1989-11-02 Nippon Steel Corporation High-flux density, grain-oriented electrical steel sheet having highly improved watt loss characteristic and process for preparation thereof
EP0588342A1 (en) * 1992-09-17 1994-03-23 Nippon Steel Corporation Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing same
CN1138107A (zh) * 1994-12-05 1996-12-18 川崎制铁株式会社 高磁通密度低铁损晶粒取向的电磁钢板及其制造方法
US7887645B1 (en) * 2001-05-02 2011-02-15 Ak Steel Properties, Inc. High permeability grain oriented electrical steel
CN1796587A (zh) * 2004-12-27 2006-07-05 宝山钢铁股份有限公司 一种取向硅钢及其生产方法和装置
CN102618783A (zh) * 2011-01-30 2012-08-01 宝山钢铁股份有限公司 一种高磁感取向硅钢的生产方法

Also Published As

Publication number Publication date
EP2924139A1 (en) 2015-09-30
CN103834856A (zh) 2014-06-04
JP6379100B2 (ja) 2018-08-22
WO2014078977A1 (zh) 2014-05-30
EP3725908A1 (en) 2020-10-21
MX2015005961A (es) 2015-09-10
EP2924139B1 (en) 2021-02-10
KR20150067381A (ko) 2015-06-17
US20150302962A1 (en) 2015-10-22
JP2016505706A (ja) 2016-02-25
RU2636214C2 (ru) 2017-11-21
KR20170010445A (ko) 2017-01-31
RU2015119302A (ru) 2017-01-10
US10566119B2 (en) 2020-02-18
EP2924139A4 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
CN103834856B (zh) 取向硅钢及其制造方法
CN102787276B (zh) 一种高磁感取向硅钢及其制造方法
CN103667879B (zh) 磁性能和机械性能优良的无取向电工钢及生产方法
KR20120086343A (ko) 고 자기유도를 가지는 무방향성 규소강의 제조 방법
CN109609734B (zh) 一种冷轧无取向硅钢的制备方法
JP7454646B2 (ja) 高磁気誘導方向性ケイ素鋼およびその製造方法
CN101368246B (zh) 一种中薄板坯生产取向硅钢的方法
CN101353760A (zh) 一种高磁感取向硅钢及其生产方法
CN107794439B (zh) 极低铁损无取向电工钢板及其制造方法
JP2019536893A (ja) 低騒音変圧器用の低鉄損方向性ケイ素鋼製品およびその製造方法
CN106755874B (zh) 一种生产低温高磁感取向硅钢的脱碳及渗氮退火方法
CN109136503A (zh) 低温高磁感取向硅钢的制备方法
CN103898409B (zh) 降低取向硅钢板坯加热温度的抑制剂及制备方法
CN105132808A (zh) 一种复合元素处理的高效电机用无取向硅钢的制备方法
CN102828108B (zh) 一种低成本高强度造船用钢板及其制造方法
CN114277309B (zh) 一种高磁感取向硅钢及其制造方法
CN111270123A (zh) 一种优化无取向硅钢电磁性能的方法及无取向硅钢
CN102618783B (zh) 一种高磁感取向硅钢的生产方法
Gao et al. Effect of Cr on secondary recrystallization behaviors in high permeability grain oriented silicon steel manufactured by low-temperature slab reheating
Fang et al. Effect of rolling temperature on the microstructure, texture, and magnetic properties of strip-cast grain-oriented 3% Si steel
Gao et al. Effect of Nb content on primary recrystallization microstructure, texture and magnetic properties of grain-oriented silicon steel manufactured by low-temperature slab reheating
CN114277308B (zh) 一种高磁感取向硅钢及其制造方法
Fan et al. Microstructure and texture evolution of medium temperature grain-oriented silicon steel produced by industrialization
CN104313469A (zh) 一种超低碳取向硅钢板及其制造方法
CN103451395A (zh) 铬合金化高磁感低铁损取向硅钢的制作工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant