CN114540410A - 一种调控茶树咖啡碱合成的转录因子CsDUF1在调控茶树咖啡碱合成中的应用 - Google Patents

一种调控茶树咖啡碱合成的转录因子CsDUF1在调控茶树咖啡碱合成中的应用 Download PDF

Info

Publication number
CN114540410A
CN114540410A CN202210150238.7A CN202210150238A CN114540410A CN 114540410 A CN114540410 A CN 114540410A CN 202210150238 A CN202210150238 A CN 202210150238A CN 114540410 A CN114540410 A CN 114540410A
Authority
CN
China
Prior art keywords
csduf1
caffeine
regulating
transcription factor
synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210150238.7A
Other languages
English (en)
Other versions
CN114540410B (zh
Inventor
陈忠正
佘可欣
马雯慧
刘平
李斌
张媛媛
林晓蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Agricultural University
Original Assignee
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Agricultural University filed Critical South China Agricultural University
Priority to CN202210150238.7A priority Critical patent/CN114540410B/zh
Publication of CN114540410A publication Critical patent/CN114540410A/zh
Application granted granted Critical
Publication of CN114540410B publication Critical patent/CN114540410B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及基因工程和分子生物学领域,具体涉及一种调控茶树咖啡碱合成的转录因子CsDUF1在调控茶树咖啡碱合成中的应用。所述的调控茶树咖啡碱合成的转录因子CsDUF1的氨基酸序列如SEQ NO:1所示,编码该转录因子CsDUF1的基因的核苷酸序列如SEQ NO:2所示。该转录因子CsDUF1具有调控茶叶咖啡碱合成酶基因yhNMT1和yhNMT13的表达及茶叶咖啡碱积累的作用。

Description

一种调控茶树咖啡碱合成的转录因子CsDUF1在调控茶树咖啡 碱合成中的应用
技术领域
本发明涉及基因工程和分子生物学领域,具体涉及一种调控茶树咖啡碱合成的转录因子CsDUF1在调控茶树咖啡碱合成中的应用。
背景技术
茶[Camellia sinensis(L.)O.Kuntze]是二十一世纪健康饮料之一,富含茶多酚、生物碱、茶多糖、茶氨酸等活性物质。生物碱作为茶叶中的重要功能物质,主要由咖啡碱、可可碱、茶碱等嘌呤生物碱组成。咖啡碱的功用已被广泛关注和深刻研讨,适量摄入咖啡碱可以提神利尿、消除疲劳、防止老年痴呆等,但过量摄入会对人体产生一些不良的反应,例如心悸、失眠、焦虑等。作为茶叶中的重要生物碱,咖啡碱在普通茶叶中含量为3-5%,但在部分茶树资源如南昆山毛叶茶和秃房茶中含量很低。咖啡碱在不同茶树资源中含量的差异,说明了山茶属不同植物咖啡碱合成代谢及其基因调控的复杂性。因此研究茶树中咖啡碱合成调控具有重要的理论和应用价值。
咖啡碱(1,3,7-三甲基黄嘌呤,Caffeine)是一种衍生于嘌呤核苷酸的黄嘌呤生物碱化合物,分子式为C8H10N4O2,是茶叶和咖啡中最主要的生物碱。咖啡碱结构的基本骨架是一个嘌呤环,在其1、3、7三个位置上各有一个甲基。在茶叶、咖啡等植物中大量研究表明,植物体内咖啡碱生物合成的主要途径为:黄嘌呤核苷(xanthosine)→7-甲基黄嘌呤核苷(7-methylxanthosine)→7-甲基黄嘌呤(7-methylxanthine)→3,7-二甲基黄嘌呤(可可碱,Theobromine)→1,3,7-三甲基黄嘌呤(咖啡碱,Caffeine),同时可能存在7-甲基黄嘌呤(7-methylxanthine)→1,7-二甲基黄嘌(paraxanthine)→咖啡碱等支路代谢途径。其中,N-甲基转移酶(N-methyltransferase,NMT)是参与咖啡碱生物合成、催化三步转甲基化反应的关键酶类。
转录因子(transcription factor,TF)是直接或间接与基因启动子区域中顺式作用元件发生特异性相互作用,并对基因转录的起始进行调控的一类蛋白质,其数量庞大,功能复杂,通常根据其结构进行分类和命名。转录因子一般具有激活或抑制性的转录调控域、DNA结合域、寡聚化位点和核定位信号4个结构域。目前在植物中发现的转录因子主要涉及调控植物的生长发育、次级代谢以及应对生物和非生物胁迫等方面。以往的研究表明,茶树体内的咖啡碱生物合成应受关键合成酶基因和调控基因如转录因子的双重调控。然而,有关茶树当中咖啡碱转录因子调控机制的研究仍很缺乏。
发明内容
为了克服现有技术的不足和缺点,本发明的首要目的在于提供一种调控茶树咖啡碱合成的转录因子CsDUF1(原名yhTF4,现更名为CsDUF1)在调控茶树咖啡碱合成中的应用。
本发明的目的通过下述技术方案实现:
一种调控茶树咖啡碱合成的转录因子CsDUF1在调控茶树咖啡碱合成中的应用,所述的调控茶树咖啡碱合成的转录因子CsDUF1的氨基酸序列如下所示:
MGSYSSEPRSMNDILEFAELTMEDDDNNNPRTGLLSRRDDEKDPGHKNKAQKKTKKKKKNQVFLEGYVEAADEDDLTRTKSLTDEDLEELKGCLDLGFGFSYDEIPELCNTLPALELCYSMSQRFLDDQQKSPDSPSSAAAAAAAETCSPASGPIANWKISSPGDHPEEVKARLKYWAQAVACTVRLCS
编码上述调控茶树咖啡碱合成的转录因子CsDUF1的基因的核苷酸序列如下所示:
ATGGGGAGCTATTCATCAGAACCCAGATCTATGAATGACATTCTTGAATTTGCAGAGTTAACAATGGAGGACGACGACAACAACAACCCACGAACCGGATTGTTGTCGAGGCGTGACGATGAGAAGGACCCTGGGCACAAGAACAAGGCCCAGAAGAAGACCAAGAAGAAGAAGAAGAACCAGGTGTTTCTCGAAGGGTATGTAGAGGCAGCAGATGAGGATGATCTTACGAGGACGAAGAGCTTGACTGATGAGGATTTGGAGGAGCTCAAGGGCTGTTTGGATCTAGGGTTTGGGTTCAGCTACGATGAAATCCCTGAACTCTGTAACACTTTGCCTGCTCTCGAGCTTTGCTATTCTATGAGCCAGAGGTTTCTCGATGACCAGCAGAAGTCGCCGGACTCTCCGTCCTCCGCTGCCGCTGCCGCTGCCGCCGAAACGTGTTCGCCGGCCTCCGGTCCCATTGCCAATTGGAAGATCTCTAGTCCTGGTGACCATCCCGAAGAAGTCAAAGCAAGGCTCAAATATTGGGCACAAGCTGTGGCATGCACTGTCAGATTATGCAGCTAG
所述的应用,包含如下步骤:
将编码上述调控茶树咖啡碱合成的转录因子CsDUF1的基因的核苷酸序列转入茶树基因组中,并在转基因茶树愈伤组织中超量表达,进而使得茶树愈伤组织的咖啡碱含量增加;
所述的应用,优选包含如下步骤:
(1)将含有编码上述调控茶树咖啡碱合成的转录因子CsDUF1的基因的核苷酸序列的过表达重组载体转化农杆菌,得到表达上述调控茶树咖啡碱合成的转录因子CsDUF1的菌株;
(2)将表达上述调控茶树咖啡碱合成的转录因子CsDUF1的菌株侵染茶树愈伤组织,得到过表达转基因愈伤组织;
所述的过表达重组载体,是将编码上述调控茶树咖啡碱合成的转录因子CsDUF1的基因的核苷酸序列与过表达载体连接得到;
所述的过表达载体为pCAMBIA1301-35SN;
所述的农杆菌优选为EHA105;
所述的茶树为英红九号;
所述的调控茶树咖啡碱合成的转录因子CsDUF1在调控咖啡碱合成酶基因yhNMT1表达中的应用;
所述的调控茶树咖啡碱合成的转录因子CsDUF1在调控咖啡碱合成酶基因yhNMT13表达中的应用;
本发明相对于现有技术具有如下的优点及效果:
(1)本发明根据编码调控茶树咖啡碱合成的转录因子CsDUF1的基因(CsDUF1基因)的核苷酸序列设计引物,检验该基因在酵母和烟草中的转录激活活性,结果表明该转录因子的转录激活域在N端,且可以促进PNMT1的作用,参与调控英红九号茶树中咖啡碱的合成。
(2)本发明针对CsDUF1基因的核苷酸序列设计引物扩增基因,构建CsDUF1基因过表达转化载体,经农杆菌介导对茶叶愈伤组织进行遗传转化,在茶叶愈伤组织中过表达CsDUF1基因,结果显示:过表达CsDUF1基因可显著上调yhNMT1基因表达量并显著提高转基因愈伤中咖啡碱含量,其中,过表达茶叶愈伤中CsDUF1基因表达量上升1.71倍,yhNMT1基因表达量上升1.68倍,yhNMT13基因表达量上升2.7倍,咖啡碱含量上升至1406μg/g(对照1190μg/g),可可碱含量下降至408μg/g(对照624μg/g)。该结果说明:过表达CsDUF1基因可以促进茶叶愈伤组织中咖啡碱代谢途径合成酶基因的表达,以增加茶树咖啡碱的合成积累。
(3)本发明提供的调控茶树咖啡碱合成的转录因子CsDUF1具有调控茶叶咖啡碱合成酶基因yhNMT1的表达及茶叶咖啡碱积累的作用,该转录调控因子的发现及其功能的揭示对于其在茶叶咖啡碱调控中的应用,具有积极的理论和实践意义。
附图说明
图1是转录因子CsDUF1在酵母中转录激活活性的结果分析图。
图2是转录因子CsDUF1在烟草中瞬时表达GUS组织化学染色的结果分析图。
图3是转录因子CsDUF1在烟草中瞬时表达GUS酶活性检测的结果分析图。
图4是转基因愈伤组织筛选培养展示图,其中,A:脱菌培养的愈伤组织;B:抗性筛选后新长出的愈伤组织。
图5是过表达转基因愈伤组织CsDUF1-OE的PCR鉴定的结果分析图,其中M:MarkerDL2000;1:CK;2:CsDUF1-OE。
图6是过表达转基因愈伤组织CsDUF1-OE中基因相对表达量的结果分析图。
图7是过表达转基因愈伤CsDUF1-OE中咖啡碱和可可碱含量的结果分析图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
下述实施例中所用的试剂等,如无特殊说明,均可从商业途径得到。
实施例1
1、取适量英红九号的一芽二叶于液氮中研磨成粉末,使用All-In-One DNA/RNA小量提取试剂盒(上海生工,目录号:B618203)提取其基因组DNA;以基因组DNA为模板,扩增得到yhNMT1基因的启动子PNMT1基因,将其与PMD-18T载体(Takara,目录号:6011)进行连接,16℃连接30min,构建含有PNMT1基因的重组表达载体PMD-18T-PNMT1;
其中,启动子PNMT1基因的核苷酸序列如下所示:
TAGTCGAGTGAAATGAATATGAAAATGATGTCCCATATAGGGTGAGCTAATGCCCAGTAGAGATATACTAATCCAAGTATGAAAAATAACTAAAATATTAGCATTTGATAGATGGCTAGCACTTATAAACCAACTTATATCACAATACAGTTCCATGACAATTATGTCCATGTTTCAATCCACTTTCCTTTACTTATCCAATGAATTCATAACACATGGCTTGGAACCTAGCCAAACAATTAAATGAAACTACAATAAAATATCAAATCATCCCAAAATCTCAAATTATTTTCAAAATATACAACCAAACAAACTAAAAAAATTTCTAAACTATCTCTCAAAAAAAAAAATTAAAAATTTATCACAAAACAAAAACCAAACACACCCTTTTAATTTCAAAAACTGAAAAAAATATTTGGTTTTATTGGACGTCACGTGGCGTACTACTTACCAATAATAATATGTCATGTTTCTATTATTTTTTAATCACTTAATATAAAATTATAAATCTCATTTTTTTTCATTAATTAAAATACTTGTGTATCACGTGCAAAATCAACCAATAATTTCTCAAAAAAAAAATCCTAACTTTGGCGTACCCGAGCACCCAGACTATAGATAGGCCTTCAGGCCATTATTCACATCACTGCTGTGGTAGCTGGCCTCTTTGCTATAAAAATTAGTGCTTTTCTGGTTATTCATATTCATATCACTGCTGTGGCAGCTGGCCTCTTTGCTATAAAAATTACTTTTCTGACGAGGC
2、根据PNMT1基因序列设计引物(pBait-F:5'-CCCaagcttTAGTCGAGTGAAATGAATATGAAAATGA-3'和pBait-R:5'-GCctcgagGCCTCGTCAGAAAAGTAATTTTTATAGC-3',小写部分为HindⅢ和XhoⅠ酶切位点),以步骤1制备的PMD-18T-PNMT1重组质粒质粒为模板、以pBait-F和pBait-R为扩增引物,进行PCR扩增,得到相应的目的基因片段;反应结束后取2μL PCR反应液进行质量百分比为0.8%的琼脂糖凝胶电泳检测,检测条带无误后使用DNA纯化回收试剂盒(天根,目录号:DP209-03)进行纯化回收。
3、将步骤2制备的PNMT1基因片段和诱饵载体PAbAi(由实验室保存,可市购)分别使用HindⅢ和XhoⅠ进行双酶切,反应条件为:37℃反应1h,反应结束后使用DNA凝胶回收试剂盒(天根,目录号:DP209-03)进行纯化回收,然后利用T4 DNA Ligase(Takara,目录号:2011A)将两者16℃连接过夜;再将获得的连接产物转化大肠杆菌DH5α感受态,挑取单菌落提取质粒,重组质粒经PCR和测序鉴定,鉴定正确的重组质粒PAbAi-PNMT1于-20℃保存备用。
4、将步骤3制得的重组质粒PAbAi-PNMT1按照常规方法转化到酵母Y1H细胞(上海唯地生物科技公司)中,经筛选鉴定获得新酵母菌株Y1H(PNMT1-AbAi)。
5、(1)英红9号茶叶总RNA提取
①取冻存的英红9号一芽二叶约0.8g,液氮充分研磨成粉末,快速转移到2mL离心管中,迅速加入1.0mL Solution I(0.1mol/L Tris-HCl pH 8.0,1.4mol/L NaCl,20mmol/LEDTA pH 8.0,质量百分比为2%的CTAB,使用前加质量百分比为2%的β-巯基乙醇),轻微震荡后放置于65℃水浴中裂解15min,每5min轻柔摇动一次;
②加入等体积的酚:氯仿:异戊醇(体积比25:24:1),颠倒混匀,冰上放置10min,4℃、12000r/min离心8min;
③将上清液移至新的离心管中,加入1/20体积的4mol/L KAc(pH5.5),轻微混匀,加入等体积氯仿,颠倒混匀,冰上放置10min,4℃、12000r/min离心8min;
④将上清液移至新的离心管(1.5mL)中,加等体积氯仿,混匀,冰上放置10min,4℃、12000r/min离心8min,上清液移到新的离心管(1.5mL)中,加0.25倍体积10mol/L LiCl,4℃过夜静置;
⑤取出过夜放置的样品,4℃,12000r/min离心15min,尽量去除上清,用体积百分比为70%的乙醇(DEPC水)洗涤沉淀,超净工作台中风干RNA沉淀,将其溶于DEPC水中,经质量百分比为1.2%的琼脂糖凝胶电泳检测后保存于-80℃。
(2)第一链SMART cDNA合成(Yeastmaker Yeast Transformation System2Clontech目录号:630439、Advantage 2PCR Kit Clontech目录号:639207)
灭菌离心管中加入:1-2μL RNA(0.10-2.0μg总RNA),1.0μL CDSⅢ引物,加入灭菌去离子超纯水至总体积为4.0μL,混匀;72℃水浴2min(金属浴中进行),冰水中冷却2min;轻微离心后加入以下试剂(提前配好以下成分,置于冰上):2.0μL 5×First-Strand Buffer,1.0μL DTT(100mmol/L),1.0μL dNTP Mix(10mmol/L),1.0μL SMART MMLV反转录酶,混匀;42℃水浴10min,加入1.0μL SMARTⅢ寡核苷酸,42℃水浴1h,75℃放置10min,终止合成反应;冷却至室温25℃,加入2.0μL的RNase H,37℃温浴20min,-20℃条件下放置备用。
(3)LD-PCR合成SMART cDNA
灭菌离心管中加入以下成分:2μL第一链SMART cDNA,70μL Deionized H2O,10μL10×Advantage 2PCR Buffer,2μL 50×dNTP Mix,2μL 5'PCR Primer,2μL 3'PCR Primer,10μL Melting Solution,2μL 50×Advantage 2Polymerase Mix;小心混匀,轻微离心,PCR扩增程序:95℃30sec,95℃10sec,68℃6min,68℃5min(中间2个温度时间循环23次,每个循环过后,退火时间增加5sec);取7μL扩增产物,在质量百分比为1.2%的琼脂糖凝胶电泳,检测扩增结果,-20℃条件下放置备用。
(4)CHROMA SPIN+TE400纯化SMART cDNA
①将CHROMA SPIN+TE400 Column反转几次完全充分悬浮凝胶柱,700g离心5min,去除平衡缓冲液,弃掉收集管中的液体;
②将柱放入新的1.5mL离心管中,把cDNA加到柱子中央,切勿使样品沿柱的内壁流下,700g离心5min,纯化的cDNA收集到管中;
③加入1/10体积3mol/L醋酸钠(pH5.3),混匀,加入2.5倍体积无水乙醇。-20℃冰冻1h,14000r/min离心20min,小心弃上清液,14000r/min瞬时离心,去除残留液体;
④沉淀于超净工作台中干燥10min,用20μL灭菌去离子水溶解,纯化后的cDNA于质量百分比为1%的琼脂糖凝胶电泳检测。
6、将步骤5获得的英红9号茶叶cDNA和pGADT7-Rec载体(由实验室保存,可市购)共转化步骤4制备的Y1H(PNMT1-AbAi)菌株,成功构建出酵母单杂交文库,其容量达2.7×106cfu;文库构建和筛选的具体步骤如下:
(1)Y1H(PNMT1-AbAi)菌株制备酵母感受态细胞,具体步骤如下:
①挑酵母菌株在YPDA培养基划线,30℃倒置培养约3d,挑单菌落于3mL YPDA液体培养基中,30℃、250r/min震荡培养过夜;
②取5μL培养液转移至50mLYPDA液体培养基,30℃、250r/min震荡培养直至菌液OD600=0.15-0.3,室温700g离心5min收集菌体,弃上清,用100mL新的YPDA培养基重悬菌体;
③30℃、250r/min震荡培养直至OD600=0.4-0.5,菌液分装至2个50mL离心管中,室温700g离心5min,弃上清,加入30mL无菌水重悬菌体;
④室温700g离心5min收集菌体,弃上清,加入1.5mL1.1×TE/LiAc重悬菌体;将重悬菌液转移到1.5mL离心管中,高速离心15sec,弃上清,用600μL 1.1×TE/LiAc重悬沉淀,置于冰上,感受态制备完成。
(2)Yeastmaker Carrier DNA于100℃变性5min,迅速在冰水中冷却,重复上述操作一次;在预冷的15mL无菌管中加入下列成分:纯化的cDNA 20μL,pGADT7-Rec 6μL,变性后的Yeastmaker Carrier DNA 20μL和600μL步骤(1)制备的酵母感受态细胞,轻轻混匀;然后加入2.5mL PEG/LiAc,轻微混匀,30℃水浴45min,每10min轻微震荡混匀;再加入160μLDMSO,混匀,42℃水浴20min,每10min轻微混匀一次;随后700g离心5min,弃上清,加入3mLYPD Plus液体培养基,30℃震荡培养90min;再次700g离心5min后,弃上清,用15mL质量百分比为0.9%的NaCl溶液重悬,取100μL稀释1/10、1/100、1/1000转化液涂板在SD/-Leu平板上(观察长出菌落的个数,计算转化效率)。取剩余菌液(约15mL),每100μL涂板在SD/-Leu/AbA培养基平板(AbA浓度为200ng/mL),30℃培养3-5d。
(3)将长势良好的转化子菌落挑取划线到SD/-Leu/AbA进行复筛,30℃培养3-5d,复筛2-3次。
(4)复筛2-3次仍长势良好的菌落,进行菌落PCR鉴定pGADT7质粒中插入片段大小,其中鉴定引物AD-F:5′-CTATTCGATGATGAAGATACCCCACCAAACCC-3′,AD-R:5′-GTGAACTTGCGGGGTTTTTCAGTATCTACGAT-3′,PCR体系(30μL)为:10×Buffer 3μL,AD-F(10μmol/L)1μL,AD-R(10μmol/L)1μL,dNTP Mixture(2.5mmol/L each)4.8μL,TaKaRa Ex Taq(0.5U/μL)1.5μL,ddH2O 18.7μL;反应程序为:94℃ 1min;98℃ 10sec,68℃ 1min,68℃ 5min,30cycles;反应结束后取2μL PCR反应液进行质量百分比为0.8%的琼脂糖凝胶电泳检测。
(5)根据PCR鉴定pGADT7质粒中插入片段大小,取对应酵母单菌落进行液体培养后,取菌液提取pGADT7质粒,质粒提取参照Clontech公司Easy Yeast Plasmid IsolationKit试剂盒,并将提取质粒送广州天一辉远生物公司测定插入片段序列。
(6)阳性克隆酵母质粒回转验证
步骤(5)提取得到的阳性克隆酵母质粒,转化Y1H(PNMT1-AbAi)菌株和空载体Y1H(pAbAi)酵母菌感受态,制备酵母感受态细胞方法同步骤(1),转化方法参照步骤(2);取100μL稀释1/10、1/100转化液涂板在SD/-Leu和SD/-Leu(200ng/mL AbA)平板上,30℃倒置培养3-5d观察菌落生长。
通过上述文库筛选成功获得与启动子PNMT1互作的转录因子,通过基因测序确定其核苷酸序列,并通过NCBI blastx得到其氨基酸序列,发现其含有未知功能的CsDUF1蛋白结构域,将其命名为CsDUF1。
下述实施例进一步在酵母和烟草中分析CsDUF1的转录激活活性,再进一步将CsDUF1基因构建到过表达载体中,并转化根癌农杆菌EHA105,采用根癌农杆菌介导茶愈伤组织的遗传转化来鉴定CsDUF1的功能。
实施例2转录因子CsDUF1的转录激活活性分析
一、转录因子CsDUF1在酵母中的转录活性分析
1、CsDUF1基因的克隆
(1)英红九号基因组DNA提取同实施例1。取适量英红九号的一芽二叶于液氮中研磨成粉末,使用All-In-One DNA/RNA小量提取试剂盒(上海生工,目录号:B618203)提取总RNA,获得合格的RNA样品后使用PrimeScriptTM II 1st Strand cDNA Synthesis Kit(Takara,目录号:6210A)进行反转录获得cDNA,并置于-20℃保存备用。
(2)取上述cDNA溶液2μL作为模板,以引物CsDUF1-F:5′-ATGGGGAGCTATTCATCAGAACC-3′和CsDUF1-R:5′-CTAGCTGCATAATCTGACAGTGCA-3′为引物,进行PCR扩增,其中,PCR反应条件为:94℃预变性3min;再94℃变性30sec,60℃退火45sec,72℃延伸2min,共32个循环,最后72℃终延伸10min。反应结束后,取2μL PCR反应液进行质量百分比为0.8%的琼脂糖凝胶电泳检测,得到长度约为570bp的扩增片段,与预期结果相符,用DNA纯化回收试剂盒(天根)纯化回收该目的片段。
2、构建重组表达载体pMD-18T-CsDUF1
将步骤(1)纯化回收后的目的片段和pMD-18T载体(Takara目录号:6011)进行连接,16℃连接过夜,构建含有CsDUF1基因的重组表达载体pMD-18T-CsDUF1,转化大肠杆菌DH5α,挑选阳性克隆,进行测序,经测序验证,CsDUF1基因序列为570bp,最长的开放阅读框编码(ORF)189个氨基酸。
CsDUF1基因的核苷酸序列如下所示:
ATGGGGAGCTATTCATCAGAACCCAGATCTATGAATGACATTCTTGAATTTGCAGAGTTAACAATGGAGGACGACGACAACAACAACCCACGAACCGGATTGTTGTCGAGGCGTGACGATGAGAAGGACCCTGGGCACAAGAACAAGGCCCAGAAGAAGACCAAGAAGAAGAAGAAGAACCAGGTGTTTCTCGAAGGGTATGTAGAGGCAGCAGATGAGGATGATCTTACGAGGACGAAGAGCTTGACTGATGAGGATTTGGAGGAGCTCAAGGGCTGTTTGGATCTAGGGTTTGGGTTCAGCTACGATGAAATCCCTGAACTCTGTAACACTTTGCCTGCTCTCGAGCTTTGCTATTCTATGAGCCAGAGGTTTCTCGATGACCAGCAGAAGTCGCCGGACTCTCCGTCCTCCGCTGCCGCTGCCGCTGCCGCCGAAACGTGTTCGCCGGCCTCCGGTCCCATTGCCAATTGGAAGATCTCTAGTCCTGGTGACCATCCCGAAGAAGTCAAAGCAAGGCTCAAATATTGGGCACAAGCTGTGGCATGCACTGTCAGATTATGCAGCTAG
调控茶树咖啡碱合成的转录因子CsDUF1的氨基酸序列如下所示:
MGSYSSEPRSMNDILEFAELTMEDDDNNNPRTGLLSRRDDEKDPGHKNKAQKKTKKKKKNQVFLEGYVEAADEDDLTRTKSLTDEDLEELKGCLDLGFGFSYDEIPELCNTLPALELCYSMSQRFLDDQQKSPDSPSSAAAAAAAETCSPASGPIANWKISSPGDHPEEVKARLKYWAQAVACTVRLCS
3、构建重组表达载体pGBKT7-CsDUF1、pGBKT7-CsDUF1-N和pGBKT7-CsDUF1-C
利用同源重组技术将编码转录因子CsDUF1的基因和pGBKT7载体(由实验室保存,可市购)进行连接,构建重组表达载体,具体方法为:
(1)根据CsDUF1基因的序列,设计选取的基因片段的引物(克隆全长基因序列用引物BD-CsDUF1-F:5′-atggccatggaggccgaattcATGGGGAGCTATTCATCAGAACC-3′和BD-CsDUF1-R:5′-ccgctgcaggtcgacggatccGCTGCATAATCTGACAGTGCATG-3′;克隆N端部分序列用引物BD-CsDUF1-F:5′-atggccatggaggccgaattcATGGGGAGCTATTCATCAGAACC-3′和BD-CsDUF1-N-R:5′-ccgctgcaggtcgacggatccCTTCGTCCTCGTAAGATCATCCTC-3′;克隆C端部分序列用引物BD-CsDUF1-C-F:5′-atggccatggaggccgaattcAGCTTGACTGATGAGGATTTGGA-3′和BD-CsDUF1-R:5′-ccgctgcaggtcgacggatccGCTGCATAATCTGACAGTGCATG-3′),以步骤(2)制得的pMD-18T-CsDUF1质粒为模板进行PCR扩增,得到相应的目的基因片段;反应结束后取2μL PCR反应液进行质量百分比为0.8%的琼脂糖凝胶电泳检测,检测条带无误后使用DNA纯化回收试剂盒(天根,目录号:DP209-03)进行纯化回收。
(2)将含有酵母表达载体pGBKT7的大肠杆菌DH5α菌株(由实验室保存,可市购)接种于含有50mg/L kana抗生素的LB液体培养基中,37℃、200r/min振荡培养过夜,用质粒小提试剂盒(天根,目录号:DP103)提取pGBKT7质粒,使用EcoR I和BamH I酶切pGBKT7质粒,37℃反应1h;反应结束后按照DNA凝胶回收试剂盒(天根,目录号:DP209-03)进行纯化回收。
(3)使用ClonExpress II One Step Cloning Kit试剂盒(诺唯赞,目录号:C112-01)将步骤(1)获得的带有pGBKT7同源末端序列的CsDUF1全长和部分序列与经步骤(2)酶切线性化的pGBKT7载体纯化回收产物进行重组连接反应;重组连接反应后,将获得的连接产物转化大肠杆菌DH5α感受态,挑取单菌落提取质粒,重组质粒经PCR和测序鉴定,鉴定正确的重组质粒pGBKT7-CsDUF1、pGBKT7-CsDUF1-N和pGBKT7-CsDUF1-C于-20℃保存备用。
(4)将步骤(3)构建成功的pGBKT7-CsDUF1、pGBKT7-CsDUF1-N和pGBKT7-CsDUF1-C重组质粒转化酵母AH109感受态细胞(上海唯地生物科技公司),具体方法为:
①每管加入50μL用1×TE/LiAc重悬的酵母AH109感受态细胞,轻轻混匀;
②每管分别pGBKT7-CsDUF1、pGBKT7-CsDUF1-N和pGBKT7-CsDUF1-C重组质粒,每个质粒加500ng;
③每管加入5μL carrier DNA(上海唯地生物科技公司,水浴煮沸10min,立即插入冰浴,重复一次)和600μL PEG/LiAc,吹打混匀,于30℃、200r/min振荡培养30min;
④加入20μL DMSO,缓缓颠倒混匀(不能振荡),42℃水浴热激15min(每间隔5min颠倒混匀),迅速冰浴2min;
⑤室温12000g离心30s,尽量吸净上清,以300μL 1×TE重悬沉淀细胞,吸取200μL涂布于SD/-Trp固体培养基,30℃倒置培养3-5d;
⑥挑取SD/-Trp固体培养基上的酵母单菌落于100μL无菌水中轻轻吸打混匀,吸取10μL悬浮液滴在SD/-Trp-His-Ade固体平板上,置于超净台吹干后封口,30℃倒置培养3-5d后在酵母单菌落上滴加4mg/mL X-α-gaL直至覆盖单菌落,观察酵母生长情况。
结果如图1所示,构建好的重组质粒(pGBKT7-CsDUF1、pGBKT7-CsDUF1-N和pGBKT7-CsDUF1-C)经PCR分析和测序鉴定后转入酵母细胞AH109中,涂布于SD/-Trp酵母培养基上,发现均能正常生长,说明所有载体都成功转入酵母细胞中;又将含重组质粒的酵母细胞涂在SD/-Trp-His-Ade培养基上并滴加底物X-α-gal,发现含pGBKT7-CsDUF1载体的酵母菌能生长且变蓝,而转入pGBKT7空载体的酵母细胞在SD/-Trp-His-Ade培养基上不能生长,说明CsDUF1在酵母细胞中具有转录激活活性。进一步将CsDUF1分段验证结果表明,插入pGBKT7-CsDUF1-N片段的酵母菌能在SD/-Trp-His-Ade培养基上生长且变蓝,而pGBKT7-CsDUF1-C不能在SD/-Trp-His-Ade培养基上生长,说明CsDUF1的转录激活域位于N端。
二、转录因子CsDUF1在烟草中的转录活性分析
(1)构建报告载体p1301-PNMT1
以步骤一制得的英红九号基因组DNA作为模板,用引物p1301-F:5′-gacctgcaggcatgcaagcttTAGTCGAGTGAAATGAATATGAAAATGA-3′和p1301-R:5′-ttaccctcagatctaccatggGCCTCGTCAGAAAAGTAATTTTTATAGC-3′进行PCR扩增,获得yhNMT1基因的启动子片段PNMT1。将pCAMBIA1301载体(武汉淼灵生物科技有限公司)经Hind III、Nco I双酶切后切胶回收,使用ClonExpress II One Step Cloning Kit试剂盒(南京诺唯赞生物科技有限公司,目录号:C112-01)将扩增的PNMT1启动子片段和经酶切线性化的纯化回收产物pCAMBIA1301载体进行重组反应,转到大肠杆菌DH5α感受态,挑取单菌落提取质粒,重组质粒经PCR和测序鉴定,鉴定正确的重组质粒p1301-PNMT1于-20℃保存备用。
(2)构建效应载体pRI101-CsDUF1
设计特异引物pRI-CsDUF1-F和pRI-CsDUF1-R(pRI-CsDUF1-F:5′-ttgatacatatgcccgtcgacATGGGGAGCTATTCATCAGAACC-3′,pRI-CsDUF1-R:5′-agagttgttgattcagaattcCTAGCTGCATAATCTGACAGTGCA-3′),以步骤一制得的pMD-18T-CsDUF1质粒为模板进行PCR扩增,利用同源重组技术(同上)将PCR产物与经过EcoR I和Sal I双酶切线性化的pRI101 AN载体(武汉淼灵生物科技有限公司)进行连接,转到大肠杆菌DH5α感受态,挑取单菌落提取质粒,重组质粒经PCR和测序鉴定,鉴定正确的重组质粒pRI101-CsDUF1于-20℃保存备用。
(3)将步骤(1)制得的报告载体p1301-PNMT1和步骤(2)制得的效应载体pRI101-CsDUF1分别转化或共转化农杆菌EHA105(上海唯地生物科技公司),具体方法为:
①取-80℃保存的农杆菌感受态于室温待其部分融化,处于冰水混合状态时插入冰中;
②每100μL感受态加入0.01~1μg质粒DNA,用手拨打管底混匀,依次于冰上静置5min、液氮5min、37℃水浴5min、冰浴5min;
③加入700μL无抗生素的LB液体培养基,于28℃、200r/min振荡培养2~3h;
④6000g离心1min收菌,留取100μL左右上清轻轻吹打重悬菌块涂布于含相应抗生素的LB平板上,倒置于28℃培养箱培养2d;
⑤菌落长出后挑取单菌落,进行PCR鉴定;
⑥挑取包含正确重组质粒的农杆菌单菌落,接种在3mL含20mg/L利福平(Rif)和50mg/L Kana的LB液体培养基中,28℃、200r/min振荡培养48h;取2mL菌液5000g离心10min,弃上清;用重悬缓冲液(10mmol/L MES,150μmol/L AS,10mmol/L MgCl2)重悬菌体,调至OD600=0.6,静置3h以活化菌体;将重悬液单独或者等比例混合,注入烟草叶的下表皮,3d后剪下注射部位的叶片进行GUS组织化学染色和GUS酶活性测定。
GUS组织化学染色结果如图2所示,未转化载体的烟草叶片不能被染成蓝色;仅转化pCAMBIA1301载体,叶片染色较深;单独转化p1301-PNMT1报告质粒载体时,叶片染色较转化pCAMBIA1301载体浅;当p1301-PNMT1报告载体与pRI101-CsDUF1效应载体组合共转化烟草叶片时,叶片染色程度比单独转化p1301-PNMT1报告载体深。
GUS酶活性测定结果如图3所示,未转化的烟草叶片GUS酶活性较低,只转化pCAMBIA1301报告载体的烟草叶片GUS酶活性很高,p1301-PNMT1报告载体与pRI101-CsDUF1效应载体组合进行共转化的烟草叶片的GUS酶活性比单独转入p1301-PNMT1载体的GUS酶活性值均明显提高,说明CsDUF1转录因子能够激活yhNMT1基因启动子,从而促进yhNMT1基因的表达。
实施例3过表达转录因子CsDUF1愈伤组织基因表达和咖啡碱含量分析
一、构建过表达载体35SN-CsDUF1
设计特异引物SN-CsDUF1-F:
5′-aagcttatcgataccgtcgacATGGGGAGCTATTCATCAGAACC-3′和SN-CsDUF1-R:
5′-gatctgcagcccgggggatccCTAGCTGCATAATCTGACAGTGCA-3′,以实施例1制得的pMD-18T-CsDUF1质粒为模板进行PCR扩增,利用同源重组技术(同实施例2)将PCR产物与经过BamH I和Sal I双酶切线性化的pCAMBIA1301-35SN载体(武汉淼灵生物科技有限公司)进行连接,转到大肠杆菌DH5α感受态,挑取单菌落提取质粒,重组质粒经PCR和测序鉴定,鉴定正确的重组质粒35SN-CsDUF1于-20℃保存备用。
二、农杆菌介导的英红九号愈伤组织转基因
1、将35SN-CsDUF1重组质粒转化农杆菌EHA105,转化方法同实施例2。
2、利用含重组质粒的农杆菌侵染英红九号愈伤组织,具体方法为:
(1)将含有35SN-CsDUF1重组质粒的农杆菌EHA105培养于添加了Kana和Rif的LB液体培养基中,28℃、200r/min扩大培养至OD600约为0.6,4500g离心5min,弃去上清,用加了乙酰丁香酮(100μmol/L)的MS液体培养基重悬菌体,并将菌液的OD值调到0.6,待用;
(2)将愈伤组织(由常规方法诱导而成)剪成0.5cm2大小的方块,浸泡于含35SN-CsDUF1重组载体的农杆菌菌液中15min,在无菌滤纸上吸干多余的菌液,然后于MS+AS(100μmol/L)中黑暗培养3d;
(3)共培养3d后的愈伤组织需进行脱菌处理:用400mg/L羧卞青霉素冲洗愈伤组织表面菌体,然后用无菌水冲洗2至3遍,吸干表面水分,培养于添加羧卞青霉素(200mg/L)和Hyg(35mg/L)的MS培养基中进行农杆菌脱菌和抗性愈伤筛选;每3d更换一次培养基,此步重复至愈伤组织上的农杆菌清除干净后。
(4)将脱菌完全的愈伤组织转接至含35mg/L的Hyg的MS培养基上进行抗性筛选,每28d更换1次培养基(图4)。
3、英红九号转基因愈伤组织鉴定及基因表达分析
待步骤2中新的愈伤组织长出后,用All-In-One DNA/RNA小量提取试剂盒(上海生工)提取DNA和RNA:以愈伤组织DNA为模板,潮霉素通用引物Hyg-F:5′-CATCGAAATTGCCGTCAACC-3′和Hyg-R:5′-GCTTTCAGCTTCGATGTAGG-3′进行PCR检测,用PrimeScript TM 1st Strand cDNA Synthesis Kit(TaKaRa)将愈伤组织RNA反转录成cDNA。以cDNA为模板,根据各基因的特异区域设计实时荧光定量qRT-PCR引物(q-yhNMT1-F:5′-AAGTTCCGTGTTATGTGA-3′,q-yhNMT1-R:5′-TGAGTCCTTTTGGTGCCT-3′,q-yhNMT13-F:TCAATACCCTCTTCAAACGC,q-yhNMT13-R:GGTGCCTGAGTAAGCCAAT,q-CsDUF1-F:5′-TCTGTAACACTTTGCCTGCTC-3′,q-CsDUF1-R:5′-TTGACTTCTTCGGGATGGT-3′)进行实时荧光定量PCR,另以茶树GAPDH基因为内参基因(引物q-GAP-F:5′-TTGGCATCGTTGAGGGTC-3′,q-GAP-R:5′-CAGTGGGAACACGGAAA-3′),使用2-ΔΔCT法计算基因相对表达量,进行转基因愈伤组织目的基因相对表达量分析,每个实验3个重复。
图5是过表达转基因愈伤组织CsDUF1-OE的PCR鉴定的结果分析图,其中CK是野生型。
结果如图6所示,过表达茶叶愈伤中CsDUF1基因对比正常茶叶愈伤组织表达上升1.71倍,yhNMT1基因表达量上升1.68倍,yhNMT13基因表达量上升2.7倍。
4、英红九号转基因愈伤组织咖啡碱测定
参考国标GBT8312-2013方法提取愈伤组织生物碱。具体方法为:
(1)在研钵中磨碎茶愈伤组织样品,称重(准确至0.0001g),置于50mL烧瓶中,加20mL沸水于沸水浴中浸提40min(每隔5min摇动一次),浸提完毕后立即趁热减压过滤,滤液移入25mL容量瓶中,冷却后用水定容至刻度,混匀后-20℃冻存。
(2)茶叶愈伤组织水提物经PES滤膜(0.22μm)过滤,采用Agilent Poroshell120Bonus-RP色谱柱(4.6×50mm,2.7μm)进行分离,柱温30℃,以纯乙腈(A)和0.05%(体积百分数,下同)三氟乙酸(B)为流动相进行梯度洗脱(0~8min,0%~9.0%A;8~17min,9.0%~17.0%A;17~26min,17.0%~28.0%A)。流速为0.8mL/min,进样量为5μL,DAD检测器,检测波长为280nm。使用安捷伦化学工作站(B.04.02)对原始信号进行积分,用外标法计算组分含量。
结果如图7所示,过表达转基因愈伤组织CsDUF1-OE的咖啡碱含量上升至1406μg/g(对照1190μg/g),可可碱含量下降至408μg/g(对照624μg/g),其中CK是野生型。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
SEQUENCE LISTING
<110> 华南农业大学
<120> 一种调控茶树咖啡碱合成的转录因子CsDUF1在调控茶树咖啡碱合成中的应用
<130> 1
<160> 29
<170> PatentIn version 3.3
<210> 1
<211> 189
<212> PRT
<213> Artificial
<220>
<223> 调控茶树咖啡碱合成的转录因子CsDUF1
<400> 1
Met Gly Ser Tyr Ser Ser Glu Pro Arg Ser Met Asn Asp Ile Leu Glu
1 5 10 15
Phe Ala Glu Leu Thr Met Glu Asp Asp Asp Asn Asn Asn Pro Arg Thr
20 25 30
Gly Leu Leu Ser Arg Arg Asp Asp Glu Lys Asp Pro Gly His Lys Asn
35 40 45
Lys Ala Gln Lys Lys Thr Lys Lys Lys Lys Lys Asn Gln Val Phe Leu
50 55 60
Glu Gly Tyr Val Glu Ala Ala Asp Glu Asp Asp Leu Thr Arg Thr Lys
65 70 75 80
Ser Leu Thr Asp Glu Asp Leu Glu Glu Leu Lys Gly Cys Leu Asp Leu
85 90 95
Gly Phe Gly Phe Ser Tyr Asp Glu Ile Pro Glu Leu Cys Asn Thr Leu
100 105 110
Pro Ala Leu Glu Leu Cys Tyr Ser Met Ser Gln Arg Phe Leu Asp Asp
115 120 125
Gln Gln Lys Ser Pro Asp Ser Pro Ser Ser Ala Ala Ala Ala Ala Ala
130 135 140
Ala Glu Thr Cys Ser Pro Ala Ser Gly Pro Ile Ala Asn Trp Lys Ile
145 150 155 160
Ser Ser Pro Gly Asp His Pro Glu Glu Val Lys Ala Arg Leu Lys Tyr
165 170 175
Trp Ala Gln Ala Val Ala Cys Thr Val Arg Leu Cys Ser
180 185
<210> 2
<211> 570
<212> DNA
<213> Artificial
<220>
<223> 编码调控茶树咖啡碱合成的转录因子CsDUF1的基因
<400> 2
atggggagct attcatcaga acccagatct atgaatgaca ttcttgaatt tgcagagtta 60
acaatggagg acgacgacaa caacaaccca cgaaccggat tgttgtcgag gcgtgacgat 120
gagaaggacc ctgggcacaa gaacaaggcc cagaagaaga ccaagaagaa gaagaagaac 180
caggtgtttc tcgaagggta tgtagaggca gcagatgagg atgatcttac gaggacgaag 240
agcttgactg atgaggattt ggaggagctc aagggctgtt tggatctagg gtttgggttc 300
agctacgatg aaatccctga actctgtaac actttgcctg ctctcgagct ttgctattct 360
atgagccaga ggtttctcga tgaccagcag aagtcgccgg actctccgtc ctccgctgcc 420
gctgccgctg ccgccgaaac gtgttcgccg gcctccggtc ccattgccaa ttggaagatc 480
tctagtcctg gtgaccatcc cgaagaagtc aaagcaaggc tcaaatattg ggcacaagct 540
gtggcatgca ctgtcagatt atgcagctag 570
<210> 3
<211> 763
<212> DNA
<213> Artificial
<220>
<223> 启动子PNMT1基因的核苷酸序列
<400> 3
tagtcgagtg aaatgaatat gaaaatgatg tcccatatag ggtgagctaa tgcccagtag 60
agatatacta atccaagtat gaaaaataac taaaatatta gcatttgata gatggctagc 120
acttataaac caacttatat cacaatacag ttccatgaca attatgtcca tgtttcaatc 180
cactttcctt tacttatcca atgaattcat aacacatggc ttggaaccta gccaaacaat 240
taaatgaaac tacaataaaa tatcaaatca tcccaaaatc tcaaattatt ttcaaaatat 300
acaaccaaac aaactaaaaa aatttctaaa ctatctctca aaaaaaaaaa ttaaaaattt 360
atcacaaaac aaaaaccaaa cacacccttt taatttcaaa aactgaaaaa aatatttggt 420
tttattggac gtcacgtggc gtactactta ccaataataa tatgtcatgt ttctattatt 480
ttttaatcac ttaatataaa attataaatc tcattttttt tcattaatta aaatacttgt 540
gtatcacgtg caaaatcaac caataatttc tcaaaaaaaa aatcctaact ttggcgtacc 600
cgagcaccca gactatagat aggccttcag gccattattc acatcactgc tgtggtagct 660
ggcctctttg ctataaaaat tagtgctttt ctggttattc atattcatat cactgctgtg 720
gcagctggcc tctttgctat aaaaattact tttctgacga ggc 763
<210> 4
<211> 37
<212> DNA
<213> Artificial
<220>
<223> pBait-F
<400> 4
cccaagcttt agtcgagtga aatgaatatg aaaatga 37
<210> 5
<211> 36
<212> DNA
<213> Artificial
<220>
<223> pBait-R
<400> 5
gcctcgaggc ctcgtcagaa aagtaatttt tatagc 36
<210> 6
<211> 32
<212> DNA
<213> Artificial
<220>
<223> AD-F
<400> 6
ctattcgatg atgaagatac cccaccaaac cc 32
<210> 7
<211> 32
<212> DNA
<213> Artificial
<220>
<223> AD-R
<400> 7
gtgaacttgc ggggtttttc agtatctacg at 32
<210> 8
<211> 23
<212> DNA
<213> Artificial
<220>
<223> CsDUF1-F
<400> 8
atggggagct attcatcaga acc 23
<210> 9
<211> 24
<212> DNA
<213> Artificial
<220>
<223> CsDUF1-R
<400> 9
ctagctgcat aatctgacag tgca 24
<210> 10
<211> 44
<212> DNA
<213> Artificial
<220>
<223> BD-CsDUF1-F
<400> 10
atggccatgg aggccgaatt catggggagc tattcatcag aacc 44
<210> 11
<211> 44
<212> DNA
<213> Artificial
<220>
<223> BD-CsDUF1-R
<400> 11
ccgctgcagg tcgacggatc cgctgcataa tctgacagtg catg 44
<210> 12
<211> 45
<212> DNA
<213> Artificial
<220>
<223> BD-CsDUF1-N-R
<400> 12
ccgctgcagg tcgacggatc ccttcgtcct cgtaagatca tcctc 45
<210> 13
<211> 44
<212> DNA
<213> Artificial
<220>
<223> BD-CsDUF1-C-F
<400> 13
atggccatgg aggccgaatt cagcttgact gatgaggatt tgga 44
<210> 14
<211> 49
<212> DNA
<213> Artificial
<220>
<223> p1301-F
<400> 14
gacctgcagg catgcaagct ttagtcgagt gaaatgaata tgaaaatga 49
<210> 15
<211> 49
<212> DNA
<213> Artificial
<220>
<223> p1301-R
<400> 15
ttaccctcag atctaccatg ggcctcgtca gaaaagtaat ttttatagc 49
<210> 16
<211> 44
<212> DNA
<213> Artificial
<220>
<223> pRI-CsDUF1-F
<400> 16
ttgatacata tgcccgtcga catggggagc tattcatcag aacc 44
<210> 17
<211> 45
<212> DNA
<213> Artificial
<220>
<223> pRI-CsDUF1-R
<400> 17
agagttgttg attcagaatt cctagctgca taatctgaca gtgca 45
<210> 18
<211> 44
<212> DNA
<213> Artificial
<220>
<223> SN-CsDUF1-F
<400> 18
aagcttatcg ataccgtcga catggggagc tattcatcag aacc 44
<210> 19
<211> 45
<212> DNA
<213> Artificial
<220>
<223> SN-CsDUF1-R
<400> 19
gatctgcagc ccgggggatc cctagctgca taatctgaca gtgca 45
<210> 20
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Hyg-F
<400> 20
catcgaaatt gccgtcaacc 20
<210> 21
<211> 20
<212> DNA
<213> Artificial
<220>
<223> Hyg-R
<400> 21
gctttcagct tcgatgtagg 20
<210> 22
<211> 18
<212> DNA
<213> Artificial
<220>
<223> q-yhNMT1-F
<400> 22
aagttccgtg ttatgtga 18
<210> 23
<211> 18
<212> DNA
<213> Artificial
<220>
<223> q-yhNMT1-R
<400> 23
tgagtccttt tggtgcct 18
<210> 24
<211> 20
<212> DNA
<213> Artificial
<220>
<223> q-yhNMT13-F
<400> 24
tcaataccct cttcaaacgc 20
<210> 25
<211> 19
<212> DNA
<213> Artificial
<220>
<223> q-yhNMT13-R
<400> 25
ggtgcctgag taagccaat 19
<210> 26
<211> 21
<212> DNA
<213> Artificial
<220>
<223> q-CsDUF1-F
<400> 26
tctgtaacac tttgcctgct c 21
<210> 27
<211> 19
<212> DNA
<213> Artificial
<220>
<223> q-CsDUF1-R
<400> 27
ttgacttctt cgggatggt 19
<210> 28
<211> 18
<212> DNA
<213> Artificial
<220>
<223> q-GAP-F
<400> 28
ttggcatcgt tgagggtc 18
<210> 29
<211> 17
<212> DNA
<213> Artificial
<220>
<223> q-GAP-R
<400> 29
cagtgggaac acggaaa 17

Claims (10)

1.一种调控茶树咖啡碱合成的转录因子CsDUF1在调控茶树咖啡碱合成中的应用,其特征在于所述的调控茶树咖啡碱合成的转录因子CsDUF1的氨基酸序列如SEQ NO.1所示。
2.根据权利要求1所述的应用,其特征在于:
编码权利要求1中所述的调控茶树咖啡碱合成的转录因子CsDUF1的基因的核苷酸序列如SEQ NO.2所示。
3.根据权利要求2所述的应用,其特征在于包含如下步骤:
将编码权利要求1中所述的调控茶树咖啡碱合成的转录因子CsDUF1的基因的核苷酸序列转入茶树基因组中,并在转基因茶树愈伤组织中超量表达,进而使得茶树愈伤组织的咖啡碱含量增加。
4.根据权利要求3所述的应用,其特征在于包含如下步骤:
(1)将含有编码权利要求1中所述的调控茶树咖啡碱合成的转录因子CsDUF1的基因的核苷酸序列的过表达重组载体转化农杆菌,得到表达调控茶树咖啡碱合成的转录因子CsDUF1的菌株;
(2)将表达调控茶树咖啡碱合成的转录因子CsDUF1的菌株侵染茶树愈伤组织,得到过表达转基因愈伤组织。
5.根据权利要求4所述的应用,其特征在于包含如下步骤:
所述的过表达重组载体,是将编码权利要求1中所述的调控茶树咖啡碱合成的转录因子CsDUF1的基因的核苷酸序列与过表达载体连接得到。
6.根据权利要求5所述的应用,其特征在于包含如下步骤:
所述的过表达载体为pCAMBIA1301-35SN。
7.根据权利要求5所述的应用,其特征在于包含如下步骤:
所述的农杆菌为EHA105。
8.根据权利要求1所述的应用,其特征在于包含如下步骤:
所述的茶树为英红九号。
9.一种调控茶树咖啡碱合成的转录因子CsDUF1在调控咖啡碱合成酶基因yhNMT1表达中的应用,其特征在于所述的调控茶树咖啡碱合成的转录因子CsDUF1的氨基酸序列如SEQNO.1所示。
10.一种调控茶树咖啡碱合成的转录因子CsDUF1在调控咖啡碱合成酶基因yhNMT13表达中的应用,其特征在于所述的调控茶树咖啡碱合成的转录因子CsDUF1的氨基酸序列如SEQ NO.1所示。
CN202210150238.7A 2022-02-18 2022-02-18 一种调控茶树咖啡碱合成的转录因子CsDUF1在调控茶树咖啡碱合成中的应用 Active CN114540410B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210150238.7A CN114540410B (zh) 2022-02-18 2022-02-18 一种调控茶树咖啡碱合成的转录因子CsDUF1在调控茶树咖啡碱合成中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210150238.7A CN114540410B (zh) 2022-02-18 2022-02-18 一种调控茶树咖啡碱合成的转录因子CsDUF1在调控茶树咖啡碱合成中的应用

Publications (2)

Publication Number Publication Date
CN114540410A true CN114540410A (zh) 2022-05-27
CN114540410B CN114540410B (zh) 2024-02-27

Family

ID=81676280

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210150238.7A Active CN114540410B (zh) 2022-02-18 2022-02-18 一种调控茶树咖啡碱合成的转录因子CsDUF1在调控茶树咖啡碱合成中的应用

Country Status (1)

Country Link
CN (1) CN114540410B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116024227A (zh) * 2022-08-29 2023-04-28 安徽农业大学 茶树CsMYB206基因以及在调控茶叶咖啡碱合成中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105861408A (zh) * 2016-06-22 2016-08-17 安徽农业大学 发酵生产咖啡碱的工程菌、其构建方法及应用
CN107164400A (zh) * 2017-06-22 2017-09-15 安徽农业大学 产茶叶碱和咖啡碱的重组基因工程菌及其构建方法和应用
CN111363020A (zh) * 2020-04-22 2020-07-03 浙江省农业科学院 茶树myc2转录因子及其应用
US20200216514A1 (en) * 2019-01-09 2020-07-09 Eth Zurich Generalized Extracellular Molecule Sensor
CN112424364A (zh) * 2018-05-01 2021-02-26 热带生物科学英国有限公司 减少咖啡豆中咖啡因含量的组合物及方法
CN113234737A (zh) * 2021-06-30 2021-08-10 安徽农业大学 茶树myb类转录因子基因在调控茶树咖啡碱生物合成方面的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105861408A (zh) * 2016-06-22 2016-08-17 安徽农业大学 发酵生产咖啡碱的工程菌、其构建方法及应用
CN107164400A (zh) * 2017-06-22 2017-09-15 安徽农业大学 产茶叶碱和咖啡碱的重组基因工程菌及其构建方法和应用
CN112424364A (zh) * 2018-05-01 2021-02-26 热带生物科学英国有限公司 减少咖啡豆中咖啡因含量的组合物及方法
US20200216514A1 (en) * 2019-01-09 2020-07-09 Eth Zurich Generalized Extracellular Molecule Sensor
CN111363020A (zh) * 2020-04-22 2020-07-03 浙江省农业科学院 茶树myc2转录因子及其应用
CN113234737A (zh) * 2021-06-30 2021-08-10 安徽农业大学 茶树myb类转录因子基因在调控茶树咖啡碱生物合成方面的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WENHUI MA等: "The NAC-like transcription factor CsNAC7 positively regulates the caffeine biosynthesis-related gene yhNMT1 in Camellia sinensis", HORTICULTURE RESEARCH *
刘平: "茶树N-甲基转移酶基因启动子克隆、功能分析及转录因子分离", 中国优秀硕士学位论文全文数据库 农业科技辑 *
陈小芳;许煜华;陈忠正;任秋婧;张媛媛;李斌;: "英红9号茶树两可可碱合成酶的亚细胞定位和互作分析", 中国食品学报 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116024227A (zh) * 2022-08-29 2023-04-28 安徽农业大学 茶树CsMYB206基因以及在调控茶叶咖啡碱合成中的应用
CN116024227B (zh) * 2022-08-29 2024-03-01 安徽农业大学 茶树CsMYB206基因以及在调控茶叶咖啡碱合成中的应用

Also Published As

Publication number Publication date
CN114540410B (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
AU764134B2 (en) Plant having altered environmental stress tolerance
EP1104481B1 (en) Plant expression vectors
US20030131386A1 (en) Stress-induced polynucleotides
US7045355B2 (en) Genes encoding plant transcription factors
US20020192813A1 (en) Plant expression vectors
CN105087599B (zh) 一种珠子参转录因子基因PjERF1的应用
CN114891803B (zh) 一种受茉莉酸甲酯诱导的人参PgWRKY40基因及其应用
CN114634939B (zh) 一种调节人参中茉莉酸甲酯合成的PgJMT1基因及其应用
CN112724217B (zh) 一种青蒿MYB类转录因子AaMYB108及其应用
WO2019165551A1 (en) Alkaloid biosynthesis facilitating proteins and methods of use
CN112662678A (zh) 青蒿MYB类转录因子AaMYB15及其应用
CN114540410B (zh) 一种调控茶树咖啡碱合成的转录因子CsDUF1在调控茶树咖啡碱合成中的应用
CN113845578B (zh) 调控植物原花青素合成的myb类转录因子及其编码基因和应用
CN113430180B (zh) 甘薯黄酮醇合成酶IbFLS1及其编码基因与应用
CN105087600B (zh) 一种珠子参转录因子基因PjbHLH1的应用
CN112522279B (zh) 一种水稻粒型基因OsGL8基因的编码序列和应用
CN117343156A (zh) 苦荞来源的bHLH类转录因子、其编码基因及其应用
WO2004085641A1 (ja) ストレス誘導性プロモーター及びその利用方法
CN110387377B (zh) 油菜耐旱基因BnNAC129及其用于制备耐旱转基因植物的应用
CN107177602B (zh) 与植物耐旱相关的NtDR1基因及其应用
CN118388615A (zh) 转录因子CsFCS2L在调控茶树yhNMT1基因表达和/或咖啡碱合成中的应用
JP2001501089A (ja) Dna構築物及びこれらのdna構築物を用いてタンパク質を生産するための方法
CN114645029B (zh) 分离人工合成的MpgS蛋白质多肽和MpgP蛋白质多肽及其应用
CN111607598A (zh) 大豆DDT结构域基因GmDDT1的应用
FI85286C (fi) Koeldbestaendighet foerbaettrande rekombinant- dna-molekyler.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant