CN114538930B - 一种裂纹自愈合梯度功能陶瓷刀具材料及其制备方法 - Google Patents

一种裂纹自愈合梯度功能陶瓷刀具材料及其制备方法 Download PDF

Info

Publication number
CN114538930B
CN114538930B CN202210289931.2A CN202210289931A CN114538930B CN 114538930 B CN114538930 B CN 114538930B CN 202210289931 A CN202210289931 A CN 202210289931A CN 114538930 B CN114538930 B CN 114538930B
Authority
CN
China
Prior art keywords
titanium
layer
molybdenum
nickel
healing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210289931.2A
Other languages
English (en)
Other versions
CN114538930A (zh
Inventor
黄传真
崔新耀
刘含莲
史振宇
姚鹏
白晓兰
王真
徐龙华
刘盾
黄水泉
朱洪涛
邹斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Yanshan University
Original Assignee
Shandong University
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University, Yanshan University filed Critical Shandong University
Priority to CN202210289931.2A priority Critical patent/CN114538930B/zh
Publication of CN114538930A publication Critical patent/CN114538930A/zh
Priority to US17/943,596 priority patent/US20230303453A1/en
Application granted granted Critical
Publication of CN114538930B publication Critical patent/CN114538930B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • C04B35/58021Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON based on titanium carbonitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/0006Cutting members therefor
    • B26D2001/002Materials or surface treatments therefor, e.g. composite materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/75Products with a concentration gradient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种裂纹自愈合梯度功能陶瓷刀具材料及其制备方法,该陶瓷刀具材料具有对称梯度结构,各层的组分按质量百分比均为50%‑80%的Ti(C7,N3)、25%‑5%的(W7,Ti3)C、20%‑0%的TiSi2,相对于中心层对称的层中组分含量相同,且厚度对称分布,Ti(C7,N3)含量由表层向中心层逐层递增,(W7,Ti3)C和TiSi2含量由表层向中心层逐层以5%递减,Ni和Mo含量由表层向中心层逐层递增。采用粉末分层铺填和真空热压烧结工艺制备。所制备的陶瓷刀具具有抗弯强度高和抗热震性好的特点,且具有出现裂纹后能够自动愈合、愈合时间短、高温愈合速率快的特点。

Description

一种裂纹自愈合梯度功能陶瓷刀具材料及其制备方法
技术领域
本发明属于刀具材料的制备技术领域,具体涉及一种裂纹自愈合梯度功能陶瓷刀具材料及其制备方法。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
陶瓷刀具有优越的物理性能和化学性能,相比于硬质合金刀具,更加适用于高速加工难加工材料领域。然而陶瓷刀具最大的缺点是脆性大,对裂纹缺陷十分敏感,如何降低脆性一直是研究者关注的重点。降低陶瓷材料脆性的一种办法是采用裂纹自愈合的方式,凭借材料本身的特性在裂纹扩展的过程中实现裂纹自愈合。目前在陶瓷材料中作为愈合剂使用的材料有SiC、MoSi2、MAX相、TiB2和h-BN@Al2O3。存在的不足是热处理温度较高、时间较长,愈合后陶瓷材料抗弯强度恢复率较低。目前还没有将裂纹自愈合材料与梯度结构材料相结合的研究,即可以减缓裂纹扩展又可以实现裂纹自愈合。
发明内容
针对现有技术的不足,一种裂纹自愈合梯度功能陶瓷刀具材料及其制备方法。以Ti(C7,N3)为基体相,(W7,Ti3)C和TiSi2为增强相,Ni和Mo为金属相,各组分配比沿梯度方向改变。有效结合裂纹自愈合材料和梯度结构材料的两种优点,陶瓷材料即具有高的力学性能和高抗热震性,又可以在较低的愈合温度和较短的愈合时间内完成裂纹自愈合过程,极大程度恢复陶瓷材料的抗弯强度,提高了陶瓷刀具的使用寿命。
为了实现上述目的,本发明提供如下技术方案:
第一方面,本发明提供一种裂纹自愈合梯度功能陶瓷刀具材料,其中,碳氮化钛作为基体相,碳化钨钛和二硅化钛作为增强相,镍和钼作为金属添加相;所述裂纹自愈合梯度功能陶瓷刀具材料具有对称梯度层次结构,碳氮化钛含量由表层向中心层逐层递增,碳化钨钛和二硅化钛含量由表层向中心层逐层以5%递减,镍和钼含量由表层向中心层逐层递增。
进一步的,各层的组分按质量百分比为50%-80%碳氮化钛、5%-25%碳化钨钛、0%-20%二硅化钛、3%-9%镍和2%-6%钼。
进一步的,所述对称梯度层次结构的层数为3层、5层或7层。
进一步的,当层数为3时,三层梯度层厚度按表层厚度/次表层厚度=0.3确定;层数为5时,五层梯度层厚度按表层厚度/次表层厚度=次表层厚度/中间层厚度=0.3确定;层数为7时,七层梯度层厚度按表层厚度/次表层厚度=次表层厚度/中间层厚度=中间层厚度/中心层厚度=0.3确定。
进一步的,当层数为3时,表层原料质量百分比组成为碳氮化钛50-55wt%,碳化钨钛25wt%,二硅化钛15-20wt%,镍3wt%,钼2wt%;次表层原料质量百分比组成为碳氮化钛57.5-62.5wt%,碳化钨钛20wt%,二硅化钛10-15wt%,镍4.5wt%,钼3wt%。
进一步的,当层数为5时,表层原料质量百分比组成为碳氮化钛50-55wt%,碳化钨钛25wt%,二硅化钛15-20wt%,镍3wt%,钼2wt%;次表层原料质量百分比组成为碳氮化钛57.5-62.5wt%,碳化钨钛20wt%,二硅化钛10-15wt%,镍4.5wt%,钼3wt%;中间层原料质量百分比组成为碳氮化钛65-70wt%,碳化钨钛15wt%,二硅化钛5-10wt%,镍6wt%,钼4wt%。
进一步的,当层数为7时,表层原料质量百分比组成为碳氮化钛50-55wt%,碳化钨钛25wt%,二硅化钛15-20wt%,镍3wt%,钼2wt%;次表层原料质量百分比组成为碳氮化钛57.5-62.5wt%,碳化钨钛20wt%,二硅化钛10-15wt%,镍4.5wt%,钼3wt%;中间层原料质量百分比组成为碳氮化钛65-70wt%,碳化钨钛15wt%,二硅化钛5-10wt%,镍6wt%,钼4wt%;中心层原料质量百分比组成为碳氮化钛80wt%,碳化钨钛5wt%,镍9wt%,钼6wt%。
进一步的,碳氮化钛的粒径为0.5~1μm;碳化钨钛的粒径为0.5~1.5μm;二硅化钛的粒径为0.5~1.5μm;镍的粒径为0.5~1μm;钼的粒径为0.5~1μm。
第二方面,本发明提供所述裂纹自愈合梯度功能陶瓷刀具材料的制备方法,包括如下步骤:
(1)分别对碳氮化钛、碳化钨钛、二硅化钛、镍和钼进行球磨,随后干燥、过筛,得到原始粉末;
(2)按各层设定的配比进行配料,对每层配料进行球磨,干燥,过筛,得到混合物料。
(3)采用粉末分层填铺法装料,进行模压成型后,再进行热压烧结,得到裂纹自愈合梯度功能陶瓷刀具材料。
进一步的,步骤(1)(2)中,以无水乙醇为球磨介质、使用硬质合金小球进行球磨。
进一步的,步骤(1)球磨时间为50-72h。
进一步的,步骤(2)球磨时间为30-50h。
进一步的,步骤(1)(2)中,均采用100目筛网进行过筛。
进一步的,真空热压烧结的条件为:以20-40℃/min的升温速率从15-25℃开始加热到950-1050℃;然后以15-25℃/min的升温速率加热到1350-1550℃,同时压力均匀加至30-34MPa;保温保压时间为20-40min。
与现有技术相比,本发明具有如下明显优势:
(1)本发明的制备方法中,添加的TiSi2颗粒可以愈合陶瓷材料在加工使用过程中产生的微裂纹,从而恢复材料的强度,提高材料的使用寿命和安全性。Ti(C7,N3)、(W7,Ti3)C、Ni和Mo的梯度分层分布,使刀具材料的力学性能呈梯度阶梯变化,可以有效缓解残余热应力,提高了材料整体的抗热震性。
(2)本发明的制备方法中,添加TiSi2颗粒的自愈合陶瓷刀具材料愈合裂纹时所需的热处理温度和时间大大减少,而且可有效愈合陶瓷基体中长度600μm以下的裂纹。
(3)本发明所使用的设备简单且安全性好,制备工艺稳定,操作处理简单,生产效率高。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为实施例1、实施例2、实施例3、对比例1和对比例2制备的裂纹自愈合陶瓷刀具材料热处理前后抗弯强度的恢复情况图;
图2为实施例2制备的裂纹自愈合陶瓷刀具材料预制裂纹的微观形貌图;
图3为实施例2制备的裂纹自愈合陶瓷刀具材料热处理后裂纹微观形貌图;
图4为实施例2制备的裂纹自愈合陶瓷刀具材料热处理前后表面和对比例1制备的裂纹自愈合陶瓷刀具材料真空热处理后表面XRD图;
图5为对比例1制备的裂纹自愈合陶瓷刀具材料热处理后裂纹微观形貌图;
图6为对比例2制备的裂纹自愈合陶瓷刀具材料热处理后裂纹微观形貌图。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
实施例1:
一种三层梯度结构的裂纹自愈合梯度功能陶瓷刀具材料,表层原料质量百分比组成为Ti(C7,N3)50wt%,(W7,Ti3)C25wt%,TiSi220wt%,Ni3wt%,Mo2wt%;次表层原料质量百分比组成为Ti(C7,N3)57.5wt%,(W7,Ti3)C20wt%,TiSi215wt%,Ni4.5wt%,Mo3wt%。
用无水乙醇作为介质,分别对碳氮化钛、碳化钨钛、二硅化钛、镍和钼原料粉末进行单独球磨,球磨过程在滚筒式球磨机上进行,球磨时间为72h,之后经过真空干燥,干燥温度为120℃,干燥后过100目筛,过筛后的粉体封装以备用。将表层粉末和次表层粉末分别称重,后分别倒入混料桶中,加入无水乙醇作为介质,在球磨机上球磨48h,以使各相材料混合更加均匀,再经过120℃真空干燥、过100目筛,得到分散良好的各层复合陶瓷材料粉末料,封装以备用。采用粉末分层铺填法,将混合好的复合陶瓷材料粉末装入石墨模具,放入真空热压烧结炉,在真空环境中,采用均匀加压的热压烧结工艺;以30℃/min的升温速率从20℃开始加热到1000℃;然后以20℃/min的升温速率加热到1450℃,同时压力均匀加至32MPa;保温保压时间为30min;之后炉内水冷至200℃,再随炉冷却至20℃即得所述裂纹自愈合梯度功能陶瓷刀具材料。所制的裂纹自愈合梯度功能陶瓷刀具材料抗弯强度为1020-1103MPa,维氏硬度为18.7-19.52GPa,断裂韧度为5.95-6.25MPa.m1/2
将本实施例制备的裂纹自愈合陶瓷材料切割成3mm×4mm×35mm的标准条状试样,然后将样条进行研磨、抛光、倒角处理。在抗弯试验中受张力面中心利用维氏硬度计预制400-500μm裂纹。将裂纹试样在高温空气炉中进行热处理,热处理温度800℃,保温60min;将热处理后的裂纹试样进行室温抗弯强度测试,经过自愈合处理后,试样强度从产生裂纹时的327.59MPa提高到1036.02MPa。经过观察材料裂纹形貌,发现裂纹基本愈合。
实施例2:
一种五层梯度结构的裂纹自愈合梯度功能陶瓷刀具材料,表层原料质量百分比组成为Ti(C7,N3)50wt%,(W7,Ti3)C25wt%,TiSi220wt%,Ni3wt%,Mo2wt%;次表层原料质量百分比组成为Ti(C7,N3)57.5wt%,(W7,Ti3)C20wt%,TiSi215wt%,Ni4.5wt%,Mo3wt%;中间层原料质量百分比组成为Ti(C7,N3)65wt%,(W7,Ti3)15wt%,TiSi210wt%,Ni6wt%,Mo4wt%。
用无水乙醇作为介质,分别对碳氮化钛、碳化钨钛、二硅化钛、镍和钼原料粉末进行单独球磨,球磨过程在滚筒式球磨机上进行,球磨时间为72h,之后经过真空干燥,干燥温度为120℃,干燥后过100目筛,过筛后的粉体封装以备用。将表层粉末、次表层和中间层粉末分别称重,后分别倒入混料桶中,加入无水乙醇作为介质,在球磨机上球磨48h,以使各相材料混合更加均匀,再经过120℃真空干燥、过100目筛,得到分散良好的各层复合陶瓷材料粉末料,封装以备用。采用粉末分层铺填法,将混合好的复合陶瓷材料粉末装入石墨模具,放入真空热压烧结炉,在真空环境中,采用均匀加压的热压烧结工艺;以30℃/min的升温速率从20℃开始加热到1000℃;然后以20℃/min的升温速率加热到1450℃,同时压力均匀加至32MPa;保温保压时间为30min;之后炉内水冷至200℃,再随炉冷却至20℃即得所述裂纹自愈合梯度功能陶瓷刀具材料。所制的裂纹自愈合梯度功能陶瓷刀具材料抗弯强度为1274-1357MPa,维氏硬度为18.95-19.55GPa,断裂韧度为6.44-6.78MPa.m1/2
将本实施例制备的裂纹自愈合陶瓷材料切割成3mm×4mm×35mm的标准条状试样,然后将样条进行研磨、抛光、倒角处理。在抗弯试验中受张力面中心利用维氏硬度计预制400-500μm裂纹。将裂纹试样在高温空气炉中进行热处理,热处理温度800℃,保温60min;将热处理后的裂纹试样进行室温抗弯强度测试,经过自愈合处理后,试样强度从产生裂纹时的327.59MPa提高到1290.51MPa。经过观察材料裂纹形貌,发现裂纹基本愈合。
实施例3:
一种七层梯度结构的裂纹自愈合梯度功能陶瓷刀具材料,表层原料质量百分比组成为Ti(C7,N3)50wt%,(W7,Ti3)C25wt%,TiSi220wt%,Ni3wt%,Mo2wt%;次表层原料质量百分比组成为Ti(C7,N3)57.5wt%,(W7,Ti3)C20wt%,TiSi215wt%,Ni4.5wt%,Mo3wt%;中间层原料质量百分比组成为Ti(C7,N3)65wt%,(W7,Ti3)15wt%,TiSi210wt%,Ni6wt%,Mo4wt%;中心层原料质量百分比组成为Ti(C7,N3)80wt%,(W7,Ti3)5wt%,Ni9wt%,Mo6wt%。
用无水乙醇作为介质,分别对碳氮化钛、碳化钨钛、二硅化钛、镍和钼原料粉末进行单独球磨,球磨过程在滚筒式球磨机上进行,球磨时间为72h,之后经过真空干燥,干燥温度为120℃,干燥后过100目筛,过筛后的粉体封装以备用。将表层粉末、次表层、中间层和中心层粉末分别称重,后分别倒入混料桶中,加入无水乙醇作为介质,在球磨机上球磨48h,以使各相材料混合更加均匀,再经过120℃真空干燥、过100目筛,得到分散良好的各层复合陶瓷材料粉末料,封装以备用。采用粉末分层铺填法,将混合好的复合陶瓷材料粉末装入石墨模具,放入真空热压烧结炉,在真空环境中,采用均匀加压的热压烧结工艺;以30℃/min的升温速率从20℃开始加热到1000℃;然后以20℃/min的升温速率加热到1450℃,同时压力均匀加至32MPa;保温保压时间为30min;之后炉内水冷至200℃,再随炉冷却至20℃即得所述裂纹自愈合梯度功能陶瓷刀具材料。所制的裂纹自愈合梯度功能陶瓷刀具材料抗弯强度为916-956MPa,维氏硬度为18.67-19.41GPa,断裂韧度为6.29-6.63MPa.m1/2
将本实施例制备的裂纹自愈合陶瓷材料切割成3mm×4mm×35mm的标准条状试样,然后将样条进行研磨、抛光、倒角处理。在抗弯试验中受张力面中心利用维氏硬度计预制400-500μm裂纹。将裂纹试样在高温空气炉中进行热处理,热处理温度800℃,保温60min;将热处理后的裂纹试样进行室温抗弯强度测试,经过自愈合处理后,试样强度从产生裂纹时的327.59MPa提高到902.3MPa。经过观察材料裂纹形貌,发现裂纹基本愈合。
对比例1:
一种五层梯度结构的裂纹自愈合梯度功能陶瓷刀具材料,表层原料质量百分比组成为Ti(C7,N3)50wt%,(W7,Ti3)C25wt%,TiSi220wt%,Ni3wt%,Mo2wt%;次表层原料质量百分比组成为Ti(C7,N3)57.5wt%,(W7,Ti3)C20wt%,TiSi215wt%,Ni4.5wt%,Mo3wt%;中间层原料质量百分比组成为Ti(C7,N3)65wt%,(W7,Ti3)15wt%,TiSi210wt%,Ni6wt%,Mo4wt%。
用无水乙醇作为介质,分别对碳氮化钛、碳化钨钛、二硅化钛、镍和钼原料粉末进行单独球磨,球磨过程在滚筒式球磨机上进行,球磨时间为72h,之后经过真空干燥,干燥温度为120℃,干燥后过100目筛,过筛后的粉体封装以备用。将表层粉末、次表层和中间层粉末分别称重,后分别倒入混料桶中,加入无水乙醇作为介质,在球磨机上球磨48h,以使各相材料混合更加均匀,再经过120℃真空干燥、过100目筛,得到分散良好的各层复合陶瓷材料粉末料,封装以备用。采用粉末分层铺填法,将混合好的复合陶瓷材料粉末装入石墨模具,放入真空热压烧结炉,在真空环境中,采用均匀加压的热压烧结工艺;以30℃/min的升温速率从20℃开始加热到1000℃;然后以20℃/min的升温速率加热到1450℃,同时压力均匀加至32MPa;保温保压时间为30min;之后炉内水冷至200℃,再随炉冷却至20℃即得所述裂纹自愈合梯度功能陶瓷刀具材料。所制的裂纹自愈合梯度功能陶瓷刀具材料抗弯强度为1274-1357MPa,维氏硬度为18.95-19.55GPa,断裂韧度为6.44-6.78MPa.m1/2
将本实施例制备的裂纹自愈合陶瓷材料切割成3mm×4mm×35mm的标准条状试样,然后将样条进行研磨、抛光、倒角处理。在抗弯试验中受张力面中心利用维氏硬度计预制400-500μm裂纹。将裂纹试样在管式真空炉中进行热处理,热处理温度800℃,保温60min;将热处理后的裂纹试样进行室温抗弯强度测试,经过自愈合处理后,试样强度从产生裂纹时的327.59MPa提高到432.17MPa。经过观察材料裂纹形貌,发现裂纹只有部分愈合,愈合机理为陶瓷材料内部元素的扩散。
通过对比例1可以得到,当热处理气氛为真空时,陶瓷材料没有发生氧化,因此没有氧化产物填充裂纹,裂纹自愈合效果较差。抗弯强度得到了部分恢复,这是由于刀具材料内部元素扩散,但是由于愈合温度较低、保温时间较短,元素扩散效果不明显,因此仅仅提高了部分抗弯强度。与实施例2比较,可以得出热处理气氛对该陶瓷材料裂纹自愈合效果影响显著,在氧气气氛下陶瓷材料裂纹自愈合效果较好。
对比例2:
一种五层梯度结构的裂纹自愈合梯度功能陶瓷刀具材料,表层原料质量百分比组成为Ti(C7,N3)50wt%,(W7,Ti3)C 25wt%,TiSi220wt%,Ni3wt%,Mo2wt%;次表层原料质量百分比组成为Ti(C7,N3)65wt%,(W7,Ti3)C15wt%,TiSi210wt%,Ni6wt%,Mo4wt%;中间层原料质量百分比组成为Ti(C7,N3)80wt%,(W7,Ti3)C5wt%,Ni9wt%,Mo6wt%。
用无水乙醇作为介质,分别对碳氮化钛、碳化钨钛、二硅化钛、镍和钼原料粉末进行单独球磨,球磨过程在滚筒式球磨机上进行,球磨时间为72h,之后经过真空干燥,干燥温度为120℃,干燥后过100目筛,过筛后的粉体封装以备用。将表层粉末、中间层和中心层粉末分别称重,后分别倒入混料桶中,加入无水乙醇作为介质,在球磨机上球磨48h,以使各相材料混合更加均匀,再经过120℃真空干燥、过100目筛,得到分散良好的各层复合陶瓷材料粉末料,封装以备用。采用粉末分层铺填法,将混合好的复合陶瓷材料粉末装入石墨模具,放入真空热压烧结炉,在真空环境中,采用均匀加压的热压烧结工艺;以30℃/min的升温速率从20℃开始加热到1000℃;然后以20℃/min的升温速率加热到1450℃,同时压力均匀加至32MPa;保温保压时间为30min;之后炉内水冷至200℃,再随炉冷却至20℃即得所述裂纹自愈合梯度功能陶瓷刀具材料。所制的裂纹自愈合梯度功能陶瓷刀具材料抗弯强度为1080-1190MPa,维氏硬度为18.68-19.42GPa,断裂韧度为6.29-6.63MPa.m1/2
将本实施例制备的裂纹自愈合陶瓷材料切割成3mm×4mm×35mm的标准条状试样,然后将样条进行研磨、抛光、倒角处理。在抗弯试验中受张力面中心利用维氏硬度计预制500-600μm裂纹。将裂纹试样在高温空气炉中进行热处理,热处理温度800℃,保温60min;将热处理后的裂纹试样进行室温抗弯强度测试,经过自愈合处理后,试样强度从产生裂纹时的327.59MPa提高到782.36MPa。经过观察材料裂纹形貌,发现在裂纹较大的区域没有被氧化产物完全填充愈合,从而导致材料强度恢复程度较低。这也证实了当裂纹长度超过600μm后,裂纹宽度较宽,生成的氧化产物不能有效愈合裂纹。
通过对比例2可以得到,预制的裂纹长度超过了600μm,生成的氧化产物不足以填充裂纹较大的区域。与实施例2进行比较,可得出结论,只有在合适的用量范围内,裂纹长度在特定的范围内,该陶瓷材料具有良好的裂纹自愈合性能。
图1为制备的裂纹自愈合陶瓷刀具材料热处理前后抗弯强度的恢复情况,光滑试样为实施例2陶瓷刀具没有预制裂纹的试样,裂纹试样为实施例2预制裂纹的试样,A为实施例1的裂纹自愈合陶瓷刀具材料热处理后的抗弯强度;B为实施例2的裂纹自愈合陶瓷刀具材料热处理后的抗弯强度;C为实施例3的裂纹自愈合陶瓷刀具材料热处理后的抗弯强度;D为对比例1的裂纹自愈合陶瓷刀具材料真空热处理后的抗弯强度;E为对比例2的裂纹自愈合陶瓷刀具材料热处理后的抗弯强度。
图2实施例2制备的裂纹自愈合陶瓷刀具材料预制裂纹的微观形貌。
图3为实施例2制备的裂纹自愈合陶瓷刀具材料热处理后裂纹微观形貌图,可以得到热处理后裂纹形成了愈合。
图4为实施例2制备的裂纹自愈合陶瓷刀具材料热处理前后表面和对比例1制备的裂纹自愈合陶瓷刀具材料真空热处理后表面XRD图。由图4可以得到实施例2中热处理后裂纹处形成了二氧化钛和二氧化硅。对比例1真空热处理后没有氧化物产生。
图5为对比例1制备的裂纹自愈合陶瓷刀具材料真空热处理后裂纹微观形貌图,可以得到真空条件下热处理后裂纹仅有部分愈合。
图6为对比例2制备的裂纹自愈合陶瓷刀具材料热处理后裂纹微观形貌图,可以得到裂纹长度超过600μm时生成的氧化产物不能有效愈合裂纹。
本发明中的陶瓷材料在空气中高温热处理条件下将会发生明显的氧化反应,氧化过程中TiSi和TiC相主要发生下列化学反应:
TiSi+2O2→TiO2+SiO2 (1)
2TiC+O2→2TiO+2C (2)
TiO+O2+C→TiO2+CO (3)
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

1.一种裂纹自愈合梯度功能的陶瓷刀具材料,其特征在于,碳氮化钛作为基体相,碳化钨钛和二硅化钛作为增强相,镍和钼作为金属添加相;所述裂纹自愈合梯度功能陶瓷刀具材料具有对称梯度层次结构,碳氮化钛含量由表层向中心层逐层递增,碳化钨钛和二硅化钛含量由表层向中心层逐层以5%递减,镍和钼含量由表层向中心层逐层递增;
各层的组分按质量百分比为50%-80%碳氮化钛、5%-25%碳化钨钛、0%-20%二硅化钛、3%-9%镍和2%-6%钼;
所述碳氮化钛为Ti(C7,N3)。
2.根据权利要求1所述陶瓷刀具材料,其特征在于,所述对称梯度层次结构的层数为3层、5层或7层。
3.根据权利要求2所述陶瓷刀具材料,其特征在于,当层数为3时,三层梯度层厚度按表层厚度/次表层厚度=0.3确定;层数为5时,五层梯度层厚度按表层厚度/次表层厚度=次表层厚度/中间层厚度=0.3确定;层数为7时,七层梯度层厚度按表层厚度/次表层厚度=次表层厚度/中间层厚度=中间层厚度/中心层厚度=0.3确定。
4.根据权利要求2所述陶瓷刀具材料,其特征在于,当层数为3时,表层原料质量百分比组成为碳氮化钛50-55wt%,碳化钨钛25wt%,二硅化钛15-20wt%,镍3wt%,钼2wt%;次表层原料质量百分比组成为碳氮化钛57.5-62.5wt%,碳化钨钛20wt%,二硅化钛10-15wt%,镍4.5wt%,钼3wt%。
5.根据权利要求2所述陶瓷刀具材料,其特征在于,当层数为5时,表层原料质量百分比组成为碳氮化钛50-55wt%,碳化钨钛25wt%,二硅化钛15-20wt%,镍3wt%,钼2wt%;次表层原料质量百分比组成为碳氮化钛57.5-62.5wt%,碳化钨钛20wt%,二硅化钛10-15wt%,镍4.5wt%,钼3wt%;中间层原料质量百分比组成为碳氮化钛65-70wt%,碳化钨钛15wt%,二硅化钛5-10wt%,镍6wt%,钼4wt%。
6.根据权利要求2所述陶瓷刀具材料,其特征在于,当层数为7时,表层原料质量百分比组成为碳氮化钛50-55wt%,碳化钨钛25wt%,二硅化钛15-20wt%,镍3wt%,钼2wt%;次表层原料质量百分比组成为碳氮化钛57.5-62.5wt%,碳化钨钛20wt%,二硅化钛10-15wt%,镍4.5wt%,钼3wt%;中间层原料质量百分比组成为碳氮化钛65-70wt%,碳化钨钛15wt%,二硅化钛5-10wt%,镍6wt%,钼4wt%;中心层原料质量百分比组成为碳氮化钛80wt%,碳化钨钛5wt%,镍9wt%,钼6wt%。
7.根据权利要求1所述陶瓷刀具材料,其特征在于,碳氮化钛的粒径为0.5~1μm;碳化钨钛的粒径为0.5~1.5μm;二硅化钛的粒径为0.5~1.5μm;镍的粒径为0.5~1μm;钼的粒径为0.5~1μm。
8.根据上述权利要求任一项所述陶瓷刀具材料的制备方法,其特征在于,包括如下步骤:
(1)分别对碳氮化钛、碳化钨钛、二硅化钛、镍和钼进行球磨,随后干燥、过筛,得到原始粉末;
(2)按各层设定的配比进行配料,对每层配料进行球磨,干燥,过筛,得到混合物料;
(3)采用粉末分层填铺法装料,进行模压成型后,再进行热压烧结,得到裂纹自愈合梯度功能陶瓷刀具材料。
9.根据权利要求8所述制备方法,其特征在于,步骤(1)(2)中,以无水乙醇为球磨介质、使用硬质合金小球进行球磨;步骤(1)球磨时间为50-72h;步骤(2)球磨时间为30-50h。
10.根据权利要求8所述制备方法,其特征在于,步骤(1)(2)中,均采用100目筛网进行过筛。
11.根据权利要求8所述制备方法,其特征在于,真空热压烧结的条件为:以20-40℃/min的升温速率从15-25℃开始加热到950-1050℃;然后以15-25℃/min的升温速率加热到1350-1550℃,同时压力均匀加至30-34MPa;保温保压时间为20-40min。
CN202210289931.2A 2022-03-23 2022-03-23 一种裂纹自愈合梯度功能陶瓷刀具材料及其制备方法 Active CN114538930B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210289931.2A CN114538930B (zh) 2022-03-23 2022-03-23 一种裂纹自愈合梯度功能陶瓷刀具材料及其制备方法
US17/943,596 US20230303453A1 (en) 2022-03-23 2022-09-13 Crack self-healing functionally gradient material for ceramic cutting tools and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210289931.2A CN114538930B (zh) 2022-03-23 2022-03-23 一种裂纹自愈合梯度功能陶瓷刀具材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114538930A CN114538930A (zh) 2022-05-27
CN114538930B true CN114538930B (zh) 2023-01-17

Family

ID=81665364

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210289931.2A Active CN114538930B (zh) 2022-03-23 2022-03-23 一种裂纹自愈合梯度功能陶瓷刀具材料及其制备方法

Country Status (2)

Country Link
US (1) US20230303453A1 (zh)
CN (1) CN114538930B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114985741A (zh) * 2022-06-09 2022-09-02 中国重汽集团济南动力有限公司 一种加工蠕墨铸铁的梯度刀具材料
CN115353402B (zh) * 2022-08-26 2023-03-14 山东大学 一种具有裂纹自愈合功能的陶瓷刀具材料及其制备方法
CN116789440B (zh) * 2023-06-29 2024-04-05 齐鲁工业大学(山东省科学院) 一种降低气孔率的自修复陶瓷材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010777A (en) * 1997-01-31 2000-01-04 Ngk Spark Plug Co., Ltd. Titanium carbo-nitride complex silicon nitride tool
CN103739292A (zh) * 2014-01-02 2014-04-23 山东大学 一种氮化硅-碳化钨钛纳米复合陶瓷刀具材料的制备方法
CN107385302A (zh) * 2017-07-24 2017-11-24 苏州宏久航空防热材料科技有限公司 一种高硬度Ti(C,N)基金属陶瓷刀具复合材料
CN107937792A (zh) * 2017-11-24 2018-04-20 湘潭大学 一种梯度复合陶瓷刀具材料及其制备方法
CN108947495A (zh) * 2018-07-10 2018-12-07 山东大学 一种氧化铝高性能复合陶瓷刀具材料及其制备方法
CN113999014A (zh) * 2021-12-15 2022-02-01 武汉理工大学 一种具有低温愈合裂纹能力的陶瓷材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010777A (en) * 1997-01-31 2000-01-04 Ngk Spark Plug Co., Ltd. Titanium carbo-nitride complex silicon nitride tool
CN103739292A (zh) * 2014-01-02 2014-04-23 山东大学 一种氮化硅-碳化钨钛纳米复合陶瓷刀具材料的制备方法
CN107385302A (zh) * 2017-07-24 2017-11-24 苏州宏久航空防热材料科技有限公司 一种高硬度Ti(C,N)基金属陶瓷刀具复合材料
CN107937792A (zh) * 2017-11-24 2018-04-20 湘潭大学 一种梯度复合陶瓷刀具材料及其制备方法
CN108947495A (zh) * 2018-07-10 2018-12-07 山东大学 一种氧化铝高性能复合陶瓷刀具材料及其制备方法
CN113999014A (zh) * 2021-12-15 2022-02-01 武汉理工大学 一种具有低温愈合裂纹能力的陶瓷材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
裂纹自愈合陶瓷刀具的研制;李明爽;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20190115;摘要 *

Also Published As

Publication number Publication date
US20230303453A1 (en) 2023-09-28
CN114538930A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
CN114538930B (zh) 一种裂纹自愈合梯度功能陶瓷刀具材料及其制备方法
CN1961090B (zh) 含金刚石的复合材料组成的磨损件
WO2020135404A1 (zh) 一种Ti(C,N)基超硬金属复合材料及其制备方法
EP2380686A2 (en) A functionally graded material shape and method for producing such a shape
JP2011503354A (ja) ダイヤモンド金属複合体
CN108728719B (zh) 一种耐磨复合陶瓷材料及其生产工艺
CN108642361B (zh) 一种高强度高硬度陶瓷材料及其生产工艺
CN109504886A (zh) 一种耐高温Ti(C,N)-TiB2-HEAs复合金属陶瓷材料及其制备方法
CN110655404A (zh) 一种钛碳化硅基复合陶瓷材料及其制备工艺
CN108893638B (zh) 一种原位自生TiCx-Ni3(Al,Ti)/Ni基梯度复合材料及其热压制备方法
CN108866416B (zh) 一种高强韧抗氧钼合金及制备方法
CN110240490A (zh) 一种碳化硅晶须增韧软/硬层状陶瓷的制备方法
CN110735064A (zh) 固相原位反应生成耐高温高强度TiC增强钛基复合材料及其制备方法
CN112500178A (zh) 一种原位生成ZrB2-SiC增韧PcBN刀具及其制备方法
CN113025861A (zh) 一种混晶Ti(C,N)基金属陶瓷材料及其制备方法
CN102936137A (zh) 一种Al2O3-TiC/Al2O3-TiC-CaF2自润滑叠层陶瓷拉拔模具材料
CN109628786B (zh) 一种耐高温强韧化Ti(C,N)基金属陶瓷产品的成型制备方法
CN108866413A (zh) 一种复合高强韧钼合金及制备方法
CN114657433B (zh) 一种固溶强化金属陶瓷及其制备方法
CN103949647A (zh) 一种自扩散梯度功能复合刀具材料及其制备方法
CN115677351A (zh) 一种强结合界面的多叠层碳化硼复合陶瓷及其制备方法
CN112941391B (zh) 一种含NbC的高致密复合金属陶瓷材料及其制备方法
CN106830941A (zh) Al2O3与多组元过渡族金属共价键化合物烧结体及其制备方法
CN112142473A (zh) 一种b4c基双层陶瓷复合材料及其制备方法
JPS59118852A (ja) 焼結硬質合金複合高速度鋼およびその製造法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant