CN114525215B - Recombinant strain for producing terpenoid, construction method thereof, method for producing terpenoid through fermentation and application of recombinant strain - Google Patents

Recombinant strain for producing terpenoid, construction method thereof, method for producing terpenoid through fermentation and application of recombinant strain Download PDF

Info

Publication number
CN114525215B
CN114525215B CN202210424155.2A CN202210424155A CN114525215B CN 114525215 B CN114525215 B CN 114525215B CN 202210424155 A CN202210424155 A CN 202210424155A CN 114525215 B CN114525215 B CN 114525215B
Authority
CN
China
Prior art keywords
gene
seq
coding gene
nucleotide sequence
recombinant strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210424155.2A
Other languages
Chinese (zh)
Other versions
CN114525215A (en
Inventor
黄和
郭琪
李珂
施天穹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Normal University
Original Assignee
Nanjing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Normal University filed Critical Nanjing Normal University
Priority to CN202210424155.2A priority Critical patent/CN114525215B/en
Publication of CN114525215A publication Critical patent/CN114525215A/en
Application granted granted Critical
Publication of CN114525215B publication Critical patent/CN114525215B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1229Phosphotransferases with a phosphate group as acceptor (2.7.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/80Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/002Preparation of hydrocarbons or halogenated hydrocarbons cyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01034Hydroxymethylglutaryl-CoA reductase (NADPH) (1.1.1.34)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01003Aldehyde dehydrogenase (NAD+) (1.2.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/0101Acetaldehyde dehydrogenase (acetylating) (1.2.1.10)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01007Carnitine O-acetyltransferase (2.3.1.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01008Phosphate acetyltransferase (2.3.1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01009Acetyl-CoA C-acetyltransferase (2.3.1.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/011743-Oxoadipyl-CoA thiolase (2.3.1.174)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/03Acyl groups converted into alkyl on transfer (2.3.3)
    • C12Y203/03003Citrate (Re)-synthase (2.3.3.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/03Acyl groups converted into alkyl on transfer (2.3.3)
    • C12Y203/03009Malate synthase (2.3.3.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/03Acyl groups converted into alkyl on transfer (2.3.3)
    • C12Y203/0301Hydroxymethylglutaryl-CoA synthase (2.3.3.10)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/0101(2E,6E)-Farnesyl diphosphate synthase (2.5.1.10), i.e. geranyltranstransferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01021Squalene synthase (2.5.1.21), i.e. farnesyl-disphosphate farnesyltransferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01036Mevalonate kinase (2.7.1.36)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/04Phosphotransferases with a phosphate group as acceptor (2.7.4)
    • C12Y207/04002Phosphomevalonate kinase (2.7.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/01Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
    • C12Y305/01028N-Acetylmuramoyl-L-alanine amidase (3.5.1.28)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01033Diphosphomevalonate decarboxylase (4.1.1.33), i.e. mevalonate-pyrophosphate decarboxylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/02Aldehyde-lyases (4.1.2)
    • C12Y401/02009Phosphoketolase (4.1.2.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/03Oxo-acid-lyases (4.1.3)
    • C12Y401/03006Citrate (pro-3S)-lyase (4.1.3.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/03104Alpha-humulene synthase (4.2.3.104)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/03Intramolecular oxidoreductases (5.3) transposing C=C bonds (5.3.3)
    • C12Y503/03002Isopentenyl-diphosphate DELTA-isomerase (5.3.3.2)

Abstract

The invention relates to the field of genetic engineering and the field of microbial fermentation, and discloses a recombinant strain for producing terpenoid, a construction method thereof, a method for producing terpenoid by fermentation and application thereof. The recombinant strain is obtained by the genetic engineering modification of an original strain, and compared with the original strain, the activity of alpha-humulene synthase and the flux of a mevalonate pathway and acetyl coenzyme A are respectively enhanced in a plurality of organelles of the recombinant strain, or the activity of squalene synthase and the flux of the mevalonate pathway and acetyl coenzyme A are respectively enhanced; wherein the plurality of organelles of the recombinant strain include cytoplasm and peroxisomes, each of which contains a gene encoding α -humulene synthase or a gene encoding squalene synthase. The recombinant strain provided by the invention can effectively improve the yield of alpha-humulene or squalene, and has the advantages of raw material regeneration, mild conditions, green production, no time and place constraints and the like.

Description

Recombinant strain for producing terpenoid, construction method thereof, method for producing terpenoid through fermentation and application of recombinant strain
Technical Field
The invention relates to the fields of genetic engineering and microbial fermentation, in particular to a recombinant strain for producing terpenoid, a construction method thereof, a method for producing terpenoid by fermentation and application thereof.
Background
Terpenoids are the largest class of natural secondary metabolites, comprising 80000 many known molecules, with a high degree of structural diversity and a wide range of applications. Despite this remarkable diversity, all terpenoids are composed of isoprene units (C5). Terpenoids can be generally classified into monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), triterpenes (C30) and carotenoids (C40) according to the number of C5 units, with sesquiterpenes being the most abundant. Alpha-humulene is a kind of molecular formula C 15 H 24 The monocyclic sesquiterpenes of (A) have great application potential due to their anti-inflammatory, anti-allergic and anti-cancer activities.
At present, the alpha-humulene is mainly produced industrially by a chemical synthesis method or a plant extraction method, however, the plant extraction method is mainly limited by factors such as low content and easy limitation of seasons, geographical positions and the like, which leads to higher production cost of processes such as purification and the like, and the chemical synthesis has the defects of complicated steps, low yield, expensive catalyst, environmental pollution and the like, so that the development of the process is limited. Therefore, the heterologous microbial synthesis is receiving more and more attention as an alternative method for producing alpha-humulene, and in recent years, the alpha-humulene has been successfully produced in various hosts in a heterologous way, but the obtained yield is still low, so that the production efficiency is low and the requirement of industrial application is not met.
With the rapid development of metabolic engineering and synthetic biology, microorganisms are developing into an effective platform for green industrial production of high value-added natural compounds. Yarrowia lipolytica is a non-conventional oleaginous yeast considered as safe (GRAS), and more attention has been paid to yarrowia lipolytica because of the recent successful development of various highly efficient synthetic biological tools in yarrowia lipolytica to facilitate genetic manipulation of yarrowia lipolytica. However, researches on terpene synthesis by using yarrowia lipolytica as a host are mainly focused on cytoplasm, which is not favorable for exploring the potential of yarrowia lipolytica for producing terpenes and prevents the yarrowia lipolytica from being applied to industrialization.
Disclosure of Invention
The invention aims to overcome the problems in the prior art and provides a recombinant strain for producing terpenoid, a construction method thereof, a method for producing terpenoid by fermentation and application thereof.
In order to achieve the above objects, the present invention provides, in a first aspect, a recombinant strain for producing a terpenoid, which is α -humulene or squalene, the recombinant strain being obtained by genetic engineering of an original strain, the recombinant strain having enhanced activity of α -humulene synthase and flux of mevalonate pathway and acetyl-coa, respectively, or enhanced activity of squalene synthase and flux of mevalonate pathway and acetyl-coa, respectively, in a plurality of organelles as compared with the original strain; wherein the plurality of organelles of the recombinant strain comprise a cytoplasm and a peroxisome, and the cytoplasm and the peroxisome respectively comprise a nucleotide sequence encoding an amino acid sequence shown in SEQ ID NO: 1 or a gene encoding an amino acid sequence shown in SEQ ID NO: 2, and a gene of squalene synthase.
In a second aspect, the present invention provides a method for constructing a recombinant strain, the method comprising: genetically engineering a starting strain such that the activity of alpha-humulene synthase and the flux of the mevalonate pathway and acetyl-coa, respectively, or the activity of squalene synthase and the flux of the mevalonate pathway and acetyl-coa, respectively, are enhanced in the cytoplasm and peroxisomes of the starting strain; wherein the mode for enhancing the activity of the alpha-humulene synthase is that a coding amino acid sequence shown in SEQ ID NO: 1 in a manner that the squalene synthase activity is exogenously introduced into cytoplasm and peroxisomes of the starting strain into a gene encoding an amino acid sequence shown as SEQ ID NO: 2, and a gene of squalene synthase.
In a third aspect, the present invention provides a method for producing terpenoids by fermentation, wherein the terpenoids are alpha-humulene or squalene, the method comprising: inoculating the recombinant strain into a fermentation culture medium for fermentation; alternatively, a recombinant strain is constructed according to the above-described method, and the resulting recombinant strain is inoculated into a fermentation medium for fermentation.
In a fourth aspect, the invention provides the use of the recombinant strain or the method in preparing terpenoids, wherein the terpenoids are alpha-humulene or squalene.
Through the technical scheme, the recombinant strain provided by the invention can effectively improve the yield of alpha-humulene or squalene, and has the advantages of raw material regeneration, mild conditions, green production, no time and place constraints and the like.
In the most preferred embodiment of the invention, the recombinant strain obtained by taking yarrowia lipolytica as a host strain is added with 50 mu M copper sulfate solution when the fermentation is carried out for 0h, and the content of the alpha-humulene obtained after the fermentation is 96mg/g DCW, so that the fermentation effect and the yield of the alpha-humulene are more remarkably improved.
Biological preservation
Yarrowia lipolytica of the invention (A)Yarrowia lipolytica) GQ3007 was deposited at 14 days 3/2022 in the common microorganism center of the china committee for culture collection (address: beijing, west way No. 1 hospital on chaoyang district, No. 3, institute for microbiology, chinese academy of sciences, zip code: 100101) (CGMCC for preservation), and the preservation number is CGMCC No. 2425.
Drawings
FIG. 1 is a scheme showing the transfer of each coding gene into the starting strain in example 2.
Detailed Description
The endpoints of the ranges and any values disclosed herein are not limited to the precise range or value, and such ranges or values should be understood to encompass values close to those ranges or values. For ranges of values, between the endpoints of each of the ranges and the individual points, and between the individual points may be combined with each other to give one or more new ranges of values, and these ranges of values should be considered as specifically disclosed herein.
The terms "increase", "enhancing", "enhancement" or "activation" as used herein generally mean an increase in a statistically significant amount. However, for the avoidance of doubt, the terms "increase", "enhancement" or "activation" mean an increase of at least 10% compared to a reference level (e.g. a level in the starting strain), such as an increase of at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90%, or up to and including 100%, or an increase of any amount between 10% and 100% compared to the reference level; or at least about 2-fold, or at least about 3-fold, or at least about 4-fold, or at least about 5-fold, or at least about 10-fold increase, or any amount between 2-fold and 10-fold increase, or a greater amount of increase, as compared to a reference level.
In a first aspect, the present invention provides a recombinant strain for producing terpenoids, said terpenoids being alpha-humulene or squalene, the recombinant strain being obtained by genetic engineering of an original strain, said recombinant strain having enhanced activity of alpha-humulene synthase and flux of mevalonate pathway and acetyl-coa, respectively, or enhanced activity of squalene synthase and flux of mevalonate pathway and acetyl-coa, respectively, in a plurality of organelles compared to the original strain; wherein the plurality of organelles of the recombinant strain comprise a cytoplasm and a peroxisome, and the cytoplasm and the peroxisome enhance an activity of alpha-humulene synthase in a manner of: the cytoplasm and the peroxisome respectively contain a nucleotide sequence of a coding amino acid sequence shown as SEQ ID NO: 1, a gene of α -humulene synthase represented by the formula (I); the manner in which the activity of alpha-humulene synthase is enhanced in the cytoplasm and peroxisomes is: the cytoplasm and the peroxisome respectively contain a nucleotide sequence of a coding amino acid sequence shown as SEQ ID NO: 2, and a gene of squalene synthase.
In the present invention, preferably, the starting strain is yarrowia lipolytica (yarrowia lipolytica) ((R))Yarrowia lipolytica) More preferably yarrowia lipolytica knockout of non-homologous recombination encoding gene ku70, the nucleotide sequence of said encoding gene ku70 being as set forth in SEQ ID NO: as shown at 27. Illustratively, a coding gene ku70 responsible for non-homologous recombination was knocked out using yarrowia lipolytica strain MYA2613, purchased from American Type Culture Collection (ATCC), as the original strain, and the nucleotide sequence of coding gene ku70 is shown in SEQ ID NO: 27 to obtainYarrowia lipolytica Po1f delta ku70 (MatA, ura3-302, leu2-270, XPR2-322, axp2-delta, NU49, XPR2: SUC2 MYA2613 delta ku70: hisG) can be used as the starting strain of the invention.
In the present invention, in order to increase the α -humulene production of the recombinant strain, it is preferable that the recombinant strain contains a nucleic acid sequence encoding an amino acid sequence shown in SEQ ID NO: 1, and further preferably, the nucleotide sequence of the alpha-humulene synthase coding gene ACHS2 is shown in SEQ ID NO: 3 is shown in the specification; in order to increase the squalene production of the recombinant strain, it is preferred that the recombinant strain comprises a nucleic acid sequence encoding an amino acid sequence as set forth in SEQ ID NO: 2, and further preferably, the nucleotide sequence of the squalene synthase encoding gene ERG9 is shown in SEQ ID NO: 4, respectively. The inventor finds that by taking yarrowia lipolytica with a coding gene ku70 knocked out by non-homologous recombination as an initial strain, and exogenously introducing alpha-humulene synthase (ACHS 2) gene expression cassettes into cytoplasm and peroxisome of the recombinant strain respectively, the yield of a fermentation product alpha-humulene can be improved more remarkably; the exogenous introduction of the squalene synthase (ERG 9) gene expression cassettes can improve the yield of squalene.
In the present invention, when the recombinant strain is used for producing alpha-humulene, based on the enhancement of the activity of alpha-humulene synthase and the flux of mevalonate pathway and acetyl-coa in cytoplasm and peroxisome, respectively, the gene ERG9 encoding the squalene synthase can be further replaced by copper ion-inhibited promoter CTR 2; wherein the nucleotide sequence of the copper ion repression promoter CTR2 is shown as SEQ ID NO: 5, respectively. The inventor of the invention finds that the yield of alpha-humulene produced by the recombinant strain can be further improved by replacing a squalene synthase coding gene ERG9 with a copper ion-inhibited promoter CTR 2.
In the invention, the enhancement of the mevalonate pathway in the cytoplasm of the recombinant strain can be realized by over-expressing a coding gene of any key enzyme of the mevalonate pathway in the cytoplasm of the original strain, and the enhancement of the mevalonate pathway in the peroxisome of the recombinant strain can be realized by effectively expressing the coding gene of any key enzyme of the mevalonate pathway in the peroxisome. Preferably, the mevalonate pathway in the cytoplasm of said recombinant strain is enhanced by overexpressing in the cytoplasm of said starting strain at least one of gene tmgb 1 encoding a truncated hydroxymethylglutaryl-CoA reductase, gene ERG8 encoding phosphomevalonate kinase, gene ERG20 encoding geranyl/farnesyl diphosphate synthase, gene ERG12 encoding mevalonate kinase, gene ERG13 encoding hydroxymethylglutaryl-CoA synthase, gene ERG19 encoding mevalonate diphosphate decarboxylase, gene ERG10 encoding acetoacetyl-CoA thiolase and gene IDI encoding isopentenyl diphosphate isomerase; the means for enhancing mevalonate pathway in peroxisomes of the recombinant strain employs efficient expression of at least one of the coding genes tmg 1, ERG8, ERG20, ERG12, ERG13, ERG19, ERG10 and IDI in the peroxisomes of the starting strain; wherein the nucleotide sequences of the coding genes tHMG1, ERG8, ERG20, ERG12, ERG13, ERG19, ERG10 and IDI are respectively shown in SEQ ID NO: 6-13.
In order to better localize the above-mentioned coding genes tmg 1, ERG8, ERG20, ERG12, ERG13, ERG19, ERG10 and IDI to peroxisomes of the starting strain and achieve effective expression of each in peroxisomes, the coding genes tmg 1, ERG8, ERG20, ERG12, ERG13, ERG19, ERG10 and IDI are each linked with a short peptide as a peroxisome localization signal when introduced into peroxisomes, and include a sequence consisting of 7 amino acids, specifically gggsl, and the corresponding nucleotide sequence may be GGTGGTGGTTCTTCTAAACTA.
In the present invention, preferably, the flux of acetyl-CoA in the cytoplasm of the recombinant strain is enhanced by introducing at least one of a gene encoding CoA-acetylaldehyde dehydrogenase AAD, a gene encoding aldehyde dehydrogenase ALDH, a gene encoding carnitine acetyltransferase Cat2, a gene encoding AMP deaminase AMPD, a gene encoding ATP citrate lyase ACL1, ACL2, a gene encoding phosphoketolase PK and a gene encoding phosphotransacetylase PTA into the cytoplasm of the starting strain; wherein, the nucleotide sequences of the coding genes AAD, ALDH, Cat2, AMPD, ACL1, PK and PTA are respectively shown in SEQ ID NO: 14-20, and the nucleotide sequences of the coding gene ACL2 are respectively shown in SEQ ID NO: as shown at 29.
In the present invention, preferably, the flux of acetyl-CoA in peroxisomes of the recombinant strain is enhanced by overexpressing at least one of a gene POT1 encoding 3-ketoacyl-CoA thiolase, a gene MEF1 encoding peroxisome multifunctional enzyme type I, a gene PEX10 encoding peroxisome biogenesis factor 10, and/or at least one of a gene MIS1 encoding peroxisome malate synthase and a gene CIT2 encoding peroxisome citrate synthase in peroxisome of the starting strain; wherein the nucleotide sequences of the encoding genes POT1, MEF1, PEX10, MIS1 and CIT2 are respectively shown as SEQ ID NO: 21-25.
It should be noted that, in the present invention, while the flux of acetyl-coa is enhanced, the gene ANT encoding a carrier protein for ATP is further overexpressed to provide sufficient energy to peroxisomes, and the nucleotide sequence of the encoding gene ANT is as shown in SEQ ID NO: shown at 28.
In the present invention, preferably, the cytoplasm and peroxisome of the recombinant strain are further introduced by exogenous introduction of a gene encoding a key rate-limiting enzyme, NADH-tmg 1, and the nucleotide sequence of the encoding gene, NADH-tmg 1, is as shown in SEQ ID NO: shown at 26.
In the present invention, preferably, the coding gene ACHS2 of the alpha-humulene synthase is further overexpressed in the cytoplasm and peroxisomes of the recombinant strain for producing alpha-humulene, on the basis of the introduction of the coding gene NADH-tHMG 1; the gene encoding squalene synthase ERG9 was further overexpressed in the cytoplasm and peroxisomes of the recombinant strain used for producing squalene, on the basis of the introduction of the gene encoding NADH-tHMG 1.
In order to better localize the encoding gene NADH-tHMG1 to the peroxisome of the starting strain and achieve overexpression in the peroxisome, the encoding gene NADH-tHMG1 is linked to a short peptide as a peroxisome localization signal when introduced into the peroxisome, and comprises a sequence consisting of 7 amino acids, specifically GGGSSKL, and the corresponding nucleotide sequence can be GGTGGTGGTTCTTCTAAACTA.
According to a preferred embodiment of the invention, the recombinant strain has a accession number of CGMCC No. 242525.
In a second aspect, the present invention provides a method for constructing a recombinant strain, the method comprising: genetically engineering a starting strain such that the activity of alpha-humulene synthase and the flux of the mevalonate pathway and acetyl-coa, respectively, are enhanced in the cytoplasm and peroxisome of the starting strain, or the activity of squalene synthase and the flux of the mevalonate pathway and acetyl-coa, respectively, are enhanced; wherein the mode for enhancing the activity of the alpha-humulene synthase is that a coding amino acid sequence shown in SEQ ID NO: 1 in a manner that the squalene synthase activity is exogenously introduced into cytoplasm and peroxisomes of the starting strain into a gene encoding an amino acid sequence shown as SEQ ID NO: 2, and a gene of squalene synthase.
In the present invention, preferably, the nucleotide sequence of the alpha-humulene synthase coding gene ACHS2 is as shown in SEQ ID NO: 3, the nucleotide sequence of the squalene synthase coding gene ERG9 is shown as SEQ ID NO: 4, respectively. In the present invention, the enhancement of the activity of α -humulene synthase is achieved by exogenously introducing the expression cassette ACHS2 in the cytoplasm and peroxisome of the starting strain, respectively, and the enhancement of the activity of squalene synthase is achieved by exogenously introducing the expression cassette ERG9 in the cytoplasm and peroxisome of the starting strain, respectively.
In the present invention, preferably, when the activity of α -humulene synthase in cytoplasm and peroxisome of the recombinant strain is enhanced, the gene ERG9 encoding squalene synthase is replaced with copper ion repressible promoter CTR 2; wherein the nucleotide sequence of the copper ion repression promoter CTR2 is shown as SEQ ID NO: 5, respectively. The process of replacing ERG9 with CTR2 is based on the principle of homologous recombination, homologous arms are respectively obtained at the upstream and downstream of an endogenous promoter, CTR2 is expressed in the middle, and homologous recombination is carried out when the cells are transferred into a genome, namely the replacement is completed.
In the present invention, preferably, the starting strain is yarrowia lipolytica, preferably yarrowia lipolytica with coding gene ku70 knocked out for non-homologous recombination, and the nucleotide sequence of the coding gene ku70 is shown in SEQ ID NO: as shown at 27.
In the present invention, preferably, the mevalonate pathway in the cytoplasm of the recombinant strain is enhanced by overexpressing at least one of gene tmgb 1 encoding truncated hydroxymethylglutaryl-CoA reductase, gene ERG8 encoding phosphomevalonate kinase, gene ERG20 encoding geranyl/farnesyl diphosphate synthase, gene ERG12 encoding mevalonate kinase, gene ERG13 encoding hydroxymethylglutaryl-CoA synthase, gene ERG19 encoding mevalonate diphosphate decarboxylase, gene ERG10 encoding acetoacetyl-CoA thiolase, and gene IDI encoding isopentenyl diphosphate isomerase in the cytoplasm of the starting strain; the means for enhancing mevalonate pathway in peroxisomes of the recombinant strain employs efficient expression of at least one of the coding genes tmg 1, ERG8, ERG20, ERG12, ERG13, ERG19, ERG10 and IDI in the peroxisomes of the starting strain; wherein the nucleotide sequences of the coding genes tHMG1, ERG8, ERG20, ERG12, ERG13, ERG19, ERG10 and IDI are respectively shown in SEQ ID NO: 6-13.
In the present invention, preferably, the flux of acetyl-CoA in the cytoplasm of the recombinant strain is enhanced by introducing at least one of a gene encoding CoA-acetylaldehyde dehydrogenase AAD, a gene encoding aldehyde dehydrogenase ALDH, a gene encoding carnitine acetyltransferase Cat2, a gene encoding AMP deaminase AMPD, a gene encoding ATP citrate lyase ACL1, ACL2, a gene encoding phosphoketolase PK and a gene encoding phosphotransacetylase PTA into the cytoplasm of the starting strain; wherein, the nucleotide sequences of the coding genes AAD, ALDH, Cat2, AMPD, ACL1, PK and PTA are respectively shown in SEQ ID NO: 14-20, and the nucleotide sequences of the coding gene ACL2 are respectively shown in SEQ ID NO: as shown at 29.
In the present invention, preferably, the flux of acetyl-CoA in peroxisomes of the recombinant strain is enhanced by overexpressing at least one of gene for coding 3-ketoacyl-CoA thiolase POT1, gene for coding peroxisome multifunctional enzyme type I MEF1, gene for coding peroxisome biogenesis factor 10 PEX10, and/or gene for coding peroxisome malate synthase MIS1 and gene for coding peroxisome citrate synthase CIT2 in peroxisomes of the starting strain; wherein the nucleotide sequences of the encoding genes POT1, MEF1, PEX10, MIS1 and CIT2 are respectively shown as SEQ ID NO: 21-25.
In the present invention, preferably, the cytoplasm and peroxisome of the recombinant strain are further introduced by exogenous introduction of a gene encoding a key rate-limiting enzyme, NADH-tmg 1, and the nucleotide sequence of the encoding gene, NADH-tmg 1, is as shown in SEQ ID NO: as shown at 26.
In the present invention, overexpression refers to insertion of a gene existing in a cell itself into a strain so that the gene is up-regulated to express a final gene expression product at a level higher than a normal level; knock-out refers to the inactivation or non-expression of a gene present in the cell of the strain; exogenous introduction refers to the introduction of a functional gene (a gene that is not present in the genome of the target cell or has been inactivated) into the genome of the cell, and expression is achieved in the cell. In the invention, the overexpression, the knockout and the exogenous introduction all utilize a gene homologous recombination method, an upper homologous arm and a lower homologous arm are arranged at a specified position, and a gene expression frame to be expressed is placed between the two homologous arms or no gene is placed (mainly used for knockout).
In the present invention, the overexpression, knockout or exogenous introduction of the above-mentioned coding gene can be achieved by a method conventional in the art. For example, the coding gene for overexpression can be constructed into a corresponding recombinant vector, replicated in E.coli, and then introduced into a competent starting strain in a certain order. Various methods of constructing recombinant vectors are known in the art for ligating a gene fragment of interest (e.g., encoding gene ERG 8) to an expression vector to prepare a recombinant vector, such as, but not limited to, the classical "enzyme-ligation" method, the Gateway Cloning system developed by Invitrogen, and the Clon express Cloning system developed by Novow, such as the Clon express Multi One Step Cloning Kit.
Illustratively, the gene ERG8 can be constructed by a recombinase method to obtain the recombinant vector of the invention: based on the genome of an original strain (such as yarrowia lipolytica strain MYA2613 for knocking out non-homologous recombination coding gene ku 70), amplifying by adopting a PCR method to obtain an upstream and downstream homologous arm sequence of a target insertion part; the recombinant vector is obtained by connecting in series the expression cassette of the target gene to be inserted, the upstream and downstream homology arm sequences, the resistance gene expression cassette, etc., but the present invention is not limited thereto.
Subsequently, the recombinant vector can be introduced into the starting strain (e.g., yarrowia lipolytica strain MYA2613 encoding gene ku70, knock-out for non-homologous recombination) using methods conventional in the art, such as, but not limited to, microinjection, gene gun, transformation (e.g., electrotransformation). The microinjection, gene gun or transformation described above are all routine procedures in the art. For example, transformation refers to the entry of foreign DNA into a cell that is competent by treating the cell using some known method in molecular biology and genetic engineering, to make the treated cell competent, and thereby contacting the foreign DNA. Commonly used transformation methods include protoplast transformation, chemical transformation, and electroporation.
In the invention, when yarrowia lipolytica strain MYA2613 with coding gene ku70 knocked out by non-homologous recombination is used as a starting strain, after a recombinant vector is introduced into the starting strain, positive clones can be screened out through a screening marker (such as a resistance gene), and the verification is carried out through genome PCR or genome DNA sequencing, so that the recombinant strain for producing terpenoid compounds is obtained. For example, the procedure for competent cell preparation and Transformation can be carried out using the Yeast Transformation Kit of Frozen-EZ Yeast Transformation II Kit manufactured by Zymo Research.
In a third aspect, the present invention provides a method for producing terpenoids by fermentation, wherein the terpenoids are alpha-humulene or squalene, the method comprises: inoculating the recombinant strain into a fermentation medium for fermentation;
alternatively, a recombinant strain is constructed as described above, and the resulting recombinant strain is inoculated into a fermentation medium for fermentation.
In the present invention, preferably, the recombinant strain is prepared into a seed solution, and then the seed solution is inoculated into a fermentation medium for fermentation to obtain a fermentation broth.
In the present invention, preferably, the preparation method of the seed liquid comprises: and selecting a single colony of the recombinant strain to inoculate in a seed culture medium for seed culture to obtain the seed solution.
In the present invention, the seed medium is not particularly limited, and may be a seed medium conventionally used in the art for preparing a yarrowia lipolytica seed solution, and preferably, the seed medium is a YPD liquid medium.
In the present invention, preferably, the conditions for seed culture include: the rotation speed is 200 and 250rpm, the temperature is 25-35 ℃, and the time is 16-24 h. In the present invention, preferably, the single colony of the recombinant strain may be selected from colonies streaked on a solid plate. Illustratively, the recombinant strain is inoculated onto a YPD solid plate and streaked, and a single colony of the recombinant strain is obtained by culturing at 25-35 ℃ for 2-3 days.
In the present invention, the fermentation method is not particularly limited, and may be a method for producing terpenoid through fermentation, which is conventionally used in the art, such as inoculating the seed solution into a fermentation medium (such as a shake flask or a fermentation tank containing the fermentation medium) to perform fermentation culture to obtain a fermentation broth.
In the present invention, in order to increase the yield of α -humulene or squalene, it is preferable that the inoculation amount of the seed liquid is 0.5 to 2 parts by volume with respect to 100 parts by volume of the fermentation medium.
In the present invention, the conditions for the fermentation include; the temperature is 25-35 ℃, the rotation speed is 200-. Illustratively, to increase the yield of alpha-humulene, the fermentation conditions may be: firstly, fermenting for 20-30h under the conditions that the rotation speed is 200-250rpm and the temperature is 25-35 ℃; then adding n-dodecane, and continuing to ferment for 60-84h under the conditions of the rotation speed of 200-250rpm and the temperature of 25-35 ℃ to obtain fermentation liquor. Further preferably, the n-dodecane is added in an amount of 20 to 30 parts by volume with respect to 100 parts by volume of the fermentation medium. The addition of the n-dodecane can extract and collect the alpha-humulene secreted outside the cells in real time, and the dodecane layer is centrifuged after the fermentation is finished, so that the alpha-humulene can be obtained. In the present invention, preferably, the fermentation medium comprises a carbon source, an organic nitrogen source (e.g., yeast powder, peptone). More preferably, the fermentation medium comprises the following components in percentage by weight: 15-25g/L of peptone, 8-12g/L of yeast powder and 50-70g/L of glucose. In the present invention, preferably, when the squalene synthase encoding gene ERG9 is replaced with a copper ion-repressible promoter CTR2 in the cytoplasm and peroxisome of the recombinant strain, the fermentation medium further contains copper salt to further increase the yield of α -humulene during fermentation of the recombinant strain. Specifically, the content of copper salt in the fermentation medium is 5-500. mu.M.
In the present invention, α -humulene or squalene in the obtained fermentation broth can be isolated by a known method. For example, α -humulene can be secreted extracellularly by the strain, and isolated by removing cells from the fermentation broth, and then concentrating the cell-removed fermentation broth to crystallize the product, or by ion exchange chromatography or the like; and (2) collecting the thalli in the fermentation liquor when the squalene exists in the thalli, then carrying out freeze drying, weighing a certain amount of thalli, mixing with a sodium hydroxide-methanol solution, carrying out oscillation reaction, then mixing with concentrated sulfuric acid, finally mixing with dodecane, carrying out oscillation and then centrifuging, and extracting the squalene into a dodecane layer.
In the present invention, α -humulene or squalene in the fermentation solution can also be detected by a known method, or α -humulene or squalene separated from the fermentation solution. For example, α -humulene or squalene can be detected by gas chromatography and the like.
In a fourth aspect, the invention provides the use of the recombinant strain or the method in preparing terpenoids, wherein the terpenoids are alpha-humulene or squalene.
The present invention will be described in detail below by way of examples. These examples are only for illustrating the present invention and are not intended to limit the scope of the present invention. In the following examples, unless otherwise indicated, all experimental procedures used are conventional procedures well known to those skilled in the art or as recommended by the manufacturer.
In the following examples, unless otherwise specified, reagents and media used are commercially available, and the methods used are conventional methods; the room temperature was 25. + -. 5 ℃ unless otherwise specified.
In the following examples, the starting strain isYarrowia lipolyticaPo1f Δ ku70 (MatA, ura3-302, leu2-270, XPR2-322, axp2-delta, NU49, XPR2:: SUC2 MYA2613 Δ ku70:: hisG), which was originally obtained from yarrowia lipolytica strain MYA2613 available from the American Type Culture Collection (ATCC), reference "Gao S, Tong Y, Zhu L, et alYarrowialipolytica for heterologousβ-carotene production[J]The method described in Metabolic Engineering,2017:192 ", knock-out the coding gene ku70 responsible for non-homologous recombination, the nucleotide sequence of the coding gene ku70 being as set forth in SEQ ID NO: 27 to obtainYarrowia lipolytica Po1fΔku70。
1. Culture medium and reagent
YPD liquid medium: peptone 20g/L, yeast powder 10g/L, glucose 20 g/L;
YPD solid Medium: peptone 20g/L, yeast powder 10g/L, glucose 20g/L, agar powder 20 g/L;
YPD 60 fermentation medium: peptone 20g/L, yeast powder 10g/L, glucose 60g/L, copper sulfate 8 mg/L.
2. The content of alpha-humulene or squalene is detected by Gas Chromatography (GC):
the model of the gas chromatograph: shimadzu, Japan QP2020NX, HP-5MS column (30 m. times.320. mu. m. times.0.5. mu.m).
Detection conditions of alpha-humulene: the injection port temperature is 250 ℃, the injection volume is1 mu L, and the split ratio is 20: 1; a chromatographic column: HP-5ms (30 m.times.0.25 mM); chromatographic conditions are as follows: the initial temperature is 60 ℃, the temperature rises to 150 ℃ according to the speed of 10 ℃/min, then the temperature rises to 280 ℃ at 20 ℃/min, and the temperature is kept for 2 min; qualitative and quantitative determination was carried out using a standard of alpha-humulene.
Detection conditions of squalene: the injection port temperature is 250 ℃, the injection volume is1 mu L, and the split ratio is 20: 1; a chromatographic column: HP-5 (30 m.times.320. mu.m.times.0.25 μm); chromatographic conditions are as follows: heating to 175 deg.C for 3min, heating to 200 deg.C at 20 deg.C/min and maintaining for 3min, and heating to 260 deg.C at 20 deg.C/min and maintaining for 4 min; and carrying out qualitative and quantitative determination by using a standard substance of squalene.
3. Amplification of Gene fragment (PCR amplification method)
The PCR enzyme used in PCR amplification is PrimeSTAR MaxDNA polymerase of TAKARA; the PCR amplification system is shown in Table 1 below:
TABLE 1 PCR amplification System
Reagent Amount of the use Final concentration
PrimeSTAR Max(2×) 25μL
Primer 1 10-15 pmol 0.2-0.3 μmol
Primer
2 10-15 pmol 0.2-0.3 μmol
Template <200 ng
Sterilized distilled water Up to 50μL
Wherein, the PCR amplification process comprises the following steps: denaturing at 98 ℃ for 10s, annealing at 55 ℃ for 10s, extending at 72 ℃ for 35 cycles, and purifying and recovering each fragment with AxyPrepTM DNA Gel Extraction Kit (available from Corning Life sciences, Wujiang Ltd.); where, extension time = target fragment length/1 kb, unit min.
4. Construction of recombinant vector (one-step cloning method):
One-Step Cloning is realized by using Clonexpress Multi S One Step Cloning Kit of Nanjing Novozam Biotechnology Co., Ltd, a reaction system is shown in Table 2, and a circular recombinant vector is obtained after the reaction system is incubated for 15min at 50 ℃;
TABLE 2 one-step cloning System
Components Recombination reactions
Linearized vector XμL
N inserts Y1+Y2+…YnμL
2×ClonExpress Mix 5μL
ddH2O To 10μL
The circular recombinant vector is transformed into escherichia coli DH5a competent cells, and positive recombinant plasmids are obtained through ampicillin resistance plate screening and colony PCR and sequencing verification.
Example 1
Construction of original plasmid
Yarrowia lipolytica according to NCBI (r) ((r))Y.lipolytica) In (3), the nucleotide sequence of orotic acid nucleic acid pro-5 '-phosphate dredgerase encoding gene ura (genebank accession AJ 306421.1) and hisG tag (genebank accession AF 324729.1) are entrusted to the synthesis of Ongchikungunya Biotech Co., Ltd, two hisG tag encoding gene sequences are inserted into plasmid pUC, pUC57 is specifically used as a skeleton, ECORI and HindIII are used for enzyme digestion to recover the skeleton, the hisG tag encoding gene is subjected to One-Step Cloning by using Clon express MultiS One Cloning Kit to construct plasmid pUC-hisG-hisG, then the plasmid pUC-hisG-hisG is used as a skeleton, HindIII is used for enzyme digestion to recover the skeleton, the ura encoding gene is subjected to One-Step Cloning by using Clon MultiS One Cloning Kit to construct two hisG tag encoding gene sequences, and whey 5' -phosphate dredgese encoding gene is inserted into the two hisG tag encoding gene sequences to recover the whey marker, obtaining a plasmid pUC-HUH;
and replacing the HisG fragment in the construction process with Bilk (XM _ 023576916.1) to obtain a skeleton plasmid pUC-BUB.
Cloning of endogenous genes and expression elements of yarrowia lipolytica
(1) Extraction of yarrowia lipolytica genome: the whole genomic DNA of yarrowia lipolytica po1f was extracted (see the instructions for DNA extraction kit for DNA extraction from yeast, from Shanghai, Biotechnology engineering Co., Ltd.).
(2) Taking the yarrowia lipolytica genome obtained in the step (1) as a template, respectively designing corresponding primer pairs, cloning the following 12 endogenous coding genes, 6 promoters and 14 terminators by a PCR amplification method, and describing the construction process of the following integration plasmids in detail;
NADH-HMG1 (from roseobacter)Ruegeria pomeroyi) ACHS2 (isolated from plant Aquilaria sinensis), GFP (artificially synthesized), homology arm of CIT2 (endogenous), homology arm of MIS1 (endogenous), AMPD, ACL2, ACL1, PK (from Leuconostoc mesenteroides)Leuconostoc mesenteroides) Cat2 (from Saccharomyces cerevisiae)Saccharomycescerevisiae) AAD (from E. coli), ALDH (from E. coli)Escherichiacoli) All are entrusted to the Optimus department Biotechnology Limited company for synthesis after codon optimization.
Construction of integration plasmid
(1) Construction of integration plasmid pUC-IntC-HUH-tHMG1-ERG13-IDI
Firstly, using original plasmid pUC-HUH as a framework, carrying out PCR amplification (shown in a table 1) by using IntC-UP-F and IntC-UP-R to obtain IntC upper homology arm IntC-UP, carrying out enzyme digestion on the pUC-HUH framework by using ECORI, and then carrying out one-step cloning (shown in a table 2) and connection with IntC-UP to obtain pUC-HUH-intC-UP;
secondly, carrying out PCR amplification by using IntC-DN-F and IntC-DN-R to obtain IntC-DN of the lower homologous arm, carrying out enzyme digestion on pUC-HUH-intC-UP by using HindIII, and carrying out one-step cloning and connection with IntC-DN to obtain pUC-HUH-intC;
③ using T tHMG1t -F and T tHMG1t PCR amplification of-R to obtain T tHMG1t PCR amplification with tHMG1-F and tHMG1-R to obtain tHMG1, and PCR amplification with P TEFin -F and P TEFin PCR amplification of-R to obtain P TEFin The pUC-HUH-intC was digested with HindIII and then digested with T tHMG1t tHMG1 and P TEFin Carrying out one-step cloning and connection to obtain pUC-HUH-IntC-tHMG 1;
fourthly, using T ERG13t -F and T ERG13t PCR amplification of-R to obtain T ERG13t ERG13 was obtained by PCR amplification using ERG13-F and ERG13-R, and P was used GPD -F and P GPD PCR amplification of-R to obtain P GPD pUC-HUH-IntC-tHMG1 was digested with XbaI and then ligated with T ERG13t ERG13 and P GPD Performing one-step cloning and connection to obtain pUC-IntC-HUH-tHMG1-ERG13;
Use T IDIt -F and T IDIt PCR amplification of-R to obtain T IDIt PCR amplification of IDI-F and IDI-R to obtain IDI, and PCR amplification of IDI-F and IDI-R with P EXP -F and P EXP PCR amplification of-R to obtain P EXP pUC-IntC-HUH-tHMG1-ERG13 was digested with XbaI and then ligated with T IDIt IDI and P EXP And (3) carrying out one-step cloning and connection to obtain pUC-IntC-HUH-tHMG1-ERG13-IDI, wherein the nucleotide sequence of the related primer is shown in a table 3, and the nucleotide sequence of tHMG1 is shown in SEQ ID NO: 6, the nucleotide sequence of ERG13 is shown as SEQ ID NO: 10, and the nucleotide sequence of IDI is shown as SEQ ID NO: shown at 13.
The further integration plasmids were obtained by following the specific construction procedure of pUC-IntC-HUH-tHMG1-ERG 13-IDI.
TABLE 3
IntC-UP-F gttgtaaaacgacggccagtgaattcAGGTTGTCGATGATATGCTG
IntC-UP-R ATGCACCACTGGAAGATCCGGGAATTAGGACAACTCCTGAGACATA
IntC-DN-F AACAGCTTAATTAAGGTACCAAGCTTCGTGGTTCATGTCCTTCATCT
IntC-DN-R TGACCATGATTACGCCAAGCTGTCGAGTTGCGGCTCGAGAGCC
TtHMG1t-F TGGAACAGCTTAATTAAGGTACCAAGCTcaggtcGTCTCGATCAAATCCTTG
TtHMG1t-R ATATTTGCATACGGTCATAGGTGTACAATAGTGAAGGAAA
tHMG1-F TTTCCTTCACTATTGTACACCTATGACCGTATGCAAATAT
tHMG1-R CTTTTTGCAGTACtaaccgcagACCCAGTCTGTGAAGGTGGTTGA
PTEFin-F ACCACCTTCACAGACTGGGTctgcggttaGTACTGCAAAA
PTEFin-R GATGAAGGACATGAACCACGAAGCTCTAGAAGAGACCGGGTTGGCGGCGTAT
TERG13t-F ATACGCCGCCAACCCGGTCTCTTCTAGGGAGTAACAGCACGTATCGCACGT
TERG13t-R AGTACGAGATCAAGCAGTAGATTGTTAAGATGCAACTAGG
ERG13-F CCTAGTTGCATCTTAACAATCTACTGCTTGATCTCGTACT
ERG13-R GAATTAAACACACATCAACAatgtcGCAACCCCAGAACGTTGGAA
PGPD-F ACGTTCTGGGGTTGCgacatTGTTGATGTGTGTTTAATTCAAGAAT
PGPD-R AGATGAAGGACATGAACCACGAAGCTCTAGACGCAGTAGGATGTCCTGCAC
TIDIt-F GTGCAGGACATCCTACTGCGTCTAGGACTCGATACTACTCCAGTCA
TIDIt-R TTCGGCGGTGGATCAAGTAGGGATTGGCGAAGTAATTAAT
IDI-F ATTAATTACTTCGCCAATCCCTACTTGATCCACCGCCGAA
IDI-R CACAAGACATATCTACAGCAATGACGACGTCTTACAGCGA
PEXP-F TCGCTGTAAGACGTCGTCATTGCTGTAGATATGTCTTGTG
PEXP-R CAGATGAAGGACATGAACCACGAAGCTCTAGACACACGTTTCGGTGAGTATGAG
(2) Integration plasmid pUC-ku70-HUH-ERG20-ERG12
Using original plasmid pUC-HUH as skeleton, insertingY. lipolyticaThe upstream 1542bp and the downstream 1489bp of the ku70 site of the chromosome of Polf; after digestion with the restriction enzyme HindIII from Takara between ku70-dn and hisG, the resultant was linearized by agarose gel electrophoresis; the linearized pUC-HUH-KU70 plasmid is inserted into ERG20 and ERG12 expression frames in sequence to obtain an integration plasmid pUC-KU70-HUH-ERG20-ERG12, wherein the related primer nucleotide sequence is shown in Table 4, and the nucleotide sequence of ERG20 is shown in SEQ ID NO: 8, the nucleotide sequence of ERG12 is shown as SEQ ID NO: shown at 9.
TABLE 4
Ku70-UP-F GCTATGACCATGATTACGATATTTAAATCCCAAAGACGAGGAGACTTTCT
Ku70-UP-R ATGCACCACTGGAAGATCCGGAATTCACGCGAAGTTGGGTGCCATGTT
Ku70-DN-F CCTGATTGACTGGAACAGCCCCAAGCTTGGTGATGCCATCGAGGAATGGA
Ku70-DN-R TAAAACGACGGCCAGTGCCGATATTTAAATGCAAGCACAAGAAGGAGCCTCGCTTCAG
TERG20t-F TTTACAAGCGACAGAAGTAGACACTTGAAAAAAACGCAAT
TERG20t-R CATTCCTCGATGGCATCACCAAGCTTCTAGAAGGACTCGGGTCAGAAGTTCTT
ERG20-F GAATTAAACACACATCAACAATGTCCAAGGCGAAATTCGA
ERG20-R ATTGCGTTTTTTTCAAGTGTCTACTTCTGTCGCTTGTAAA
PGPD-F CTGATTGACTGGAACAGCCCCAAGCTCGCAGTAGGATGTCCTGCACG
PGPD-R TCGAATTTCGCCTTGGACATTGTTGATGTGTGTTTAATTC
TERG12t-F TCGGTCCCTGGACCCATTAGTATTTAATTTTAATGAGTGA
TERG12t-R CATTCCTCGATGGCATCACCAAGCTTCTAGACGAGGTATTGCTGTCTATAA
ERG12-F CACAAGACATATCTACAGCATCTAGCATGGACTACATCATTTCGGCGC
ERG12-R TCACTCATTAAAATTAAATACTAATGGGTCCAGGGACCGA
PEXP-F AGAACTTCTGACCCGAGTCCTTCTAGCACACGTTTCGGTGAGTATGAG
PEXP-R GCGCCGAAATGATGTAGTCCATGCTAGATGCTGTAGATATGTCTTGTG
(3) Integration plasmid pUC-SCP2-HUH-ERG10-ERG8-ERG19
Using original plasmid pUC-HUH as skeleton, insertingY. lipolyticaThe upstream 1523bp and the downstream 1524bp of a chromosome SCP2 locus in the Polf-SCP 2; the resultant mixture was digested with restriction enzyme HindIII from Takara, SCP2-dn and hisG, and recovered from the gel by agarose gel electrophoresisLinearization is carried out; the linearized pUC-HUH-SCP2 plasmid is sequentially inserted into expression frames ERG10, ERG8 and ERG19 to finally obtain an integrated plasmid pUC-SCP2-HUH-ERG10-ERG8-ERG19, wherein the nucleotide sequence of the related primer is shown in Table 5, and the nucleotide sequence of ERG10 is shown in SEQ ID NO: 12, the nucleotide sequence of ERG8 is shown as SEQ ID NO: 7, the nucleotide sequence of ERG19 is shown as SEQ ID NO: shown at 11.
TABLE 5 primer nucleotide sequences of the integration plasmid pUC-SCP2-HUH-ERG10-ERG8-ERG19
SCP2-UP-F gttgtaaaacgacggccagtgaattcCCGACAGTCGTCTGCACCCC
SCP2-UP-R ATGCACCACTGGAAGATCCGGGAATTTTTGTGTAATGAATAAGAGA
SCP2-DN-F AACAGCTTAATTAAGGTACCAAGCTTCAAGTCCCCCAAGGGTGATG
SCP2-DN-R GACCATGATTACGCCAAGCTGCGGCCGCAACCGATAGTGAGACTCAAT
TERG10t-F AGGTCTCTTCTGTCGAGTAGTTAGTATATAGATGATTTAT
TERG10t-R CATCACCCTTGGGGGACTTGAAGCTTGGACAATTAATTTGTCGCGT
ERG10-F ACAAACTAACCCAGCTCTTCCGACTCACTCTGCCCCGACT
ERG10-R ATAAATCATCTATATACTAACTACTCGACAGAAGAGACCT
PFBAin-F GAACAGCTTAATTAAGGTACCAAGCTGTACGTAGCAACAACAGTGT
PFBAin-R AGTCGGGGCAGAGTGAGTCGGAAGAGCTGGGTTAGTTTGT
TERG8t-F TCGAGAAGGGGTTCAAGTAGCACTGTGACAATGAGAAGGA
TERG8t-R CATCACCCTTGGGGGACTTGAAGCTTGAAACATAATGCATAACTGT
ERG8-F GAGTATAAGAATCATTCAAAATGACCACCTATTCGGCTCC
ERG8-R TCCTTCTCATTGTCACAGTGCTACTTGAACCCCTTCTCGA
PTEF-F AACGCGACAAATTAATTGTCCAAGCTAGAGACCGGGTTGGCGGCGT
PTEF-R GGAGCCGAATAGGTGGTCATTTTGAATGATTCTTATACTC
TERG19t-F GACAGTTATGCATTATGTTTCAAGCTTGGAGCCCGTTGAGGGAGAT
TERG19t-R CTCTGAAGAACAGCAAGTAGGCAGGGGGCAGAAACAAGAA
ERG19-F TTCTTGTTTCTGCCCCCTGCCTACTTGCTGTTCTTCAGAG
ERG19-R ACAAACTAACCCAGCTCTTCATGATCCACCAGGCCTCCAC
PFBAin-F GTGGAGGCCTGGTGGATCATGAAGAGCTGGGTTAGTTTGT
PFBAin-R GCATCACCCTTGGGGGACTTGAAGCTGTACGTAGCAACAACAGTGT
(4) Integration plasmid pUC-intD-HUH-2tHMG1
Using original plasmid pUC-HUH as skeleton, insertingY. lipolyticaThe sequences of 1442bp upstream and 1189bp downstream of the intD locus of the chromosome of the Polf; after digestion with the restriction enzyme HindIII from Takara, the resultant was linearized by agarose gel electrophoresis; the linearized pUC-HUH-intD plasmid was inserted into two tHMG1 expression cassettes in sequence to obtain the integrated plasmid pUC-intD-HUH-2tHMG1, wherein the nucleotide sequence of the primer is shown in Table 6, and the nucleotide sequence of tHMG1 is shown in SEQ ID NO: and 6.
TABLE 6
intD-UP-F cgttgtaaaacgacggccagtgaattATTTAAATAACCTCATTTCATCTGAATTGA
intD-UP-R GGTATAGTACAATGATTACGAATTCCGGATCTTCCAGTGGTGCATG
intD-DN-F TGATTGACTGGAACAGCCCCAAGCTTAGAGAACAGAACAAGTCGGAAG
intD-DN-R TGTTTATGTTACTCGATTTCATTTAAATagcttggcgtaatcatggtcatagct
TtHMG1t-F AGGTATAGTACAATGATTACGAATTCcaggtcGTCTCGATCAAATCC
TtHMG1t-R ATATTTGCATACGGTCATAGGTGTACAATAGTGAAGGAAA
tHMG1-F1 TTTCCTTCACTATTGTACACCTATGACCGTATGCAAATAT
tHMG1-R1 TTTTGCAGTACtaaccgcagACCCAGTCTGTGAAGGTGGT
PTEFin-F ACCACCTTCACAGACTGGGTctgcggttaGTACTGCAAAA
PTEFin-R CATGCACCACTGGAAGATCCGGAATTAGAGACCGGGTTGGCGGCGT
TXPR2t-F ATATTTGCATACGGTCATAGATTAAgatccaactacggaacttgtg
TXPR2t-R CTTCCGACTTGTTCTGTTCTCTAAGCTTGACACGGGCATCTCACTTGC
tHMG1-F2 CACAAGACATATCTACAGCATTAATATGACCCAGTCTGTGAAGGTGGTTGA
tHMG1-R2 cacaagttccgtagttggatcTTAATCTATGACCGTATGCAAATAT
PEXP-F CCCTGATTGACTGGAACAGCCCCAAGCTGgagtttggcgcccgttttt
PEXP-R TCAACCACCTTCACAGACTGGGTCATATTAATGCTGTAGATATGTCTTGTG
(5) Integration plasmid pUC-intF-HUH-2ACHS2
Using original plasmid pUC-HUH as skeleton, insertingY. lipolyticaThe sequences of 1610bp upstream and 1852bp downstream of the intF locus of the chromosome of the Polf; after digestion with the restriction enzyme HindIII from Takara, the DNA fragment was linearized by agarose gel electrophoresis. The linearized pUC-HUH-intF plasmid is sequentially inserted into two ACHS2 expression frames to finally obtain an integration plasmid pUC-intF-HUH-2ACHS2, wherein the related primer nucleotide sequence is shown in Table 7, and the nucleotide sequence of ACHS2 is shown in SEQ ID NO: 3, respectively.
TABLE 7
intF-UP-F gttgtaaaacgacggccagtgaattcAGTGGTAATTCAGCAAGACC
intF-UP-R TGCACCACTGGAAGATCCGGGAATTCGCCCTCCAAGCTACATCTAC
intF-DN-F GATTGACTGGAACAGCTTAATTAAGGTACCAAGCTTGCACAAGCCTCTCTATAATC
intF-DN-R GACCATGATTACGCCAAGCTGCGGCCGCAGGACGACAACGGCTGGTGA
TCYC1t-F AACAGCTTAATTAAGGTACCAAGCTTGCAAATTAAAGCCTTCGAGC
TCYC1t-R TTCATCCCTTCACCATCTAATCATGTAATTAGTTATGTCA
ACHS2-F1 TGACATAACTAATTACATGATTAGATGGTGAAGGGATGAA
ACHS2-R1 ACCAGCACTTTTTGCAGTACtaaccgcagTCTCCTGCACAGGCGCCCCA
PTEFin-F TGGGGCGCCTGTGCAGGAGActgcggttaGTACTGCAAAAAGTGCTGGT
PTEFin-R TAGAGAGGCTTGTGCAAGCTGCTAGCAGAGACCGGGTTGGCGGCGT
Tmig1t-F TTCATCCCTTCACCATCTAACACTGGCCGGTCGATAATTT
Tmig1t-R AAAAGATTATAGAGAGGCTTGTGCAAGCTGCTAGAAACCCAAAAGGGCCGAAGG
ACHS2-F2 CACAAGACATATCTACAGCACTAGCatgTCTCCTGCACAGGCGCCCCA
ACHS2-R2 AAATTATCGACCGGCCAGTGTTAGATGGTGAAGGGATGAA
PEXP-F ATACGCCGCCAACCCGGTCTCTGCTAGCccgtcgcttccacaggctct
PEXP-R TGGGGCGCCTGTGCAGGAGAcatGCTAGTGCTGTAGATATGTCTTGTG
(6) Integration plasmid pUC-HUH-intE1-PK-PTA
Using original plasmid pUC-HUH as skeleton, insertingY. lipolyticaThe upstream 1352bp and the downstream 1852bp of the intE1 locus of the chromosome of the Polf; after digestion with the restriction enzyme HindIII from Takara, the DNA fragment was linearized by agarose gel electrophoresis. The linearized pUC-HUH-intE1 plasmid is sequentially inserted into PK and PTA expression frames to finally obtain an integrated plasmid pUC-HUH-intE1-PK-PTA, wherein the related primer nucleotide sequence is shown in Table 8, and the PK nucleotide sequence is shown in SEQ ID NO: 19, the nucleotide sequence of PTA is shown as SEQ ID NO: shown at 20.
TABLE 8
IntE1-UP-F cgttgtaaaacgacggccagtgaattGGCAGGCTGGTTACCGAATC
IntE1-UP-R TGCACCACTGGAAGATCCGGGAATTCAAGTGAACAGCGCACGATCT
IntE1-DN-F CACTGCACTACCACTACACCGGTACCAAGCTTGGCTAACGAGAGAAACTGGGCCAA
IntE1-DN-R aaacagcTATGACCATGATTACGCCAAGCTTACGCGTATGTCACGTGATGGATTTC
TCYC1t-F AGATCGTGCGCTGTTCACTTGAATTCGCAAATTAAAGCCTTCGAGC
TCYC1t-R CATGGTCTCCATTAAAATAATCATGTAATTAGTTATGTCA
PK-F TGACATAACTAATTACATGATTATTTTAATGGAGACCATG
PK-R CACAAGACATATCTACAGCAGCCACCATGGCTGATTTCGATTCTAA
PEXP-F TTAGAATCGAAATCAGCCATGGTGGCTGCTGTAGATATGTCTTGTG
PEXP-R ATGCACCACTGGAAGATCCGGGAATTGGTAGGTAGACAATTTACTT
TPEX10t-F AAGCACAAGCTCAAGGTTAATGACGAGGTCTGGATGGAAG
TPEX10t-R TTCTCTCGTTAGCCAAGCTTGGTACCAGACAAGTACAAGCTGACCT
PTA-F TTTTGCAGTACTAACCGCAGAAGTTGATGGAAAACATCTT
PTA-R CTTCCATCCAGACCTCGTCATTAACCTTGAGCTTGTGCTT
PTEFin-F ATTGACTGGAACAGCTTAATTAAGGTACAGAGACCGGGTTGGCGGCGT
PTEFin-R AAGATGTTTTCCATCAACTTCTGCGGTTAGTACTGCAAAA
(7) Integration plasmid pUC-HUH-intE2-ACL1-ACL2-AMPD
Using original plasmid pUC-HUH as skeleton, insertingY. lipolyticaThe sequences of 1533bp upstream and 1521bp downstream of the intE2 locus of the chromosome in the Polf-intE 2; after digestion with the restriction enzyme HindIII from Takara, the DNA fragment was linearized by agarose gel electrophoresis. The linearized pUC-HUH-intE2 plasmid is sequentially inserted into an ACL1 expression frame, an ACL2 expression frame and an AMPD expression frame to finally obtain an integration plasmid pUC-HUH-intE2-ACL1-ACL2-AMPD, wherein the nucleotide sequence of the related primer is shown in Table 9, and the nucleotide sequence of AMPD is shown in SEQ ID NO: 17, the nucleotide sequence of ACL1 is shown in SEQ ID NO: 18, and the nucleotide sequence of ACL2 is shown in SEQ ID NO: as shown at 29.
TABLE 9
IntE2-UP-F cgttgtaaaacgacggccagtgaattCACCTGTGGCTAATTTGGGA
IntE2-UP-R CATGCACCACTGGAAGATCCGGGAATTCGTCTTAGTGCAGCAAAATCG
IntE2-DN-F ATACCCTGATTGACTGGAACAGCTTAATGTGTGGATTGCGATATTGAA
IntE2-DN-R acagcTATGACCATGATTACGCCAAGCTTCACCCTTTCTCTATCTCTG
TAMPDt-F ATACCCTGATTGACTGGAACAGCTTAATGTGTGTTTACTGCACAGCCT
TAMPDt-R TTGAGCGGCTGCATGGTTAATTATAAGCATGTACTTGTAT
AMPD-F ATACAAGTACATGCTTATAATTAACCATGCAGCCGCTCAA
AMPD-R CACAAGACATATCTACAGCAATGCCGCAGCAAGCAATGGA
PEXP-F TCCATTGCTTGCTGCGGCATTGCTGTAGATATGTCTTGTG
PEXP-R TTCAATATCGCAATCCACACAAGCTTTTAATTAAGGTAGGTAGACAATTTACTT
TACL2t-F CCACTCCTCTCGGAGTTTAACTTGCCCATGAGCGAGCGAA
TACL2t-R ACTTCAATATCGCAATCCACACAAGCTTCACCCTTTAAACCCTCCCTT
ACL2-F ACTCCCCGACAATGTACTAACACAGGTCTCAGCGAAATCCATTCACGA
ACL2-R TTCGCTCGCTCATGGGCAAGTTAAACTCCGAGAGGAGTGG
PGPDin-F AGTAAATTGTCTACCTACCTTAATTAAGACGCAGTAGGATGTCCTGCA
PGPDin-R TCGTGAATGGATTTCGCTGAGACCTGTGTTAGTACATTGTCGGGGAGT
TACL1t-F AGGCCAAGACTCGATCATAGATCTAGGGTGATAGAATATA
TACL1t-R ATATCGCAATCCACACAAGCTTGGTACCAGCCATTAAGGAGTTCATTT
ACL1-F CTCTCTACACAAACTAACCCAGCTCTTCATGTCTGCCAACGAGAACAT
ACL1-R TATATTCTATCACCCTAGATCTATGATCGAGTCTTGGCCT
PFBAin-F GGGAGGGTTTAAAGGGTGATTAAGGTACGTACGTAGCAACAACAGTGT
PFBAin-R ATGTTCTCGTTGGCAGACATGAAGAGCTGGGTTAGTTTGTGTAGAGAG
(8) Integration plasmid pUC-intE5-HUH-perCat2
Using original plasmid pUC-HUH as skeleton, insertingY. lipolyticaThe sequence of 2138bp upstream and 2035bp downstream of the intE5 locus of the chromosome of Polf; after digestion with the restriction enzyme HindIII from Takara between intE5-dn and hisG, the resultant was linearized by agarose gel electrophoresis. The linearized pUC-HUH-intE5 plasmid is sequentially inserted into the expression frame of perCat2, and finally the integrated plasmid pUC-intE5-HUH-perCat2 is obtained, wherein the related primer nucleotide sequences are shown in Table 10, and the nucleotide sequences of Cat2 are respectively shown in SEQ ID NO: shown at 16.
Watch 10
IntE5-UP-F gacgttgtaaaacgacggccagtgaattATTTAAATAGCTGGACTCTGGCAAGCTC
IntE5-UP-R ACCACTGGAAGATCCGGgaattGCGGCCGCTGCAATTCCCGAACCATT
IntE5-DN-F TGGAACAGCTTAATTAAGGTACCAAGCTTCACCTTCAGTCCGCATATT
IntE5-DN-R acagcTATGACCATGATTACGCCAAGCTATTTAAATATCCCTTTCAAGTTGCTACT
TPEX10t-F AACGAAAAGCAAAGTTATGATGACGAGGTCTGGATGGAAG
TPEX10t-R AAATATGCGGACTGAAGGTGAAGCTTAGACAAGTACAAGCTGACCT
percat2-F GAGTATAAGAATCATTCAAAATGAGGATCTGTCATTCGAG
percat2-R CTTCCATCCAGACCTCGTCATCATAACTTTGCTTTTCGTT
PTEF-F TGGAACAGCTTAATTAAGGTACCAAGCTAGAGACCGGGTTGGCGGCGT
PTEF-R CTCGAATGACAGATCCTCATTTTGAATGATTCTTATACTC
(9) Integration plasmid pUC-IntC1-HUH-AAD
Inserting into pUC-HUH as skeletonY. lipolyticapUC-IntC1-HUH is obtained by the upstream 1698bp and the downstream 1642bp of the chromosome IntC1 locus of Polf; after digestion with the restriction enzyme HindIII from Takara between IntC1-UP and hisG, the cells were linearized by agarose gel electrophoresis. The linearized pUC-HUH-IntC1 plasmid is inserted into AAD expression frame in sequence to obtain integrated plasmid pUC-IntC1-HUH-AAD, wherein the related primer nucleotide sequence is shown in Table 11, and the nucleotide sequence of AAD is shown in SEQ ID NO: as shown at 14.
TABLE 11
IntC1-UP-F aaaacgacggccagtgaattATTTAAATCTGCTGCCTTACTGTCGACT
IntC1-UP-R CCACTGGAAGATCCGGgaattGCGGCCcGCGTAGCAGAACCGTAGATG
IntC1-DN-F TTGACTGGAACAGCTTAATTAAGGTACCAGTCGTGGGAGCAACAGGGC
IntC1-DN-R ATTACGCCAAGCTTGGTACCATTTAAATGGAGCGACAGTTGCTCAATC
TylCYC1t-F ATCATCTACGGTTCTGCTACGCGGCCGCCgaggtggttggagatggac
TylCYC1t-R ATGCGTTTCGCATTGTTTAAgatccTAAGCGTCTACAACTGGACCCTT
AAD-F AAGGGTCCAGTTGTAGACGCTTAggatcTTAAACAATGCGAAACGCAT
AAD-R CACACAAGACATATCTACAGCAggatccATGAATCAACAGGATATTGA
PEXP-F TCAATATCCTGTTGATTCATggatccTGCTGTAGATATGTCTTGTGTG
PEXP-R GGAAGATCCGGgaattGCGGCCcacgtgccgtcgcttccacaggctct
(10) Integration plasmid pUC-IntC1-HUH-ALDH
Using pUC-IntC1-HUH as a backbone, restriction enzyme HindIII from Takara was used between IntC1-UP and hisG, and then the resultant was linearized by agarose gel electrophoresis. Inserting the linearized pUC-HUH-IntC1 plasmid into an ALDH expression frame to finally obtain an integration plasmid pUC-IntC1-HUH-ALDH, wherein the nucleotide sequences of the related primers are shown in Table 12, and the nucleotide sequences of the ALDH are respectively shown in SEQ ID NO: 15, respectively.
TABLE 12
TylCYC1t-F ATCATCTACGGTTCTGCTACGCGGCCGCCgaggtggttggagatggac
TylCYC1t-R TCTGGATAAGCCTGGAGGCCTGAgatccTAAGCGTCTACAACTGGACC
ALDH-F GGTCCAGTTGTAGACGCTTAggatcTCAGGCCTCCAGGCTTATCCAGA
ALDH-R CACACAAGACATATCTACAGCAggatccATGAATTTTCATCATCTGGC
PEXP-F GCCAGATGATGAAAATTCATggatccTGCTGTAGATATGTCTTGTGTG
PEXP-R GGAAGATCCGGgaattGCGGCCcacgtgccgtcgcttccacaggctct
(11) Integration plasmid pUC-intF3-HUH-IDI-PTS-ERG19-PTS-ACHS2-PTS
Inserting into pUC-HUH as skeletonY. lipolyticaThe sequences of the upstream 2113bp and the downstream 2006bp of the intF3 locus of the Polf chromosome; the fragment was digested between intF3-up and hisG with the restriction enzyme NotI from Takara, and then linearized by agarose gel electrophoresis. Inserting the linearized pUC-HUH-intF3 plasmid into IDI-PTS, ERG19-PTS and ACHS2-PTS expression frames in sequence to finally obtain an integrated plasmid pUC-intF3-HUH-IDI-PTS-ERG19-PTS-ACHS2-PTS, wherein the related primer nucleotide sequence is shown in Table 13, PTS is signal peptide of peroxisome and is respectively connected with the C ends of IDI, ERG19 and ACHS genes, and is specifically GGTGGTGGTTCTTCTAAACTA; nucleotide sequences of IDI, ERG19 and ACHS2 are respectively shown in SEQ ID NO: 13. 11 and 3.
Watch 13
IntF3-UP-F gttgtaaaacgacggccagtgaattATTTAAATGTGCTGTTCAGAAGCCGGC
IntF3-UP-R ACTGGAAGATCCGGgaattGCGGCCGCATACGCGAGTTCCCAAAGCAG
IntF3-DN-F CTGGAACAGCTTAATTAAGGTACCAAGCTTCTGGGGACCGAGAATTAG
IntF3-DN-R cagcTATGACCATGATTACGCCAAGCTATTTAAATGGGGCGCTCCCTGTGGGCC
TIDIt-F TCTGCTTTGGGAACTCGCGTATGCGGCCGACTCGATACTACTCCAGTC
TIDIt-R GGTGGTGGTTCTTCTAAACTATAAGGATTGGCGAAGTAATTAAT
IDI-F TTATAGTTTAGAAGAACCACCACCCTTGATCCACCGCCGAATCT
IDI-R CACAAGACATATCTACAGCAATGACGACGTCTTACAGCGA
PEXP-F TCGCTGTAAGACGTCGTCATTGCTGTAGATATGTCTTGTG
PEXP-R CACTGGAAGATCCGGgaattGCGGCCGCCACACGTTTCGGTGAGTATG
TERG19t-F CATACTCACCGAAACGTGTGGCGGCCTGGAGCCCGTTGAGGGAGAT
TERG19t-R GGTGGTGGTTCTTCTAAACTATAGGCAGGGGGCAGAAACAAGAA
ERG19-F CTATAGTTTAGAAGAACCACCACCCTTGCTGTTCTTCAGAGAAC
ERG19-R ACAAACTAACCCAGCTCTTCATGATCCACCAGGCCTCCAC
PFBAin-F GTGGAGGCCTGGTGGATCATGAAGAGCTGGGTTAGTTTGT
PFBAin-R CACTGGAAGATCCGGgaattGCGGCCGCGTACGTAGCAACAACAGTGT
Txpr2t-F ACACTGTTGTTGCTACGTACGCGGCCGCGACACGGGCATCTCACTTGC
Txpr2t-R GGTGGTGGTTCTTCTAAACTATAAGTAGGATCCAACTACGGAAC
ACHS2-F TTATAGTTTAGAAGAACCACCACCGATGGTGAAGGGATGAACCA
ACHS2-R TTTTGCAGTACtaaccgcagTCTCCTGCACAGGCGCCCCA
PTEFin-F TGGGGCGCCTGTGCAGGAGActgcggttaGTACTGCAAAA
PTEFin-R ACCACTGGAAGATCCGGgaattGCGGCCAGAGACCGGGTTGGCGGCGT
(12) Integration plasmid pUC-7h-HUH-ERG10-PTS-ERG13-PTS-tHMG1-PTS
Inserting into pUC-HUH as skeletonY. lipolyticaThe sequence of 1698bp at the upstream and 1642bp at the downstream of the 7h site of the chromosome of Polf; after digestion between 7h-up and hisG with the restriction enzyme EcoRI from Takara, the cells were linearized by agarose gel electrophoresis. The linearized pUC-HUH-7h plasmid is inserted into expression boxes of ERG10-PTS, ERG13-PTS and tHMG1-PTS in sequence to finally obtain an integrated plasmid pUC-7h-HUH-ERG10-PTS-ERG13-PTS-tHMG1-PTS, wherein the related primer nucleotide sequence is shown in Table 14, PTS is signal peptide of peroxisome and is respectively connected to the C ends of ERG10, ERG13 and tHMG1 genes, particularly GGTGGTGGTTCTTCTAAACTA; the nucleotide sequences of ERG10, ERG13 and tHMG1 are respectively shown as SEQ ID NO: 12. 10 and 6.
TABLE 14
7h-UP-F gacgttgtaaaacgacggccagtgaattATTTAAATcagtacgagtatctTCACTC
7h-UP-R TGCACCACTGGAAGATCCGGgaattcAACACCGTCCCCGGCTGGGA
7h-DN-F CCCTGATTGACTGGAACAGCTTAATTAATTCTGGACGTTCTTGTTAAG
7h-DN-R TTACGCCAAGCTTGGTACCTTATTTAAATCCGTGAAAATCCCGTGATC
Txpr2t-F GGTGGTGGTTCTTCTAAACTATGAGTAGGATCCAACTACGGAACTTGT
Txpr2t-R TGCACCACTGGAAGATCCGGGAATTGACACGGGCATCTCACTTGC
NADH-HMGR-F CAGCACTTTTTGCAGTACtaaccgcagACCGGCAAGACAGGACACA
NADH-HMGR-R TCATAGTTTAGAAGAACCACCACCGGTGTTTTCCAAAACCTGCT
PTEFin-F TCCCAGCCGGGGACGGTGTTgaattcAGAGACCGGGTTGGCGGCGT
PTEFin-R TGTGTCCTGTCTTGCCGGTctgcggttaGTACTGCAAAAAGTGCTG
TERG13t-F CGCAAGTGAGATGCCCGTGTCAATTCGGAGTAACAGCACGTATCGC
TERG13t-R GGTGGTGGTTCTTCTAAACTATAAATTGTTAAGATGCAACTAGG
ERG13-F TTATAGTTTAGAAGAACCACCACCCTGCTTGATCTCGTACTTTC
ERG13-R GAATTAAACACACATCAACAatgtcGCAACCCCAGAACGT
PGPD-F ACGTTCTGGGGTTGCgacatTGTTGATGTGTGTTTAATTC
PGPD-R TGCACCACTGGAAGATCCGGGAATTgCGCAGTAGGATGTCCTGCAC
TERG10t-F GGTGGTGGTTCTTCTAAACTATAATTAGTATATAGATGATTTAT
TERG10t-R ATGCACCACTGGAAGATCCGGgaattGGACAATTAATTTGTCGCGT
ERG10-F ACAAACTAACCCAGCTCTTCCGACTCACTCTGCCCCGACT
ERG10-R TTATAGTTTAGAAGAACCACCACCCTCGACAGAAGAGACCTTCT
PFBAin-F CCGTGCAGGACATCCTACTGCGcAATTCGTACGTAGCAACAACAGTGT
PFBAin-R AGTCGGGGCAGAGTGAGTCGGAAGAGCTGGGTTAGTTTGT
(13) Integration plasmid pUC-intF2n-HUH-ERG12-PTS-ERG8-PTS-ERG20-PTS
Inserting into pUC-HUH as skeletonY. lipolyticaThe sequence of 1698bp upstream and 1642bp downstream of the intF2n locus of the chromosome of Polf; the DNA fragment was digested between intF2n-up and hisG with restriction enzyme EcoRI from Takara, and then linearized by agarose gel electrophoresis. Inserting the linearized pUC-HUH-intF2n plasmid into ERG12-PTS, ERG8-PTS and ERG20-PTS expression frames to finally obtain an integrated plasmid pUC-intF2n-HUH-ERG12-PTS-ERG8-PTS-ERG20-PTS, wherein the related primer nucleotide sequence is shown in Table 15, the PTS is a signal peptide of peroxisome and is respectively connected to the C ends of ERG12, ERG8 and ERG20 genes, and is specifically GGTGGTGGTTCTTCTAAACTA; the nucleotide sequences of ERG12, ERG8 and ERG20 are respectively shown as SEQ ID NO: 9. 7 and 8.
Watch 15
intF2n-UP-F acgttgtaaaacgacggccagtgaattATTTAAATGAAATAGTCATGGTGGATA
intF2n-UP-R TGCACCACTGGAAGATCCGGgaattcTAAAACCCCAGATCCAAGTC
intF2n-DN-F GGAACAGCTTAATTAAGGTACCAAGCTTCATCCCATAGTGTTGAAGGT
intF2n-DN-R acagcTATGACCATGATTACGCCAAGCTATTTAAATACCAAATCACACTATCAA
TERG20t-F GGTGGTGGTTCTTCTAAACTATAGACACTTGAAAAAAACGCAAT
TERG20t-R TACGCCGCCAACCCGGTCTCTGAATTAGGACTCGGGTCAGAAGTTC
ERG20-F GAATTAAACACACATCAACAATGTCCAAGGCGAAATTCGA
ERG20-R CTATAGTTTAGAAGAACCACCACCCTTCTGTCGCTTGTAAATCT
PGPD-F GACTTGGATCTGGGGTTTTAGAATTCCGCAGTAGGATGTCCTGCAC
PGPD-R TCGAATTTCGCCTTGGACATTGTTGATGTGTGTTTAATTC
TERG12t-F GGTGGTGGTTCTTCTAAACTATAATATTTAATTTTAATGAGTGA
TERG12t-R ATGCACCACTGGAAGATCCGGGAATTGAGGTATTGCTGTCTATAAC
ERG12-F CACACAAGACATATCTACAGCATCTAGCATGGACTACATCATTTCGGC
ERG12-R TTATAGTTTAGAAGAACCACCACCATGGGTCCAGGGACCGATGT
PEXP-F TGGACTTGGATCTGGGGTTTTAGAATTCCACACGTTTCGGTGAGTATG
PEXP-R GCCGAAATGATGTAGTCCATGCTAGATGCTGTAGATATGTCTTGTGTG
TERG8t-F GGTGGTGGTTCTTCTAAACTATAGCACTGTGACAATGAGAAGGA
TERG8t-R TCATACTCACCGAAACGTGTGGAATTGAAACATAATGCATAACTGT
ERG8-F GAGTATAAGAATCATTCAAAATGACCACCTATTCGGCTCC
ERG8-R CTATAGTTTAGAAGAACCACCACCCTTGAACCCCTTCTCGAGCC
PTEF-F TGGACTTGGATCTGGGGTTTTAGAATTCAGAGACCGGGTTGGCGGCGT
PTEF-R GGAGCCGAATAGGTGGTCATTTTGAATGATTCTTATACTC
(14) Integration plasmid pUC-intE4-BUB-2NADH-tHMG1-PTS-ANT
Inserting into pUC-BUB as skeletonY. lipolyticaThe upstream 2078bp and the downstream 2023bp of the intE4 locus of the chromosome of the Polf; after digestion with the restriction enzyme HindIII from Takara, the mixture between intE4-up and Bilk was linearized by agarose gel electrophoresis. The linearized pUC-HUH-intE4 plasmid was inserted into two NADH-THMG1-PTS expression cassettes in sequence, digested between intE4-dn and Bilk with restriction enzyme NotI from Takara, and then charged with agarose gelAnd (5) carrying out electrophoretic glue recovery linearization. Inserting the linearized pUC-BUB-intE4-2NADH-tHMG1-PTS plasmid into an ANT expression frame to finally obtain an integration plasmid pUC-intE4-BUB-2NADH-tHMG1-PTS-ANT, wherein the related primer nucleotide sequence is shown in Table 16, PTS is signal peptide of peroxisome and is respectively connected to the C end of an NADH-tHMG1 gene, and is GGTGGTGGTTCTTCTAAACTA; the nucleotide sequence of NADH-tHMG1 is shown as SEQ ID NO: 26, the nucleotide sequence of ANT is shown as SEQ ID NO: shown at 28.
TABLE 16
IntE4-UP-F cgttgtaaaacgacggccagtgaattATTTAAATGCCGCTACAATTCCGACCCTA
IntE4-UP-R AATGAAGTGTTCCACCCTAGaattcGTTTAAACTCCCCTCCCCACGGTGATGG
IntE4-DN-F AGCGGCATGGAGTCGAGACCGCGGCCGCCACCGAGGGATAGGGAACAC
IntE4-DN-R cgaggtaccgagctcgaattGCGGCCATTTAAATAGGCTGTCAGGTGTCGTTTGATG
Txpr2t-F ACCGTGGGGAGGGGAGTTTAAACgaattGACACGGGCATCTCACTTGC
Txpr2t-R GGTGGTGGTTCTTCTAAACTATGAGTAGGATCCAACTACGGAACTTGT
NADH-HMGR-F1 TCATAGTTTAGAAGAACCACCACCGGTGTTTTCCAAAACCTGCT
NADH-HMGR-R1 ACCAGCACTTTTTGCAGTACtaaccgcagACCGGCAAGACAGGACACA
PTEFin-F TGTGTCCTGTCTTGCCGGTctgcggttaGTACTGCAAAAAGTGCTGGT
PTEFin-R AAGTGTTCCACCCTAGGGAGACCgaattAGAGACCGGGTTGGCGGCGT
Tlip1t-F GGTGGTGGTTCTTCTAAACTATGAaattcGGTTCATGAGAAGAT
Tlip1t-R AAGTGTTCCACCCTAGGGAGACCgaattAGTTGGAAGATATGATGGCC
NADH-HMGR-F2 CCCAACACAACACCACAGTAgaattATGACCGGCAAGACAGGACACAT
NADH-HMGR-R2 TCATAGTTTAGAAGAACCACCACCGGTGTTTTCCAAAACCTGCT
PILV5-F AATACGCCGCCAACCCGGTCTCTgaattAGGAGCGGGAGCGGAGTTGA
PILV5-R ATGTGTCCTGTCTTGCCGGTCATaattcTACTGTGGTGTTGTGTTGGG
TANTt-F CCACCTTGATCAAGGGATAAGAATAGACAAGACATTGTAG
TANTt-R GTGTTCCCTATCCCTCGGTGGCGGCCCTCTGGCCACAACATGCCCT
ANT-F CACAAGACATATCTACAGCAATGGCAGCTATTTCCAAAGA
ANT-R CTACAATGTCTTGTCTATTCTTATCCCTTGATCAAGGTGG
PEXP-F AGCGGCATGGAGTCGAGACCGCGGCCGCccgtcgcttccacaggctct
PEXP-R AGTCTTTGGAAATAGCTGCCATTGCTGTAGATATGTCTTGTGT
(15) Integration plasmid pUC-intA-BUB-2ACHS2-PTS-POT1
Inserting into pUC-BUB as skeletonY. lipolyticaThe sequence of 1641bp upstream and 1608bp downstream of the intA locus of the chromosome of Polf; after digestion with restriction enzyme EcoRI from Takara, the mixture was linearized by agarose gel electrophoresis. The linearized pUC-HUH-intA plasmid was inserted into the ACHS2-PTS expression cassette, digested between intA-dn and Bilk with the restriction enzyme NotI from Takara, and then linearized by agarose gel electrophoresis gel recovery. Inserting the linearized pUC-BUB-intA-ACHS2-PTS plasmid into ACHS2-PTS and POT1 expression frames to obtain the integrated plasmid pUC-intA-BUB-2ACHS2-PTS-POT1, wherein the related primer nucleotide sequence is shown in Table 17, PTS is signal peptide of peroxisome, and is respectively connected to C end of ACHS2 gene and has the function of promoting cell growthThe body is GGTGGTGGTTCTTCTAAACTA; the nucleotide sequence of ACHS2 is shown as SEQ ID NO: 3, the nucleotide sequence of POT1 is shown as SEQ ID NO: shown at 21.
TABLE 17
intA-UP-F cgttgtaaaacgacggccagtgaattATTTAAATGGCCTGTGATTGGGAGCTGGGATG
intA-UP-R AATGAAGTGTTCCACCCTAGaattcGTTTAAACCGTCGCACTCGGCCGATATGG
intA-DN-F CGAAGCGGCATGGAGTCGAGACCGCGGCCGCTGGGGCTGGCGTGTGAAGGA
intA-DN-R cgaggtaccgagctcgaattGCGGCCATTTAAATTATCCTCACTTGGGTACAGTTG
TXPR2t-F CGGCCGAGTGCGACGGTTTAAACgaattGACACGGGCATCTCACTTGC
TXPR2t-R GGTGGTGGTTCTTCTAAACTATAAGTAGGATCCAACTACGGAAC
ACHS2-F1 TTATAGTTTAGAAGAACCACCACCGATGGTGAAGGGATGAACCA
ACHS2-R1 AGCACTTTTTGCAGTACtaaccgcagTCTCCTGCACAGGCGCCCCA
PTEFin-F TGGGGCGCCTGTGCAGGAGActgcggttaGTACTGCAAAAAGTGCT
PTEFin-R TGTTCCACCCTAGGGAGACCgaattcAGAGACCGGGTTGGCGGCGT
Tpex20t-F GGTGGTGGTTCTTCTAAACTATAAGGAAGTGTGGATGGGGAAGT
Tpex20t-R TCCTTCACACGCCAGCCCCAGCGGCCAAGCTTTCAAGAGCTGGGAT
ACHS2-F2 CACAAGACATATCTACAGCAatgTCTCCTGCACAGGCGCCCCAGGT
ACHS2-R2 TTATAGTTTAGAAGAACCACCACCGATGGTGAAGGGATGAACCA
PEXP-F GGACCGAAGCGGCATGGAGTGGCCGCccgtcgcttccacaggctcttcG
PEXP-R ACCTGGGGCGCCTGTGCAGGAGAcatTGCTGTAGATATGTCTTGTG
Tlip1t-F CTCTGGTTGTTGCCGAGTaaCTAGCGGTTCATGAGAAGATAAATATAt
Tlip1t-R gaagagcctgtggaagcgacggGCGGCCAGTTGGAAGATATGATGGCC
POT1-F GAATTAAACACACATCAACAATGGACCGACTTAACAACCT
POT1-R aTATATTTATCTTCTCATGAACCGCTAGttACTCGGCAACAACCAGAG
PGPD-F GGCATGGAGTCGAGACCGCGGCCGCGACGCAGTAGGATGTCCTGCACG
PGPD-R AGGTTGTTAAGTCGGTCCATTGTTGATGTGTGTTTAATTC
(16) Integration plasmid Puc-ERG9-HUH-CTR2
Inserting into pUC-HUH as skeletonY. lipolyticaThe upstream 2100bp sequence and the downstream 1700bp sequence of the ERG9 locus of the chromosome of Polf; after digestion with the restriction enzyme EcoRI from Takara, the DNA was linearized by agarose gel electrophoresis. The linearized pUC-HUH-ERG9 plasmid was inserted into P CTR2 And finally obtaining an integration plasmid pUC-ERG9-HUH-CTR2, wherein the nucleotide sequence of the related primer is shown in a table 18, and the nucleotide sequence of CTR2 is shown in SEQ ID NO: 5, the nucleotide sequence of ERG9 is shown as SEQ ID NO: 4, respectively.
Watch 18
UP-F cgttgtaaaacgacggccagtgaattATTTAAATggctGGGTGCTGCTGACCTT
UP-R TGCACCACTGGAAGATCCGGgaattcTCGACGTGGGGATAATTGAA
DN-F AACAGCTTAATTAAGGTACCAAGCTATGGGAAAACTCATCGAACT
DN-R gcTATGACCATGATTACGCCAAGCTTATTTAAATcagaaagagattctagatca
PCTR2-F ATTAAGGTACCAAGCTTGCGGCCGCACCAATGACCATCCAGTAAA
PCTR2-R CGATGAGTTTTCCCATGCGGCCATCCATGCTTCCGTGGTCGT
(17) Integration plasmid pUC-intE3-HUH-PEX10
Inserting into pUC-HUH as skeletonY. lipolyticaThe sequences of 1900bp upstream and 1800bp downstream of the intE3 locus of the chromosome of the Polf; after digestion between intE3-up and HisG with restriction enzyme EcoRI from Takara, the cells were linearized by agarose gel electrophoresis. The linearized pUC-HUH-intE3 plasmid was inserted into the PEX10 expression cassette to obtain the final integrated plasmid pUC-intE3-HUH-PEX10, wherein the nucleotide sequence of the primer is shown in Table 19, and the nucleotide sequence of PEX10 is shown in SEQ ID NO: shown at 23.
Watch 19
IntE3-UP-F cgttgtaaaacgacggccagtgaattATTTAAATctacttgtagctgatCTCCT
IntE3-UP-R TGCACCACTGGAAGATCCGGgaattcGTTTAAACTGTTTGATGTCTTGAGTTTG
IntE3-DN-F TTAATTAAGGTACCAAGCTTGCGGCCGCGTATACccaatgtacttgta
IntE3-DN-R agcTATGACCATGATTACGCCAAGCTATTTAAATtacaagtacttgcagTCGAT
Tlip1t-F ACTTGTTGCCTATCAGATAActagcGGTTCATGAGAAGATAAATATAt
Tlip1t-R ATGCACCACTGGAAGATCCGGgaattAGTTGGAAGATATGATGGCC
PEX10-F TGAGTATAAGAATCATTCAAAgctagATGTGGGGAAGTTCACATGC
PEX10-R aTATATTTATCTTCTCATGAACCgctagTTATCTGATAGGCAACAAGT
PTEF-F AAACAGTTTAAACgaattcAGAGACCGGGTTGGCGGCGTA
PTEF-R GCATGTGAACTTCCCCACATctagcTTTGAATGATTCTTATACTCA
(18) Integration plasmid pUC-intE3-HUH-POT1
Using pUC-intE3-HUH as a backbone, the region between intE3-up and HisG was digested with restriction enzyme EcoRI from Takara, and then linearized by agarose gel electrophoresis. Inserting the linearized pUC-HUH-intE3 plasmid into POT1 expression frame to obtain the integrated plasmid pUC-intE3-HUH-POT1, wherein the related primer nucleotide sequence is shown in Table 20, and the nucleotide sequence of POT1 is shown in SEQ ID NO: shown at 21.
Watch 20
Tlip1t-F CTCTGGTTGTTGCCGAGTaaCTAGCGGTTCATGAGAAGATAAATAT
Tlip1t-R ATGCACCACTGGAAGATCCGGgaattAGTTGGAAGATATGATGGCC
POT1-F TCTGAGTATAAGAATCATTCAAAGCTAGATGGACCGACTTAACAACCT
POT1-R ATATTTATCTTCTCATGAACCGCTAGttACTCGGCAACAACCAGAG
PTEF-F AAACAGTTTAAACgaattcAGAGACCGGGTTGGCGGCGTA
PTEF-R AGGTTGTTAAGTCGGTCCATCTAGCTTTGAATGATTCTTATACTCAGA
(19) Integration plasmid pUC-intE3-HUH-MFE
Using pUC-intE3-HUH as a backbone, the region between intE3-up and HisG was digested with restriction enzyme EcoRI from Takara, and then linearized by agarose gel electrophoresis. Inserting the linearized pUC-HUH-intE3 plasmid into an MFE expression frame to finally obtain an integrated plasmid pUC-intE3-HUH-MFE, wherein the nucleotide sequence of the related primer is shown in a table 21, and the nucleotide sequence of MFE is shown in SEQ ID NO: 22, respectively.
TABLE 21
Tlip1t-F CCAAGGATGCTAAGCTCTAActagcGGTTCATGAGAAGATAAATAT
Tlip1t-R ATGCACCACTGGAAGATCCGGgaattAGTTGGAAGATATGATGGCC
MFE-F TGAGTATAAGAATCATTCAAAgctagatgtctgGAGAACTAAGATA
MFE-R ATATTTATCTTCTCATGAACCgctagTTAGAGCTTAGCATCCTTGG
PTEF-F AAACAGTTTAAACgaattcAGAGACCGGGTTGGCGGCGTA
PTEF-R TATCTTAGTTCTCcagacatctagcTTTGAATGATTCTTATACTCA
(20) Integration plasmid pUC-MIS1-HUH
Inserting into pUC-HUH as skeletonY. lipolyticaSequences of upstream 2004bp and downstream 2012bp of MIS gene of Polf to obtain an integration plasmid pUC-MIS1-HUH, wherein the related primer nucleotide sequence is shown in Table 22, and the nucleotide sequence of MIS1 is shown in SEQ ID NO: as shown at 24.
TABLE 22
MIS-UP-F cgttgtaaaacgacggccagtgaattATTTAAATGTAGGTGGAATCGACAACCG
MIS-UP-R CATGCACCACTGGAAGATCCGGgaattcAGCGACGTTTGAGGTTTGTG
MIS-DN-F GGAACAGCTTAATTAAGGTACCtctagaGTGGGATGACGAAGAGTATT
MIS-DN-R TGACCATGATTACGCCAAGCTTGGTACCATTTAAATATGCTCCCAGTGAGTTCTCA
(21) Integration plasmid pUC-CIT2-HUH
Inserting into pUC-HUH as skeletonY. lipolyticaThe sequence of upstream 2045bp and downstream 2266bp of CIT2 gene of Polf is integrated with plasmid pUC-CIT2-HUH to obtain integrated plasmid pUC-CIT2-HUH, wherein the related primer nucleotide sequence is shown in Table 23, and the nucleotide sequence of CIT2 is shown in SEQ ID NO: shown at 25.
TABLE 23
CIT2-UP-F cgttgtaaaacgacggccagtgaattATTTAAATagCTAACACAGTGCGTTCCA
CIT2-UP-R CATGCACCACTGGAAGATCCGGgaattcGCAAATAATGACTTACGAAT
CIT2-DN-F GGAACAGCTTAATTAAGGTACCtctagaGATTGATATTTCAGATTTGT
CIT2-DN-R TATGACCATGATTACGCCAAGCTTGGTACCATTTAAATTCTCTGAGAACATGCCCATC
(22) Integration plasmid pUC-IntC3-HUH-2ACHS2
Inserting into pUC-HUH as skeletonY. lipolyticaA sequence of 2142bp upstream and 2135bp downstream of the chromosome IntC3 site of Polf; after digestion with the restriction enzyme HindIII from Takara between IntC3-UP and hisG, linearization was recovered by agarose gel electrophoresis, an expression cassette of ACHS2 was inserted, and digestion with the restriction enzyme HindIII from Takara between IntC3-dn and hisG was followed by linearization recovery by agarose gel electrophoresis, and further insertion of an expression cassette of ACHS2 resulted in the integrated plasmid pUC-IntC3-HUH-2ACHS2, in which the nucleotide sequences of the primers involved are shown in Table 24, and the nucleotide sequence of ACHS2 is shown in SEQ ID NO: 3, respectively.
Watch 24
IntC3-UP-F acGTTGTAAAACGACGGCCAGTGAATTATTTAAATACTAGCTAATAGTTCTTGT
IntC3-UP-R TGCACCACTGGAAGATCCGGGAATTCTACAGTGTCTATCAACGGGG
IntC3-DN-F CTGATTGACTGGAACAGCTTAATTAAAAGCTTGCCATAGCACTATTGTAGAG
IntC3-DN-R acaGCTATGACCATGATTACGCCAAGCTATTTAAATAGGACCGCATTCTCATTTG
TCYC1t-F TTCATCCCTTCACCATCTAATCATGTAATTAGTTATGTCA
TCYC1t-R GCCACTCTACAATAGTGCTATGGCAAGCTTGGTACGCAAATTAAAGCCTTCGAGC
ACHS2-F1 CCAGCACTTTTTGCAGTACtaaccgcagTCTCCTGCACAGGCGCCCCA
ACHS2-R1 TGACATAACTAATTACATGATTAGATGGTGAAGGGATGAA
PTEFin-F TTGACTGGAACAGCTTAATTAAGGTACCAGAGACCGGGTTGGCGGCGT
PTEFin-R TGGGGCGCCTGTGCAGGAGActgcggttaGTACTGCAAAAAGTGCTGG
Txpr2t-F CCCCGTTGATAGACACTGTAGAATTCGACACGGGCATCTCACTTGC
Txpr2t-R TTCATCCCTTCACCATCTAAGTAGGATCCAACTACGGAACTTGTGT
ACHS2-F2 ACACAAGTTCCGTAGTTGGATCCTACTTAGATGGTGAAGGGATGAA
ACHS2-R2 CACAAGACATATCTACAGCAatgTCTCCTGCACAGGCGCCCCA
PEXP-F TGGGGCGCCTGTGCAGGAGAcatTGCTGTAGATATGTCTTGTG
PEXP-R CACTGGAAGATCCGGGAATTGCGGCCGCccgtcgcttccacaggctct
Note that the primers in each of tables 3-24 are specific, and only for the construction of the integrative plasmid plasmids corresponding to the tables, for example, the primers P are contained in tables 3, 4, 14 and 15 GPD F, but for a different integrative plasmid, primer P GPD The nucleotide sequence of-F is not identical.
Example 2
Construction of recombinant strains
Starting strainYarrowia lipolyticaPo1 f. delta. ku70 was cultured in YPD liquid medium for 12 hours to an OD600 of 0.8, and the cells were cultured using the Zymogen Frozen EZ Yeast Transformation Kit II Kit manufactured by Zymo Research CorporationThe 22 integration plasmids obtained in example 1 were transferred to the original strain, homologous recombination was performed, competent cells were prepared, and after each integration plasmid was transferred, screening was performed using a screening medium, and correct positive clones were identified by PCR.
It should be noted that the integration plasmids pUC-HUH-intE1-PK-PTA, pUC-HUH-intE2-ACL1-ACL2-AMPD, pUC-intE5-HUH-perCat2, pUC-intC1-HUH-AAD and pUC-intC1-HUH-ALDH obtained in example 1 belong to recombinant vectors associated with the enhancement of the flux of acetyl-CoA in the cytoplasm of the recombinant strain, which can be transferred one or more; similarly, the integration plasmids pUC-intE3-HUH-PEX10, pUC-intE3-HUH-POT1, pUC-intE3-HUH-MFE, pUC-MIS1-HUH and pUC-CIT2-HUH belong to recombinant vectors associated with the enhancement of the flux of acetyl-CoA in the peroxisome of the recombinant strains, which can also be transferred in one way or in multiple ways.
In this example, each encoding gene was transferred into the starting strainYarrowia lipolyticaThe scheme of Po1 f. delta. ku70 is shown in FIG. 1, and specifically, the sequence of transferring the integrative plasmid obtained in example 1 into the starting strain is as follows: pUC-intF-HUH-2ACHS2, pUC-intC-HUH-tHMG1-ERG13-IDI, pUC-ku70-HUH-ERG20-ERG12, pUC-SCP2-HUH-ERG10-ERG8-ERG19, pUC-intD-HUH-2tHMG1, pUC-intC3-HUH-2ACHS2, pUC-intC3-HUH-2ACHS2, pUC-intC1-HUH-AAD, pUC-intF 3-NADH-IDI-PTS-ERG 19-PTS-ACHS-pUC-7 h-HUH-ERG 4-pUC-PTS 10-HMG-10-685PTS, HMG-intF 2 10-685-10-ERG 685-10-685-10-HMG 10-685-10-685, pUC-intA-BUB-2ACHS2-PTS-POT1 and Puc-ERG9-HUH-CTR2 to finally obtain the recombinant strainYarrowia lipolyticaGQ3007, deposited at 14 days 3 and 2022 in China general microbiological culture Collection center (CGMCC) with the collection number of CGMCC No. 242560.
Example 3
(1) Fermentation production of alpha-humulene
Streaking recombinant strain GQ3007 on YPD solid culture medium, culturing for 2-3 days, picking single colony to YPD liquid culture medium, culturing at 30 deg.C and 220rpm to obtain recombinant strain seed solution, and mixing the recombinant strain seed solution at 1 vol%The inoculated amount was inoculated in 50mL of YPD 60 Shaking culturing in fermentation culture medium at 30 deg.C and 220rpm for 24 hr, adding YPD 60 And (3) continuously performing shake culture on n-dodecane with the volume of 25% of the fermentation medium for 72h to obtain GQ3007 fermentation liquor.
Starting strainYarrowia lipolyticaPo1f delta ku70, yarrowia lipolytica strain MYA2613, recombinant strain GQ1001 and recombinant strain GQ1014 are fermented according to the methods to obtain corresponding fermentation liquids.
(2) Fermentation culture product analysis
The recombinant strain GQ3007 and the original strain areYarrowia lipolyticaFermentation liquor corresponding to Po1f delta ku70, yarrowia lipolytica strain MYA2613, recombinant strain GQ1001 and recombinant strain GQ1014 is respectively transferred into a 50mL centrifuge tube, centrifuged for 5min at 8000rpm, an upper organic phase is collected and subjected to membrane filtration, and the yield of alpha-humulene is detected, and the result is shown in Table 25;
collecting thallus, freeze-drying, weighing the mass of the dried thallus, and calculating the dry cell weight DCW, wherein the results are shown in Table 25;
the powder of 10mg of dried cells was quantitatively weighed, resuspended in 500. mu.L of 0.5M sodium methoxide (sodium hydroxide in pure methanol), shaken at 1200rpm for 2h at room temperature, neutralized with 40. mu.L of concentrated sulfuric acid, extracted with 400. mu.L of dodecane, shaken at room temperature for 10min, centrifuged, and the dodecane layer collected, and then filmed, and analyzed by GC-MS for squalene in the recombinant strain, the results are shown in Table 25.
TABLE 25
Bacterial strains DCW(g/L) Yield of alpha-humulene (mg/g DCW) Squalene content (mg/g DCW)
Recombinant strain GQ3007 25 96 68.3
The starting strain Yarrowia lipolytica Po1 f. delta. ku70 28 0 13
Yarrowia lipolytica strain MYA2613 27.5 0 16
Recombinant strain GQ1001 27.5 0.73 7
Recombinant strain GQ1014 30 46.7 69.5
The results in table 25 show that the recombinant strain GQ3007 provided by the present invention has significantly increased α -humulene yield, and has the advantages of raw material regeneration, mild conditions, green production, no time and place constraints, etc.
The preferred embodiments of the present invention have been described above in detail, but the present invention is not limited thereto. Within the scope of the technical idea of the invention, many simple modifications can be made to the technical solution of the invention, including combinations of various technical features in any other suitable way, and these simple modifications and combinations should also be regarded as the disclosure of the invention, and all fall within the scope of the invention.
Sequence listing
<110> university of Nanjing university
<120> terpenoid-producing recombinant strain, construction method thereof, method for producing terpenoid through fermentation and application thereof
<130> 2022.4.13
<160> 29
<170> SIPOSequenceListing 1.0
<210> 1
<211> 555
<212> PRT
<213> Artificial Synthesis ()
<400> 1
Met Ser Pro Ala Gln Ala Pro Gln Val Ser Ala Pro Thr Gln Lys Ala
1 5 10 15
Ala Asp Glu Glu Ala Asn Arg Arg Ser Ala Gly Tyr His Pro Ser Phe
20 25 30
Trp Gly Glu Phe Phe Leu Thr His Ser Ser Gly Tyr Thr Lys Ser Asp
35 40 45
Thr Lys Ile Gln Gln Lys His Glu Glu Leu Lys Gln Gln Val Arg Gly
50 55 60
Met Ile Leu Asp Ala Ala Ala Asp Thr Ser Gln Lys Leu Glu Leu Ile
65 70 75 80
Asp Ala Ala Leu Arg Leu Gly Val Gly Tyr His Phe Glu Ala Glu Ile
85 90 95
Gln Ser Gln Leu Gln Lys Ile His Gly Gln Gly Ser Phe His Ser Asp
100 105 110
Leu Tyr Thr Ala Cys Ile Trp Phe Arg Val Leu Arg Gly Gln Gly Phe
115 120 125
Thr Val Ser Ala Asp Val Phe Asn Ile Met Lys Asn Lys Asp Gly Gly
130 135 140
Phe Glu Ala Arg Asp Ala Arg Thr Leu Leu Cys Leu Tyr Glu Thr Thr
145 150 155 160
His Leu Arg Ile Gln Gly Glu Gln Val Leu Glu Glu Ala Leu Glu Phe
165 170 175
Ser Arg Lys Gln Leu Gly Asp Leu Leu Ala Glu Leu Ser Ser Pro Leu
180 185 190
Ala Glu Tyr Val Asn Asn Ser Leu Glu Leu Pro Tyr His Lys Gly Met
195 200 205
Gln Arg Leu Glu Ala Arg Gln Tyr Ile Pro Ile Tyr Glu Ser Tyr Ala
210 215 220
Asn Lys Asn Asp Thr Leu Leu Gln Phe Ala Lys Leu Asp Phe Asn Leu
225 230 235 240
Leu Gln Ala Leu His Gln Ser Glu Ile Arg Glu Ile Thr Arg Trp Trp
245 250 255
Lys Asp Leu Asp Phe Lys Ala Arg Leu Pro Tyr Ala Arg Asp Arg Leu
260 265 270
Val Glu Cys Tyr Phe Trp Ile Leu Gly Val Gln Tyr Glu Pro Gln Tyr
275 280 285
Ser Ile Ser Arg Val Phe Leu Thr Lys Val Ile Ser Leu Ala Ser Val
290 295 300
Phe Asp Asp Thr Tyr Asp Ile Tyr Gly Thr Phe Asp Glu Leu Lys Leu
305 310 315 320
Leu Thr Asp Ala Val Glu Arg Trp Glu Pro Glu Ala Thr Asp Ser Leu
325 330 335
Pro Gly Tyr Met Gln Ile Leu Tyr Gly Ala Leu Leu Lys Val Phe Glu
340 345 350
Glu Tyr Lys Asp Glu Leu Ile Asn Ala Gly Gly Arg Asp Tyr Cys Leu
355 360 365
Tyr Tyr Ala Lys Glu Ala Met Lys Gly Leu Val Arg Ser Tyr His Thr
370 375 380
Glu Ala Val Ser Phe His Thr Gly Tyr Val Gln Asn Phe Glu Glu Tyr
385 390 395 400
Leu Asp Asn Ser Ala Val Ser Ser Gly Tyr Pro Met Leu Thr Val Glu
405 410 415
Ala Leu Ile Gly Met Gly Ala Pro Tyr Ala Thr Arg Glu Ser Leu Asp
420 425 430
Trp Ala Leu Lys Val Pro Lys Ile Ile Lys Ala Ser Ser Asp Ile Cys
435 440 445
Arg Leu Val Asp Asp Leu Arg Thr Tyr Lys Val Glu Glu Glu Arg Gly
450 455 460
Asp Ala Pro Ser Gly Val His Cys Tyr Met Arg Asp Tyr Asn Val Ser
465 470 475 480
Glu Glu Glu Ala Cys Thr Lys Ile Glu Glu Met Ile Asp Leu Ala Trp
485 490 495
Lys Ala Ile Asn Glu Glu Ile Gln Lys Pro Asn His Leu Pro Leu Pro
500 505 510
Ile Leu Leu Pro Ala Leu Asn Phe Ala Arg Met Met Glu Val Leu Tyr
515 520 525
Gln Asn Ile Asp Gly Tyr Thr Asn Ser Gly Gly Arg Thr Lys Glu Arg
530 535 540
Ile Ser Ser Leu Leu Val His Pro Phe Thr Ile
545 550 555
<210> 2
<211> 445
<212> PRT
<213> Artificial Synthesis ()
<400> 2
Met Gly Lys Leu Ile Glu Leu Leu Leu His Pro Ser Glu Leu Ser Ala
1 5 10 15
Ala Ile His Tyr Lys Leu Trp Arg Gln Pro Leu His Pro Arg Asp Leu
20 25 30
Ser Lys Glu Ser Thr Glu Leu Arg Arg Cys Tyr Glu Leu Leu Asp Val
35 40 45
Cys Ser Arg Ser Phe Ala Ala Val Ile Arg Glu Leu His Pro Glu Val
50 55 60
Arg Asp Ala Val Met Leu Phe Tyr Leu Ile Leu Arg Ala Leu Asp Thr
65 70 75 80
Ile Glu Asp Asp Met Thr Leu Ser Arg Asp Ile Lys Ile Pro Ile Leu
85 90 95
Arg Asp Phe Thr Lys Cys Met Lys Thr Pro Gly Trp Lys Phe Thr Asp
100 105 110
Ser Asp Pro Asn Glu Arg Asp Arg Val Val Leu Gln Glu Phe Pro Val
115 120 125
Val Met Thr Glu Phe Asn Lys Leu Lys Pro Lys Tyr Gln Glu Val Ile
130 135 140
Tyr Asp Ile Thr Asp Arg Met Gly Asn Gly Met Ala Asp Tyr Val Ile
145 150 155 160
Asp Asp Asp Phe Asn Asn Asn Gly Val Asp Thr Ile Ala Ala Tyr Asp
165 170 175
Leu Tyr Cys His His Val Ala Gly Ile Val Gly Glu Gly Leu Thr Arg
180 185 190
Ile Thr Ile Leu Ala Gly Phe Gly Thr Asp Val Leu His Glu Asn Pro
195 200 205
Arg Leu Gln Glu Ser Met Gly Leu Phe Leu Gln Lys Val Asn Ile Ile
210 215 220
Arg Asp Tyr Arg Glu Asp Ile Asp Val Asn Arg Ala Phe Trp Pro Arg
225 230 235 240
Glu Ile Trp His Lys Tyr Ala Glu Glu Met Arg Asp Phe Lys Asp Pro
245 250 255
Lys Tyr Ser Lys Lys Ala Leu His Cys Thr Ser Asp Leu Val Ala Asn
260 265 270
Ala Leu Gly His Ala Thr Asp Cys Leu Asp Tyr Leu Asp Asn Val Thr
275 280 285
Asp Pro Ser Thr Phe Thr Phe Cys Ala Ile Pro Gln Val Met Ala Ile
290 295 300
Ala Thr Leu Asp Leu Val Tyr Arg Asn Pro Asp Val Phe Gln Lys Asn
305 310 315 320
Val Lys Leu Arg Lys Gly Thr Thr Val Ser Leu Ile Leu Glu Ala Ser
325 330 335
Asn Val Ser Gly Val Cys Asp Ile Phe Thr Arg Tyr Ala Arg Lys Val
340 345 350
Tyr Lys Lys Ser Asp Pro Asn Asp Pro Asn Tyr Phe Arg Val Ser Val
355 360 365
Leu Cys Gly Lys Ile Glu Gln His Ala Ala Leu Ile Lys Arg Gln Arg
370 375 380
Gly Pro Pro Ala Lys Thr Ile Ala Gln Leu Glu Gly Glu Arg Lys Glu
385 390 395 400
Met Ala Leu Ser Leu Ile Val Cys Leu Ala Val Ile Phe Ser Met Ser
405 410 415
Gly Leu Met Ala Tyr Ile Ala Tyr Val Ser Gly Phe Arg Trp Ser Pro
420 425 430
Arg Glu Ile Phe Asp Ser Lys Met Phe Pro Leu Arg Asp
435 440 445
<210> 3
<211> 1665
<212> DNA
<213> Artificial Synthesis ()
<400> 3
atgtctcctg cacaggcgcc ccaggtgtct gccccaaccc agaaggctgc agacgaagag 60
gccaaccgac gatctgccgg ttaccatcct agtttctggg gcgagttctt cctcactcac 120
tccagcgggt acaccaagag cgacacgaag atccagcaga agcacgagga gctcaagcaa 180
caggtgcgag gaatgatcct tgatgctgcc gccgacactt cccagaagct ggaactcatc 240
gacgccgctc tccggcttgg tgttggttat cactttgagg ctgaaattca gagccaactg 300
caaaagattc atggccaagg atcgttccac agtgatcttt atactgcctg catatggttc 360
cgagtgctta gaggccaggg cttcacggtt tcagcagatg tcttcaacat catgaaaaac 420
aaggacggag gattcgaggc tcgtgatgcg agaaccctcc tgtgtctcta tgagactacc 480
catctgcgaa tccagggtga acaggtcctt gaagaggcgc tggagttttc cagaaaacag 540
ctgggagact tattagccga actgtctagc cctctggccg agtacgtcaa caactccttg 600
gagctcccgt accacaaggg catgcagagg ctcgaggcac gacagtacat tcccatctac 660
gagtcgtacg caaacaagaa cgacacacta ctgcagtttg ctaaactcga ttttaatctg 720
ctccaggccc tacaccagtc ggagattcga gaaatcaccc gatggtggaa ggacttggac 780
ttcaaggcac gtctcccgta tgctcgcgac cggttggtcg agtgctactt ttggatcctg 840
ggtgtccagt atgagcctca atactccata tcgagagtct ttctgacaaa ggtcatttca 900
cttgcatccg tatttgacga tacatacgac atttacggca ccttcgacga gctcaaactg 960
ttgactgatg ccgttgaaag atgggagccc gaggccactg atagtcttcc cggatacatg 1020
cagattctat atggagctct tctcaaggtg tttgaagagt acaaggatga gcttatcaat 1080
gctggaggcc gggattactg cctctattac gccaaggagg ccatgaaggg tctagtacgg 1140
tcctaccaca ccgaggccgt gagtttccat acaggctacg tgcagaattt tgaggaatat 1200
ctggacaact ctgctgtgtc ttcgggatac cccatgctga cggtggaagc attgattggt 1260
atgggggctc cttacgccac tcgagagtca ctggactggg ccctgaaggt tcccaagatc 1320
atcaaggctt cttctgacat ttgtcggctg gtcgacgacc ttaggacgta caaggtggag 1380
gaggagcgag gcgacgctcc gtccggcgtg cactgttaca tgcgagacta caacgtctcg 1440
gaggaagaag cttgcaccaa aattgaggag atgatcgatc tcgcctggaa ggccatcaac 1500
gaggagatcc aaaaacccaa ccaccttcca ctgcccattc tcctgcctgc gctcaacttc 1560
gctcgaatga tggaggttct gtaccagaac attgacggct acaccaattc gggtggacgt 1620
accaaggaac gcatttcatc cttactggtt catcccttca ccatc 1665
<210> 4
<211> 1338
<212> DNA
<213> Artificial Synthesis ()
<400> 4
atgggaaaac tcatcgaact gctcttgcac cctagcgaac tgtctgctgc tatccactac 60
aagctgtggc gtcagcctct gcatccccgc gatctttcca aggagtccac tgagctgcga 120
cgatgctatg agcttctaga cgtgtgctca cgatcatttg cagccgttat tcgagaactg 180
catcctgagg tgcgagacgc tgtaatgctg ttctatctga ttcttcgtgc tctcgacacg 240
attgaagacg atatgactct gtcgcgtgac atcaagatcc caattcttcg agacttcacg 300
aagtgcatga agacacctgg ctggaagttc accgactctg atcccaacga gcgagatcgt 360
gtggtgctac aggagtttcc tgtggttatg actgagttca acaagctcaa gcccaagtac 420
caggaagtaa tctacgacat taccgacaga atgggaaacg gaatggccga ttacgtcatt 480
gatgacgact tcaacaacaa cggcgtggac accattgccg cttatgatct gtactgtcat 540
catgttgccg gcatcgtggg tgagggcctt acccgaatta cgattctcgc tggttttgga 600
accgacgtgt tgcacgaaaa cccccgactt caggagtcta tgggcttgtt cttgcaaaag 660
gtcaacatca tccgagacta cagagaagac attgacgtga acagagcttt ctggcctcga 720
gaaatctggc acaagtacgc cgaagaaatg cgagatttca aggacccgaa gtattccaag 780
aaggccttgc attgcacctc cgatctggtt gcaaatgccc tcggacatgc cacagactgc 840
ctcgattacc tcgacaacgt caccgatcct tcaaccttca ctttctgcgc cattccccag 900
gtcatggcca ttgctaccct ggacttggtc taccgaaacc ccgacgtttt ccagaagaac 960
gtcaagttgc gcaagggaac tactgtcagc ctgattcttg aggccagcaa cgtttctgga 1020
gtatgtgaca ttttcactcg atacgcccgg aaggtgtaca agaagtccga ccccaatgac 1080
cccaactact tccgagtgtc tgtgctctgc ggtaagatcg agcagcatgc ggctctgatc 1140
aagagacagc gaggaccccc cgctaaaacc attgcacaac tggaaggtga acgaaaagag 1200
atggccctgt cgctaattgt ctgtttagca gttatcttct cgatgtctgg actgatggct 1260
tatatcgcct acgtgtctgg attcagatgg tcaccccgag agattttcga ctctaagatg 1320
tttcctctga gagattag 1338
<210> 5
<211> 408
<212> DNA
<213> Artificial Synthesis ()
<400> 5
accaatgacc atccagtaaa ctcttcccag aaaccctggt cttggagatc cgtccgagtt 60
gtatgagccc tgtccctggt ttttggcggt ggccagaatg tcgtagacca tgttgtgagt 120
gacttcgagg gagtttgctg agaataggaa cctcctggag ctggtcgtaa ggactccgat 180
accacacact ctttacagtt tgctcaaaga tgcatagtgt tccgctagct agtaatagta 240
taaatctatt cgcacataga ctcagatttt ccagctgaaa cgagcaaata tcaaactcaa 300
aaaagagaca tcagcagctc ataattccag tatttccatc tcttttttat tcaactccaa 360
caccatttct cacacacaaa aatgagccac gaccacggaa gcatggat 408
<210> 6
<211> 1503
<212> DNA
<213> Artificial Synthesis ()
<400> 6
atgacccagt ctgtgaaggt ggttgagaag cacgttccta tcgtcattga gaagcccagc 60
gagaaggagg aggacacctc ttctgaagac tccattgagc tgactgtcgg aaagcagccc 120
aagcccgtga ccgagacccg ttctctggac gacctagagg ctatcatgaa ggcaggtaag 180
accaagcttc tggaggacca cgaggttgtc aagctctctc tcgagggcaa gcttcctttg 240
tatgctcttg agaagcagct tggtgacaac acccgagctg ttggcatccg acgatctatc 300
atctcccagc agtctaatac caagacttta gagacctcaa agcttcctta cctgcactac 360
gactacgacc gtgtttttgg agcctgttgc gagaacgtta ttggttacat gcctctcccc 420
gttggtgttg ctggccccat gaacattgat ggcaagaact accacattcc tatggccacc 480
actgagggtt gtcttgttgc ctcaaccatg cgaggttgca aggccatcaa cgccggtggc 540
ggtgttacca ctgtgcttac tcaggacggt atgacacgag gtccttgtgt ttccttcccc 600
tctctcaagc gggctggagc cgctaagatc tggcttgatt ccgaggaggg tctcaagtcc 660
atgcgaaagg ccttcaactc cacctctcga tttgctcgtc tccagtctct tcactctacc 720
cttgctggta acctgctgtt tattcgattc cgaaccacca ctggtgatgc catgggcatg 780
aacatgatct ccaagggcgt cgaacactct ctggccgtca tggtcaagga gtacggcttc 840
cctgatatgg acattgtgtc tgtctcgggt aactactgca ctgacaagaa gcccgcagcg 900
atcaactgga tcgaaggccg aggcaagagt gttgttgccg aagccaccat ccctgctcac 960
attgtcaagt ctgttctcaa aagtgaggtt gacgctcttg ttgagctcaa catcagcaag 1020
aatctgatcg gtagtgccat ggctggctct gtgggaggtt tcaatgcaca cgccgcaaac 1080
ctggtgaccg ccatctacct tgccactggc caggatcctg ctcagaatgt cgagtcttcc 1140
aactgcatca cgctgatgag caacgtcgac ggtaacctgc tcatctccgt ttccatgcct 1200
tctatcgagg tcggtaccat tggtggaggt actattttgg agccccaggg ggctatgctg 1260
gagatgcttg gcgtgcgagg tcctcacatc gagacccccg gtgccaacgc ccaacagctt 1320
gctcgcatca ttgcttctgg agttcttgca gcggagcttt cgctgtgttc tgctcttgct 1380
gccggccatc ttgtgcaaag tcatatgacc cacaaccggt cccaggctcc tactccggcc 1440
aagcagtctc aggccgatct gcagcgtcta caaaacggtt cgaatatttg catacggtca 1500
tag 1503
<210> 7
<211> 1257
<212> DNA
<213> Artificial Synthesis ()
<400> 7
atgaccacct attcggctcc gggaaaggcc ctcctttgcg gcggttattt ggttattgat 60
ccggcgtatt cagcatacgt cgtgggcctc tcggcgcgta tttacgcgac agtttcggct 120
tccgaggcct ccaccacctc tgtccatgtc gtctctccgc agtttgacaa gggtgaatgg 180
acctacaact acacgaacgg ccagctgacg gccatcggac acaacccatt tgctcacgcg 240
gccgtcaaca ccgttctgca ttacgttcct cctcgaaacc tccacatcaa catcagcatc 300
aaaagtgaca acgcgtacca ctcgcaaatt gacagcacgc agagaggcca gtttgcatac 360
cacaaaaagg cgatccacga ggtgcctaaa acgggcctcg gtagctccgc tgctcttacc 420
accgttcttg tggcagcttt gctcaagtca tacggcattg atcccttgca taacacccac 480
ctcgttcaca acctgtccca ggttgcacac tgctcggcac agaagaagat tgggtctgga 540
tttgacgtgg cttcggccgt ttgtggctct ctagtctata gacgtttccc ggcggagtcc 600
gtgaacatgg tcattgcagc tgaagggacc tccgaatacg gggctctgtt gagaactacc 660
gttaatcaaa agtggaaggt gactctggaa ccatccttct tgccgccggg aatcagcctg 720
cttatgggag acgtccaggg aggatctgag actccaggta tggtggccaa ggtgatggca 780
tggcgaaaag caaagccccg agaagccgag atggtgtgga gagatctcaa cgctgccaac 840
atgctcatgg tcaagttgtt caacgacctg cgcaagctct ctctcactaa caacgaggcc 900
tacgaacaac ttttggccga ggctgctcct ctcaacgctc taaagatgat aatgttgcag 960
aaccctctcg gagaactagc acgatgcatt atcactattc gaaagcatct caagaagatg 1020
acacgggaga ctggtgctgc tattgagccg gatgagcagt ctgcattgct caacaagtgc 1080
aacacttata gtggagtcat tggaggtgtt gtgcctggag caggaggcta cgatgctatt 1140
tctcttctgg tgatcagctc tacggtgaac aatgtcaagc gagagagcca gggagtccaa 1200
tggatggagc tcaaggagga gaacgagggt ctgcggctcg agaaggggtt caagtag 1257
<210> 8
<211> 1035
<212> DNA
<213> Artificial Synthesis ()
<400> 8
atgtccaagg cgaaattcga aagcgtgttc ccccgaatct ccgaggagct ggtgcagctg 60
ctgcgagacg agggtctgcc ccaggatgcc gtgcagtggt tttccgactc acttcagtac 120
aactgtgtgg gtggaaagct caaccgaggc ctgtctgtgg tcgacaccta ccagctactg 180
accggcaaga aggagctcga tgacgaggag tactaccgac tcgcgctgct cggctggctg 240
attgagctgc tgcaggcgtt tttcctcgtg tcggacgaca ttatggatga gtccaagacc 300
cgacgaggcc agccctgctg gtacctcaag cccaaggtcg gcatgattgc catcaacgat 360
gctttcatgc tagagagtgg catctacatt ctgcttaaga agcatttccg acaggagaag 420
tactacattg accttgtcga gctgttccac gacatttcgt tcaagaccga gctgggccag 480
ctggtggatc ttctgactgc ccccgaggat gaggttgatc tcaaccggtt ctctctggac 540
aagcactcct ttattgtgcg atacaagact gcttactact ccttctacct gcccgttgtt 600
ctagccatgt acgtggccgg cattaccaac cccaaggacc tgcagcaggc catggatgtg 660
ctgatccctc tcggagagta cttccaggtc caggacgact accttgacaa ctttggagac 720
cccgagttca ttggtaagat cggcaccgac atccaggaca acaagtgctc ctggctcgtt 780
aacaaagccc ttcagaaggc cacccccgag cagcgacaga tcctcgagga caactacggc 840
gtcaaggaca agtccaagga gctcgtcatc aagaaactgt atgatgacat gaagattgag 900
caggactacc ttgactacga ggaggaggtt gttggcgaca tcaagaagaa gatcgagcag 960
gttgacgaga gccgaggctt caagaaggag gtgctcaacg ctttcctcgc caagatttac 1020
aagcgacaga agtag 1035
<210> 9
<211> 1350
<212> DNA
<213> Artificial Synthesis ()
<400> 9
atggactaca tcatttcggc gccaggcaaa gtgattctat ttggtgaaca tgccgctgtg 60
tttggtaagc ctgcgattgc agcagccatc gacttgcgaa catacctgct tgtcgaaacc 120
acaacatccg acaccccgac agtcacgttg gagtttccag acatccactt gaacttcaag 180
gtccaggtgg acaagctggc atctctcaca gcccagacca aggccgacca tctcaattgg 240
tcgactccca aaactctgga taagcacatt ttcgacagct tgtctagctt ggcgcttctg 300
gaagaacctg ggctcactaa ggtccagcag gccgctgttg tgtcgttctt gtacctctac 360
atccacctat gtcccccttc tgtgtgcgaa gattcatcaa actgggtagt tcgatcaacg 420
ctgcctatcg gcgcgggcct gggctcttcc gcatccattt gtgtctgttt ggctgcaggt 480
cttctggttc tcaacggcca gctgagcatt gaccaggcaa gagatttcaa gtccctgacc 540
gagaagcagc tgtctctggt ggacgactgg tccttcgtcg gtgaaatgtg cattcacggc 600
aacccgtcgg gcatcgacaa tgctgtggct actcagggag gtgctctgtt gttccagcga 660
cctaacaacc gagtccctct tgttgacatt cccgagatga agctgctgct taccaatacg 720
aagcatcctc gatctaccgc agacctggtt ggtggagtcg gagttctcac taaagagttt 780
ggctccatca tggatcccat catgacttca gtaggcgaga tttccaacca ggccatggag 840
atcatttcta gaggcaagaa gatggtggac cagtctaacc ttgagattga gcagggtatc 900
ttgcctcaac ccacctctga ggatgcctgc aacgtgatgg aagatggagc tactcttcaa 960
aagttgagag atatcggttc ggaaatgcag catctagtga gaatcaatca cggcctgctt 1020
atcgctatgg gtgtttccca cccgaagctc gaaatcattc gaactgcctc cattgtccac 1080
aacctgggtg agaccaagct cactggtgct ggaggaggag gttgcgccat cactctagtc 1140
acttctaaag acaagactgc gacccagctg gaggaaaatg tcattgcttt cacagaggag 1200
atggctaccc atggcttcga ggtgcacgag actactattg gtgccagagg agttggtatg 1260
tgcattgacc atccctctct caagactgtt gaagccttca agaaggtgga gcgggcggat 1320
ctcaaaaaca tcggtccctg gacccattag 1350
<210> 10
<211> 1341
<212> DNA
<213> Artificial Synthesis ()
<400> 10
atgtcgcaac cccagaacgt tggaatcaaa gccctcgaga tctacgtgcc ttctcgaatt 60
gtcaaccagg ctgagctcga gaagcacgac ggtgtcgctg ctggcaagta caccattggt 120
cttggtcaga ccaacatggc ctttgtcgac gacagagagg acatctattc ctttgccctg 180
accgccgtct ctcgactgct caagaacaac aacatcgacc ctgcatctat tggtcgaatc 240
gaggttggta ctgaaaccct tctggacaag tccaagtccg tcaagtctgt gctcatgcag 300
ctctttggcg agaacagcaa cattgagggt gtggacaacg tcaacgcctg ctacggagga 360
accaacgccc tgttcaacgc tatcaactgg gttgagggtc gatcttggga cggccgaaac 420
gccatcgtcg ttgccggtga cattgccctc tacgcaaagg gcgctgcccg acccaccgga 480
ggtgccggct gtgttgccat gctcattggc cccgacgctc ccctggttct tgacaacgtc 540
cacggatctt acttcgagca tgcctacgat ttctacaagc ctgatctgac ctccgagtac 600
ccctatgttg atggccacta ctccctgacc tgttacacaa aggccctcga caaggcctac 660
gctgcctaca acgcccgagc cgagaaggtc ggtctgttca aggactccga caagaagggt 720
gctgaccgat ttgactactc tgccttccac gtgcccacct gcaagcttgt caccaagtct 780
tacgctcgac ttctctacaa cgactacctc aacgacaaga gcctgtacga gggccaggtc 840
cccgaggagg ttgctgccgt ctcctacgat gcctctctca ccgacaagac cgtcgagaag 900
accttccttg gtattgccaa ggctcagtcc gccgagcgaa tggctccttc tctccaggga 960
cccaccaaca ccggtaacat gtacaccgcc tctgtgtacg cttctctcat ctctctgctg 1020
acttttgtcc ccgctgagca gctgcagggc aagcgaatct ctctcttctc ttacggatct 1080
ggtcttgctt ccactctttt ctctctgacc gtcaagggag acatttctcc catcgtcaag 1140
gcctgcgact tcaaggctaa gctcgatgac cgatccaccg agactcccgt cgactacgag 1200
gctgccaccg atctccgaga gaaggcccac ctcaagaaga actttgagcc ccagggagac 1260
atcaagcaca tcaagtctgg cgtctactac ctcaccaaca tcgatgacat gttccgacga 1320
aagtacgaga tcaagcagta g 1341
<210> 11
<211> 1164
<212> DNA
<213> Artificial Synthesis ()
<400> 11
atgatccacc aggcctccac caccgctccg gtgaacattg cgacactcaa gtactggggc 60
aagcgagacc ctgctctcaa tctgcccact aacaactcca tctccgtgac tttgtcgcag 120
gatgatctgc ggaccctcac cacagcctcg tgttcccctg atttcaccca ggacgagctg 180
tggctcaatg gcaagcagga ggacgtgagc ggcaaacgtc tggttgcgtg tttccgagag 240
ctgcgggctc tgcgacacaa aatggaggac tccgactctt ctctgcctaa gctggccgat 300
cagaagctca agatcgtgtc cgagaacaac ttccccaccg ccgctggtct cgcctcatcg 360
gctgctggct ttgccgccct gatccgagcc gttgcaaatc tctacgagct ccaggagacc 420
cccgagcagc tgtccattgt ggctcgacag ggctctggat ccgcctgtcg atctctctac 480
ggaggctacg tggcatggga aatgggcacc gagtctgacg gaagcgactc gcgagcggtc 540
cagatcgcca ccgccgacca ctggcccgag atgcgagccg ccatcctcgt tgtctctgcc 600
gacaagaagg acacgtcgtc cactaccggt atgcaggtga ctgtgcacac ttctcccctc 660
ttcaaggagc gagtcaccac tgtggttccc gagcggtttg cccagatgaa gaagtcgatt 720
ctggaccgag acttccccac ctttgccgag ctcaccatgc gagactcaaa ccagttccac 780
gccacctgtc tggactcgta tcctcccatt ttctacctca acgacgtgtc gcgagcctcc 840
attcgggtag ttgaggccat caacaaggct gccggagcca ccattgccgc ctacaccttt 900
gatgctggac ccaactgtgt catctactac gaggacaaga acgaggagct ggttctgggt 960
gctctcaagg ccattctggg ccgtgtggag ggatgggaga agcaccagtc tgtggacgcc 1020
aagaagattg atgttgacga gcggtgggag tccgagctgg ccaacggaat tcagcgggtg 1080
atccttacca aggttggagg agatcccgtg aagaccgctg agtcgcttat caacgaggat 1140
ggttctctga agaacagcaa gtag 1164
<210> 12
<211> 1194
<212> DNA
<213> Artificial Synthesis ()
<400> 12
atgcgactca ctctgccccg acttaacgcc gcctacattg taggagccgc ccgaactcct 60
gtcggcaagt tcaacggagc cctcaagtcc gtgtctgcca ttgacctcgg tatcaccgct 120
gccaaggccg ctgtccagcg atccaaggtc cccgccgacc agattgacga gtttctgttt 180
ggccaggtgc tgaccgccaa ctccggccag gcccccgccc gacaggtggt tatcaagggt 240
ggtttccccg agtccgtcga ggccaccacc atcaacaagg tgtgctcttc cggcctcaag 300
accgtggctc tggctgccca ggccatcaag gccggcgacc gaaacgttat cgtggccggt 360
ggaatggagt ccatgtccaa caccccctac tactccggtc gaggtcttgt tttcggcaac 420
cagaagctcg aggactccat cgtcaaggac ggtctctggg acccctacaa caacatccac 480
atgggcaact gctgcgagaa caccaacaag cgagacggca tcacccgaga gcagcaggac 540
gagtacgcca tcgagtccta ccgacgggcc aacgagtcca tcaagaacgg cgccttcaag 600
gacgagattg tccccgttga gatcaagacc cgaaagggca ccgtgactgt ctccgaggac 660
gaggagccca agggagccaa cgccgagaag ctcaagggcc tcaagcctgt ctttgacaag 720
cagggctccg tcactgccgg taacgcctcc cccatcaacg atggtgcttc tgccgttgtc 780
gttgcctctg gcaccaaggc caaggagctc ggtacccccg tgctcgccaa gattgtctct 840
tacgcagacg ccgccaccgc ccccattgac tttaccattg ctccctctct ggccattccc 900
gccgccctca agaaggctgg ccttaccaag gacgacattg ccctctggga gatcaacgag 960
gccttctccg gtgtcgctct cgccaacctc atgcgactcg gaattgacaa gtccaaggtc 1020
aacgtcaagg gtggagctgt tgctctcggc caccccattg gtgcctccgg taaccgaatc 1080
tttgtgactt tggtcaacgc cctcaaggag ggcgagtacg gagttgccgc catctgcaac 1140
ggtggaggag cttccaccgc catcgtcatc aagaaggtct cttctgtcga gtag 1194
<210> 13
<211> 813
<212> DNA
<213> Artificial Synthesis ()
<400> 13
atgacgacgt cttacagcga caaaatcaag agtatcagcg tgagctctgt ggctcagcag 60
tttcctgagg tggcgccgat tgcggacgtg tccaaggcta gccggcccag cacggagtcg 120
tcggactcgt cggccaagct atttgatggc cacgacgagg agcagatcaa gctgatggac 180
gagatctgtg tggtgctgga ctgggacgac aagccgattg gcggcgcgtc caaaaagtgc 240
tgtcatctga tggacaacat caacgacgga ctggtgcatc gggccttttc cgtgttcatg 300
ttcaacgacc gcggtgagct gcttctgcag cagcgggcgg cggaaaaaat cacctttgcc 360
aacatgtgga ccaacacgtg ctgctcgcat cctctggcgg tgcccagcga gatgggcggg 420
ctggatctgg agtcccggat ccagggcgcc aaaaacgccg cggtccggaa gcttgagcac 480
gagctgggaa tcgaccccaa ggccgttccg gcagacaagt tccatttcct cacccggatc 540
cactacgccg cgccctcctc gggcccctgg ggcgagcacg agattgacta cattctgttt 600
gtccggggcg accccgagct caaggtggtg gccaacgagg tccgcgatac cgtgtgggtg 660
tcgcagcagg gactcaagga catgatggcc gatcccaagc tggttttcac cccttggttc 720
cggctcattt gtgagcaggc gctgtttccc tggtgggacc agttggacaa tctgcccgcg 780
ggcgatgacg agattcggcg gtggatcaag tag 813
<210> 14
<211> 1404
<212> DNA
<213> Artificial Synthesis ()
<400> 14
atgaatcaac aggatattga acaggtggtg aaagcggtac tgctgaaaat gcaaagcagt 60
gacacgccgt ccgccgccgt tcatgagatg ggcgttttcg cgtccctgga tgacgccgtt 120
gcggcagcca aagtcgccca gcaagggtta aaaagcgtgg caatgcgcca gttagccatt 180
gctgccattc gtgaagcagg cgaaaaacac gccagagatt tagcggaact tgccgtcagt 240
gaaaccggca tggggcgcgt tgaagataaa tttgcaaaaa acgtcgctca ggcgcgcggc 300
acaccaggcg ttgagtgcct ctctccgcaa gtgctgactg gcgacaacgg cctgacccta 360
attgaaaacg caccctgggg cgtggtggct tcggtgacgc cttccactaa cccggcggca 420
accgtaatta acaacgccat cagcctgatt gccgcgggca acagcgtcat ttttgccccg 480
catccggcgg cgaaaaaagt ctcccagcgg gcgattacgc tgctcaacca ggcgattgtt 540
gccgcaggtg ggccggaaaa cttactggtt actgtggcaa atccggatat cgaaaccgcg 600
caacgcttgt tcaagtttcc gggtatcggc ctgctggtgg taaccggcgg cgaagcggta 660
gtagaagcgg cgcgtaaaca caccaataaa cgtctgattg ccgcaggcgc tggcaacccg 720
ccggtagtgg tggatgaaac cgccgacctc gcccgtgccg ctcagtccat cgtcaaaggc 780
gcttctttcg ataacaacat catttgtgcc gacgaaaagg tactgattgt tgttgatagc 840
gtagccgatg aactgatgcg tctgatggaa ggccagcacg cggtgaaact gaccgcagaa 900
caggcgcagc agctgcaacc ggtgttgctg aaaaatatcg acgagcgcgg aaaaggcacc 960
gtcagccgtg actgggttgg tcgcgatgcg gcgaaaatcg cggcggcaat cggcctgaac 1020
gtgccgcaag aaacgcgttt gctgtttgtg gaaaccactg cagaacatcc gtttgccgtg 1080
accgaactga tgatgccggt gctgcccgtc gtgcgcgtcg ccaacgtggc ggatgccatt 1140
gcgctggcgg tgaaactgga gggcggttgc caccacacgg cggcaatgca ctcgcgcaat 1200
atcgaaaaca tgaaccagat ggcgaacgcc attgatacca gcattttcgt taagaacgga 1260
ccgtgcattg ccgggctggg gctgggcggg gaaggctgga ccaccatgac catcaccacg 1320
ccaaccggtg aaggggtaac cagcgcgcgg acgtttgtcc gtctgcgtcg ctgtgtatta 1380
gtcgatgcgt ttcgcattgt ttaa 1404
<210> 15
<211> 1488
<212> DNA
<213> Artificial Synthesis ()
<400> 15
atgaattttc atcatctggc ttactggcag gataaagcgt taagtctcgc cattgaaaac 60
cgcttattta ttaacggtga atatactgct gcggcggaaa atgaaacctt tgaaaccgtt 120
gatccggtca cccaggcacc gctggcgaaa attgcccgcg gcaagagcgt cgatatcgac 180
cgtgcgatga gcgcagcacg cggcgtattt gaacgcggcg actggtcact ctcttctccg 240
gctaaacgta aagcggtact gaataaactc gccgatttaa tggaagccca cgccgaagag 300
ctggcactgc tggaaactct cgacaccggc aaaccgattc gtcacagtct gcgtgatgat 360
attcccggcg cggcgcgcgc cattcgctgg tacgccgaag cgatcgacaa agtgtatggc 420
gaagtggcga ccaccagtag ccatgagctg gcgatgatcg tgcgtgaacc ggtcggcgtg 480
attgccgcca tcgtgccgtg gaacttcccg ctgttgctga cttgctggaa actcggcccg 540
gcgctggcgg cgggaaacag cgtgattcta aaaccgtctg aaaaatcacc gctcagtgcg 600
attcgtctcg cggggctggc gaaagaagca ggcttgccgg atggtgtgtt gaacgtggtg 660
acgggttttg gtcatgaagc cgggcaggcg ctgtcgcgtc ataacgatat cgacgccatt 720
gcctttaccg gttcaacccg taccgggaaa cagctgctga aagatgcggg cgacagcaac 780
atgaaacgcg tctggctgga agcgggcggc aaaagcgcca acatcgtttt cgctgactgc 840
ccggatttgc aacaggcggc aagcgccacc gcagcaggca ttttctacaa ccagggacag 900
gtgtgcatcg ccggaacgcg cctgttgctg gaagagagca tcgccgatga attcttagcc 960
ctgttaaaac agcaggcgca aaactggcag ccgggccatc cacttgatcc cgcaaccacc 1020
atgggcacct taatcgactg cgcccacgcc gactcggtcc atagctttat tcgggaaggc 1080
gaaagcaaag ggcaactgtt gttggatggc cgtaacgccg ggctggctgc cgccatcggc 1140
ccgaccatct ttgtggatgt ggacccgaat gcgtccttaa gtcgcgaaga gattttcggt 1200
ccggtgctgg tggtcacgcg tttcacatca gaagaacagg cgctacagct tgccaacgac 1260
agccagtacg gccttggcgc ggcggtatgg acgcgcgacc tctcccgcgc gcaccgcatg 1320
agccgacgcc tgaaagccgg ttccgtcttc gtcaataact acaacgacgg cgatatgacc 1380
gtgccgtttg gcggctataa gcagagcggc aacggtcgcg acaaatccct gcatgccctt 1440
gaaaaattca ctgaactgaa aaccatctgg ataagcctgg aggcctga 1488
<210> 16
<211> 2013
<212> DNA
<213> Artificial Synthesis ()
<400> 16
atgaggatct gtcattcgag aactctctca aacttaaagg atcttccgat aacgtcaagg 60
agagcaatgc attcggccat tgtcaattac tccacccaaa aggcccaatt tcccgtagag 120
acaaataatg gggaacacta ttgggcggaa aagccgaaca aattctacca gaacaaaagg 180
cccaattttc aaggcattac ctttgctaaa caacaagact taccatcatt acccgtgccc 240
gaattgaagt ctacacttga caagtatttg caaaccatcc gcccattttg caatgatgta 300
gaaacttttg aaagacagca gctgttatgt aaggacttct cggagcacat ggggcctatc 360
ttacaagacc gattgaaaga gtatgccaac gataaaagaa actggatggc caagttttgg 420
gatgaacaat cctatttaca atacaacgat cctattgttc catacgtctc ttatttttat 480
tctcatatgc cattaccgaa tcatttatcg aagatcgata atgatccttt gattaaggct 540
actgcgatta tctcaaccgt ggttaaattc atcgaagcta ttaaagatga atctttaccc 600
gtagaaatta tcaaaggtat gccattttgt atgaatagtt tttcattgat gtttaacact 660
tcgagattgc ctggtaagcc agaggataac caagatacaa atatttttta ttcagtttat 720
gagaacaact ttgtaactat cgcttataaa gggaagtttt acaaactgat gacccatgac 780
gggaatgaca aaccgctttc cgaaaacgaa atctggaggc aactgtactc tgtggtattc 840
caaggatcgc agtccgatcc caaactaggt ggcattggtt ctctcacctc tttacctcgt 900
gatcaatggc gtgaagtaca tatggagctt atgaaggatc ctatttctca ggattcacta 960
gaaacaatcc ataagtcttc ctttatgcta tgtttggatc ttgaccaatc ccctgtcact 1020
ttggaagaaa agtcaagaaa ttgctggcac ggtgatggta ttaacagatt ctacgataag 1080
tctttacagt tcctagtcac cggtaatggt tcatcaggtt tcttagctga acactcgaag 1140
atggatggta cgccaacatt gtttttaaat aactacgttt gtcagcagtt gaataaacta 1200
gatgtggatg acttcatgag aaaagtaatt acgccatcat ctacggtggc aatgaaacct 1260
atggaactgc ccttcattat cacaccgaag attcataaag caatcgaatc tgcccaacta 1320
caatttaagg aaacaattgg tgagcatgac ctacgtgttt ggcactacaa caaatatgga 1380
aaaacgttta taaaacgcca tggcatgtca cctgatgcat ttattcaaca agttatccaa 1440
ctggcggttt tcaaatatct gaaacgacaa ctaccaactt acgaggctgc ttccacgaga 1500
aaatacttca aaggccgtac tgaaactggt agatctgtgt ccaccgcctc cttagaattt 1560
gtttctaaat ggcaaaatgg cgatgttcct attgcagaaa agattcaggc tttgaaacat 1620
tctgcaaaag agcattcgac gtacctgaaa aatgctgcaa atggtaatgg tgtcgatcgt 1680
catttcttcg gtctaaagaa tatgctaaaa tctaatgatg accaaattcc gccccttttc 1740
aaagatccct tatttaatta ttcttcaact tggttgatct ccacatctca actatcttcg 1800
gaatattttg acggttatgg ttggtcccaa gtaaatgaca acgggtttgg actggcatac 1860
atgttgaata acgagtggct gcatatcaat attgtcaaca aaccagccaa gagtggagcc 1920
agtgttaaca gattacacta ttatttatct caagctgctg atgaaatttt tgacgccttg 1980
gaaaatgaga ataaacgaaa agcaaagtta tga 2013
<210> 17
<211> 2610
<212> DNA
<213> Artificial Synthesis ()
<400> 17
atgccgcagc aagcaatgga tatcaagggc aaggccaagt ctgtgcccat gcccgaagaa 60
gacgacctgg actcgcattt tgtgggtccc atctctcctc gacctcacgg agcagacgag 120
attgctggct acgtgggctg cgaagacgac gaagacgagc ttgaagaact gggaatgctg 180
ggccgatctg cgtccaccca cttctcttac gcggaagaac gccacctcat cgaggttgat 240
gccaagtaca gagctcttca tggccatctg cctcatcagc actctcagag tcccgtgtcc 300
agatcttcgt catttgtgcg ggccgaaatg aaccaccccc ctcccccacc ctccagccac 360
acccaccaac agccagagga cgatgacgca tcttccactc gatctcgatc gtcgtctcga 420
gcttctggac gcaagttcaa cagaaacaga accaagtctg gatcttcgct gagcaagggt 480
ctccagcagc tcaacatgac cggatcgctc gaagaagagc cctacgagag cgatgacgat 540
gcccgactat ctgcggaaga cgacattgtc tatgatgcta cccagaaaga cacctgcaag 600
cccatatctc ctactctcaa acgcacccgc accaaggacg acatgaagaa catgtccatc 660
aacgacgtca aaatcaccac caccacagaa gatcctcttg tggcccagga gctgtccatg 720
atgttcgaaa aggtgcagta ctgccgagac ctccgagaca agtaccaaac cgtgtcgcta 780
cagaaggacg gagacaaccc caaggatgac aagacgcact ggaaaattta ccccgagcct 840
ccaccaccct cctggcacga gaccgaaaag cgattccgag gctcgtccaa aaaggagcac 900
caaaagaaag acccgacaat ggatgaattc aaattcgagg actgcgaaat ccccggaccc 960
aacgacatgg tcttcaagcg agatcctacc tgtgtctatc aggtctatga ggatgaaagc 1020
tctctcaacg aaaataagcc gtttgttgcc atcccctcaa tccgagatta ctacatggat 1080
ctggaggatc tcattgtggc ttcgtctgac ggacctgcca agtcttttgc tttccgacga 1140
ctgcaatatc tagaagccaa gtggaacctc tactacctgc tcaacgagta cacggagaca 1200
accgagtcca agaccaaccc ccatcgagac ttttacaacg tacgaaaggt cgacacccac 1260
gttcaccact ctgcctgcat gaaccagaag catctgctgc gattcatcaa atacaagatg 1320
aagaactgcc ctgatgaagt tgtcatccac cgagacggtc gggagctgac actctcccag 1380
gtgtttgagt cacttaactt gactgcctac gacctgtcta tcgataccct tgatatgcat 1440
gctcacaagg actcgttcca tcgatttgac aagttcaacc tcaagtacaa ccctgtcggt 1500
gagtctcgac tgcgagaaat cttcctaaag accgacaact acatccaggg tcgataccta 1560
gctgagatca caaaggaggt gttccaggat ctcgagaact cgaagtacca gatggcggag 1620
taccgtattt ccatctacgg tcggtccaag gacgagtggg acaagctggc tgcctgggtg 1680
ctggacaaca aactgttttc gcccaatgtt cggtggttga tccaggtgcc tcgactgtac 1740
gacatttaca agaaggctgg tctggttaac acctttgccg acattgtgca gaacgtcttt 1800
gagcctcttt tcgaggtcac caaggatccc agtacccatc ccaagctgca cgtgttcctg 1860
cagcgagttg tgggctttga ctctgtcgat gacgagtcga agctggaccg acgtttccac 1920
cgaaagttcc caactgcagc atactgggac agcgcacaga accctcccta ctcgtactgg 1980
cagtactatc tatacgccaa catggcctcc atcaacacct ggagacagcg tttgggctat 2040
aatacttttg agttgcgacc ccatgctgga gaggctggtg acccagagca tcttctgtgc 2100
acttatctgg ttgctcaggg tatcaaccac ggtattctgt tgcgaaaggt gcccttcatt 2160
cagtaccttt actacctgga ccagatcccc attgccatgt ctcccgtgtc caacaatgcg 2220
ctgttcctca cgttcgacaa gaaccccttc tactcatact tcaagcgggg tctcaacgtg 2280
tccttgtcat cggatgatcc tctgcagttt gcttacacta aggaggctct gattgaggag 2340
tactctgtgg ctgcgctcat ttacaagctt tccaacgtgg atatgtgtga gcttgctcga 2400
aactcggtac tgcaatctgg ctttgagcga atcatcaagg agcattggat cggcgaaaac 2460
tacgagatcc atggccccga gggcaacacc atccagaaga caaacgtgcc caatgtgcgt 2520
ctggccttcc gagacgagac tttgacccac gagcttgctc tggtggacaa gtacaccaat 2580
cttgaggagt ttgagcggct gcatggttaa 2610
<210> 18
<211> 1953
<212> DNA
<213> Artificial Synthesis ()
<400> 18
atgtctgcca acgagaacat ctcccgattc gacgcccctg tgggcaagga gcaccccgcc 60
tacgagctct tccataacca cacacgatct ttcgtctatg gtctccagcc tcgagcctgc 120
cagggtatgc tggacttcga cttcatctgt aagcgagaga acccctccgt ggccggtgtc 180
atctatccct tcggcggcca gttcgtcacc aagatgtact ggggcaccaa ggagactctt 240
ctccctgtct accagcaggt cgagaaggcc gctgccaagc accccgaggt cgatgtcgtg 300
gtcaactttg cctcctctcg atccgtctac tcctctacca tggagctgct cgagtacccc 360
cagttccgaa ccatcgccat tattgccgag ggtgtccccg agcgacgagc ccgagagatc 420
ctccacaagg cccagaagaa gggtgtgacc atcattggtc ccgctaccgt cggaggtatc 480
aagcccggtt gcttcaaggt tggaaacacc ggaggtatga tggacaacat tgtcgcctcc 540
aagctctacc gacccggctc cgttgcctac gtctccaagt ccggaggaat gtccaacgag 600
ctgaacaaca ttatctctca caccaccgac ggtgtctacg agggtattgc tattggtggt 660
gaccgatacc ctggtactac cttcattgac catatcctgc gatacgaggc cgaccccaag 720
tgtaagatca tcgtcctcct tggtgaggtt ggtggtgttg aggagtaccg agtcatcgag 780
gctgttaaga acggccagat caagaagccc atcgtcgctt gggccattgg tacttgtgcc 840
tccatgttca agactgaggt tcagttcggc cacgccggct ccatggccaa ctccgacctg 900
gagactgcca aggctaagaa cgccgccatg aagtctgctg gcttctacgt ccccgatacc 960
ttcgaggaca tgcccgaggt ccttgccgag ctctacgaga agatggtcgc caagggcgag 1020
ctgtctcgaa tctctgagcc tgaggtcccc aagatcccca ttgactactc ttgggcccag 1080
gagcttggtc ttatccgaaa gcccgctgct ttcatctcca ctatttccga tgaccgaggc 1140
caggagcttc tgtacgctgg catgcccatt tccgaggttt tcaaggagga cattggtatc 1200
ggcggtgtca tgtctctgct gtggttccga cgacgactcc ccgactacgc ctccaagttt 1260
cttgagatgg ttctcatgct tactgctgac cacggtcccg ccgtatccgg tgccatgaac 1320
accattatca ccacccgagc tggtaaggat ctcatttctt ccctggttgc tggtctcctg 1380
accattggta cccgattcgg aggtgctctt gacggtgctg ccaccgagtt caccactgcc 1440
tacgacaagg gtctgtcccc ccgacagttc gttgatacca tgcgaaagca gaacaagctg 1500
attcctggta ttggccatcg agtcaagtct cgaaacaacc ccgatttccg agtcgagctt 1560
gtcaaggact ttgttaagaa gaacttcccc tccacccagc tgctcgacta cgcccttgct 1620
gtcgaggagg tcaccacctc caagaaggac aacctgattc tgaacgttga cggtgctatt 1680
gctgtttctt ttgtcgatct catgcgatct tgcggtgcct ttactgtgga ggagactgag 1740
gactacctca agaacggtgt tctcaacggt ctgttcgttc tcggtcgatc cattggtctc 1800
attgcccacc atctcgatca gaagcgactc aagaccggtc tgtaccgaca tccttgggac 1860
gatatcacct acctggttgg ccaggaggct atccagaaga agcgagtcga gatcagcgcc 1920
ggcgacgttt ccaaggccaa gactcgatca tag 1953
<210> 19
<211> 2442
<212> DNA
<213> Artificial Synthesis ()
<400> 19
atggctgatt tcgattctaa ggaatatttg gaattggttg ataagtggtg gagagcaaca 60
aattacttgt cagctggtat gattttcttg aagtcaaacc cattattttc tgttacaaac 120
actccaatta aagctgaaga tgttaaggtt aagccaatcg gtcattgggg tactatctct 180
ggtcaaacat ttttatacgc acatgctaac agattgatta ataagtacgg tttgaatatg 240
ttttacgttg gtggtccagg tcatggtggt caagttatgg ttactaatgc atacttggat 300
ggtgcttata ctgaagatta cccagaaatt acacaagata ttgaaggcat gtcacatttg 360
tttaaaagat tttctttccc aggtggtatc ggttcacata tgacagctca aactccaggt 420
tcattgcatg aaggtggtga attgggttat tctttatcac atgcatttgg tgctgtttta 480
gataatccag atcaagttgc atttgctgtt gttggtgacg gtgaagcaga aacaggtcca 540
tctatggctt catggcattc tattaaattc ttgaacgcta aaaatgatgg tgctgtttta 600
ccagttttgg atttgaacgg ttttaaaatc tctaatccaa caattttctc tagaatgtct 660
gatgaagaaa tcactaagtt tttcgaaggt ttgggttact ctccaagatt cattgaaaac 720
gatgatatcc atgattacgc aacttaccat caattggctg caaacatctt ggatcaagct 780
atcgaagata tccaagcaat ccaaaacgat gctagagaaa acggtaaata ccaagatggt 840
gaaattccag catggccagt tattattgct agattgccaa aaggttgggg tggtccaaca 900
catgatgcat ctaacaaccc aatcgaaaac tcttttagag ctcatcaagt tccattgcca 960
ttagaacaac atgatttggc tactttacca gaattcgaag attggatgaa ctcttacaag 1020
ccagaagaat tgtttaatgc tgatggttca ttgaaggatg aattgaaggc aatcgctcca 1080
aagggtgaca agagaatgtc tgcaaaccca atcactaacg gtggtgctga tagatcagat 1140
ttgaagttgc caaactggag agaattcgca aacgatatca acgatgatac acgtggtaaa 1200
gaattcgctg attctaagag aaacatggat atggcaactt tgtctaacta cttaggtgct 1260
gtttcacaat tgaacccaac aagattcaga tttttcggtc cagatgaaac tatgtctaat 1320
agattgtggg gtttgtttaa tgttacacca agacaatgga tggaagaaat taaagaacca 1380
caagatcaat tgttgtcacc aactggtaga atcatcgatt cacaattgtc tgaacatcaa 1440
gcagaaggtt ggttggaagg ttacacattg actggtagag ttggtatctt cgcttcatac 1500
gaatcatttt tgagagttgt tgatacaatg gttactcaac atttcaagtg gttgagacat 1560
gcatctgaac aagcttggag aaacgattac ccatctttga atttgatcgc aacatcaact 1620
gcttttcaac aagatcataa tggttacact catcaagatc caggcatgtt gacacatttg 1680
gcagaaaaga aatctaactt catcagagaa tatttgccag ctgatggtaa ttctttgtta 1740
gcagttcaag aaagagcttt ttcagaaaga cataaggtta atttgttaat tgcttcaaaa 1800
caaccaagac aacaatggtt tactgttgaa gaagcagaag ttttggctaa cgaaggtttg 1860
aagatcatcg attgggcatc tacagctcca tcttcagatg ttgatattac ttttgcatca 1920
gctggtacag aaccaactat tgaaacattg gctgcattgt ggttgattaa tcaagctttc 1980
ccagatgtta agtttagata cgttaacgtt gttgaattgt tgagattgca aaagaaatct 2040
gaaccaaaca tgaacgatga aagagaattg tcagcagaag aattcaataa gtacttccaa 2100
gctgatacac cagttatttt cggtttccat gcttacgaaa atttgatcga atcatttttc 2160
tttgaaagaa agtttactgg tgacgtttat gttcatggtt acagagaaga tggtgacatc 2220
actacaactt acgatatgag agtttactct catttggata gatttcatca agcaaaagaa 2280
gctgcagaaa tcttgtcagc taacggtaaa atcgatcaag ctgcagctga tacttttatt 2340
gcaaagatgg atgatacatt ggctaagcat ttccaagtta ctagaaacga aggtagagat 2400
atcgaagaat tcactgattg gacatggtct ccattaaaat aa 2442
<210> 20
<211> 1002
<212> DNA
<213> Artificial Synthesis ()
<400> 20
atgaagttga tggaaaacat cttcggtttg gctaaggcag ataaaaagaa aattgttttg 60
gcagaaggtg aagaagaaag aaacatcaga gcttctgaag aaatcatcag agatggtatc 120
gcagatatca tcttggttgg ttctgaatca gttattaaag aaaacgctgc aaagtttggt 180
gttaatttgg ctggtgttga aatcgttgat ccagaaactt cttcaaagac agcaggttat 240
gctaacgcat tctacgaaat cagaaagaat aagggtgtta ctttggaaaa ggctgataag 300
atcgttagag atccaatcta tttcgcaaca atgatggtta agttgggtga cgcagatggt 360
ttagtttctg gtgctattca tactactggt gacttgttaa gaccaggttt gcaaattgtt 420
aaaactgttc caggtgcttc tgttgtttct tcagttttct tgatgtcagt tccagattgt 480
gaatacggtg aagatggttt cttgttattt gcagattgtg ctgttaatgt ttgtccaact 540
gcagaagaat tgtcttcaat tgctatcact acagcagaaa cagctaaaaa tttgtgtaag 600
atcgaaccaa gagttgctat gttgtctttt tcaacaatgg gttctgcatc acatgaattg 660
gttgataagg ttactaaggc tacaaagttg gcaaaagaag ctagaccaga tttggatatt 720
gatggtgaat tgcaattaga tgcttctttg gttaagaaag ttgcagattt gaaagctcca 780
ggttcaaaag ttgctggtaa agctaacgtt ttgatcttcc cagatatcca agctggtaac 840
atcggttaca agttggttca aagatttgct aaagcagaag ctattggtcc aatctgtcaa 900
ggtttcgcta agccaattaa tgatttgtct agaggttgtt cagttgatga tatcgttaag 960
gttgttgcag ttactgctgt tcaagcacaa gctcaaggtt aa 1002
<210> 21
<211> 1245
<212> DNA
<213> Artificial Synthesis ()
<400> 21
atggaccgac ttaacaacct cgccacccag ctcgagcaga accccgccaa gggcctcgac 60
gctatcacct ccaagaaccc cgatgacgtt gtcatcaccg ccgcctaccg aactgcccac 120
accaagggag gcaagggtct gttcaaggac acctcttctt ccgagctgct cgcctctctg 180
ctggagggcc tcgtcaagga gtccaagatc gaccccaagc tcatcggtga tgtcgtctgc 240
ggaaacgttc tcgctgccgg tgccggtgcc actgagcacc gagctgcctg ccttgttgcc 300
ggcatccccg agaccgttcc cttcgtcgct ctcaaccgac agtgctcctc tggtctgatg 360
gccgtcaacg acgttgccaa caagatccga gccggccaga ttgacattgg tatcggctgt 420
ggtgtcgagt ccatgtccaa ccagtacggt cccaactccg tcaccccctt ctccaacaag 480
ttccagaaca acgaggaggc taagaagtgc ctgatcccca tgggtatcac ttccgagaac 540
gttgccgcca agtacaacgt gtcccgaaag gcccaggacg cctttgctgc caagtcctac 600
gagaaggccg ccgctgccca ggccgccggc aagttcgacc aggagatcct ccccatcaag 660
accactgttc tcgatgatga tgacaacgag aaggaggtta ccgtcaacaa ggacgacggt 720
atccgacctg gtgtcaccgc cgagaagctc ggcaagctca agcctgcttt ctccgccgag 780
ggaaccaccc acgctggtaa cgcctctcag atctccgacg gtgccggagc cgttctcctc 840
atgcgacgat ctgttgccga gaagcttggc cagcccatcc ttgccaagtt tgtccactgc 900
aagaccgtcg gtgttccccc cgagctcatg ggaattggcc ccgcttacgc cattcctgct 960
gtccttgagg accttggtct gaccgtcaac gacgttgacg ttttcgagat caacgaggct 1020
ttcgcttccc aggctctgtt ctccatccag cattgtggaa tcgacgagtc caaggtcaac 1080
ccccgaggtg gtgccattgc tattggccac cctctgggag ccaccggtgc tcgacagttt 1140
gccactctgc tctccgagct taaggagtct ggcaagaagg tcggtgtcac ctccatgtgc 1200
attggtaccg gtatgggtgc cgcttctctg gttgttgccg agtaa 1245
<210> 22
<211> 2780
<212> DNA
<213> Artificial Synthesis ()
<400> 22
atgtctggag aactaagata cgacggaaag gtcgtcattg ttaccggtgc cggtggcggt 60
ctcggtaagg catacgccct tttctacggc tctcgaggag cctctgttgt tgtcaacgat 120
cttggtggcg acttcaaggg cgacggtgcc caggctggca gtggcaagcg agtgagtatc 180
attacaagcg cagcgaagcg aaacgaccca aaacgacacc acacagaagg ataaactaac 240
accaggttgc cgatgttgtc gtcgacgaga ttgtttccaa gggaggcaag gctgttgcta 300
actacgactc tgtcgagaac ggtgacaaga ttgtcgagac tgccgtcaag gcttttggct 360
ccgtccacat tgtcatcaac aacgccggta ttctccgaga tatttccttc aagaagatga 420
ccgacaagga ctgggatctt gtctacaagg tccacgtttt cggtgcctac aaggttaccc 480
gagctgcctg gccttacttc cgaaagcaga agtacggtcg agttatctct acctcttccg 540
ctgctggtct ttacggaaac ttcggccaga ccaactactc cgctgccaag ctcgccctgg 600
ttggtttcgg tgagactctc gccaaggagg gtgccaagta caacattact tccaacgtca 660
tcgctcctct tgctgcttcc cgaatgaccg agacagtcat gcccgaggat atcctcaagc 720
tcctcaagcc tgagtacgtt gttcctctgg tcggctacct cacccacgac tctgtcaccg 780
agtcttatgg tatttacgag gtcggtgctg gttacatggc taaaatccga tgggagcgag 840
gcaacggtgc tgttttcaag ggcgacgaca ctttcacccc gtctgctatt ctgaagcgat 900
gggatgaggt cacctctttt gagagcccca cctaccctaa cggccctgct gacttcttca 960
aatacgctga ggagtctgtt aagcgacccg agaaccccca gggacctacc gtctccttca 1020
aggaccaggt tgtcattgtc actggagccg gtgctggcat tggccgagct tactctcacc 1080
tccttgctaa gcttggtgcc aaggtcgttg ttaacgattt cggtaaccct cagaaggttg 1140
tcgatgaaat taaggccctc ggtggtatcg ccgtcgctga caagaacaac gtcatccacg 1200
gtgagaaggt tgttcagacc gctatcgacg ccttcggtgc tgtccacgcc gttgtcaaca 1260
acgctggtat tctccgagac aagtctttcg ccaacatgga tgatgagatg tggcagctga 1320
tctttgatgt ccacctcaac ggtacttact ccgttaccaa ggccgcgtgg ccccacttcc 1380
ttaagcagaa gtacggccgt gtcatcaaca ccacctcaac ttctggtatc tacggtaact 1440
tcggccaggc caactactct gccgccaagg ctggtatcct cggtttctcc cgagctcttg 1500
ctcgagaggg tgagaagtac aacattcttg tcaacaccat tgcccctaac gctggtactg 1560
ccatgactgc ttctgtcttc actgaggaga tgctcgagct cttcaagccc gatttcatcg 1620
cacccatcac cgtcctgctt gcttccgatc aggctcccgt caccggtgat ctgtttgaga 1680
ctggttctgc ttggatcgga cagactcgat ggcagcgagc tggtggtaag gccttcaaca 1740
ccaagaaggg tgtcaccccc gaaatggttc gagacagctg ggctaagatc gtcgacttcg 1800
atgatggtaa ctccacccat cccaccactc cctccgagtc tactactcag attcttgaga 1860
acatcttcaa cgtgcctgat gaggaggttg aggagactgc tctcgttgct ggtcccggtg 1920
gtcccggtat cctcaacaag gagggcgaac ctttcgacta cacttacact taccgagacc 1980
tcattcttta caaccttggt ctcggtgcca aggctaatga gctcaagtat gtcttcgagg 2040
gtgatgatga cttccagacc gtgcccactt tcggtgttat cccttacatg ggtggcctca 2100
tcactaccaa ctatggcgac ttcgttccta acttcaaccc tatgatgctt ctccacggtg 2160
agcagtacct tgaaatccga cagtggccta ttcctaccaa tgctacattg gagaacaagg 2220
ctaaggtcat cgatgtcgtt gacaagggca aggctgccct ccttgtcact gctaccacca 2280
ccacgaacaa ggagactggt gaggaggttt tctacaacga gtcttctctc ttcatccgag 2340
gctctggtgg tttcggtggt aagtctaccg gtactgaccg tggcgctgcc actgctgcca 2400
acaagccccc tgctcgagct cctgacttcg ttaaggagat caagatccag gaggaccagg 2460
ctgccattta ccgactttct ggtgattaca accctcttca catcgaccct gcttttgctg 2520
ctgttggtaa ctttgaccga cctattctcc acggtctctg ctcttttggt gtctccggta 2580
aggctcttta cgatcagttt ggtcctttca agaacgctaa ggtccgattt gctggtcacg 2640
tcttccctgg tgagaccctg aaggttgagg gctggaagga gggcaacaag gtcattttcc 2700
agaccaaggt tgttgagcga ggtactaccg ccatcagcaa tgccgccatt gagctcttcc 2760
ccaaggatgc taagctctaa 2780
<210> 23
<211> 1134
<212> DNA
<213> Artificial Synthesis ()
<400> 23
atgtggggaa gttcacatgc attcgctggt gaatctgatc tgacactaca actacacacc 60
aggtccaaca tgagcgacaa tacgacaatc aaaaagccga tccgacccaa accgatccgg 120
acggaacgcc tgccttacgc tggggccgca gaaatcatcc gagccaacca gaaagaccac 180
tactttgagt ccgtgcttga acagcatctc gtcacgtttc tgcagaaatg gaagggagta 240
cgatttatcc accagtacaa ggaggagctg gagacggcgt ccaagtttgc atatctcggt 300
ttgtgtacgc ttgtgggctc caagactctc ggagaagagt acaccaatct catgtacact 360
atcagagacc gaacagctct accgggggtg gtgagacggt ttggctacgt gctttccaac 420
actctgtttc catacctgtt tgtgcgctac atgggcaagt tgcgcgccaa actgatgcgc 480
gagtatcccc atctggtgga gtacgacgaa gatgagcctg tgcccagccc ggaaacatgg 540
aaggagcggg tcatcaagac gtttgtgaac aagtttgaca agttcacggc gctggagggg 600
tttaccgcga tccacttggc gattttctac gtctacggct cgtactacca gctcagtaag 660
cggatctggg gcatgcgtta tgtatttgga caccgactgg acaagaatga gcctcgaatc 720
ggttacgaga tgctcggtct gctgattttc gcccggtttg ccacgtcatt tgtgcagacg 780
ggaagagagt acctcggagc gctgctggaa aagagcgtgg agaaagaggc aggggagaag 840
gaagatgaaa aggaagcggt tgtgccgaaa aagaagtcgt caattccgtt cattgaggat 900
acagaagggg agacggaaga caagatcgat ctggaggacc ctcgacagct caagttcatt 960
cctgaggcgt ccagagcgtg cactctgtgt ctgtcataca ttagtgcgcc ggcatgtacg 1020
ccatgtggac actttttctg ttgggactgt atttccgaat gggtgagaga gaagcccgag 1080
tgtcccttgt gtcggcaggg tgtgagagag cagaacttgt tgcctatcag ataa 1134
<210> 24
<211> 1596
<212> DNA
<213> Artificial Synthesis ()
<400> 24
atgacagtca actccacttt tagatcggca tcaacttccc caaaactggg caaaaccagc 60
caggcagaca tcctgagccc cgaggcccaa aagttcctgg ttgaactcca cagcaacttc 120
aaccagcgac gtctggagct ccttgatctg cgtcagaaga accagctcaa gctcgatgca 180
ggcgaaatcc ccacgtatcc cacggaaaca gcagacatcc gagcagacaa gtcgtggaca 240
ggtccatctc tggctcccgg tctccatgac cgacgggtcg aaatcactgg ccccccagac 300
cgaaagatga tcatcaacgc cctcaacaca aacgtcgcca cctacatgtc cgatttcgag 360
gactcccaag cccccacctg ggacaactgt ctcgatgggc aagtcaacct gtacgatgcc 420
atccgaaacc aggttgattt cgacacagag aagaaaccct acaagctgac tacaaagaag 480
tggaccgagg ggacctactc tagaggctcc acggacactc gacccactct tttggtgcgc 540
cctagaggct ggcacatgct cgaaagccat gttcagatcg atggacagag catgtctggg 600
tctctgttcg actttggact cttcttcttc aacaacgcca aggctctgat tgaggctggc 660
cgaggccctt acttttacct ccccaagatg gagcattatc tcgaggctcg actctggaat 720
gatgtctttg ttttctctca aaactactgc ggaatccccc agggcaccat tcgagctact 780
tgtctgattg agactcttcc tgcagctctg cacatggagg agatcatcta cgagctgcga 840
gatcactcta ccggcctcaa ctgtggtcga tgggactaca tgttctcagt tatcaagcgg 900
ttccgaaacc agcccgagaa gctgcttcct gaccgaaaga tgatcaccat gaccgttccc 960
ttcatgaacg cttacgtgac tcgtctggtt cacgtgtgtc acaaacgaaa ggtgcatgcc 1020
atgggaggta tggctgccat cattcctctc aaggatgctg cggagaacgc ccttgccatg 1080
gagaaggtca aggctgacaa acacagagag gcctctgcag gctgtgacgg tacctggatc 1140
gctcatccag gtttggctga gactgccacc aaggagtttg acgagttgat gccaggggaa 1200
aaccaatttg atttcgtcgg agaggacgtt ccctccgaga agctgttgga tactaccatt 1260
gaaggctttg ccatcaccaa ggagggtctt caggagaatg tctacattgg tctgcgctac 1320
atggaggcat ggctgcgagg tttgggatgt gtgcccatca acaacctcat ggaggatgct 1380
gctactgccg aggtttctcg tgcccagctg tggcagtgga ccaagcacgg caagttcacc 1440
aaggaggagg tattggagat gatttcccag gaggccgaga agctgggaaa caccgactct 1500
gtcaagcgag caggcgagtt gctgggatct gagattggcg gcgattttgc agagttcctc 1560
accgatctgc tgtatcctga tctggttgaa cagtag 1596
<210> 25
<211> 1709
<212> DNA
<213> Artificial Synthesis ()
<400> 25
atgatttctg ctattcgtcc cgccgttcga tcttccgttc gtgttgcccc tatggccaac 60
accgccttcc gggcctactc tacccaggat gtgagtattt cttttctttc atcaattggt 120
tgctgtgcga cggatttcgt tgcgtcagcc tgattgcaac agccttaggc cccattttcg 180
acctgttctt gcctcggcaa aagtttttcc gaatgcatgt gacacgtcga atgtggtgct 240
ttcaagcagc agcagcagca taaaatatgg aatgtgttgt gtgcagaagt cgacattaca 300
taaccccgcg gcaaccatac gagatggcag tcataacaat tgcaattgag caatacaaac 360
cacactgcaa cccactaaaa agaaacacga ctaacaaata gggtcttaag gagcgattcg 420
ccgagctcat ccccgagaac gtcgagaaga tcaagaagct ccgaaaggag aagggtaaca 480
ccgtcatcgg cgaggtcatc ctcgaccagg cttacggtgg tatgcgaggt attaagggtc 540
tcgtctggga gggatccgtc ctcgaccccg aggagggtat ccgattccga ggtctgacta 600
tccccgacct ccagaagcag ctcccccacg cccctggcgg aaaggagcct ctccccgagg 660
gtcttttctg gctcctgctc accggcgaga tccccactga tgctcaggtc aagggtctgt 720
ccgctgactg ggcctctcga gccgagatcc ccaagcatgt tgaggagctc atcgaccgat 780
gcccccccac cctccacccc atggctcagc tcggtattgc cgtcaacgct ctggagtccg 840
agtctcagtt caccaaggct tacgagaagg gtgttaacaa gaaggagtac tggcagtaca 900
cctacgagga ttccatgaac ctcattgcca agctccccgt cattgcttct cgaatctacc 960
gaaacctttt caaggacgga aagattgttg gctccattga caactctctt gactactctg 1020
ctaacttcgc ctctctgctc ggctttggcg acaacaagga gttcattgag cttctgcgac 1080
tctacctcac catccacgct gaccacgagg gaggtaacgt ctctgcccac accaccaagc 1140
ttgttggttc tgctctctcc tctcccttcc tctctctgtc cgctggtctc aacggtcttg 1200
ccggtcctct ccacggccga gctaaccagg aggtccttga gtggattctc gagatgaagt 1260
ccaagattgg ctctgatgtc accaaggagg acattgagaa gtacctctgg gataccctta 1320
aggccggtcg agtcgtcccc ggttacggac acgccgttct ccgaaagacc gatcctcgat 1380
acaccgccca gcgagagttc gccctcgagc acatgcccga ctacgacctc ttccacctcg 1440
tttccaccat ctacgaggtt gcccccaagg ttctcaccga gcacggcaag accaagaacc 1500
cctggcccaa tgtggactcc cactccggtg tcctcctcca gtactacggt ctcactgagc 1560
agtcttacta cactgttctc ttcggtgttt cccgagctat cggtgtcctg ccccagctca 1620
tcatggaccg agcttacggt gctcccatcg agcgacccaa gtccttctct accgagaagt 1680
acgctgagct cgttggcctc aagctctaa 1709
<210> 26
<211> 1302
<212> DNA
<213> Artificial Synthesis ()
<400> 26
atgaccggca agacaggaca cattgatggc ctgaactcgc ggatcgagaa gatgcgagat 60
cttgatcctg cccaacgatt ggtcagggta gccgaggctg ccggactcga gcctgaggct 120
atctctgccc tggcgggcaa cggtgctctg ccgttgtctc tggccaatgg catgatcgag 180
aacgtcattg gtaaatttga gctgccccta ggggtcgcaa ccaacttcac cgtcaacgga 240
agagactacc taatccccat ggccgtggag gagccctcag tagttgcagc cgccagttac 300
atggcccgaa ttgccagaga gaatggcggc tttacggctc atggaaccgc ccctctgatg 360
cgggcccaga ttcaggttgt tggtctgggc gaccccgagg gtgctcgaca gagactcttg 420
gcccacaagg ctgccttcat ggaggccgcg gacgctgtcg atccagtgct agtggggtta 480
ggaggaggat gcagagacat cgaggtgcac gtgttccgag acactcctgt tggcgccatg 540
gtcgttctgc atctcatcgt cgacgtccgt gatgctatgg gcgctaacac tgtgaataca 600
atggctgaac gtttggcgcc cgaagtggag cgaatcgccg gcggaactgt gcgcctccgg 660
attctctcca acctggccga tctgcggctt gtaagggctc gagtcgaact ggcacctgag 720
actctgacca cccagggcta tgatggagct gacgttgctc gcggaatggt ggaagcctgt 780
gccctggcta tagtggatcc ctaccgagca gcaacgcaca acaagggcat catgaacggg 840
atcgaccccg ttgtggtggc cacaggtaat gactggcgag ccattgaggc tggagcccat 900
gcctacgcgg cccgtacggg tcactacaca agccttactc gatgggagct tgccaacgac 960
ggacgtctgg tcggcaccat tgaactgcca cttgccctcg gacttgtggg tggtgctacc 1020
aagacccatc cgaccgcacg agctgctctc gctctcatgc aggtcgagac tgccaccgaa 1080
ctcgcgcaag tcactgcagc tgttggtctt gctcagaaca tggcagcaat ccgagccctg 1140
gccactgagg gcatccagcg aggccacatg actctccacg cgcggaacat tgccatcatg 1200
gctggcgcaa cgggagccga cattgaccgc gtgacccgag ttattgtcga ggcgggtgac 1260
gtgtccgtgg caagagcgaa gcaggttttg gaaaacacct ga 1302
<210> 27
<211> 1758
<212> DNA
<213> Artificial Synthesis ()
<400> 27
atggaatgga tttcacatct ggagaacgat gacgatgtgc tggaaatcga ggactacaag 60
gtgcgcaagg acgcgctgct gatcgccatt caagtaaccc agaacgccat taacaacgga 120
actcttcata aggccttgga ggcagccttc gatgctgtga ctgacagaat cgtcatatcg 180
ccgcaagatt acaccggcgt tatgctgttc ggtgcctcca tgcagtctga ggacgacggt 240
gacgagttcg atgatgagtc agatacacat ttcattctca agctgggcct tcctaccgct 300
gctcagatca aacgactcaa acgactggca gaggaccctg atctgggtga gaggttcaag 360
gtgcaggaag agcctcacct gatggacgtg tttttcgaca tgaaccgcca ttttatcaac 420
atggcaccca acttcgcgtc cagacgaatc atctatatca cagacgacga tacccccacg 480
acgaatgagg acgatatcaa caagacacga gttcgaattg aggatctaag ccatctcaag 540
gtgaaggtcg agcctctttt gatcaaccct tcggaagaca agacgttcga ctcctccaaa 600
ttctacgctc ttgtgttcaa cgaagacaca tctgtggagc cggttgaggc gatcgatttg 660
aagcagttta tcaacaaaag aaacgtgctc aatcgatcac tgttcaatgt caaaatggaa 720
atcggagaag gtcttgttgt cggagtaaga ggataccttc tttatgcgga acaaaaggct 780
acttcaacaa cccgaaaggc ctgggtttac actggaggtg agaaacccga gattgccaaa 840
ttagaatcgc aggccgtcac tattgaaagt ggcagaagcg tggacaaggc agatctgaga 900
aagactttca agtttggaaa tgactatgtt cctttcacag aagaacagct gacgcaaatc 960
cggtactttg gagagccaat tattcgaatt ctcggcttcc acaattcctc ggacttctcc 1020
gagctcttca tccacagtgt ccgatcgtca atgttcctat atcccactga tgagaagctt 1080
gtgggttcga ttcgagcctt ttcagcactc tatcagagtc tcaagaacaa ggataagatg 1140
gctctggcct gggttattgt ccgcaagggc gccaaaccta ttctggctct tcttattcct 1200
tcaactaagg agatcgaagg tcttcatatg gtcttcttgc cttttacaga tgatattcga 1260
caagaaccaa agactgaact tgtgtctgcc gcccctgagc tcgtggacgc aaccaagaat 1320
attttcactc gtctacgcat gcctggcgga tttgagtcgc aaagataccc caacccccgt 1380
ctacagtggc attaccgagt tgtacgagcc atggcccttc aggaggaggt tcccaaggta 1440
cccgaagaca agacgacacc aaagtatcgg tctattgata ctcgagttgg tgatgccatc 1500
gaggaatgga acaaggtgtt gcagagcagc tccaagcgac ctgcggagga tatctgtaag 1560
gctgagaaga aagtcaagag ttctgacgcg ggccctccgt ccaacgagca aatgcaaaat 1620
atggttgaga atgacattgt cggcaagctg accgtcgcag aactcagggc ttggggtgct 1680
gctaacaatg ttgagcccaa tggtagcaag ttgaagaagg actgggttga ggtggtcaaa 1740
aagtactatg ggaagtga 1758
<210> 28
<211> 948
<212> DNA
<213> Artificial Synthesis ()
<400> 28
atggcagcta tttccaaaga ctatgttctg tcgccctggg gcaaagccgt ggctggtgcc 60
gctggagccg tgctcgcaaa cacactggtc taccccctag acattgtgaa aacgcggctt 120
caggtgcagg tcaagcgcaa ggagggcgga ccccttcctg ccttcgagga gggccatttc 180
gagcactacg agggcactgt cgacgctctg aaaaagatct atgccgccaa cggcctggcc 240
ggcctgtacc agggtcttcc ctcttgtctt ctaggtgtgg cctctaccaa ctttgcctac 300
ttctactggt atggcttcat ccgagactct tacattaagc gaaaccccgg taaagctctc 360
tcgactccca tcgagctgct cctcggagct gtggcaggag ccctggcaca ggttttcacc 420
atccccgtgg ccgtgatcac cacacgacag cagacttcag acgccaagtc gcggcaggga 480
ttcctggcta ctgccaagag cgtggtggat gacgacggaa tcagtggtct ctggcgaggt 540
ctcaaggcct ctctggtgct ggtgatcaac ccctccatca cttacggctc gtttgagcgt 600
ctcagaacca tcctgttcaa gggtaagctg cacctgtctc ccggagagaa cttcctgctg 660
ggagccttgt ccaaggctat ggccaccatt gccactcagc ccatgattgt ggccaaggtc 720
atgcagcagt ccaagaccaa gggtggcaag cagttcaaca gctttgtgca ggcattggtg 780
ttcctgttca aggaggaggg tattttggga atgtggaagg gagttggccc ccagatctcc 840
aagggcatca ttgtgcaggg gctcctcttc atgattaagg accaagtcga gctcttcatc 900
gtgctacttt ttagactcat gaaggccccc accttgatca agggataa 948
<210> 29
<211> 1494
<212> DNA
<213> Artificial Synthesis ()
<400> 29
atgtcagcga aatccattca cgaggccgac ggcaaggccc tgctcgcaca ctttctgtcc 60
aaggcgcccg tgtgggccga gcagcagccc atcaacacgt ttgaaatggg cacacccaag 120
ctggcgtctc tgacgttcga ggacggcgtg gcccccgagc agatcttcgc cgccgctgaa 180
aagacctacc cctggctgct ggagtccggc gccaagtttg tggccaagcc cgaccagctc 240
atcaagcgac gaggcaaggc cggcctgctg gtactcaaca agtcgtggga ggagtgcaag 300
ccctggatcg ccgagcgggc cgccaagccc atcaacgtgg agggcattga cggagtgctg 360
cgaacgttcc tggtcgagcc ctttgtgccc cacgaccaga agcacgagta ctacatcaac 420
atccactccg tgcgagaggg cgactggatc ctcttctacc acgagggagg agtcgacgtc 480
ggcgacgtgg acgccaaggc cgccaagatc ctcatccccg ttgacattga gaacgagtac 540
ccctccaacg ccacgctcac caaggagctg ctggcacacg tgcccgagga ccagcaccag 600
accctgctcg acttcatcaa ccggctctac gccgtctacg tcgatctgca gtttacgtat 660
ctggagatca accccctggt cgtgatcccc accgcccagg gcgtcgaggt ccactacctg 720
gatcttgccg gcaagctcga ccagaccgca gagtttgagt gcggccccaa gtgggctgct 780
gcgcggtccc ccgccgctct gggccaggtc gtcaccattg acgccggctc caccaaggtg 840
tccatcgacg ccggccccgc catggtcttc cccgctcctt tcggtcgaga gctgtccaag 900
gaggaggcgt acattgcgga gctcgattcc aagaccggag cttctctgaa gctgactgtt 960
ctcaatgcca agggccgaat ctggaccctt gtggctggtg gaggagcctc cgtcgtctac 1020
gccgacgcca ttgcgtctgc cggctttgct gacgagctcg ccaactacgg cgagtactct 1080
ggcgctccca acgagaccca gacctacgag tacgccaaaa ccgtactgga tctcatgacc 1140
cggggcgacg ctcaccccga gggcaaggta ctgttcattg gcggaggaat cgccaacttc 1200
acccaggttg gatccacctt caagggcatc atccgggcct tccgggacta ccagtcttct 1260
ctgcacaacc acaaggtgaa gatttacgtg cgacgaggcg gtcccaactg gcaggagggt 1320
ctgcggttga tcaagtcggc tggcgacgag ctgaatctgc ccatggagat ttacggcccc 1380
gacatgcacg tgtcgggtat tgttcctttg gctctgcttg gaaagcggcc caagaatgtc 1440
aagccttttg gcaccggacc ttctactgag gcttccactc ctctcggagt ttaa 1494

Claims (7)

1. A recombinant strain for producing terpenoid, wherein the terpenoid is alpha-humulene, and the recombinant strain is obtained by genetic engineering of an original strain, and compared with the original strain, the activity of alpha-humulene synthase and the mevalonate pathway and the flux of acetyl-CoA are respectively enhanced in a plurality of organelles of the recombinant strain;
wherein the starting strain isYarrowia lipolytica Po1f Δ ku70, a plurality of organelles of the recombinant strain comprising a cytoplasm and a peroxisome, each of which comprises a nucleotide sequence encoding an amino acid sequence set forth in SEQ ID NO: 1, a gene of α -humulene synthase represented by the formula (I);
overexpression of a coding gene tHMG1 of truncated hydroxymethylglutaryl coenzyme A reductase, a coding gene ERG8 of phosphomevalonate kinase, a coding gene ERG20 of geranyl/farnesyl diphosphate synthase, a coding gene ERG12 of mevalonate kinase, a coding gene ERG13 of hydroxymethylglutaryl-CoA synthase, a coding gene ERG19 of mevalonate diphosphate decarboxylase, a coding gene ERG10 of acetoacetyl coenzyme A thiolase and a coding gene IDI of isopentenyl diphosphate isomerase in cytoplasm of the recombinant strain, and exogenous introduction of a coding gene ACHS2 of alpha-humulene synthase, a coding gene-tHMG 1 of key rate-limiting enzyme and a coding gene AAD of NADH-CoA acetylaldehyde dehydrogenase;
the recombinant strain effectively expresses tHMG1, ERG8, ERG20, ERG12, ERG13, ERG19, ERG10 and IDI in peroxisomes, ACHS2, NADH-tHMG1, an encoding gene ANT of a carrier protein for over-expressing ATP and an encoding gene POT1 of 3-ketoacyl-CoA thiolase are introduced by exogenous introduction, and an encoding gene ERG9 of squalene synthase is replaced by a copper ion inhibition type promoter CTR 2;
the nucleotide sequence of the coding gene ACHS2 of the alpha-humulene synthase is shown as SEQ ID NO: 3, the nucleotide sequence of the copper ion repression type promoter CTR2 is shown as SEQ ID NO: 5 is shown in the specification; the nucleotide sequences of the coding genes tHMG1, ERG8, ERG20, ERG12, ERG13, ERG19, ERG10 and IDI are respectively shown as SEQ ID NO: 6-13, and the nucleotide sequence of the encoding gene AAD is shown as SEQ ID NO: 14, the nucleotide sequence of the coding gene POT1 is shown as SEQ ID NO: 21, and the nucleotide sequence of the coding gene NADH-tHMG1 is shown as SEQ ID NO: 26, and the nucleotide sequence of the coding gene ANT is shown as SEQ ID NO: shown at 28.
2. The recombinant strain producing terpenoids according to claim 1, wherein the nucleotide sequence of the gene encoding squalene synthase ERG9 is as set forth in SEQ ID NO: 4, respectively.
3. The terpenoid-producing recombinant strain of claim 1 or 2, wherein the nucleotide sequence encoding gene ku70 in the starting strain is as set forth in SEQ ID NO: 27 is shown; and/or the presence of a gas in the gas,
the preservation number of the recombinant strain is CGMCC No. 2425.
4. A method of constructing a recombinant strain, the method comprising: genetically engineering a starting strain to enhance alpha-humulene synthase activity and mevalonate pathway and acetyl-coa flux, respectively, in cytoplasm and peroxisomes of the starting strain;
wherein the starting strain isYarrowia lipolytica Po1f Δ ku70, in a manner that enhances the activity of α -humulene synthase by exogenously introducing into the cytoplasm and peroxisomes of the starting strain a nucleic acid encoding an amino acid sequence as set forth in SEQ ID NO: 1, a gene of α -humulene synthase represented by the formula (I);
overexpression of a coding gene tHMG1 of truncated hydroxymethylglutaryl coenzyme A reductase, a coding gene ERG8 of phosphomevalonate kinase, a coding gene ERG20 of geranyl/farnesyl diphosphate synthase, a coding gene ERG12 of mevalonate kinase, a coding gene ERG13 of hydroxymethylglutaryl-CoA synthase, a coding gene ERG19 of mevalonate diphosphate decarboxylase, a coding gene ERG10 of acetoacetyl coenzyme A thiolase and a coding gene IDI of isopentenyl diphosphate isomerase in cytoplasm of the recombinant strain, and exogenous introduction of a coding gene ACHS2 of alpha-humulene synthase, a coding gene-tHMG 1 of key rate-limiting enzyme and a coding gene AAD of NADH-CoA acetylaldehyde dehydrogenase;
the recombinant strain effectively expresses tHMG1, ERG8, ERG20, ERG12, ERG13, ERG19, ERG10 and IDI in peroxisomes, ACHS2, NADH-tHMG1, an encoding gene ANT of a carrier protein for over-expressing ATP and an encoding gene POT1 of 3-ketoacyl-CoA thiolase are introduced by exogenous introduction, and an encoding gene ERG9 of squalene synthase is replaced by a copper ion inhibition type promoter CTR 2;
the nucleotide sequence of the coding gene ACHS2 of the alpha-humulene synthase is shown as SEQ ID NO: 3, the nucleotide sequence of the copper ion repression type promoter CTR2 is shown as SEQ ID NO: 5 is shown in the specification; the nucleotide sequences of the coding genes tHMG1, ERG8, ERG20, ERG12, ERG13, ERG19, ERG10 and IDI are respectively shown as SEQ ID NO: 6-13, and the nucleotide sequence of the encoding gene AAD is shown as SEQ ID NO: 14, the nucleotide sequence of the coding gene POT1 is shown as SEQ ID NO: 21, and the nucleotide sequence of the coding gene NADH-tHMG1 is shown as SEQ ID NO: 26, and the nucleotide sequence of the coding gene ANT is shown as SEQ ID NO: shown at 28.
5. The method according to claim 4, wherein the squalene synthase gene ERG9 has a nucleotide sequence as set forth in SEQ ID NO: 4 is shown in the specification; and/or the presence of a gas in the gas,
the nucleotide sequence of the coding gene ku70 in the starting strain is shown as SEQ ID NO: as shown at 27.
6. A method for producing terpenoids through fermentation, wherein the terpenoids are alpha-humulene, and the method comprises the following steps: inoculating the recombinant strain of any one of claims 1 to 3 into a fermentation medium for fermentation;
alternatively, a recombinant strain is constructed according to the method of claim 4 or 5, and the resulting recombinant strain is inoculated into a fermentation medium for fermentation.
7. Use of the recombinant strain of any one of claims 1 to 3 or the method of claim 4 or 5 for the preparation of a terpenoid, wherein the terpenoid is alpha-humulene.
CN202210424155.2A 2022-04-22 2022-04-22 Recombinant strain for producing terpenoid, construction method thereof, method for producing terpenoid through fermentation and application of recombinant strain Active CN114525215B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210424155.2A CN114525215B (en) 2022-04-22 2022-04-22 Recombinant strain for producing terpenoid, construction method thereof, method for producing terpenoid through fermentation and application of recombinant strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210424155.2A CN114525215B (en) 2022-04-22 2022-04-22 Recombinant strain for producing terpenoid, construction method thereof, method for producing terpenoid through fermentation and application of recombinant strain

Publications (2)

Publication Number Publication Date
CN114525215A CN114525215A (en) 2022-05-24
CN114525215B true CN114525215B (en) 2022-08-02

Family

ID=81627814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210424155.2A Active CN114525215B (en) 2022-04-22 2022-04-22 Recombinant strain for producing terpenoid, construction method thereof, method for producing terpenoid through fermentation and application of recombinant strain

Country Status (1)

Country Link
CN (1) CN114525215B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113832044A (en) * 2021-09-15 2021-12-24 南京师范大学 Recombinant yarrowia lipolytica, construction method and application thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113832044A (en) * 2021-09-15 2021-12-24 南京师范大学 Recombinant yarrowia lipolytica, construction method and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Harnessing Yarrowia lipolytica Peroxisomes as a Subcellular Factory for α‑Humulene Overproduction;Qi Guo 等;《J. Agric. Food Chem.》;20211109;第69卷;图1、第3.1节、第3.4节、第3.5节、图S1、表S1-S3 *
Qi Guo 等.Harnessing Yarrowia lipolytica Peroxisomes as a Subcellular Factory for α‑Humulene Overproduction.《J. Agric. Food Chem.》.2021,第69卷图1、第3.1节、第3.4节、第3.5节、图S1、表S1-S3. *

Also Published As

Publication number Publication date
CN114525215A (en) 2022-05-24

Similar Documents

Publication Publication Date Title
CN110106209B (en) Method for positioning and synthesizing terpenoid by using yarrowia lipolytica pathway
CN114107340B (en) Mevalonate kinase gene RKMK and application thereof
CN111849794B (en) Saccharomyces cerevisiae recombinant strain and construction method and application thereof
CN105647943B (en) Saussurea involucrate cell squalene synthase gene SiSQS and coded product and application thereof
CN110117601B (en) Grifola frondosa glucan synthase, encoding gene and application thereof
CN116286900B (en) Acetic acid permease A gene RkAcpa and application thereof
CN110747206A (en) 3-hydroxy-3-methylglutaryl coenzyme A reductase gene RKHMGR and application thereof
CN113774079A (en) Recombinant saccharomyces cerevisiae and construction method and application thereof
CN115927029A (en) Recombinant saccharomyces cerevisiae for producing cannabigerol acid and construction method and application thereof
CN101748069B (en) Recombinant blue-green algae
WO2017149147A2 (en) Production of gibberellins in recombinant hosts
CN106754979B (en) Gene for regulating and controlling long-chain fatty acid transport of candida tropicalis and application of gene
CN112391300B (en) Application of flavone 3 beta-hydroxylase derived from silybum marianum and coenzyme thereof
CN114525215B (en) Recombinant strain for producing terpenoid, construction method thereof, method for producing terpenoid through fermentation and application of recombinant strain
CN114934062B (en) Engineering bacterium for efficiently expressing D-psicose 3-epimerase and application
CN111154665A (en) Recombinant yarrowia lipolytica and construction method and application thereof
CN113832167B (en) Gene and application thereof in increasing yield of phenethyl alcohol and tryptophane
CN113249240B (en) Saccharomyces cerevisiae for high yield of hydroxytyrosol and construction method thereof
CN112852847B (en) Recombinant saccharomyces cerevisiae strain and construction method and application thereof
CN115873836A (en) Nerolidol synthetase and application thereof
CN110499259B (en) Yarrowia lipolytica YW100-1 and application thereof
CN113444737B (en) Cytochrome P450 enzyme and application thereof in synthesis of ganoderma lucidum triterpenoid
CN113493758A (en) Tyrosol-producing recombinant escherichia coli capable of shortening fermentation period and application thereof
CN107723308B (en) Biosynthesis method and gene cluster of compound balanol
CN102277327B (en) Colon bacillus for over-expressing RimL and application on preparing N-extrasin alpha acetylate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant