CN110499259B - Yarrowia lipolytica YW100-1 and application thereof - Google Patents

Yarrowia lipolytica YW100-1 and application thereof Download PDF

Info

Publication number
CN110499259B
CN110499259B CN201910661781.1A CN201910661781A CN110499259B CN 110499259 B CN110499259 B CN 110499259B CN 201910661781 A CN201910661781 A CN 201910661781A CN 110499259 B CN110499259 B CN 110499259B
Authority
CN
China
Prior art keywords
yarrowia lipolytica
glycerol
gene
fermentation
nucleotide sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910661781.1A
Other languages
Chinese (zh)
Other versions
CN110499259A (en
Inventor
袁围
钟爽
孙杰
汪钊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Haipu Wohui Biopharmaceutical Co ltd
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201910661781.1A priority Critical patent/CN110499259B/en
Publication of CN110499259A publication Critical patent/CN110499259A/en
Application granted granted Critical
Publication of CN110499259B publication Critical patent/CN110499259B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01006Glycerol dehydrogenase (1.1.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/05Oxidoreductases acting on the CH-OH group of donors (1.1) with a quinone or similar compound as acceptor (1.1.5)
    • C12Y101/05003Glycerol-3-phosphate dehydrogenase (1.1.5.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/0102Diacylglycerol O-acyltransferase (2.3.1.20)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01029Glycerone kinase (2.7.1.29), i.e. dihydroxyacetone kinase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/0103Glycerol kinase (2.7.1.30)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01086NADH kinase (2.7.1.86)

Abstract

The yarrowia lipolytica YW100-1 is obtained by over-expressing glycerol kinase GUT1, glycerol kinase GUT2, glycerol dehydrogenase enzyme GCY1, dihydroxyacetone kinase DAK1, dihydroxyacetone kinase DAK2 and NADH kinase POS5 in glycerol metabolism in yarrowia lipolytica and simultaneously knocking out diacylglycerol acyltransferase gene DGA2 and 3-phosphoglycerol dehydrogenase gene GPD2 in the yarrowia lipolytica. When the strain takes glycerol as a carbon source, the yield of pyruvic acid is increased by 66.2 percent and reaches 121.2g/L, and the strain provides an excellent strain for industrial production of pyruvic acid.

Description

Yarrowia lipolytica YW100-1 and application thereof
(I) technical field
The invention relates to a construction method and application of yarrowia lipolytica engineering bacteria, belonging to the technical field of biological engineering.
(II) background of the invention
Pyruvic acid is used as an intermediate in microbial metabolic pathways, is also one of important organic acids, and has wide functions in the fields of biochemical engineering, pharmacy, food and science. In the medical industry, pyruvic acid is an important medical intermediate, can be used for synthesizing levodopa, anti-inflammatory analgesic sinkefen, antituberculosis drugs such as isoniazid calcium pyruvate, thiaimidazole drugs and the like, and in addition, pyruvate salts (such as calcium pyruvate, potassium pyruvate, pyruvate creatine) are widely applied to weight-losing health care products and drugs. In the food industry, pyruvic acid is used as a food additive and has natural preservative and fresh-keeping effects. In the chemical industry, ethyl pyruvate is used as a skin whitening agent, can inhibit the formation of melanin in the skin and has good skin whitening effect. In addition, pyruvic acid is used as a precursor of a new generation of biofuel, the market demand at home and abroad is rapidly increased, and the pyruvic acid has wide application value.
At present, the methods for producing pyruvic acid mainly comprise three major methods, namely a chemical synthesis method, an enzyme conversion method and a microbial fermentation method. The chemical synthesis method mainly uses tartaric acid as a raw material to chemically synthesize pyruvic acid, but the method has heavy pollution and high cost, and the industrial production is limited. The enzyme conversion method mainly utilizes a dehydrogenase system in microorganisms to convert lactic acid into pyruvic acid, but the method has low conversion rate and high cost, and industrial production is not realized at present. The microbial fermentation method mainly uses microorganisms and uses glucose or glycerol and the like as cheap carbon sources to directly produce pyruvic acid through microbial fermentation. Currently used strains for microbial fermentation are Saccharomyces cerevisiae (Saccharomyces cerevisiae), Escherichia coli (Escherichia coli), Torulopsis glabrata (Torulopsis glabrata), Yarrowia lipolytica (Yarrowia lipolytica), and the like. Compared with chemical synthesis and enzyme conversion, it has the advantages of less pollution, high conversion rate, low cost, etc. and is also the main industrial process.
Although yarrowia lipolytica has a good pyruvate production capacity, the conversion rate and synthesis rate of pyruvate synthesis from glycerol still need to be improved, and the rapid degradation rate of pyruvate results in the failure of large-scale accumulation. Two glycerol catabolic pathways exist in yarrowia lipolytica, one is the glycerol-3-phosphate pathway, in which glycerol is phosphorylated to glycerol-3-phosphate in the cytoplasm by the action of glycerol kinase (encoded by GUT 1), followed by shuttling into the mitochondria, oxidation of glycerol-3-phosphate to dihydroxyacetone phosphate by the action of glycerol-3-phosphate dehydrogenase (encoded by GUT 2), which is then transported back into the cytoplasm into the glycolytic metabolic pathway. The other is the Dihydroxyacetone (DHA) pathway in which glycerol dehydrogenase (encoded by GCY 1) oxidizes glycerol to DHA, which is subsequently phosphorylated to dihydroxyacetone phosphate by dihydroxyacetone kinase (encoded by DAK1 and DAK 2) into the glycolytic metabolic pathway. Yarrowia lipolytica, a high-producing lipid yeast, diacylglycerol acyltransferase (encoded by DGA 2) can synthesize triacylglycerol, an important component of lipid, using dihydroxyacetone phosphate. Glycerol synthesis glycerol was synthesized by conversion to glycerol-3-phosphate via dihydroxyacetone phosphate followed by glycerol-3-phosphate dehydrogenase (encoded by GPD1, GPD 2). It has been shown that the knockout of GPD2 results in the accumulation of intracellular NADH, thereby breaking the NADH/NADPH balance and affecting the growth of the thallus, while Pos5, as a NADH kinase, can phosphorylate NADH to NADPH using ATP.
In view of the above, the present invention enhances the glycerol catabolism pathway by enhancing the glycerol-3-phosphate pathway and the dihydroxyacetone pathway to accelerate the glycerol decomposition and simultaneously weaken the glycerol synthesis pathway, thereby realizing the massive accumulation of pyruvic acid in cells.
Disclosure of the invention
The invention aims to provide yarrowia lipolytica engineering bacteria for high yield of pyruvic acid, and construction and application thereof, and provides excellent bacteria for industrial production of pyruvic acid.
The technical scheme adopted by the invention is as follows:
the invention provides a Yarrowia lipolytica YW100-1 with high pyruvate yield, wherein the Yarrowia lipolytica YW100-1 is a Yarrowia lipolytica Yarrowia engineering bacterium with high pyruvate yield, and the Yarrowia lipolytica YW100-1 is a Yarrowia lipolytica strain which is obtained by over-expressing a glycerol kinase GUT1, a glycerol kinase GUT2, a glycerol dehydrogenase enzyme GCY1, a dihydroxyacetone kinase DAK1 and a dihydroxyacetone kinase DAK2 in the glycerol metabolism of glycerol, simultaneously knocking out a diacylglycerol acyltransferase gene DGA2 in the Yarrowia lipolytica to enhance the catabolism of the glycerol, knocking out a 3-phosphate glycerol dehydrogenase gene GPD2 and over-expressing an NADH kinase POS5 to reduce the anabolism of the glycerol.
Further, the yarrowia lipolytica YW100-1 was constructed as follows:
(1) GUT1 gene, GUT2 gene and pEXP1 fragment of a promoter from yarrowia lipolytica are overlapped and extended to obtain GUT1-pEXP1-GUT2, and the GUT1-pEXP1-GUT2 is connected to a vector JMP113 to obtain a vector E14;
(2) carrying out enzyme digestion on the constructed vector E14 by Not I, and transferring the vector E14 into wild yarrowia lipolytica AS2.1405 to obtain transformed yarrowia lipolytica engineering bacteria ZS 102;
(3) transferring three large fragments, namely 5 'KU 70-URA3-pTEF-DAK1, DAK1-pEXP1-DAK2-pGPD and pGPD-GYC 1-3' KU70, of GCY1, DAK1 and DAK2 genes, promoters pTEF, pEXP1 and pGPD derived from yarrowia lipolytica, and 5 'end and 3' end of a homologous arm KU70 for integration into ZS102 through overlapping extension to obtain transformed yarrowia lipolytica engineering bacteria ZS 104;
(4) transferring a POS5 gene and pTEF derived from yarrowia lipolytica, a 5 'GPD 2 fragment and a 3' GPD2 fragment for knocking out GPD2 to ZS104 by overlapping and extending to obtain a 5 'GPD 2-URA3-pTEF-POS5 fragment and a POS 5-3' GPD2 fragment, and obtaining a yarrowia lipolytica engineering bacterium ZS106 after homologous recombination;
(5) the 5 ' and 3 ' DGA2 used for knockout were transferred to ZS106 by overlapping extension to obtain 5 ' DGA2-URA3-DGA2 fragment, and yarrowia lipolytica YW100-1 was obtained.
Further, the nucleotide sequence of the glycerol kinase GUT1 gene is shown as SEQ ID NO.1, the nucleotide sequence of the glycerol kinase GUT2 gene is shown as SEQ ID NO.2, the nucleotide sequence of the dihydroxyacetone kinase DAK1 gene is shown as SEQ ID NO.3, the nucleotide sequence of the dihydroxyacetone kinase DAK2 gene is shown as SEQ ID NO.4, the nucleotide sequence of the glycerol dehydrogenase GCY1 gene is shown as SEQ ID NO.5, the nucleotide sequence of the NADH kinase POS5 gene is shown as SEQ ID NO.6, the nucleotide sequence of the diacylglycerol acyltransferase 5 'DGA 2 gene is shown as SEQ ID NO.7, the nucleotide sequence of the diacylglycerol acyltransferase 3' DGA2 gene is shown as SEQ ID NO.8, the nucleotide sequence of the promoter pEXP1 is shown as SEQ ID NO.9, the nucleotide sequence of the promoter KU70 is shown as SEQ ID NO.10, the nucleotide sequence of Loxp-URA3-Loxp p nucleotide NO.11, the nucleotide sequence of the promoter pTEF NO.12, the nucleotide sequence of the promoter pGPD is shown as SEQ ID NO.13, the nucleotide sequence of the 3 ' KU70 is shown as SEQ ID NO.14, the nucleotide sequence of the 3-phosphoglycerol dehydrogenase 5 ' GPD2 gene is shown as SEQ ID NO.15, and the nucleotide sequence of the 3 ' GPD2 gene is shown as SEQ ID NO. 16.
The Yarrowia lipolytica YW100-1 is preserved in China center for type culture Collection with the preservation date of 2019, 3 months and 18 days and the preservation number of CCTCC NO: m2019168, address: wuhan university, Wuhan, China, zip code 430072.
The invention also provides an application of the yarrowia lipolytica YW100-1 in preparing pyruvic acid by fermenting glycerol, wherein the application is one of the following methods: (1) and (3) shaking flask fermentation: inoculating yarrowia lipolytica YW100-1 into YPD culture medium, culturing at 30 deg.C and 200rpm for 24 hr to obtain seed solution; at an initial cell concentration OD600Inoculation of 0.05 ═Fermenting and culturing at 30 deg.C and 200rpm in YNG medium to OD600At 4.0-5.0 (preferably 4.5), obtaining fermentation liquor containing pyruvic acid; the YPD liquid culture medium comprises the following components in parts by weight: 1% of yeast extract, 2% of glucose, 2% of peptone and distilled water as a solvent, wherein the pH value is natural; YNG culture medium comprises the following components by mass: 0.67% YNB (containing ammonium sulfate and yeast basic nitrogen source without amino acids), 50g/L glycerol, distilled water as solvent, and Na2HPO4-adjusting the pH to 4.0 with a citric acid buffer;
(2) fermentation in a fermentation tank: inoculating yarrowia lipolytica YW100-1 into a fermentation tank containing a fermentation culture medium, fermenting at 30-32 ℃, pH value of 4-4.5 and dissolved oxygen of 40-50% to obtain fermentation liquor containing pyruvic acid, and separating and purifying to obtain pyruvic acid; the fermentation medium comprises the following components: 60g/L of glycerin, 10g/L of (NH)4)2SO4、1.4g/L MgSO4·7H2O、2g/L KH2PO4、0.8g/L CaCl20.5g/L NaCl, 1 mu g/L vitamin B1, and the solvent is distilled water, and the pH value is natural.
Further, during fermentation in the fermentation tank, glycerol is added in a batch mode, 60g/L is added for the first time, and after the glycerol is exhausted, the glycerol is supplemented, 40g/L is supplemented each time, and 2 times are preferred.
Further, before fermentation in the fermentation tank, yarrowia lipolytica YW100-1 is subjected to seed expansion culture, and then a seed solution is inoculated to the fermentation medium in an inoculation amount with a volume concentration of 10%, wherein the seed culture comprises the following steps: inoculating yarrowia lipolytica YW100-1 to a seed culture medium, and performing shake-flask culture at 30 ℃ for 18h to obtain a seed solution; the seed culture medium: 2g/L glycerol, 0.4g/L tryptone, 0.2g/L yeast extract, 0.24g/L KH2PO4、1.7g/L K2HPO4·3H2O, the solvent is distilled water, and the pH value is natural.
Compared with the prior art, the invention has the following beneficial effects:
compared with the original strain yarrowia lipolytica AS2.1405, the yarrowia lipolytica YW100-1 (the preservation number is CCTCC NO: M2019168) obtained by the invention has the advantages that when glycerol is used AS a carbon source, the yield of pyruvic acid is increased by 66.2 percent and reaches 121.2g/L, and an excellent strain is provided for industrial production of pyruvic acid.
(IV) description of the drawings
FIG. 1 is a scheme showing the construction of yarrowia lipolytica genetically engineered bacteria.
FIG. 2 is a comparison of the pyruvic acid yield and the glycerol residue of the recombinant strain YW100-1 and the starting strain AS2.1405 in the flask fermentation.
FIG. 3 is a comparison of the pyruvic acid yields of the recombinant strain YW100-1 and the starting strain AS2.1405 fermented and cultured in a 20L fermentation tank.
(V) detailed description of the preferred embodiments
The invention will be further described with reference to specific examples, but the scope of the invention is not limited thereto:
the methods in the following examples are well known unless otherwise specified.
The YPD liquid culture medium comprises the following components in parts by weight: 1% of yeast extract, 2% of glucose, 2% of peptone and distilled water as a solvent, and the pH value is natural.
YNG culture medium comprises the following components by mass: 0.67% YNB (containing ammonium sulfate and yeast basic nitrogen source without amino acids), 50g/L glycerol, distilled water as solvent, and Na2HPO4The pH was adjusted to 4.0 with a citrate buffer.
The YPD solid medium was prepared by adding agar at a concentration of 2g/L to a YPD liquid medium.
The LB culture medium comprises the following components in percentage by mass: peptone 1%, yeast extract 0.5%, sodium chloride 0.5%, distilled water as solvent, and natural pH.
Example 1: construction of yarrowia lipolytica gene engineering bacteria for high yield of pyruvic acid
The procedure is shown in FIG. 1, and the yarrowia lipolytica YW100-1 was constructed as follows:
1. construction of E14 plasmid
Amplification of GUT 1: GUT1, which is about 1.5kb in size and has the nucleotide sequence shown in SEQ ID NO.1, is amplified by designing primers YW238 and YW239 and taking the genome of wild type yarrowia lipolytica AS2.1405 (purchased from Guangdong collection of microorganisms and strains, with the number of GIM 2.187) AS a template.
Amplification of promoter pEXP 1: through designing primers YW405 and YW240, using a wild yarrowia lipolytica AS2.1405 genome AS a template, pEXP1 with the size of about 1kb and a nucleotide sequence shown in SEQ ID NO.9 is amplified.
Amplification of GUT 2: by designing primers YW241 and YW242, GUT2 with the size of about 2kb and the nucleotide sequence shown in SEQ ID NO.2 is amplified by taking the wild type yarrowia lipolytica AS2.1405 genome AS a template.
The PCR amplification conditions of the GUT1, pEXP1 and GUT2 are pre-denaturation at 98 ℃ for 3 minutes; denaturation at 98 ℃ for 10 seconds, annealing at 58 ℃ for 10 seconds, and extension at 72 ℃ for 2 minutes (30 cycles), and re-extension at 72 ℃ for 10 minutes.
Overlapping extension to construct GUT1-pEXP1-GUT2 fragment: overlap extension was performed using 2 rounds of PCR amplification. A first round: the amplification system was 25. mu.l (2 XPrimeSTAR Max DNA polymerase (from Beijing Baorizimen, Co., Ltd.) 12.5. mu.l, GUT1, pEXP1 and GUT2 fragments mixed in a molar ratio of 1:3:1, supplemented with distilled water to 25. mu.l), pre-denatured at 95 ℃ for 3 minutes, denatured at 98 ℃ for 10 seconds, annealed at 58 ℃ for 15 seconds, extended at 72 ℃ for 2 minutes (15 cycles), and re-extended at 72 ℃ for 10 minutes. And a second round: the amplification system was 50. mu.l (2 XPrimeSTAR Max DNA polymerase 25. mu.l, 2. mu.l PCR product from the first amplification step, 1. mu.l YW238+ 1. mu.l YW243 and distilled water supplemented to 50. mu.l), pre-denatured at 95 ℃ for 3 min, denatured at 98 ℃ for 10 sec, annealed at 56 ℃ for 15 sec, extended at 72 ℃ for 2 min (30 cycles), and re-extended at 72 ℃ for 10 min.
The GUT1-pEXP1-GUT2 fragment obtained as described above was recovered with a gel recovery kit (available from Beijing Baoji doctor Co., Ltd.), and cloned into JMP113 vector (fillers P, Le Dall MT, Garllarin C, ThonJM P, Nicaud. New dispersion cassettes for rapid gene dispersion and marker recovery in the yeast Yarrowia lipolytica. J. Microbiol methods.2003.55(3):727-37.) using a one-step cloning kit (available from Nanjing Nozam Biotech Co., Ltd.). Cloning system: 2. mu.l of 5 XCE MultiS buffer, 3. mu.l of GUT1-pEXP1-GUT2 fragment, 2. mu.l of BamH I linearized JMP113, 1. mu.l of Exnase TM MultiS enzyme, 2. mu.l of distilled water. After reaction at 37 ℃ for half an hour, 10. mu.l of the mixture was added to 100. mu.l of E.coli DH 5. alpha. competent cells for 30 minutes in ice bath after 5 minutes. Heat shock was carried out at 42 ℃ for 30 seconds and immediately placed on ice for 2 minutes. 1mL of LB medium was added and incubated at 37 ℃ for 1 hour at 200 rpm. And (3) centrifugally collecting bacterial liquid, coating the bacterial liquid on an LB plate containing 50 mu g/mL kanamycin, carrying out overnight culture at 37 ℃ until a transformant grows out, identifying the transformant by using primers YW244 and YW245, screening 4 positive single colonies by PCR (polymerase chain reaction), inoculating the colonies in an LB culture medium for culture, extracting positive clone plasmids for sequencing verification, and indicating that the construction of the vector E14 is successful by a sequencing result.
TABLE 1 primer List
Figure BDA0002138772850000041
2. Construction of recombinant yarrowia lipolytica ZS102
The Not I is used for enzyme digestion of the plasmid E14, the pTEF-GUT1-pEXP1-GUT2 fragment is recovered by gel cutting, and the fragment is transferred into wild yarrowia lipolytica AS2.1405 competent cells by an electrotransfer method to obtain the recombinant yarrowia lipolytica engineering bacteria ZS102, which comprises the following specific steps:
inoculating wild type yarrowia lipolytica AS2.1405 in YPD liquid medium, culturing overnight at 30 deg.C, transferring to 50mL fresh YPD liquid medium to make initial OD600Culturing at 0.1 deg.C for 4-6 hr to obtain OD600Up to 1.0. The supernatant was removed by centrifugation, and the cells were suspended in a buffer (0.6M sorbitol, 10mM Tris-HCl, 25mM DTT, 150mM LiAc, pH 7.5) and then allowed to stand for 1 hour. Centrifuge again, and use 1M sorbitol three times. After removing the supernatant, the cells were suspended in 150mL of 1M sorbitol, i.e., the wild-type yarrowia lipolytica AS2.1405 competent cells. 80 μ l of competent cells were mixed with 200ng of pTEF-GUT1-pEXP1-GUT2 fragment, and subjected to electroporation at 1.5kV (E ═ 12.4kV/cm), 200. omega. and 25. mu.F, 1mL of 1M aqueous sorbitol solution was rapidly added after the electroporation, the mixture was plated on YND solid medium and subjected to inverted culture for 2 to 3 days, and the transformants were identified by PCR using primers YW253+ YW 254.
3. Construction of yarrowia lipolytica ZS104
Amplification of 5' KU 70: by designing primers YW600 and YW601, the 5' upstream of KU70, which is about 1.2kb in size and has the nucleotide sequence shown in SEQ ID NO.10, is amplified by using the wild type yarrowia lipolytica AS2.1405 genome AS a template.
Amplification of Loxp-URA 3-Loxp: by designing primers YW602 and YW603 and taking a plasmid JMP113 as a template, Loxp-URA3-Loxp with the size of about 1.8kb and the nucleotide sequence shown in SEQ ID NO.11 are amplified.
Amplification of pTEF: by designing primers YW604 and YW605, and taking the genome of wild-type yarrowia lipolytica AS2.1405 AS a template, a promoter pTEF with the size of about 0.4kb and the nucleotide sequence shown in SEQ ID NO.12 is amplified.
Amplification of DAK 1: by designing primers YW606 and YW607 and taking the genome of wild-type yarrowia lipolytica AS2.1405 AS a template, a promoter DAK1 with the size of about 2.2kb and the nucleotide sequence shown in SEQ ID NO.3 is amplified.
Amplification of pEXP 1: by designing primers YW608 and YW609, a promoter pEXP1 with the size of about 1kb and the nucleotide sequence shown AS SEQ ID NO.9 is amplified by taking the genome of wild type yarrowia lipolytica AS2.1405 AS a template.
Amplification of DAK 2: by designing primers YW610 and YW611, and taking the genome of wild-type yarrowia lipolytica AS2.1405 AS a template, a promoter DAK2 with the size of about 2.2kb and the nucleotide sequence shown in SEQ ID NO.4 is amplified.
Amplification of pGPD: by designing primers YW612 and YW613, and taking the genome of wild-type yarrowia lipolytica AS2.1405 AS a template, a promoter pGPD with the size of about 0.94kb and the nucleotide sequence shown in SEQ ID NO.13 is amplified.
GYC1 amplification: through designing primers YW614 and YW615, a promoter GYC1 with the size of about 1.5kb and the nucleotide sequence shown in SEQ ID NO.5 is amplified by taking the genome of wild type yarrowia lipolytica AS2.1405 AS a template.
Amplification of 3' KU 70: by designing primers YW616 and YW617 and using the wild type yarrowia lipolytica AS2.1405 genome AS a template, the 3' downstream of KU70 was amplified to be about 1kb in size and the nucleotide sequence shown in SEQ ID NO. 14.
The PCR amplification conditions of the above 5 'KU 70, Loxp-URA3-Loxp, pTEF, DAK1, pEXP1, DAK2, pGPD, GYC1, 3' KU70 are the same as those in step 1.
The DNA fragments obtained above were assembled into three large fragments, 5 'KU 70-URA3-pTEF-DAK1, DAK1-pEXP1-DAK2-pGPD, pGPD-GYC 1-3' KU70, by overlap extension.
The 5' KU70-URA3-pTEF-DAK1 fragment was constructed by overlap extension. A first round: 5' KU70, URA3, pTEF, DAK1 fragments were mixed at a molar ratio of 1:3:3:1, and the amplification conditions were the same as above. And a second round: PCR amplification was performed by adding 1. mu.l of YW600+ 1. mu.l of YW607 to the PCR product obtained in the first round of amplification as a template.
The overlap extension constructed DAK1-pEXP1-DAK2-pGPD fragment. A first round: DAK1, pEXP1, DAK2 and pGPD fragments were mixed at a molar ratio of 1:3:3:1, and the amplification conditions were the same as above. And a second round: using the PCR product obtained in the first round of amplification as a template, 1. mu.l of YW618+ 1. mu.l of YW613 was added to perform PCR amplification.
The pGPD-GYC 1-3' KU70 fragment was constructed by overlap extension. A first round: pGPD, GYC1, 3' KU70 fragment were mixed at a molar ratio of 1:3:1, and the amplification conditions were the same as above. And a second round: using the PCR product obtained in the first round of amplification as a template, 1. mu.l of YW612+ 1. mu.l of YW617 were added to perform PCR amplification.
Three large fragment gels of 5 'KU 70-URA3-pTEF-DAK1, DAK1-pEXP1-DAK2-pGPD and pGPD-GYC 1-3' KU70 obtained by the above overlap extension are recovered, 50ng of each fragment is mixed and transferred into yarrowia lipolytica recombinant engineering bacteria ZS102, and transformants are respectively identified by PCR with primers YW619+ YW620, YW621+ YW622 and YW226+ YW 227.
TABLE 2 primer List
Figure BDA0002138772850000061
4. Construction of yarrowia lipolytica ZS106
Amplification of 5' GPD 2: by designing primers YW626 and YW627, using the wild type yarrowia lipolytica AS2.1405 genome AS a template, 5' GPD2 was amplified, the size was about 1kb, and the nucleotide sequence is shown in SEQ ID NO. 15.
Amplification of Loxp-URA 3-Loxp: by designing primers YW628 and YW603 and taking a plasmid JMP113 as a template, Loxp-URA3-Loxp with the size of about 1.8kb and the nucleotide sequence shown in SEQ ID NO.11 are amplified.
Amplification of pTEF: by designing primers YW604 and YW629 and using the genome of wild-type yarrowia lipolytica AS2.1405 AS a template, a promoter pTEF with the size of about 0.4kb and the nucleotide sequence shown in SEQ ID NO.12 is amplified.
Amplification of POS 5: by designing primers YW630 and YW631, a wild yarrowia lipolytica AS2.1405 genome is used AS a template, and a promoter POS5 with the size of about 1.2kb and the nucleotide sequence shown in SEQ ID NO.6 is amplified.
Amplification of 3' GPD 2: by designing primers YW632 and YW633 and taking the wild yarrowia lipolytica AS2.1405 genome AS a template, 3' GPD2 with the size of about 1.2kb and the nucleotide sequence shown in SEQ ID NO.16 is amplified.
The PCR amplification conditions for 5 'GPD 2, Loxp-URA3-Loxp, pTEF, POS5 and 3' GPD2 are the same as those in step 1.
The DNA fragments obtained above were assembled into two large fragments, 5 'GPD 2-URA3-pTEF-POS5, POS 5-3' GPD2, by overlap extension.
The 5' GPD2-URA3-pTEF-POS5 fragment was constructed by overlap extension. A first round: 5' GPD2, URA3, pTEF and POS5 fragments were mixed at a molar ratio of 1:3:3:1, and the amplification conditions were the same as above. And a second round: using the PCR product obtained in the first round of amplification as a template, 1. mu.l of YW626+ 1. mu.l of YW631 was added to perform PCR amplification.
Overlapping extension constructed the POS 5-3' GPD2 fragment. A first round: POS5 and 3' GUT2 fragments were mixed at a molar ratio of 1:1, and the amplification conditions were as above. And a second round: using the PCR product obtained in the first round of amplification as a template, 1. mu.l of YW630+ 1. mu.l of YW633 was added to perform PCR amplification.
Two large fragment gels of 5 'GPD 2-URA3-pTEF-POS5 and POS 5-3' GPD2 obtained by the overlapping extension are recovered, 50ng of each fragment is mixed and transferred into yarrowia lipolytica recombinant engineering bacteria ZS104, and transformants are respectively identified by PCR by using primers YW634+ YW635 and YW636+ YW 637.
TABLE 3 primer List
Figure BDA0002138772850000071
5. Construction of yarrowia lipolytica engineered bacterium YW100-1
Amplification of 5' DGA 2: by designing primers YW646 and YW647 and taking the wild type yarrowia lipolytica AS2.1405 genome AS a template, 5' DGA2 with the size of about 1kb and the nucleotide sequence shown in SEQ ID NO.7 is amplified.
Amplification of Loxp-URA 3-Loxp: by designing primers YW648 and YW649 and taking a plasmid JMP113 as a template, Loxp-URA3-Loxp with the size of about 1.8kb and the nucleotide sequence shown in SEQ ID NO.11 are amplified.
Amplification of 3' DGA 2: by designing primers YW650 and YW651 and using the wild type yarrowia lipolytica AS2.1405 genome AS a template, 3' DGA2 was amplified, the size was about 1kb, and the nucleotide sequence was shown in SEQ ID NO. 8.
The PCR amplification conditions of 5 'DGA 2, Loxp-URA3-Loxp, and 3' DGA2 are the same as those in step 1.
The DNA fragments obtained above were assembled into a large fragment 5 'DGA 2-URA 3-3' DGA2 using overlap extension. The 5 'DGA 2-URA 3-3' DGA2 fragment gel obtained by the overlapping extension is recovered and then transferred into yarrowia lipolytica recombinant engineering bacterium ZS106, and the transformant is subjected to PCR identification by using primers YW652+ YW 653.
TABLE 4 primer List
Figure BDA0002138772850000072
Figure BDA0002138772850000081
The GUT1-pEXP1-GUT2 fragment obtained by overlapping extension is connected with the BamH I linearized plasmid JMP113 plasmid to construct E14 by a one-step cloning method, and then NotI enzyme cuts the E14 plasmid and transfers the E14 plasmid into yarrowia lipolytica AS2.1405 competent cells to construct ZS 102. The large fragments of 5 'KU 70-URA3-pTEF-DAK1, DAK1-pEXP1-DAK2-pGPD and pGPD-GYC 1-3' KU70 obtained by overlap extension were transferred into yarrowia lipolytica ZS102 competent cells to construct ZS 104. The 5 'GPD 2-URA3-pTEF-POS5, POS 5-3' GPD2 large fragment obtained by overlap extension was transferred into yarrowia lipolytica ZS104 competent cells to construct ZS 106. The 5 'DGA 2-URA 3-3' DGA2 large fragment obtained by overlapping extension is transferred into yarrowia lipolytica ZS106 competent cells to construct recombinant engineering bacteria YW100-1 (yarrowia lipolytica YW100-1), which is preserved in China center for type culture Collection in 3.18.2019 with the preservation number of CCTCC NO: M2019168, the address of university of Wuhan, China, postal code 430072.
Example 2: comparison of Shake flask fermentations of wild type AS2.1405 and recombinant engineered Strain YW100-1
Respectively inoculating a wild yarrowia lipolytica strain AS2.1405 and a recombinant engineering bacterium YW100-1 into a YPD liquid culture medium, and culturing at 30 ℃ and 200rpm in a 250mL triangular flask for 24h to obtain a seed solution; at an initial cell concentration OD600Inoculating 0.05 into YNG culture medium, respectively, performing three-group parallel analysis of each strain, and performing fermentation culture at 30 deg.C and 200rpm for 16h to OD600About 4.5, 10mL of the fermentation broth was used for determination of the concentrations of pyruvic acid and glycerol by high performance liquid chromatography, and the results are shown in FIG. 2.
Determination of the pyruvate concentration: 10mL of fermentation liquor is taken, centrifuged at 6000rpm for 5min, the supernatant is collected, and the content of pyruvic acid is measured by using a C18 column. Mobile phase: 0.1% phosphoric acid; flow rate: 1ml min-1(ii) a Sample introduction temperature: 28 ℃; sample introduction amount: 10 μ l.
As shown in FIG. 2, the wild type strain was fermented in YNG medium for 16 hours, the yield of pyruvic acid was about 3.5g/L, and the amount of residual glycerol was about 10.2 g/L. The yield of pyruvic acid of the engineering bacteria YW100-1 is about 5.95g/L, and the residual quantity of glycerol is about 7.4 g/L. Therefore, the yield of pyruvic acid produced by fermentation of the engineering bacterium YW100-1 is obviously higher than that of a wild starting bacterium.
Example 3: comparison of wild type AS2.1405 and engineering bacterium YW100-1 for producing pyruvic acid by fermentation in 20L fermentation tank
Seed culture medium: 2g/L glycerol, 0.4g/L tryptone, 0.2g/L yeast extract, 0.24g/L KH2PO4、1.7g/L K2HPO4·3H2O, the solvent is distilled water, and the pH value is natural.
Fermentation medium groupThe composition is as follows: 60g/L of glycerin, 10g/L of (NH)4)2SO4、1.4g/L MgSO4·7H2O、2g/L KH2PO4、0.8g/L CaCl20.5g/L NaCl, 1 mu g/L vitamin B1, and the solvent is distilled water, and the pH value is natural.
Wild-type yarrowia lipolytica strain AS2.1405 and engineered strain YW100-1 were inoculated into YPD liquid medium, respectively, and cultured overnight at 30 ℃, then 200ml was inoculated into 3L seed medium, shake-flask culture was carried out at 30 ℃ for 18h, then inoculation was carried out at 10% volume concentration in 20L fermentor containing 12L fermentation medium, and fermentation culture was carried out for 1 h. In the whole fermentation culture process, 20% NaOH is added to regulate pH value to 4.0, dissolved oxygen is kept at about 40%, and fermentation temperature is controlled at 30 ℃. 40g/L of glycerol was added to the fermentor at 50 and 64 hours, respectively, to add 1440g of glycerol.
The process of producing pyruvic acid by glycerol fermentation of two strains is shown in FIG. 3. The wild strain is fermented for 120 hours, the yield of the pyruvic acid reaches the maximum value of 72.9g/L, and the conversion rate of the pyruvic acid/glycerol is about 0.52 g/g. The engineering bacteria YW100-1 is fermented for 120h, the yield of the pyruvic acid reaches the maximum value of 121.2g/L, and the conversion rate of the pyruvic acid/glycerol reaches 0.865 g/g. Compared with the fermentation strain, the fermentation pyruvic acid yield of the engineering strain YW100-1 is improved by 66.2 percent and is obviously higher than other gene engineering strains with the highest reported yield. Therefore, the yarrowia lipolytica recombinant strain YW100-1 can provide an excellent strain for industrial production of pyruvic acid.
Sequence listing
<110> Zhejiang industrial university
<120> yarrowia lipolytica YW100-1 and application thereof
<160> 16
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1512
<212> DNA
<213> Unknown (Unknown)
<400> 1
atgtcttcct acgtaggagc tctcgaccag ggtaccacct ccacccgttt cattctcttt 60
tcgcctgacg gcaagcccgt ggcatcccac cagatcgaat tcacccagat ctacccccac 120
cccggatggg tggagcacga ccccgaggag ctcgtgagct cgtgtctgga gtgcatgtcg 180
tcggtggcca aggaaatgcg aacccagggc atcaaggtgg ccgacgtgaa ggcgatcgga 240
atcaccaacc agcgagaaac caccgtgctt tgggacattg agaccggcca gcccctgtac 300
aacgccattg tgtggtccga cgcccgaacc ggcgacaccg tcaagaagct cgaggcccag 360
cccggcgctg acgaaatccc caagctctgt ggcctgcccc tgtccaccta ctttgccgga 420
gtcaaggtcc gatggatcct ggataacgtc aaggaggccc gagagtgcta cgatcgaggc 480
aagctggcct tctccaccat cgactcgtgg ctgctctaca acctcacggg cggcctcaac 540
ggcggcgccc acatcaccga cacctccaac gcctcccggt ccatgttcat gaacattgag 600
accctcaagt acgacgagaa gctcatcaag ttctttggcg tcgagaagct cattctcccc 660
aagattgtct cgtccgccga ggtctacggc cgaatcggaa ccggcccctt cgccaacatc 720
cccctggccg gctgtctcgg tgaccagtcc gccgccctcg tcggccagaa ggcctttgag 780
cccggccagg ccaagaacac atatggaacc ggctgcttcc tgctctacaa cgccggcgag 840
aagcccatca tctccaacaa cggcctgctg accaccgtcg gctaccactt caagggccag 900
aagcccgtct acgctctgga gggctccatc tccgtcgccg gctcgtgcat caagtggctg 960
cgagacaaca ttggtctcat tgagtcttcc gagcagattg gagagcttgc ctcccaggtc 1020
gacgactctg ccggcgtggt gtttgtcacc gctctgtccg gcctgtttgc cccctactgg 1080
cgaaccgacg cccgaggcac cattctgggt ctcactcagt tcaccaccaa ggcccacatt 1140
tgccgagccg ccctggaggc tacttgtttc cagacccggg ccattctcga cgccatggcc 1200
aaggactctg gtaagccctt caccaagctg cgagtcgacg gaggaatgac caactcggac 1260
attgctatgc agatccaggc cgacattctt ggcattgagg tcgagcgacc cgccatgcga 1320
gagaccaccg ctctgggtgc cgccattgct gccggctttg ccgttggcgt gtggaagtcc 1380
attgaggatc ttaaggacat caacaccgag ggcatgaccg agtttgcttc caagaccaac 1440
gaggaggagc gggccgccat gatgaagcag tggaaccggg gcattgagcg agctgttggc 1500
tggcttgagt aa 1512
<210> 2
<211> 1839
<212> DNA
<213> Unknown (Unknown)
<400> 2
atgttcagaa ccattcgaaa acccgcgtgg gctgctgccg ccgccgtggc agccgctggc 60
gctggagccg tcgccctgtc tgtgcctgcc caggcccagg aggagctcca caagaagcac 120
aaattcacag tgccccccgt ggccgccgag cccccctctc gagccgccca gctcgagaag 180
atgaagaccg aggagtttga tctcgtcgtt gttggtggag gagctaccgg atccggtatc 240
gccctcgacg ctgtcacacg aggcctcaag gttgctctgg tcgagcgaga cgatttctcc 300
tgcggaacct cgtcccgatc caccaagctc atccacggag gtgtccgata cctcgagaag 360
gctgtgtgga acctcgacta caaccagtac gagctggtca aggaggccct gcacgagcga 420
aaggtcttcc tcgacattgc tccccacctc acctttgctc tgcccatcat gatccccgtc 480
tacacctggt ggcagcttcc ctacttctgg atgggtgtca agtgctacga tctgcttgcc 540
ggccgacaga acctcgagtc ctcttacatg ctctcccgat cccgtgctct cgatgccttc 600
cccatgcttt ccgatgacaa gctcaagggc gccattgtct actatgatgg ctcccagaac 660
gactctcgaa tgaacgtttc tcttattatg actgctgttg agaagggtgc caccatcctg 720
aaccattgcg aggtcaccga gctcaccaag ggcgccaatg gccagctcaa cggtgttgtt 780
gccaaggata ctgacggaaa cgctggatcc ttcaacatca aggccaagtg tgtcgttaat 840
gctactggac ccttcactga ctctctgcga cagatggacg acaagaacac caaggagatc 900
tgtgctcctt cctccggtgt tcacatcatt ctccccggtt actactcccc caagaagatg 960
ggactccttg accccgctac ttctgacggc cgagttatct tcttcctccc ctggcaggga 1020
aacacccttg ccggtactac tgaccagcct accaagatca ctgctaaccc tatcccctcc 1080
gaggaggaca ttgacttcat tctcaacgag gtccgacact acgttgaggg caaggttgat 1140
gtgcgacgag aggacgttct ggccgcctgg tccggaatcc gaccccttgt ccgggacccc 1200
cacgccaaga acaccgagtc tcttgtccga aaccatctca tcacctactc cgagtctggt 1260
cttgtcacca ttgctggcgg aaagtggacc acttaccgac agatggctga ggagactgtc 1320
gatgcctgca ttgccaagtt cggtctcaag cctgaaatct ccgccaaggc cgtcacccga 1380
gacgtcaagc tcatcggtgc taaggactgg actcctctca cttacattga tctgatccag 1440
caggaggacc ttgaccccga ggttgctaag cacctttctg agaactacgg atctcgagct 1500
ttcaccgttg cttctcttgc tgagatgccc acccccgaac ccggtgtgat cccccagtct 1560
actctcacaa agggtaagcg aatcctgtac ccctacccct acctcgatgc cgagtgcaag 1620
tactctatga agtacgagta tgccaccacc gccatcgact tccttgctcg acgaactcgt 1680
cttgctttcc ttaacgccgc tgccgcctac gaggctctcc ctgaggtcat tgagatcatg 1740
gccaaggagc tccagtggga cgaggctcga aaggagcagg aattcaacac cggtgtcgag 1800
tacctctact ccatgggcct tacccccaag gacaaataa 1839
<210> 3
<211> 1014
<212> DNA
<213> Unknown (Unknown)
<400> 3
atgttccggt cagtatataa acgggggcga atcctgtcca aaatccccat caaacaacac 60
atccagatca cccacaaaca cacaatgact tctctcgact ttactctcaa caacggcaag 120
accatccctg ccatcggtct tggaacctgg aagtccacca ccgaggaggt ggctggcgcc 180
gtcgagtgcg ccctcaccga gggaggctac cgacacattg acaccgcctt caactaccga 240
aacgaagacg ccgtcggact cggaatcaag cgagccatgg agaagggtgt caagcgagaa 300
gacatcttcg tcaccaccaa gatctgggtc acctaccacg accgagtcga ggagaacctc 360
gacatgtctc tggagcgact gggtcttgac tacgtcgaca tgctcctcat ccactggccc 420
gttcccctca accctaacgg taacgacccc gtctaccccc tgcgacccga tggctctcga 480
gacattgacg agtccggctc ccagcccaag acctggaagc agatggaggc tgttctgaag 540
accggcaaga ccaagtctat cggtgtctcc aacttctcca tcccttacct cgaggagctg 600
ctcaaggagg ccgaggttgt ccccgccgtc aaccaggtcg agctccaccc tctgctgccc 660
cagctcgagc tcatggaatt ctgcaagaag aacaacattg tcatgaccgc cttctctccc 720
tttggctctg tcggtggccc tctgctcaag aacgagctcg tcgtctctct ggccgacaag 780
tacaacacct ctcccggagg aatcctcacc tcctaccaca ttggtaacgg caccgtggtc 840
atccccaagt ctgtcaccaa ctctcgaatc gtcgagaacg gaaagtccgc cgtcaccctg 900
tcccaggagg acctcaaggc tctgaacgac ctccacaaga ccgagggtat ccaccgaacc 960
tccaagccca agtggggtgt tgacctcgga ttccccgact ttgacttctg ctaa 1014
<210> 4
<211> 1719
<212> DNA
<213> Unknown (Unknown)
<400> 4
atgaccacta aacagttcca attcgactcg gatccgctca attctgccct tgccgccacc 60
gcggaggcct caggcctcgc ttacctcccc aagagcaagg tcatctacta ccctctgacc 120
aacgacaagg tgacgttgat ttcaggtgga ggagctggcc acgagcctgc tcagaccggg 180
tttgtgggtc ccggactgct ggatgcggcc gtgtcgggcc agatctttgc ctcaccttcc 240
accaaacaga tcattgccgg agtcaatgcc gtcaagtcgc aacggggctc catcattatc 300
gtcatgaact acactggcga tgtgatccac tttggaatgg ccgccgagca gctgcggtcc 360
cgatatgact accacgccga actggtgtcc attggcgacg acatttccgt caacaagaag 420
gccggacgac gaggtctggc aggaaccgtt cttgttcaca agatcgcagg ccatcttgcc 480
cgagatggct gggacgtcgg agtgcttgct gaagctctgc gaaccaccgc cgccaacctg 540
gccaccgtgg ctgcgtctct ggaacactgc actgtacctg gcagaaagtt cgagaccgaa 600
ctggcggccg atgagatgga gattggcatg ggtatccaca acgagcccgg tgtcaagacc 660
atcaagattg gcaaggttga gtctctgctg gacgaattgg tcgacaagtt cgagccctcc 720
aagcaggact ttgtgccctt caacaagggc gacgaggtgg tgctgctggt caattccctc 780
ggaggagtct cttctctgga actccacgcc attgccaaca ttgcccagac aaagttcgag 840
aaggtgctgg gcgtcaagac cgtgcgactt attgttggca acttcatggc tgccttcaac 900
ggtcctggct tctctttgac tctgctcaac gtcaccacga ccgccaagaa gggcaacttt 960
gacgttctgg gagccctgga cgctcccgtg tccaccgccg cctggccctc tctgcagcag 1020
aaggacaagc ctgccaacgg cggtgtccag gaggagaagg agaccgactc ggacaagcct 1080
gctgagccta ctggaatcaa ggccgacgga aagctgttca aggccatgat tgagagtgct 1140
gttgacgatc tcaagaagga ggagccccag attaccaaat acgacactat tgctggcgat 1200
ggagactgtg gagagactct gttggctgga ggcgacggta ttctggacgc tatcaagaac 1260
aagaagattg accttgatga tgccgctgga gtggctgata tttctcacat cgtcgagaac 1320
tccatgggag gcacctcggg aggtctctac tccatcttct tctccggtct cgtggtcggt 1380
atcaaggaga ccaaggccaa ggagctgtct gtcgatgtgt ttgccaaggc atgtgagact 1440
gctctggaga ctctttctaa gtacacccag gcccgagtcg gcgaccgaac cctcatggac 1500
gcacttgttc cctttgtaga gaccctcagc aagaccaagg acttcgccaa ggccgtagag 1560
gctgctcgga agggcgccga cgagacttcc aagctgcctg ccaattttgg ccgtgcctcg 1620
tatgtgaacg aggagggatt ggagaacatt cctgaccctg gagctcttgg actggccgtc 1680
attttcgaag gtcttctcaa ggcctgggag aagaagtag 1719
<210> 5
<211> 1692
<212> DNA
<213> Unknown (Unknown)
<400> 5
atgaaacact tcgccaaaac gaatctcgtc aatctctacc tcgaatctct cctggctagc 60
aacccgcaac tgggtctagt ggaagatcag agaatcattt attacaagaa gaaaaagtcg 120
gacaaggtcc gagttatttc gggcggcgga tcgggccatg agcccagctg gagcggtctt 180
gtgggctcgg gactactaga tgctgctgtc tgtggagaca tttttgcatc tccttcggcc 240
agacaggtta tggccggtat cagagcctcg gaacccgaca gtggcgttat tctggcaatc 300
acaaactaca cgggcgacaa gctgcacttt ggactggccc aagagaagtt ccaggccgag 360
tctggaggca tgcaggtggc agtcatccct gtgactgatg atgtcgctct cggacgaacc 420
cggtcctcaa aggtcggaag acggggactg gcgggaaacc tgcttgttct caagtccatg 480
ggagcctgtg ctgaggctgg aggttccttt gatcacgtct ccaatgtagg acgggcagtg 540
aacgacggac tggtcacggt gggatgttct ctggaccact gcagtgttcc tggtcgaaca 600
gacgtggact ttcatatccc tcatgacaag gctgtacttg gaatgggtat tcacaacgaa 660
cgaggacttg ttgaggtcga cattcccgaa cggcctgaag atctcatcaa acagatgttg 720
actcttttgc tagaccccaa cgacaaggag cgagcctttg tgtccttcaa ggagaaggac 780
gaggttattc tgctggtcaa caactttggt gggctgtcta atctcgagaa tggagcccta 840
actcaagtgg ccctgtctgt tctggagcag gattataaca ttgttccctg tcgagtcctg 900
tctggagcct ttgagacgtc gctagacggc ccaggctttt caatcactct ttacaaccct 960
tcatactctg caactctcgt tgaaaaatta tctagcaaac agcttctaga gctcatcgat 1020
gctccaactg atgctcctgc ttggccaagg gtcggtgtca acgagcccaa gaaacagaag 1080
gtgctctcca agcaggagga gctagcggcc aaggactgcg aagagtcgcc ttatgacgag 1140
cttgtttcgc gtatttgcaa acatgtcatt tcaatcgagc cttctctcac cacctgggat 1200
actgtaatgg gtgatggaga ctgcggtatg gcagccaaag acgcggcact tcacattcaa 1260
aaggagtgga attcccgcaa gcagtcttct ttaaagggaa ctcttaatct cctctcgtcc 1320
tgcctggatg acatgggtgg ctctctggga gccattctgg gcatctttgt tagtgctctc 1380
atctacaacc tgcaaaagga aggagttgaa caggctccaa aggcggttgg attggcttca 1440
aaatctctcc agacacacac acaggctcgc aagggtgacc gaacggtcat ggactctctg 1500
attcccttct gtgaagtcta cgcctcgtct ggaagtcttc aacatgcagc caaagccgct 1560
caggagggag cagaaagcac aaagaccctc aaagctcagt atggacgagc cagttatgtt 1620
tcaaagaccg cagatgttcc cgatcccgga gcctggctgt ttgccgcagt tgttgaccag 1680
ctttccaagt ag 1692
<210> 6
<211> 1581
<212> DNA
<213> Unknown (Unknown)
<400> 6
atggaagtcc gacgacgaaa aatcgacgtg ctcaaggccc agaaaaacgg ctacgaatcg 60
ggcccaccat ctcgacaatc gtcgcagccc tcctcaagag catcgtccag aacccgcaac 120
aaacactcct cgtccaccct gtcgctcagc ggactgacca tgaaagtcca gaagaaacct 180
gcgggacccc cggcgaactc caaaacgcca ttcctacaca tcaagcccgt gcacacgtgc 240
tgctccacat caatgctttc gcgcgattat gacggctcca accccagctt caagggcttc 300
aaaaacatcg gcatgatcat tctcattgtg ggaaatctac ggctcgcatt cgaaaactac 360
ctcaaatacg gcatttccaa cccgttcttc gaccccaaaa ttactccttc cgagtggcag 420
ctctcaggct tgctcatagt cgtggcctac gcacatatcc tcatggccta cgctattgag 480
agcgctgcca agctgctgtt cctctctagc aaacaccact acatggccgt ggggcttctg 540
cataccatga acactttgtc gtccatctcg ttgctgtcct acgtcgtcta ctactacctg 600
cccaaccccg tggcaggcac aatagtcgag tttgtggccg ttattctgtc tctcaaactc 660
gcctcatacg ccctcactaa ctcggatctc cgaaaagccg caattcatgc ccagaagctc 720
gacaagacgc aagacgataa cgaaaaggaa tccacctcgt cttcctcttc ttcagatgac 780
gcagagactt tggcagacat tgacgtcatt cctgcatact acgcacagct gccctacccc 840
cagaatgtga cgctgtcgaa cctgctgtac ttctggtttg ctcccacact ggtctaccag 900
cccgtgtacc ccaagacgga gcgtattcga cccaagcacg tgatccgaaa cctgtttgag 960
ctcgtctctc tgtgcatgct tattcagttt ctcatcttcc agtacgccta ccccatcatg 1020
cagtcgtgtc tggctctgtt cttccagccc aagctcgatt atgccaacat ctccgagcgc 1080
ctcatgaagt tggcctccgt gtctatgatg gtctggctca ttggattcta cgctttcttc 1140
cagaacggtc tcaatcttat tgccgagctc acctgttttg gaaacagaac cttctaccag 1200
cagtggtgga attcccgctc cattggccag tactggactc tatggaacaa gccagtcaac 1260
cagtacttta gacaccacgt ctacgtgcct cttctcgctc ggggcatgtc gcggttcaat 1320
gcgtcggtgg tggttttctt tttctccgcc gtcatccatg aactgcttgt cggcatcccc 1380
actcacaaca tcatcggagc cgccttcttc ggcatgatgt cgcaggtgcc tctgatcatg 1440
gctactgaga accttcagca tattaactcc tctctgggcc ccttccttgg caactgtgca 1500
ttctggttca cctttttcct gggacaaccc acttgtgcat tcctttatta tctggcttac 1560
aactacaagc agaaccagta g 1581
<210> 7
<211> 1838
<212> DNA
<213> Unknown (Unknown)
<400> 7
atgttcagaa ccattcgaaa acccgcgtgg gctgctgccg ccgccgtggc agccgctggc 60
gctggagccg tcgccctgtc tgtgcctgcc caggcccagg aggagctcca caagaagcac 120
aaattcacag tgccccccgt ggccgccgag cccccctctc gagccgccca gctcgagaag 180
atgaagaccg aggagtttga tctcgtcgtt gttggtggag gagctaccgg atccggtatc 240
gccctcgacg ctgtcacacg aggcctcagg ttgctctggt cgagcgagac gatttctcct 300
gcggaacctc gtcccgatcc accaagctca tccacggagg tgtccgatac ctcgagaagg 360
ctgtgtggaa cctcgactac aaccagtacg agctggtcaa ggaggccctg cacgagcgaa 420
aggtcttcct cgacattgct ccccacctca cctttgctct gcccatcatg atccccgtct 480
acacctggtg gcagcttccc tacttctgga tgggtgtcaa gtgctacgat ctgcttgccg 540
gccgacagaa cctcgagtcc tcttacatgc tctcccgatc ccgtgctctc gatgccttcc 600
ccatgctttc cgatgacaag ctcaagggcg ccattgtcta ctatgatggc tcccagaacg 660
actctcgaat gaacgtttct cttattatga ctgctgttga gaagggtgcc accatcctga 720
accattgcga ggtcaccgag ctcaccaagg gcgccaatgg ccagctcaac ggtgttgttg 780
ccaaggatac tgacggaaac gctggatcct tcaacatcaa ggccaagtgt gtcgttaatg 840
ctactggacc cttcactgac tctctgcgac agatggacga caagaacacc aaggagatct 900
gtgctccttc ctccggtgtt cacatcattc tccccggtta ctactccccc aagaagatgg 960
gactccttga ccccgctact tctgacggcc gagttatctt cttcctcccc tggcagggaa 1020
acacccttgc cggtactact gaccagccta ccaagatcac tgctaaccct atcccctccg 1080
aggaggacat tgacttcatt ctcaacgagg tccgacacta cgttgagggc aaggttgatg 1140
tgcgacgaga ggacgttctg gccgcctggt ccggaatccg accccttgtc cgggaccccc 1200
acgccaagaa caccgagtct cttgtccgaa accatctcat cacctactcc gagtctggtc 1260
ttgtcaccat tgctggcgga aagtggacca cttaccgaca gatggctgag gagactgtcg 1320
atgcctgcat tgccaagttc ggtctcaagc ctgaaatctc cgccaaggcc gtcacccgag 1380
acgtcaagct catcggtgct aaggactgga ctcctctcac ttacattgat ctgatccagc 1440
aggaggacct tgaccccgag gttgctaagc acctttctga gaactacgga tctcgagctt 1500
tcaccgttgc ttctcttgct gagatgccca cccccgaacc cggtgtgatc ccccagtcta 1560
ctctcacaaa gggtaagcga atcctgtacc cctaccccta cctcgatgcc gagtgcaagt 1620
actctatgaa gtacgagtat gccaccaccg ccatcgactt ccttgctcga cgaactcgtc 1680
ttgctttcct taacgccgct gccgcctacg aggctctccc tgaggtcatt gagatcatgg 1740
ccaaggagct ccagtgggac gaggctcgaa aggagcagga attcaacacc ggtgtcgagt 1800
acctctactc catgggcctt acccccaagg acaaataa 1838
<210> 8
<211> 1200
<212> DNA
<213> Unknown (Unknown)
<400> 8
atgcgactac tcatccgccg aaccggtata acacggcccc acagcgtgca agcgcgccga 60
tccacatgga ttcggcttct ctcgaccgag atattgcatg cagaactgct tcccgaccgc 120
cagtcgcccc actacgtcca ggagtcgacc tctctgtcat ctctggtgtg ggacaagcct 180
ctggaaaacg ttctgatcgt caaaaaaccc tgggaccaca atgtgcgcga gtcgctcatc 240
cagatggcat ctcacatcca gcgccggtac ccccgagtca acattctggt ggaggaacat 300
gtggccgacg aggtccagaa gcagattgga gccgcaggcg tgaccgccat ccacacgggg 360
ccaggagagg tgctgagaaa caagacggat ctgctcgtga ctctgggagg cgacggaact 420
attctacatg ccacctccat gtttgcttcc ggagaagtgc cgccggtgct gtccttttcg 480
ctggggactc tgggtttcct gctgccgttt gatttcaagg acttcaaaac tgcattcgac 540
atggtgtact cgtcgcaggc ctcggtggtc aaccgcgccc gcctagcatg tcagaaaatg 600
tccattcgca aggaaatcac ccacttgccc tcccaatcgc acattgaaca caactcaacc 660
catgtctacg gcaatcccga cgactacaat cttagcccac taacctacgc catgaacgac 720
atcaacatcc accgtggagc tgagccgcat ctcaccaagc tcgacatcca cgttgacggc 780
gagttcatca cccgagccat tgctgacggt gtcaccatcg ccacacccac gggctccacg 840
gcctactcgc tgtcgtctgg cggctccatt gtgcatcccc gagtcgcctg cattctgctg 900
acccccatct gtccgcgatc gctgtcattc cggcctctca ttttcccagc cacctccaaa 960
atatgcatca ccgcctcgtc cgaatctcga ggtagaggcg ccgagctgtc tgtcgacgga 1020
atcgccaagg gtctggttcg acccagcgac aagattctgg tcgaaagcga aaccggccac 1080
aactcgggca tctggtgcgt ggccaagaca gacagagact gggtcagtgg cctcaacggg 1140
ttactgggct tcaatagcag ttttggcaag ggcggggagg cgtcaggcga tgttgcttag 1200
<210> 9
<211> 1000
<212> DNA
<213> Unknown (Unknown)
<400> 9
ggagtttggc gcccgttttt tcgagcccca cacgtttcgg tgagtatgag cggcggcaga 60
ttcgagcgtt tccggtttcc gcggctggac gagagcccat gatgggggct cccaccacca 120
gcaatcaggg ccctgattac acacccacct gtaatgtcat gctgttcatc gtggttaatg 180
ctgctgtgtg ctgtgtgtgt gtgttgtttg gcgctcattg ttgcgttatg cagcgtacac 240
cacaatattg gaagcttatt agcctttcta ttttttcgtt tgcaaggctt aacaacattg 300
ctgtggagag ggatggggat atggaggccg ctggagggag tcggagaggc gttttggagc 360
ggcttggcct ggcgcccagc tcgcgaaacg cacctaggac cctttggcac gccgaaatgt 420
gccacttttc agtctagtaa cgccttacct acgtcattcc atgcatgcat gtttgcgcct 480
tttttccctt gcccttgatc gccacacagt acagtgcact gtacagtgga ggttttgggg 540
gggtcttaga tgggagctaa aagcggccta gcggtacact agtgggattg tatggagtgg 600
catggagcct aggtggagcc tgacaggacg cacgaccggc tagcccgtga cagacgatgg 660
gtggctcctg ttgtccaccg cgtacaaatg tttgggccaa agtcttgtca gccttgcttg 720
cgaacctaat tcccaatttt gtcacttcgc acccccattg atcgagccct aacccctgcc 780
catcaggcaa tccaattaag ctcgcattgt ctgccttgtt tagtttggct cctgcccgtt 840
tcggcgtcca cttgcacaaa cacaaacaag cattatatat aaggctcgtc tctccctccc 900
aaccacactc acttttttgc ccgtcttccc ttgctaacac aaaagtcaag aacacaaaca 960
accaccccaa cccccttaca cacaagacat atctacagca 1000
<210> 10
<211> 1193
<212> DNA
<213> Unknown (Unknown)
<400> 10
caatgaatta agtctccgtg ttaccatctt agatatgaac actaaatatg ccaagttctc 60
tttcccctac atgattcata gcacttgccc aaagacgagg agactttctt cttacgacat 120
atacatcaat agaccattca tggcaagaaa gaagtactcg aacataggcc cataaagtac 180
gagtacagta cactacacta cactacttgt accattctac ccggggtctg ccggcttgta 240
cacaccgaca gcactcgtac tctcccacga atgctccggc tgccgacatc aacacgatct 300
caaaagcgca tactgagctt cctttcctag ctcttccttc cttcaactcg ataaatacat 360
tggatatata catgtgtggc gactgtcgac ttgatgttta gagtgtccag atccgcaaga 420
tcggctcgca cttgtgttgt gttgtttcaa atcagcctgt cgttttgtgt cgtttgagat 480
cattctgtct cactcttagg ctcgcttaga accgacaacg gagaatccgg gctcggtttt 540
tcggtcggcc ttgatctggg ccttggactt gtactggtcg gccatctcca cgttgaccag 600
ctccttgacc ttgtagagct gaccggcgat accaggagac accttgtagt acttctggga 660
gccgaccttg cccagaccga gggtcttgag cacgtcacgt gttctccacg gcattcgcag 720
gatagatcgg acctgtgtga ctttgtagaa catggcgttt caggtggttg cgtgagtgtg 780
taaaatcgtg tctttcagaa gttacaaatt tcaccgcatt tagagtttat gcagatgggc 840
ggtgtgtggt tgggagttcg atttccgtgc gtgcatttga tcttgatgaa ttggatttgt 900
acatgaggaa gagcacgtca agcaccgcct actgcaaact cgtgaatatt gagattattg 960
aggaaattca aggaaaattc agatcagatt tgagagcaaa gtccaacaat actacacaat 1020
ccctttcctg tattcttcca ccatcgtcat cgtcgtctgt cttctcttca gctttttaat 1080
ttcactcccc acaaacccaa atttagctgc atcattcatc aacctccaat tataactata 1140
catcgcgaca cgaacacgaa acacgaacca cgaaccgccg ctttttgaaa atg 1193
<210> 11
<211> 1726
<212> DNA
<213> Unknown (Unknown)
<400> 11
gcactttgct agatagagtc gagaattacc ctgttatccc tagataactt cgtatagcat 60
acattatacg aagttattct gaattccgag aaacacaaca acatgcccca ttggacagac 120
catgcggata cacaggttgt gcagtaccat acatactcga tcagacaggt cgtctgacca 180
tcatacaagc tgaacagcgc tccatacttg cacgctctct atatacacag ttaaattaca 240
tatccatagt ctaacctcta acagttaatc ttctggtaag cctcccagcc agccttctgg 300
tatcgcttgg cctcctcaat aggatctcgg ttctggccgt acagacctcg gccgacaatt 360
atgatatccg ttccggtaga catgacatcc tcaacagttc ggtactgctg tccgagagcg 420
tctcccttgt cgtcaagacc caccccgggg gtcagaataa gccagtcctc agagtcgccc 480
ttaggtcggt tctgggcaat gaagccaacc acaaactcgg ggtcggatcg ggcaagctca 540
atggtctgct tggagtactc gccagtggcc agagagccct tgcaagacag ctcggccagc 600
atgagcagac ctctggccag cttctcgttg ggagagggga ctaggaactc cttgtactgg 660
gagttctcgt agtcagagac gtcctccttc ttctgttcag agacagtttc ctcggcacca 720
gctcgcaggc cagcaatgat tccggttccg ggtacaccgt gggcgttggt gatatcggac 780
cactcggcga ttcggtgaca ccggtactgg tgcttgacag tgttgccaat atctgcgaac 840
tttctgtcct cgaacaggaa gaaaccgtgc ttaagagcaa gttccttgag ggggagcaca 900
gtgccggcgt aggtgaagtc gtcaatgatg tcgatatggg tcttgatcat gcacacataa 960
ggtccgacct tatcggcaag ctcaatgagc tccttggtgg tggtaacatc cagagaagca 1020
cacaggttgg ttttcttggc tgccacgagc ttgagcactc gagcggcaaa ggcggacttg 1080
tggacgttag ctcgagcttc gtaggagggc attttggtgg tgaagaggag actgaaataa 1140
atttagtctg cagaactttt tatcggaacc ttatctgggg cagtgaagta tatgttatgg 1200
taatagttac gagttagttg aacttataga tagactggac tatacggcta tcggtccaaa 1260
ttagaaagaa cgtcaatggc tctctgggcg gaattcgtat aacttcgtat agcaggagtt 1320
atccgaagcg ataattaccc tgttatccct agaatcgata gagaccgggt tggcggcgca 1380
tttgtgtccc aaaaaacagc cccaattgcc ccaattgacc ccaaattgac ccagtagcgg 1440
acccaacccc ggcgagagcc cccttcaccc cacatatcaa acctcccccg gttcccacac 1500
ttgccgttaa gggcgtaggg tactgcagtc tggaatctac gcttgttcag actttgtact 1560
agtttctttg tctggccatc cgggtaaccc atgccggacg caaaatagac tactgaaaat 1620
ttttttgctt tgtggttggg actttagcca agggtataaa agaccaccgt ccccgaatta 1680
cctttcctct tcttttctct ctctccttgt caactcacac ccgaag 1726
<210> 12
<211> 444
<212> DNA
<213> Unknown (Unknown)
<400> 12
gcaaaggagg ggctggtgag ggcgtctgga agtcgaccag agaccgggtt ggcggcgcat 60
ttgtgtccca aaaaacagcc ccaattgccc caattgaccc caaattgacc cagtagcggg 120
cccaaccccg gcgagagccc ccttctcccc acatatcaaa cctcccccgg ttcccacact 180
tgccgttaag ggcgtagggt actgcagtct ggaatctacg cttgttcaga ctttgtacta 240
gtttctttgt ctggccatcc gggtaaccca tgccggacgc aaaatagact actgaaaatt 300
tttttgcttt gtggttggga ctttagccaa gggtataaaa gaccaccgtc cccgaattac 360
ctttcctctt cttttctctc tctccttgtc aactcacacc cgaaatcgtt aagcatttcc 420
ttctgagtat aagaatcatt caaa 444
<210> 13
<211> 941
<212> DNA
<213> Unknown (Unknown)
<400> 13
ataaaccgga cgcagtagga tgtcctgcac gggtcttttt gtggggtgtg gagaaagggg 60
tgcttggaga tggaagccgg tagaaccggg ctgcttgggg ggatttgggg ccgctgggct 120
ccaaagaggg gtaggcattt cgttggggtt acgtaattgc ggcatttggg tcctgcgcgc 180
atgtcccatt ggtcagaatt agtccggata ggagacttat cagccaatca cagcgccgga 240
tccacctgta ggttgggttg ggtgggagca cccctccaca gagtagagtc aaacagcagc 300
agcaacatga tagttggggg tgtgcgtgtt aaaggaaaaa aaaagaagct tgggttatat 360
tcccgctcta tttagaggtt gcgggataga cgccgacgga gggcaatggc gccatggaac 420
cttgcggata tcgatacgcc gcggcggact gcgtccgaac cagctccagc agcgtttttt 480
ccgggccatt gagccgactg cgaccccgcc aacgtgtctt ggcccacgca ctcatgtcat 540
gttggtgttg ggaggccact ttttaagtag cacaaggcac ctagctcgca gcaaggtgtc 600
cgaaccaaag aagcggctgc agtggtgcaa acggggcgga aacggcggga aaaagccacg 660
ggggcacgaa ttgaggcacg ccctcgaatt tgagacgagt cacggcccca ttcgcccgcg 720
caatggctcg ccaacgcccg gtcttttgca ccacatcagg ttaccccaag ccaaaccttt 780
gtgttaaaaa gcttaacata ttataccgaa cgtaggtttg ggcgggcttg ctccgtctgt 840
ccaaggcaac atttatataa gggtctgcat cgccggctca attgaatctt ttttcttctt 900
ctcttctcta tattcattct tgaattaaac acacatcaac a 941
<210> 14
<211> 1219
<212> DNA
<213> Unknown (Unknown)
<400> 14
ctagggaggc acatctaaac gaataacgaa tattaatgat accatcatat ctcagaacat 60
gtatgactgc tgcttccaaa cgatatgagg atgagtcctc tttcagatta agatagagta 120
caaatatatt atctatatac tggtgtctgt gcgatgtcgt atgagcggtg aatcatgtga 180
ctgtcacgtg gtttggccca agttacaccg tagctacgcc tttcttgacc gtctccatgg 240
tcttctgggc gggttgacag tttccactgg atgagcgtcc gcctcctgtt cctgtcgttg 300
tccctgcagc tcagcctcaa tcttctgacc gagctcggag tccagggaaa tgccaacagg 360
ttgtccaagc aacatcatgg tttggtgggc agccgtgatc tcatcgtcgt tggataccat 420
tcggtacttg gcctcaatct gcacaaagta gcggtaccac tggtttcgag caaaccgctc 480
caattgagcc tctccgtcga gagagagagt aggtgattgc tccaacttgc ggccaaaatg 540
aagttctcga ctcacctttt tgaagcggtt cttcttgccc atcttggtgg cgaaagtagt 600
ggctagtggt ggatgacttt gtataatgta ccgatgaaga gggttgtatt tgctcagtaa 660
gaagtagcga gtgaaatcag atgacttaac gagagcaaag ggcaatggaa tacctgctgc 720
ctgattaaca acagcttctg tgtcgtttct ctcttgtgaa tgagtgtgtt gctagaggta 780
ggttggcact ccaatgttac gacacacaat agtctataga gcactacaaa gggctatatc 840
gtcaactgct ctattgtagc tacagtacag tacataccat caagtgaaca atggaccacc 900
aaactcggca ctaagccaat agaacctttg cggcctcctt tatcacgttt ctatatacct 960
tgtccattta tgtgccaccc tttagtcttg gtcgttcact tcagctcaac ttcagccatg 1020
atagcaagat gatctgaagg atacatgtca atgcgaggct gaccactggg ctcgggcccc 1080
atatcctcct caaggggcat cttcaacaga ctcttgacct ggacctcatc gctgttgttg 1140
gacgaaacga aaatgtagtc caaaagaccc ctccaggcgt gggcccagtt actgaagcga 1200
ggctccttct tgtgcttgc 1219
<210> 15
<211> 1034
<212> DNA
<213> Unknown (Unknown)
<400> 15
agcggtttgt tttctatggc atgttgttga cgcatgctgc caacggctat tcaacggtga 60
caacggatga tgctgtcaca tgacgccatt ttttatgttg tatccaacag cacggtacta 120
aaacaggcca tttgtaaagg cctcactcag ctcacacacg ctcaacggtc acgataaggt 180
cgcactagag gcgttagttg gtttcaagaa tagtggttat tggtcttggg atacgggttg 240
gacaatatac aaatgggctc gcgtacactt atacagtcct accattctgt cgccctctga 300
ttctccgcca catcagccac gccgcaacgt ctcctcctca tccccctcct gctcttccac 360
tcgcaaaacg tccaaactca attgtgtcaa aattggaggt tctcttcgtt tgagcctacc 420
attttcaatt ttttagttgc gacagcggcc cggtcagagg ttcacaacaa ggtctagaga 480
cactttgtca tggggccgag aaggaccata aaaaccaaac gatggtcacg tcaggtcaat 540
tactgaccag tctcacatcc gacccctcgc gtgctcgacc ggaggatttc tctgcactcg 600
tccttgcata cctcggctag cgggatttat tcaccaatca cacagccgag agtttttccg 660
gacccttcat ccaacagctt agagttgcat gagtcagtag caacgtagac tttgagcctt 720
tgtgacagat gtccaagtgc agcacgttgt aggaaaataa ggtgaaggat tggccaatgt 780
gaacagaggc gacaagagtc cgtctggagg gcttgttgta gtcaattgcc cgcgcaattg 840
attgacctca tcgtttctgc cggaaccccc ccacaagccc ggataaatag acacgcccca 900
caagccgttc gtctggtctg ctcacagcac acttccattt aaaattcaaa caaagcgcac 960
caccgcaaag catacttaac ccactcaatg tagacgtcgc ggaacttctc tttcctaccc 1020
accaccccaa acaa 1034
<210> 16
<211> 1240
<212> DNA
<213> Unknown (Unknown)
<400> 16
tacctctact ccatgggcct tacccccaag gacaaataac tgtatagtaa aagcgtatag 60
ccaataagat aatcacttga atgaaggagc agcaactcgt atgtttagca cttcaacgga 120
ctatttcccc gcagcaaaga gactattgct gagttgttga gtatctgctt tacaataatg 180
gggtatggac acacaaggag gggtcttagt gagaagttag ataggtctag catacatgag 240
atcaatgtgg tcttacctat atcgtttgtt atcatttatc ttggtttgaa ttgataacac 300
gagttgttca ttgaagtgat ggcaccgggt ctcacacgca acagttggcg aacaggtcgt 360
attgttcctt agatacgacg ctcttttgga catgatggga agtgaaacta caattacagt 420
agctacatag cttggctaac tagaccgctt acagaaccag tagtcgtcac aagaccacca 480
cgaacaaagt ccaactaccc cactcccacc actcgtattt acttaccgca gatcacacgc 540
ttcggtgtat ctccgtgggg catcgtgggg cattgttcta agttttccgt atggtgcaca 600
gtcggtacgt gctttgacta accagtagaa gttaggctac tgtagtggag attgagcaat 660
gaaacgatga caggaagacc ccaaaatgcg accacctcaa ctatacacgg cttgttgcta 720
ttgccgcctt gcactccaca cagcaaacat gcacacgata tgcactcaag tcttaaccga 780
atgaaggtaa aagtagcaac caacaagcga gagttactgt atacttacaa gttatacgac 840
agtctcactt atcaccaatt ggcaacttga ccgcacagac aaacacccta caatgacctt 900
cctcaatgtg ctctactacg tgctgctggc tgccatcatg atcggcaccg gctacttcta 960
ctacctgtgg ttcactgaga ccaacgacca aaccgagaag atcatcagag ctgcgcttgg 1020
agtctttgat atcgccatct ggtacattct aggtatctcc acctccttta agatcctcac 1080
ccagatgatt ctcgcctgtt tccttgtggt tctggctggt cttaagatct acatcaaccc 1140
tcgagttgga ggggctcttc tggccggcag tctgctattt gtggctgctg tctggttcgg 1200
attccgccga gacggtcgag aggcccgaga cgatcttaac 1240

Claims (9)

1. Yarrowia lipolytica (yarrowia) for producing pyruvic acidYarrowialipolytica) YW100-1 genetically engineered bacterium, characterized in that said yarrowia lipolytica (Yersinia esterica) ((R))Yarrowialipolytica) YW100-1 is a glycerol kinase in the overexpression of glycerol metabolism in wild-type yarrowia lipolyticaGUT1Glycerol kinaseGUT2Glycerol dehydrogenaseGCY1Dihydroxyacetone kinaseDAK1Dihydroxyacetone kinaseDAK2And NADH kinasePOS5Simultaneous knock-out of diacylglycerol acyltransferase gene in yarrowia lipolyticaDGA2And glycerol-3-phosphate dehydrogenase geneGPD2Obtaining; the glycerol kinaseGUT1The gene nucleotide sequence is shown as SEQ ID NO.1, and the glycerol kinaseGUT2The gene nucleotide sequence is shown in SEQ ID NO.2, and the dihydroxyacetone kinaseDAK1The gene nucleotide sequence is shown in SEQ ID NO.3, and the dihydroxyacetone kinaseDAK2The nucleotide sequence of the gene is shown as SEQ ID NO.4, and the glycerol dehydrogenaseGCY1The gene nucleotide sequence is shown as SEQ ID NO.5, NADH kinasePOS5The nucleotide sequence of the gene is SEQID NO. 6; diacylglycerol acyltransferase5’DGA2The nucleotide sequence of the gene is shown as SEQ ID NO.7, and diacylglycerol acyltransferase3’DGA2The gene nucleotide sequence is shown in SEQ ID NO. 8; 3-Glycerol phosphate dehydrogenase 5'GPD2The nucleotide sequence of the gene is shown as SEQ ID NO.15 and 3'GPD2The gene nucleotide sequence is shown in SEQ ID NO. 16.
2. The yarrowia lipolytica YW100-1 of claim 1, wherein said yarrowia lipolytica YW100-1 is constructed by:
(1) derived from yarrowia lipolyticaGUT1Gene, gene,GUT2Genes, and promoterspEXP1Fragments obtained by overlap extensionGUT1-pEXP1-GUT2To vector JMP113 to give vector E14;
(2) the constructed vector E14 was usedNot I, enzyme digestion is carried out, and the enzyme digestion is carried out and transferred into wild yarrowia lipolytica GIM2.187 to obtain transformed yarrowia lipolytica engineering bacteria ZS 102;
(3) derived from yarrowia lipolyticaGCY1DAK1DAK2Gene, promoterpTEFpEXP1pGPDAnd homology arms for integrationKU70Respectively 5 ' and 3 ' by overlapping extension to obtain 5 'KU70-URA3-pTEF-DAK1DAK1-pEXP1-DAK2-pGPDpGPD-GYC1-3’KU70Three large fragments are transferred into ZS102 to obtain transformed yarrowia lipolytica engineering bacteria ZS 104;
(4) derived from yarrowia lipolyticaPOS5Genes andpTEFand for knock-outGPD25' end of (3)GPD2And 3' endGPD2Obtained by overlapping extensions5’GPD2-URA3-pTEF-POS5AndPOS5-3’GPD2two fragments are transferred into ZS104 to obtain the yarrowia lipolytica engineering bacteria ZS106 after homologous recombination;
(5) 5 'and 3' ends to be used for knockdownDGA2, obtained by overlap extension5’DGA2-URA3-DGA2 fragment, transferred into ZS106 to obtain yarrowia lipolytica YW 100-1.
3. The yarrowia lipolytica of claim 1 (ii)Yarrowia lipolytica) YW100-1, which is preserved in China center for type culture Collection with the preservation date of 2019, 3 and 18 months and the preservation number of CCTCC NO: m2019168, address: wuhan university, Wuhan, China, zip code 430072.
4. Use of yarrowia lipolytica YW100-1 of claim 1 for the fermentation of glycerol to pyruvate.
5. Use according to claim 4, wherein the fermentation is a shake flask fermentation, and the method comprises: inoculating yarrowia lipolytica YW100-1 into YPD culture medium, culturing at 30 deg.C and 200rpm for 24 hr to obtain seed solution; at an initial cell concentration OD600 = 0.05 inoculating YNG culture medium, fermenting culture at 30 deg.C and 200rpm to OD600When the concentration is 4.0-5.0, fermentation liquor containing pyruvic acid is obtained.
6. Use according to claim 4, wherein the fermentation is a fermenter fermentation, the method comprising: inoculating yarrowia lipolytica YW100-1 into a fermentation tank containing a fermentation culture medium, fermenting at 30-32 ℃, pH value of 4-4.5 and dissolved oxygen of 40-50% to obtain fermentation liquor containing pyruvic acid, and separating and purifying to obtain pyruvic acid; the fermentation medium comprises the following components: 60g/L of glycerin, 10g/L of (NH)4)2SO4、1.4 g/L MgSO4·7H2O、2 g/L KH2PO4、0.8 g/L CaCl20.5g/L NaCl, 1 mug/L vitamin B1, and the solvent is distilled water, and the pH value is natural.
7. The use of claim 6, wherein the glycerol is added in batch mode during fermentation in the fermenter, wherein the glycerol is added for the first time at 60g/L and is supplemented after the glycerol is exhausted, and the glycerol is supplemented at 40g/L each time.
8. Use according to claim 7, characterized in that glycerol is supplemented 2 times.
9. The use of claim 6, wherein before fermentation in said fermentor, yarrowia lipolytica YW100-1 is subjected to seed expansion culture, and the seed solution is inoculated into the fermentation medium at a volume concentration of 10%, said seed culture being: inoculating yarrowia lipolytica YW100-1 to a seed culture medium, and performing shake-flask culture at 30 ℃ for 18h to obtain a seed solution; the seed culture medium: 2g/L glycerol, 0.4g/L tryptone, 0.2g/L yeast extract, 0.24g/L KH2PO4、1.7 g/L K2HPO4·3H2O, the solvent is distilled water, and the pH value is natural.
CN201910661781.1A 2019-07-22 2019-07-22 Yarrowia lipolytica YW100-1 and application thereof Active CN110499259B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910661781.1A CN110499259B (en) 2019-07-22 2019-07-22 Yarrowia lipolytica YW100-1 and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910661781.1A CN110499259B (en) 2019-07-22 2019-07-22 Yarrowia lipolytica YW100-1 and application thereof

Publications (2)

Publication Number Publication Date
CN110499259A CN110499259A (en) 2019-11-26
CN110499259B true CN110499259B (en) 2021-07-27

Family

ID=68586676

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910661781.1A Active CN110499259B (en) 2019-07-22 2019-07-22 Yarrowia lipolytica YW100-1 and application thereof

Country Status (1)

Country Link
CN (1) CN110499259B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116286899B (en) * 2023-05-12 2024-03-15 昆明理工大学 NADH kinase gene RkNADHK1 and application thereof

Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101218352A (en) * 2005-03-18 2008-07-09 米克罗比亚精确工程公司 Production of carotenoids in oleaginous yeast and fungi
CN101765661A (en) * 2007-06-01 2010-06-30 索拉兹米公司 In microorganism, produce oil
CN101942480A (en) * 2004-12-20 2011-01-12 巴斯福植物科学有限公司 The nucleic acid molecule of encoding fatty acid desaturase genes from plants and using method thereof
CN102071154A (en) * 2010-12-08 2011-05-25 江南大学 Alpha-ketoglutarate producing yeast engineering strain and construction method thereof
CN102080109A (en) * 2009-11-27 2011-06-01 爱普香料集团股份有限公司 Method for preparing natural chiral gama-decalactone by using two-liquid-phase extraction bioanalysis method
WO2012078852A2 (en) * 2010-12-08 2012-06-14 Srs Energy Algae biomass fractionation
CN102586128A (en) * 2012-03-14 2012-07-18 江南大学 High-yield alpha-ketoglutarate engineered saccharomyces cerevisiae and application thereof
CN103923847A (en) * 2014-03-14 2014-07-16 江南大学 Yarrowia lipolytica capable of reinforcing precursor supply to enhance synthesis of alpha-oxoglutarate
CN104126006A (en) * 2011-11-28 2014-10-29 索拉兹米公司 Genetically engineered microbial strains including prototheca lipid pathway genes
CN104284974A (en) * 2012-03-06 2015-01-14 利戈斯股份有限公司 Recombinant host cells for the production of malonate
CN104450804A (en) * 2014-11-19 2015-03-25 江南大学 Method for weakening catabolism of pyroracemic acid and intensifying pyroracemic acid accumulation
CN105026569A (en) * 2012-12-31 2015-11-04 英威达技术有限责任公司 Methods of producing 7-carbon chemicals via pyruvate and succinate semialdehyde aldol condensation
WO2016085816A1 (en) * 2014-11-26 2016-06-02 INVISTA North America S.à.r.l. Methods of producing 6-carbon monomers from 8-carbon compounds
WO2016085811A1 (en) * 2014-11-26 2016-06-02 Invista North America S.á.r.l. Methods and materials for producing 7-carbon chemicals via a c9 route
CN105814191A (en) * 2013-08-15 2016-07-27 拉勒曼德匈牙利流动管理有限责任公司 Methods for the improvement of product yield and production in a microorganism through glycerol recycling
CN106086092A (en) * 2016-08-25 2016-11-09 江南大学 A kind of alpha Ketoglutarate and the fermentation process of acetone acid coproduction
WO2017006183A1 (en) * 2015-07-08 2017-01-12 Conradie Alex Van Eck Methods and host cells for enhancing production of 1,3-butanediol
CN106496019A (en) * 2016-10-13 2017-03-15 江南大学 A kind of method for extracting alpha Ketoglutarate and pyruvic acid from microbial fermentation solution or enzymatic conversion liquid simultaneously
CN106544284A (en) * 2016-11-01 2017-03-29 临沂大学 A kind of restructuring Yarrowia lipolytica engineered strain and its construction method and application
WO2017111904A2 (en) * 2014-12-22 2017-06-29 Invista North America S.á.r.l. Methods and materials for the production of monomers for nylon-4/polyester production
WO2017136344A1 (en) * 2016-02-01 2017-08-10 INVISTA North America S.à.r.l. Process for producing c7 compounds starting from 9-hydroperoxidized linoleic acid
CN107075452A (en) * 2014-07-25 2017-08-18 诺沃吉股份有限公司 The promoter and its application method of adenine A Shi yeast are conciliate from Yarrowia lipolytica
CN107406818A (en) * 2014-12-30 2017-11-28 诺沃吉公司 Strengthen the production of core lipid in oleaginous yeast
WO2017205750A1 (en) * 2016-05-26 2017-11-30 The Regents Of The University Of Michigan Compositions and methods for microbial co-culture
WO2018022440A2 (en) * 2016-07-25 2018-02-01 Invista North America S.A.R.L. Materials and methods for directing carbon flux and increased production of carbon based chemicals
CN107739308A (en) * 2017-11-10 2018-02-27 江南大学 A kind of method for extracting alpha Ketoglutarate and pyruvic acid simultaneously from microbial fermentation solution or enzymatic conversion liquid
CN108064268A (en) * 2014-05-29 2018-05-22 诺沃吉公司 Increase lipid and generate and optimize lipid composition
CN108676766A (en) * 2018-06-01 2018-10-19 天津大学 The bacterial strain of application and its acquisition of genetic modification
CN108913706A (en) * 2018-07-10 2018-11-30 郑州轻工业学院 A kind of bacillus subtilis glycerokinase mutated gene glpK and its application
CN109652434A (en) * 2019-02-25 2019-04-19 中国科学院天津工业生物技术研究所 One plant using glycerol as the recombinant bacterium of substrate production succinic acid and its construction method and application
CN109929870A (en) * 2019-02-20 2019-06-25 天津大学 Glycometabolism cooperates with the application for improving the yield of Yarrowia lipolytica synthctic fat acid derivative with lipid-metabolism

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2614744T3 (en) * 2004-10-04 2017-06-01 Novozymes A/S Polypeptides with phytase activity and polynucleotides encoding them
US7588931B2 (en) * 2004-11-04 2009-09-15 E. I. Du Pont De Nemours And Company High arachidonic acid producing strains of Yarrowia lipolytica
SG177941A1 (en) * 2007-04-03 2012-02-28 Oxyrane Uk Ltd Glycosylation of molecules
WO2009046231A1 (en) * 2007-10-03 2009-04-09 E. I. Du Pont De Nemours And Company Optimized strains of yarrowia lipolytica for high eicosapentaenoic acid production
JP2011504740A (en) * 2007-11-27 2011-02-17 アブリンクス エン.ヴェー. Amino acid sequence directed to heterodimeric cytokines and / or their receptors, and polypeptides containing the same
US20140024064A1 (en) * 2012-07-23 2014-01-23 Butamax(Tm) Advanced Biofuels Llc Processes and systems for the production of fermentative alcohols
CN103233036B (en) * 2013-04-09 2014-12-17 江南大学 Method for optimizing conjugated linoleic acid synthesis by using Yarrowia lipolytica yeast recombinant strain based on genetic engineering strategy
CN104805027B (en) * 2015-05-27 2018-04-27 天津大学 One kind restructuring Ye Shi solution fat yeast strains and its construction method and application
CN107815424B (en) * 2016-09-12 2021-03-05 华东理工大学 Yarrowia lipolytica gene engineering bacterium for producing limonene and application thereof
CN106318879B (en) * 2016-09-20 2019-10-25 中国科学技术大学 Pyruvic acid high temperature high-yielding engineering bacterial strain and its application
CN107034150B (en) * 2017-04-13 2021-06-29 天津大学 Recombinant yarrowia lipolytica strain and construction method and application thereof
CN108998383B (en) * 2017-06-06 2023-04-28 华东理工大学 Yarrowia lipolytica genetically engineered bacterium for producing linalool and application thereof
CN107338196B (en) * 2017-06-29 2020-08-28 浙江诺睿特生物科技有限公司 Yarrowia lipolytica strain and application thereof
CN108795789A (en) * 2018-07-02 2018-11-13 山东省食品发酵工业研究设计院 A kind of high-yield itaconic acid Yarrowia lipolytica engineered strain and its construction method, zymotechnique and application

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101942480A (en) * 2004-12-20 2011-01-12 巴斯福植物科学有限公司 The nucleic acid molecule of encoding fatty acid desaturase genes from plants and using method thereof
CN101218352A (en) * 2005-03-18 2008-07-09 米克罗比亚精确工程公司 Production of carotenoids in oleaginous yeast and fungi
CN101765661A (en) * 2007-06-01 2010-06-30 索拉兹米公司 In microorganism, produce oil
CN102080109A (en) * 2009-11-27 2011-06-01 爱普香料集团股份有限公司 Method for preparing natural chiral gama-decalactone by using two-liquid-phase extraction bioanalysis method
CN102071154A (en) * 2010-12-08 2011-05-25 江南大学 Alpha-ketoglutarate producing yeast engineering strain and construction method thereof
WO2012078852A2 (en) * 2010-12-08 2012-06-14 Srs Energy Algae biomass fractionation
CN102071154B (en) * 2010-12-08 2013-05-22 江南大学 Alpha-ketoglutarate producing yeast engineering strain and construction method thereof
CN104126006A (en) * 2011-11-28 2014-10-29 索拉兹米公司 Genetically engineered microbial strains including prototheca lipid pathway genes
CN104284974A (en) * 2012-03-06 2015-01-14 利戈斯股份有限公司 Recombinant host cells for the production of malonate
CN102586128A (en) * 2012-03-14 2012-07-18 江南大学 High-yield alpha-ketoglutarate engineered saccharomyces cerevisiae and application thereof
CN105026569A (en) * 2012-12-31 2015-11-04 英威达技术有限责任公司 Methods of producing 7-carbon chemicals via pyruvate and succinate semialdehyde aldol condensation
CN105814191A (en) * 2013-08-15 2016-07-27 拉勒曼德匈牙利流动管理有限责任公司 Methods for the improvement of product yield and production in a microorganism through glycerol recycling
CN103923847A (en) * 2014-03-14 2014-07-16 江南大学 Yarrowia lipolytica capable of reinforcing precursor supply to enhance synthesis of alpha-oxoglutarate
CN108064268A (en) * 2014-05-29 2018-05-22 诺沃吉公司 Increase lipid and generate and optimize lipid composition
CN107075452A (en) * 2014-07-25 2017-08-18 诺沃吉股份有限公司 The promoter and its application method of adenine A Shi yeast are conciliate from Yarrowia lipolytica
CN104450804A (en) * 2014-11-19 2015-03-25 江南大学 Method for weakening catabolism of pyroracemic acid and intensifying pyroracemic acid accumulation
WO2016085816A1 (en) * 2014-11-26 2016-06-02 INVISTA North America S.à.r.l. Methods of producing 6-carbon monomers from 8-carbon compounds
WO2016085811A1 (en) * 2014-11-26 2016-06-02 Invista North America S.á.r.l. Methods and materials for producing 7-carbon chemicals via a c9 route
WO2017111904A2 (en) * 2014-12-22 2017-06-29 Invista North America S.á.r.l. Methods and materials for the production of monomers for nylon-4/polyester production
CN107406818A (en) * 2014-12-30 2017-11-28 诺沃吉公司 Strengthen the production of core lipid in oleaginous yeast
WO2017006183A1 (en) * 2015-07-08 2017-01-12 Conradie Alex Van Eck Methods and host cells for enhancing production of 1,3-butanediol
WO2017136344A1 (en) * 2016-02-01 2017-08-10 INVISTA North America S.à.r.l. Process for producing c7 compounds starting from 9-hydroperoxidized linoleic acid
WO2017205750A1 (en) * 2016-05-26 2017-11-30 The Regents Of The University Of Michigan Compositions and methods for microbial co-culture
WO2018022440A2 (en) * 2016-07-25 2018-02-01 Invista North America S.A.R.L. Materials and methods for directing carbon flux and increased production of carbon based chemicals
CN106086092A (en) * 2016-08-25 2016-11-09 江南大学 A kind of alpha Ketoglutarate and the fermentation process of acetone acid coproduction
CN106496019A (en) * 2016-10-13 2017-03-15 江南大学 A kind of method for extracting alpha Ketoglutarate and pyruvic acid from microbial fermentation solution or enzymatic conversion liquid simultaneously
CN106544284A (en) * 2016-11-01 2017-03-29 临沂大学 A kind of restructuring Yarrowia lipolytica engineered strain and its construction method and application
CN107739308A (en) * 2017-11-10 2018-02-27 江南大学 A kind of method for extracting alpha Ketoglutarate and pyruvic acid simultaneously from microbial fermentation solution or enzymatic conversion liquid
CN108676766A (en) * 2018-06-01 2018-10-19 天津大学 The bacterial strain of application and its acquisition of genetic modification
CN108913706A (en) * 2018-07-10 2018-11-30 郑州轻工业学院 A kind of bacillus subtilis glycerokinase mutated gene glpK and its application
CN109929870A (en) * 2019-02-20 2019-06-25 天津大学 Glycometabolism cooperates with the application for improving the yield of Yarrowia lipolytica synthctic fat acid derivative with lipid-metabolism
CN109652434A (en) * 2019-02-25 2019-04-19 中国科学院天津工业生物技术研究所 One plant using glycerol as the recombinant bacterium of substrate production succinic acid and its construction method and application

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Biosynthesis of pyruvic acid from glycerol-containing substrates and its regulation in the yeast Yarrowia lipolytica;Svetlana V. Kamzolova 等;《Bioresource Technology》;20190319;第125–133页 *
Engineering the α-ketoglutarate overproduction from raw glycerol by overexpression of the genes encoding NADP+-dependent isocitrate dehydrogenase and pyruvate carboxylase in Yarrowia lipolytica;Venelina Yovkova 等;《Appl Microbiol Biotechnol》;20131126;第2003–2013页 *
Production of pyruvic acid from glycerol by Yarrowia lipolytica;Krzysztof Cybulski 等;《Folia Microbiologica》;20190319;第809–820页 *
Pyruvic acid production by a thiamine auxotroph of Yarrowia lipolytica;Igor G. Morgunov 等;《Process Biochemistry》;20140730;第39卷(第11期);第1469–1474页 *
Separation of α-Ketoglutaric Acid and Pyruvic Acid From the Culture Broth of Yarrowia lipolytica WSH-Z06 by Chromatographic Methods;Xiaoyu Peng 等;《Biotechnol.Prog.》;20181003;第1370-1379页 *
固定化解脂耶氏酵母(Yarrowia lipolytica)处理油脂废水的性能研究;吴兰 等;《环境工程学报》;20080405;第2卷(第4期);第482-486页 *
解脂耶氏酵母脂肪酶LIP4 和LIP5在毕赤酵母中的异源表达及酶学性质;赵鹤云 等;《微生物学报》;20111004;第51卷(第10期);第10-16页 *
解脂耶氏酵母表达系统研究进展;赵鹤云 等;《生物加工过程》;20080531;第6卷(第3期);第1374 - 1381页 *

Also Published As

Publication number Publication date
CN110499259A (en) 2019-11-26

Similar Documents

Publication Publication Date Title
CN110878261B (en) Construction method of recombinant yarrowia lipolytica for synthesizing xylitol and strain thereof
CN111363759B (en) Construction method of recombinant yarrowia lipolytica for synthesizing erythritol and bacterial strain thereof
CN111254129B (en) Polyphosphate kinase mutant and application thereof
CN108753672B (en) Xylitol genetic engineering production strain and construction method and application thereof
KR20220139351A (en) Modified Microorganisms and Methods for Improved Production of Ectoins
CN113755354A (en) Recombinant saccharomyces cerevisiae for producing gastrodin by using glucose and application thereof
CN109652434B (en) Recombinant bacterium for producing succinic acid by using glycerol as substrate and construction method and application thereof
CN113564090B (en) Construction method for recombinant bacteria producing tetrahydropyrimidine and application thereof
WO2022174597A1 (en) Genetically engineered bacterium for producing l-sarcosine, construction method therefor and use thereof
CN113073074B (en) Genetically engineered bacterium for efficiently synthesizing riboflavin and application thereof
CN110499259B (en) Yarrowia lipolytica YW100-1 and application thereof
CN109628476B (en) Method for producing 4-hydroxyisoleucine by using whole cell transformation
CN107201375B (en) Construction method and application of genetic engineering strain for producing (R, R) -2, 3-butanediol
KR20200040585A (en) A recombinant microorganism into which a high activity malate dehydrogenase for producing succinic acid and a method for producing succinic acid using the same
CN113493758A (en) Tyrosol-producing recombinant escherichia coli capable of shortening fermentation period and application thereof
CN113403213A (en) Yarrowia lipolytica engineering bacterium for producing triacetic acid lactone by using xylose and application
KR102605543B1 (en) Methionine-producing yeast
EP2643466B1 (en) Yeast cells and process for converting acetaldehyde to ethanol
CN112852847A (en) Recombinant saccharomyces cerevisiae strain and construction method and application thereof
CN114517164A (en) Application of fatty acid elongase gene in synthesis of nervonic acid by yeast
CN114525215B (en) Recombinant strain for producing terpenoid, construction method thereof, method for producing terpenoid through fermentation and application of recombinant strain
CN116179380A (en) Yarrowia lipolytica engineering bacterium WSMHP capable of producing pyruvic acid in high yield, construction method and application
CN114875011B (en) AMP phosphotransferase mutant, coding gene thereof and application thereof in ATP synthesis
CN114456964B (en) Recombinant yarrowia lipolytica for high yield of stigmasterol, construction method thereof, fermentation medium for producing stigmasterol and application
CN108866017B (en) Method for preparing β -hydroxy- β -methylbutyric acid by enzyme method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220601

Address after: 310014 room 101-01, 1st floor, building 6, No. 1366, Hongfeng Road, Kangshan street, Huzhou City, Zhejiang Province

Patentee after: Zhejiang yingwodi Biotechnology Co.,Ltd.

Address before: 310014 No. 18 Chao Wang Road, Xiacheng District, Zhejiang, Hangzhou

Patentee before: ZHEJIANG University OF TECHNOLOGY

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231211

Address after: Room 306, 3rd Floor, Building 3, No. 516 Renhe Avenue, Renhe Street, Yuhang District, Hangzhou City, Zhejiang Province, 311100

Patentee after: Hangzhou Haipu Wohui Biopharmaceutical Co.,Ltd.

Address before: 310014 room 101-01, 1st floor, building 6, No. 1366, Hongfeng Road, Kangshan street, Huzhou City, Zhejiang Province

Patentee before: Zhejiang yingwodi Biotechnology Co.,Ltd.

TR01 Transfer of patent right