CN113774079A - Recombinant saccharomyces cerevisiae and construction method and application thereof - Google Patents

Recombinant saccharomyces cerevisiae and construction method and application thereof Download PDF

Info

Publication number
CN113774079A
CN113774079A CN202110934151.4A CN202110934151A CN113774079A CN 113774079 A CN113774079 A CN 113774079A CN 202110934151 A CN202110934151 A CN 202110934151A CN 113774079 A CN113774079 A CN 113774079A
Authority
CN
China
Prior art keywords
gene
leu
saccharomyces cerevisiae
glu
myrcene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110934151.4A
Other languages
Chinese (zh)
Inventor
戴宗杰
苏立秋
赵全禄
张媛媛
王钦宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Institute of Industrial Biotechnology of CAS
Original Assignee
Tianjin Institute of Industrial Biotechnology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Institute of Industrial Biotechnology of CAS filed Critical Tianjin Institute of Industrial Biotechnology of CAS
Priority to CN202110934151.4A priority Critical patent/CN113774079A/en
Publication of CN113774079A publication Critical patent/CN113774079A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/07Diphosphoric monoester hydrolases (3.1.7)
    • C12Y301/07003Monoterpenyl-diphosphatase (3.1.7.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/03016(4S)-Limonene synthase (4.2.3.16)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/0302(R)-Limonene synthase (4.2.3.20)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses recombinant saccharomyces cerevisiae and a construction method and application thereof. The construction method of the recombinant saccharomyces cerevisiae comprises the following steps: and (3) introducing a geraniol synthetase gene and/or a limonene synthetase gene into saccharomyces cerevisiae to obtain the recombinant saccharomyces cerevisiae for producing myrcene. The invention provides a powerful strain and a research foundation for the biosynthesis of myrcene, and has important significance for the mining of high-activity myrcene synthase.

Description

Recombinant saccharomyces cerevisiae and construction method and application thereof
Technical Field
The invention belongs to the technical field of biology, and particularly relates to recombinant saccharomyces cerevisiae as well as a construction method and application thereof.
Background
Monoterpene compounds are terpenes and derivatives thereof that contain two isoprene units in the molecule. The classification by its structure includes: acyclic monoterpenes, monocyclic monoterpenes, polycyclic monoterpenes. Attracts wide attention because of its medicinal value and its great application potential in food, cosmetics and energy industries. At present, monoterpenes are mainly obtained by extraction from natural plants or chemical synthesis, but these methods have low yield and are highly dependent on the availability of raw materials. Meanwhile, the generated waste has complex components, pollutes the environment and brings difficulty to subsequent treatment. With the development of synthetic biology technology and metabolic engineering, microorganisms are modified to become a cell factory for synthesizing high value-added chemicals, and a new green and clean production way is opened for the synthesis of terpenoids.
Disclosure of Invention
The invention aims to provide a construction method of myrcene-producing recombinant saccharomyces cerevisiae.
The invention provides a construction method of myrcene-producing recombinant saccharomyces cerevisiae, which comprises the following steps: and (3) introducing a geraniol synthetase gene and/or a limonene synthetase gene into saccharomyces cerevisiae to obtain the recombinant saccharomyces cerevisiae for producing myrcene.
Geraniol synthase and limonene synthase are collectively referred to as myrcene synthase.
For example, the Saccharomyces cerevisiae is capable of accumulating geranyl diphosphate (GPP), a precursor for myrcene synthesis.
Alternatively, according to the above-mentioned construction method, the geraniol synthase gene is derived from basil and/or perilla; the limonene synthetase gene is derived from wenzhou mandarin orange.
Alternatively, according to the above-described construction method, the amino acid sequence of the geraniol synthase encoded by the geraniol synthase gene is represented by SEQ ID nos. 10 and/or 11; the amino acid sequence of the limonene synthetase encoded by the limonene synthetase gene is shown as SEQ ID No. 12.
The nucleotide sequence of the geraniol synthase gene can be shown as the 777-2414 site of SEQ ID No.6 and/or the 777-2381 site of SEQ ID No. 7; the nucleotide sequence of the limonene synthetase gene can be shown in the 777-2444 position of SEQ ID No. 8.
Optionally, according to the above construction method, the saccharomyces cerevisiae is a bacterium obtained by increasing the content and/or activity of farnesyl pyrophosphate synthetase ERG20, 3-hydroxy-3-methylglutaryl coenzyme AtHMG1, acetyl coenzyme A acyltransferase mvaE, HMG-CoA synthetase mvaS-m, isopentenyl pyrophosphate isomerase IDI1, mevalonate kinase ERG12, MVAP kinase ERG8 and/or MVAPP decarboxylase ERG19, and/or reducing the expression of galactose regulatory gene Gal80 gene in the starting saccharomyces cerevisiae. For example, increasing the enzyme content and/or activity is achieved by increasing the copy number of the corresponding enzyme gene of the starting s.cerevisiae and decreasing the expression of the Gal80 gene is achieved by knocking out the Gal80 gene of the starting s.cerevisiae.
Optionally, the starting saccharomyces cerevisiae is TIB H1, and the registration number of the starting saccharomyces cerevisiae in the common microorganism center of the china committee for culture collection of microorganisms is CGMCC No. 21000.
Optionally, the construction method includes: and (3) carrying out at least one of the following improvements on the starting saccharomyces cerevisiae to obtain the saccharomyces cerevisiae: a1, introduction of farnesyl pyrophosphate synthetase gene 96-position and 127-position double-point mutant gene ERG20F96W/N127WA gene; a2, introduction of tHMG1 gene; a3, introducing mvaE gene; a4, introducing mvaS-m gene; a5, introduction of IDI1 gene; a6, introduction of ERG12 gene; a7, introduction of ERG8 gene; a8, introduction of ERG19 gene; a9, knock-out Gal80 gene.
Optionally, the ERG20F96W/N127WGene encoded ERG20F96W/N127wThe sequence of the protein is shown as SEQ ID No. 13; and/or the sequence of the tHMG1 protein coded by the tHMG1 gene is genbank accession number: the AJS96703.1 sequence is indicated at bits 530-; and/or, the sequence of the mvaE protein coded by the mvaE gene is shown in genbank accession number AAG 02439.1; and/orThe sequence of mvaS-m protein coded by the mvaS-m gene is shown by replacing 110 th alanine of genbank login number AAG02438.1 with glycine; and/or the IDI1 protein coded by the IDI1 gene has a sequence of genbank accession number: NP-015208.1 sequence; and/or the sequence of the ERG12 protein coded by the ERG12 gene is genbank accession number: NP-013935.1 sequence; and/or the sequence of the ERG8 protein coded by the ERG8 gene is genbank accession number: NP-013947.1 sequence; and/or the sequence of the ERG19 protein coded by the ERG19 gene is genbank accession number: NP-014441.1 sequence.
Optionally, the ERG20F96W/N127WThe gene sequence is shown as the 722-1780 site of SEQ ID No. 1; and/or the sequence of the tHMG1 gene is shown as the 800-2383 position of SEQ ID No. 2; and/or the mvaE gene sequence is shown as the reverse complement of the 270 th and 2681 th positions of SEQ ID No. 3; and/or the sequence of the mvaS-m gene is shown as the 3358-4509 site of SEQ ID No. 3; and/or the IDI1 gene sequence is shown as the reverse complement of the 270-position and 1136-position of SEQ ID No. 4; and/or the ERG12 gene sequence is shown as the 1813-3144 position of SEQ ID No. 4; and/or, the ERG8 gene sequence is shown as the reverse complement of 333-1688 bit of SEQ ID No. 5; and/or the ERG19 gene sequence is shown in the 2365-3555 site of SEQ ID No. 5.
Optionally, according to the above construction method, the introducing of the geraniol synthase gene and/or the limonene synthase gene into the starting saccharomyces cerevisiae is realized by introducing a geraniol synthase gene expression cassette and/or a limonene synthase gene expression cassette into the starting saccharomyces cerevisiae; and/or, the A1 is obtained by introducing ERG20 into the starting Saccharomyces cerevisiaeF96W/N127WGene expression cassette implementation; and/or, said A2 is realized by introducing tHMG1 gene expression cassette into said Saccharomyces cerevisiae; and/or, said a3 is achieved by introducing mvaE gene expression cassettes into said starting saccharomyces cerevisiae; and/or, the A4 is realized by introducing mvaS-m gene expression cassettes into the starting saccharomyces cerevisiae; and/or, said A5 is achieved by introducing IDI1 gene expression cassette into said s.cerevisiae; and/or, the A6 is realized by introducing an ERG12 gene expression cassette into the saccharomyces cerevisiae; and/or the presence of a gas in the gas,the A7 is realized by introducing an ERG8 gene expression cassette into the saccharomyces cerevisiae; and/or, the A8 is realized by introducing an ERG19 gene expression cassette into the saccharomyces cerevisiae; and/or, the A9 is realized by knocking out Gal80 gene in the starting saccharomyces cerevisiae through a CRISPR/CAS9 system.
Optionally, according to the above construction method, the geraniol synthase gene expression cassette and/or the limonene synthase gene expression cassette comprises a promoter, the geraniol synthase gene and/or the limonene synthase gene and a terminator, wherein the promoter is Gal 2; the terminator is CYC 1. For example, the sequence of the geraniol synthase gene expression cassette is shown as 72-2633 of SEQ ID No.6 or 72-2600 of SEQ ID No.7, and the sequence of the limonene synthase gene expression cassette is shown as 72-2663 of SEQ ID No. 8.
Optionally, the ERG20 is constructed according to the methodF96W/N127WThe sequence of the gene expression cassette is shown as 54 th-2141 th site of SEQ ID No. 1; and/or the sequence of the tHMG1 gene expression cassette is shown as 75-2769 of SEQ ID No. 2; and/or the sequence of the mvaE gene expression cassette is shown as the reverse complement of 78 th to 3357 th site of SEQ ID No. 3; and/or the sequence of the mvaS-m gene expression cassette is shown as the 2682-4728 site of SEQ ID No. 3; and/or the IDI1 gene expression cassette sequence is shown as the reverse complement of the 69 th to the 1812 nd positions of SEQ ID No. 4; and/or, the ERG12 gene expression cassette sequence is shown as 1137-3256 of SEQ ID No. 4; and/or the sequence of the ERG8 gene expression cassette is shown as the reverse complement of 74 th to 2364 th positions of SEQ ID No. 5; and/or, the sequence of the ERG19 gene expression cassette is shown as the 1689-3774 site of SEQ ID No. 5.
Specifically, the Gal80 gene in the starting saccharomyces cerevisiae is knocked out by the CRISPR/CAS9 system, namely a CAS9 gene, a gRNA gene and a Gal80 homologous recombination fragment are introduced into the starting saccharomyces cerevisiae, and the CAS9 gene and the gRNA gene are expressed. The gRNA gene encodes a gRNA fragment that targets the Gal80 gene. The homologous recombination fragment of Gal80 can be represented by SEQ ID No.9, for example.
The recombinant saccharomyces cerevisiae constructed by the construction method also belongs to the protection scope of the invention.
It is another object of the present invention to provide a method for producing myrcene.
The invention provides a method for producing myrcene, which comprises the step of culturing the recombinant saccharomyces cerevisiae to obtain a fermentation product, namely myrcene.
The invention also provides any one of the following applications, namely the application of X1 and the construction method in the preparation and production of myrcene products; x2, the use of the above-described method of construction for the production of myrcene; x3, the application of the recombinant saccharomyces cerevisiae in preparing myrcene products; x4, the application of the recombinant saccharomyces cerevisiae in the production of myrcene; the application of X5, geraniol synthase gene or limonene synthase gene in preparing myrcene products; the use of X6, a geraniol synthase gene or a limonene synthase gene for the production of myrcene; the application of X7, geraniol synthase or limonene synthase in preparing myrcene products; use of X8, a geraniol synthase or a limonene synthase for the production of myrcene.
Optionally, in the above application, the geraniol synthase gene is derived from basil and/or perilla; the limonene synthetase gene is derived from wenzhou mandarin orange. For example, the amino acid sequence of the geraniol synthase encoded by the geraniol synthase gene is shown as SEQ ID No.10 and/or SEQ ID No. 11; the amino acid sequence of the limonene synthetase encoded by the limonene synthetase gene is shown as SEQ ID No. 12. As another example, the nucleotide sequence of the geraniol synthase gene can be shown as position 777-2414 of SEQ ID No.6 and/or as position 777-2381 of SEQ ID No. 7; the nucleotide sequence of the limonene synthetase gene can be shown in the 777-2444 position of SEQ ID No. 8.
Myrcene is an aromatic hydrocarbon, an important constituent of many different plant essential oils, and is a monoterpene substance. In the embodiment of the invention, a MVA approach in the saccharomyces cerevisiae is strengthened and geraniol synthase genes or limonene synthase genes are introduced to construct the recombinant saccharomyces cerevisiae for producing myrcene; the screening of the geraniol synthetase and the limonene synthetase can improve the yield of the recombined saccharomyces cerevisiae myrcene; provides a powerful strain and a research foundation for the biosynthesis of myrcene, and has important significance for the excavation of high-activity myrcene synthase.
Deposit description
The strain name is as follows: saccharomyces cerevisiae
Latin name: saccharomyces cerevisiae
The strain number is as follows: TIB H1
The preservation organization: china general microbiological culture Collection center
The preservation organization is abbreviated as: CGMCC (China general microbiological culture Collection center)
Address: xilu No.1 Hospital No.3 of Beijing market facing Yang district
The preservation date is as follows: 11/2020/11/04
Registration number of the preservation center: CGMCC No.21000
Drawings
FIG. 1 shows the myrcene yield of the engineering bacteria of example 3.
Detailed Description
The present invention is described in further detail below with reference to specific embodiments, which are given for the purpose of illustration only and are not intended to limit the scope of the invention. The examples provided below serve as a guide for further modifications by a person skilled in the art and do not constitute a limitation of the invention in any way.
The experimental procedures in the following examples, unless otherwise indicated, are conventional and are carried out according to the techniques or conditions described in the literature in the field or according to the instructions of the products. Materials, reagents and the like used in the following examples are commercially available unless otherwise specified.
The data were processed using SPSS11.5 statistical software and the experimental results are presented as mean values.
Saccharomyces cerevisiae TIB H1, which has been deposited in China general microbiological culture Collection center (CGMCC, No.3 of West Lu 1 of Beijing, Naja, China academy of sciences, institute of microbiology) at 04.11.2020, has been deposited with the accession number of CGMCC No. 21000.
YPD medium comprising per L volume of YPD medium: 20g of peptone, 10g of yeast extract, 20g of glucose, 20g of agar powder (YPD solid medium supplement)
SD plates without uracil addition: SD medium without uracil addition per L volume contained: 8g Ura minus meida (Beijing Pankeno technologies, Ltd.), 20g agar powder, 20g glucose.
SD plates containing 5-fluoroorotic acid, SD containing 5-fluoroorotic acid per L volume contained: 8g Ura minus meida (Beijing Pankeno science and technology Co., Ltd.), 20g of agar powder, 20g of glucose, 60mg of uracil and 1g of 5-fluoroorotic acid.
Delft liquid medium, per L volume Delft liquid medium contains: 20g of glucose, 7.5g of ammonium sulfate, 0.5g of magnesium sulfate heptahydrate, 14.4g of potassium dihydrogen phosphate, 2ml of a trace metal salt mother liquor (3.0 g of iron sulfate heptahydrate, 4.5g of zinc sulfate heptahydrate, 4.5g of calcium chloride dihydrate, 0.84g of manganese chloride dihydrate, 0.3g of cobalt chloride hexahydrate, 0.3g of copper sulfate pentahydrate, 0.4g of sodium molybdate dihydrate, 1.0g of boric acid, 0.1g of potassium iodide, 19.0g of disodium ethylenediaminetetraacetate), 1ml of a vitamin mother liquor (0.05 g D-biotin, 1.0g of 1. 1.0g D-pantothenic acid, 1.0g of vitamin B1, 1.0g of pyridoxine, 1.0g of nicotinic acid, 0.2g of 4-aminobenzoic acid, 25.0g of inositol, 60mg of uracil in 1L volume).
The information on the gene fragments and protein sequences in the examples below is given in the following table.
Information related to gene fragment and protein sequence
Figure BDA0003209963010000041
Figure BDA0003209963010000051
Protein-related information
Figure BDA0003209963010000052
Example 1 preparation of target Gene
1. Acquisition of genes involved in MVA pathway modification
ERG20F96W-N127W-TERG20、tHMG-Thmgl、IDI1-TIDI1、ERG8-TERG8、ERG12-TERG12、ERG19-TERG19Genes and the acquisition of Gal1, Gal2, Gal7, Gal10 promoter, ADH, CYC1 terminator, Gal80 upstream segment and Gal80 downstream segment.
Extracting yeast genome DNA as template, amplifying by using primer required by gene amplification in Table 1 to obtain segment with expected size
The PrimSTAR HS DNA polymerase was used to prepare an amplification system (TAKARA) which was: 5 XPS Buffer10 uL, Dntp Mix 4 uL, primer 1 uL each, genomic DNA template 1 uL, HS polymerase (2.5U/> L)0.5 uL, and distilled water to total volume of 50 uL. The amplification conditions were: pre-denaturation at 98 ℃ for 3min (1 cycle); denaturation at 98 ℃ for 10 seconds, annealing at 55 ℃ for 5 seconds, and extension at 72 ℃ for 2.5 minutes (30 cycles); extension at 72 ℃ for 10 min (1 cycle).
Table 1 shows the primer sequences
Figure BDA0003209963010000053
Figure BDA0003209963010000061
Figure BDA0003209963010000071
2. Myrcene synthase and acquisition of mvaS-m and mvaE genes
Geraniol synthase and limonene synthase are collectively referred to as myrcene synthase.
The Suzhou Jinzhi Biotechnology Ltd respectively constructs plasmids containing the genes according to GerS _ Pc (geraniol synthase, from Perilla Perilla citriodora), GerS _ Ob (geraniol synthase, from basil Ocimum basilicum), LS _ Cu (limonene synthase, from Citrus unshiu), mvaE (Enterococcus enterobacter) and mvaS-m (Enterococcus) codon-optimized gene sequences through artificial synthesis, and then the double-stranded DNAs are transformed and cloned into a cloning vector pET28a (Suzhou Jinzhi Biotechnology Ltd).
The plasmids are used as templates, primers required by gene amplification in the table 2 are used for amplification, fragments with expected sizes are obtained, and products are recovered and stored through rubber tapping. Thereby obtaining GerS _ Pc gene, GerS _ Ob gene, LS _ Cu gene andmvaEgenes andmvaS-ma gene.
Table 2 shows the primer sequences
Figure BDA0003209963010000072
Figure BDA0003209963010000081
3、PGal1-ERG20F96W-N127W-TEer20Construction of expression elements
The fragment P obtained above was subjected to the Overlap PCR techniqueGal1,ERG20F96W-N127W-TEer20Ligation amplification was performed using PrimSTAR HS DNA polymerase with an amplification system (TAKARA) of: 5 XPS Buffer 10. mu.L, Dntp Mix 4. mu.L, primer PGal1mu.L of each of-f and TErg20-r, 1. mu.L of genomic DNA template (P)Gal1,ERG20F96W-N127W-TEer20The addition molar ratio of each fragment is 1: 1) 0.5. mu.L HS polymerase (2.5U/. mu.L), and distilled water was added thereto to make the total volume 50. mu.L. The amplification conditions were: pre-denaturation at 98 ℃ for 3min (1 cycle); denaturation at 98 ℃ for 10 seconds, annealing at 55 ℃ for 5 seconds, and extension at 72 ℃ for 3 minutes (30 cycles); extension at 72 ℃ for 10 min (1 cycle) and the product recovered by tapping. Obtaining PGal1-ERG20F96W-N127W-TEer20An expression element. PGal1-ERG20F96W-N127W-TEer20The expression element contains ERG20F96W-N12TWExpression cassette expressing ERG20F96W-N127wThe gene, the expression product of which is ERG20F96W-N127wA protein.
4、PGal7-tHMG1-Thmg1Construction of expression elements
The fragment P obtained above was subjected to the Overlap PCR techniqueGal7,tHMG1-Thmmg1Ligation amplification was performed using PrimSTAR HS DNA polymerase with an amplification system (TAKARA) of: 5 XPS Buffer10 uL, Dntp Mix 4 uL, primer Paal7mu.L of each of-f and Thmg1-r, 1. mu.L of genomic DNA template (P)Gal7,tHMG-Thmg1The molar ratio of each fragment was 1: 1), HS polymerase (2.5U/. mu.L) 0.5. mu.L, and distilled water was added to a total volume of 50. mu.L. The amplification conditions were: pre-denaturation at 98 ℃ for 3min (1 cycle); denaturation at 98 ℃ for 10 seconds, annealing at 55 ℃ for 5 seconds, and extension at 72 ℃ for 3 minutes (30 cycles); extending for 10 minutes at 72 ℃ (1 cycle), and recovering and storing the product by tapping to obtain PGal7-tHMG1-Thmg1An expression element. PGal7-tHMG1-Thmg1The expression element contains a tHMG1 expression cassette which expresses a tHMG1 gene, and the expression product is tHMG1 protein.
4、TADH-mvaE-PGAL1-PGAL10-mvaS-m-TCYC1Construction of expression elements
The fragment T obtained above was subjected to the Overlap PCR techniqueADH,mvaE,PGAL1,PGAL10,mvaS-m,TCYC1Ligation amplification was performed using PrimSTAR HS DNA polymerase with an amplification system (TAKARA) of: 5 XPS Buffer 10. mu.L, Dntp Mix 4. mu.L, primer TADH1-rAnd TCYC1-rmu.L each, 1. mu.L of genomic DNA template (T)ADH,mvaE,PGAL1,PGAL10,mvaS-m,TCYC1The molar ratio of each fragment was 1: 3: 5: 3: 1), HS polymerase (2.5U/. mu.L) 0.5. mu.L, and distilled water was added thereto to make the total volume 50. mu.L. The amplification conditions were: pre-denaturation at 98 ℃ for 3min (1 cycle); denaturation at 98 ℃ for 10 seconds, annealing at 55 ℃ for 5 seconds, and extension at 72 ℃ for 6 minutes (30 cycles); extending for 10 minutes at 72 ℃ (1 cycle), and recovering and storing the product by tapping to obtain TADH-mvaE-PGAL1-PGAL10-mvaS-m-TCYC1An expression element.TADH-mvaE-PGAL1-PGAL10-mvaS-m-TCYC1The expression element contains mvaE expression box and mvaS-m expression box. The mvaE expression box expresses mvaE genes, and the expression product is mvaE protein. The mvaS-m expression box expresses mvaS-m gene, and the expression product is mvaS-m protein.
5、TIDI1-IDI1-PGAL1-PGAL10-ERG12-TERG12Construction of expression elements
The fragment IDI1-T obtained above was subjected to the Overlap PCR techniqueIDI1,PGAL1,PGAL10,ERG12-TERG12Ligation amplification was performed using PrimSTAR HS DNA polymerase with an amplification system (TAKARA) of: 5 XPS Buffer 10. mu.L, Dntp Mix 4. mu.L, primer TIDI1-rAnd TERG20-rmu.L each, 1. mu.L of genomic DNA template (IDI 1-T)IDI1,PGAL1,PGAL10,ERG12-TERG12The molar ratio of each fragment was 1: 3: 1), HS polymerase (2.5U/. mu.L) 0.5. mu.L, and distilled water was added to make the total volume 50. mu.L. The amplification conditions were: pre-denaturation at 98 ℃ for 3min (1 cycle); denaturation at 98 ℃ for 10 seconds, annealing at 55 ℃ for 5 seconds, and extension at 72 ℃ for 6 minutes (30 cycles); extending for 10 minutes at 72 ℃ (1 cycle), and recovering and storing the product by tapping to obtain TIDI1-IDI1-PGAL1-PGAL10-ERG12--TERG12An expression element. T isIDI1-IDI1-PGAL1-PGAL10-ERG12-TERG12The expression element contains IDl1 expression cassette and ERG12 expression cassette. The IDI1 expression cassette expresses IDI1 gene, and the expression product is IDI1 protein. The ERG12 expression cassette expresses ERG12 gene and the expression product is ERG12 protein.
6、TERG8-ERG8-PGAL1-PGAL10-ERG19-TERG19Construction of expression elements
The fragment ERG8-T obtained above was subjected to the Overlap PCR techniqueERG8,PGal1,PGal10,ERG19-TERG19Ligation amplification was performed using PrimSTAR HS DNA polymerase with an amplification system (TAKARA) of: 5 XPS Buffer 10. mu.L, Dntp Mix 4. mu.L, primer TERG8-rAnd T CYC1-r1 μ L each, genomeDNA template 1. mu.L (ERG 8-T)ERG8,PGAL1,PGAL10,ERG19-TERG19The molar ratio of each fragment was 1: 3: 1), HS polymerase (2.5U/. mu.L) 0.5. mu.L, and distilled water was added to make the total volume 50. mu.L. The amplification conditions were: pre-denaturation at 98 ℃ for 3min (1 cycle); denaturation at 98 ℃ for 10 seconds, annealing at 55 ℃ for 5 seconds, and extension at 72 ℃ for 6 minutes (30 cycles); extending for 10 minutes at 72 ℃ (1 cycle), and recovering and storing the product by tapping to obtain TERG8-ERG8-PGAL1-PGAL10-ERG19-Terg19An expression element. T isERG8-ERG8-PGAL1-PGAL10-ERG19-Terg19The expression element contains an ERG8 expression cassette and an ERG19 expression cassette. The ERG8 expression cassette expresses ERG8 gene and the expression product is ERG8 protein. The ERG19 expression cassette expresses ERG19 gene and the expression product is ERG19 protein.
PGal2-GerS_Pc-Tcyc1Construction of expression elements
The fragment P obtained above was subjected to the Overlap PCR techniqueGal2,GerS_Pc,Tcyc1Ligation amplification was performed using PrimSTAR HS DNA polymerase with an amplification system (TAKARA) of: 5 XPS Buffer10 uL, Dntp Mix 4 uL, primers PGa12-f and TCYC1-r each 1 uL, genomic DNA template 1 uL (P)Gal2GerS _ Pc, Tcyc1 at a molar ratio of 1: 3: 1), HS polymerase (2.5U/> L) 0.5. mu.L, and distilled water was added to a total volume of 50. mu.L. The amplification conditions were: pre-denaturation at 98 ℃ for 3min (1 cycle); denaturation at 98 ℃ for 10 seconds, annealing at 55 ℃ for 5 seconds, and extension at 72 ℃ for 3 minutes (30 cycles); extending for 10 minutes at 72 ℃ (1 cycle), and recovering and storing the product by tapping to obtain PGal2-GerS_Pc-Tcyc1An expression element. PGal2-GerS_Pc-Tcyc1The expression element contains a GerS _ Pc expression cassette, expresses a GerS _ Pc gene and takes the expression product as GerS _ Pc protein.
7、PGal2-GerS_Ob-Tcyc1Construction of expression elements
The fragment P obtained above was subjected to the Overlap PCR techniqueGal2,GerS_Ob,Tcyc1Ligation amplification was performed using PrimSTAR HS DNA polymerase with an amplification system (TAKARA) of: 5 times the PS Buffer10 mu L,dntp Mix 4. mu.L, primers PGal2-f and TCYC1-r each 1. mu.L, genomic DNA template 1. mu.L (P)Gal2GerS _ Ob, Tcyc1 at a 1: 3: 1 molar ratio of fragments), HS polymerase (2.5U/. mu.L) 0.5. mu.L, and distilled water was added to make a total volume of 50. mu.L. The amplification conditions were: pre-denaturation at 98 ℃ for 3min (1 cycle); denaturation at 98 ℃ for 10 seconds, annealing at 55 ℃ for 5 seconds, and extension at 72 ℃ for 3 minutes (30 cycles); extending for 10 minutes at 72 ℃ (1 cycle), and recovering and storing the product by tapping to obtain PGal2-GerS_Ob-Tcyc1An expression element. PGal2-GerS_Ob-Tcyc1The expression element contains GerS _ Ob expression box to express GerS _ Ob gene, and the expression product is GerS _ Ob protein.
8、PGal2-LS_Cu-Tcyc1Construction of expression elements
The fragment P obtained above was subjected to the Overlap PCR techniqueGal2,LS_Cu,Tcyc1Ligation amplification was performed using PrimSTAR HS DNA polymerase with an amplification system (TAKARA) of: 5 XPS Buffer10 uL, Dntp Mix 4 uL, primers PGal2-f and TCYC1-r each 1 uL, genomic DNA template 1 uL (PGal2, LS _ Cu, Tcyc1 each fragment molar ratio 1: 3: 1), HS polymerase (2.5U/. mu.L) 0.5 uL, and distilled water was added to make the total volume 50 uL. The amplification conditions were: pre-denaturation at 98 ℃ for 3min (1 cycle); denaturation at 98 ℃ for 10 seconds, annealing at 55 ℃ for 5 seconds, and extension at 72 ℃ for 3 minutes (30 cycles); extending for 10 minutes at 72 ℃ (1 cycle), and recovering and storing the product by tapping to obtain PGal2-LS_Cu-TcyclAn expression element. PGal2-LS_Cu-Tcyc1The expression element contains an LS _ Cu expression cassette, expresses an LS _ Cu gene and produces an LS _ Cu protein.
9. Construction of the homologous recombination fragment of Gal80
The fragment Gal80 upstream fragment and Ga180 downstream fragment obtained above were amplified by ligation using the Overlap PCR technique, using PrimSTA HS DNA polymerase configured amplification system (TAKARA) as follows: 5 XPS Buffer10 uL, Dntp Mix 4 uL, primers Gal80-up-f and Gal80-down-r each 1 uL, genomic DNA template 1 uL (Gal80 upstream fragment: Gal80 downstream fragment molar ratio 1: 1), HS polymerase (2.5U/. mu.L) 0.5 uL, and distilled water was added to make the total volume 50 uL. The amplification conditions were: pre-denaturation at 98 ℃ for 3min (1 cycle); denaturation at 98 ℃ for 10 seconds, annealing at 55 ℃ for 5 seconds, and extension at 72 ℃ for 3 minutes (30 cycles); and (3) extending for 10 minutes at 72 ℃ (1 cycle), and recovering and storing the product through tapping to obtain a Gal80 homologous recombination fragment for knocking out the Gal80 gene.
Example 2 construction of recombinant bacterium
1. Preparation of Yeast competence
Starting single colonies were grown overnight at 250rpm in YPD medium at 30 ℃ and the cell density of the overnight cultures was counted to the final OD600nmCells were inoculated at 0.1 turbidity to 20ml YPD medium. Culturing at 30 ℃ and 250rpm to OD600nm0.8. Cells were collected by centrifugation at 2500rpm for 5 minutes in a sterile centrifuge tube. The culture medium was discarded, and the cells were suspended in sterile water and centrifuged as above. Discarding water, suspending the cells in 1mL of 100mM lithium acetate, and transferring the suspension to a sterile centrifuge tube; precipitating cells at high speed for a short time, and removing lithium acetate; the cells were suspended in a 4-fold system of 100mM lithium acetate and dispensed to obtain competent cells.
The following recombinant bacteria are constructed according to the principle that an expression element capable of expressing Cas9 protein is transferred into a strain TIB H1 in advance, then a recombinant plasmid (plasmid 1-6) for expressing gRNA and the expression element or a homologous recombination fragment are transformed into the strain together, the recombinant plasmid for expressing the gRNA recognizes and combines a specific PAM region of a corresponding site, and simultaneously activates and guides the Cas9 protein to perform a shearing function, so that double-stranded DNA of the corresponding site is broken, and at the moment, the expression element or the homologous recombination fragment containing a homologous region is integrated into the DNA of the strain through homologous recombination repair.
2. Construction of recombinant plasmid containing gRNA
Construction of plasmid pBGR: amplifying a fragment 1 containing a fragment AmpR expression frame and an ori fragment by using a pET32a vector as a template and using a primer 1 and a primer 3, and amplifying a fragment Ura3 expression cassette by using a saccharomyces cerevisiae TIB H1 genome as a template and using a primer 8 and a primer 9; amplifying gRNA expression frame 1 by using primer 4 and primer 5, amplifying gRNA expression frame 2 by using primer 10 and primer 11, amplifying 2 mu ori by using primer 6 and primer 7, and obtaining fragment 2 by using overlap PCR by using gRNA expression frame 1, gRNA expression frame 2, 2 mu ori fragment as templates by using primer 4 and primer 10 by using P426-SNR52P-gRNA.CAN1.Y-SUP4t (DiCarlo JE, Norville JE, Mali P, et al. genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. nucleic Acids Res2013 b; 41: 4336-43); fragment 1 and fragment 2 were recombined in vitro using the Cloneexpress II kit (Novozam), transformed into DH 5. alpha. competent cells, and amplified to extract a plasmid, thereby obtaining plasmid pBGR.
Plasmid 1: plasmid 1 was obtained by recombining gene fragments gRNA1 and pBGR-2 obtained above by using plasmid pBGR as a template, primers gRNA1-f and gRNA1-r to amplify gene fragment gRNA1, and primers pBGR-2-f to amplify gene fragment pBGR-2, and Cloneexpress II kit (Novozan). Plasmid 1 expresses gRNA1 with a target sequence of tgaaactctaatcctactat, tagaaacgcggacacaggag.
Plasmid 2: plasmid 2 was obtained by using pBGR as a template, amplifying gene fragment gRNA2 with primer gRNA2-f, amplifying gene fragment pBGR-2 with primer pBGR-2-f, and recombining gene fragments gRNA2 and pBGR-2 obtained above with Cloneexpress II kit (Novozam). Plasmid 2 expresses gRNA2 with a target sequence of gcaatgcgatgttagtttag.
Plasmid 3: plasmid 3 was obtained by using pBGR as a template, amplifying gene fragment gRNA3 with primer gRNA3-f, amplifying gene fragment pBGR-2 with primer pBGR-2-f, and recombining gene fragments gRNA3 and pBGR-2 obtained above with Cloneexpress II kit (Novozam). Plasmid 3 expresses gRNA3 with a target sequence of cgccattcaagagcagcaac.
Plasmid 4: the gene fragment gRNA4 was amplified using the primer gRNA4-f and the gene fragment pBGR-2-f using the primer pBGR as a template, and the gene fragments gRNA4 and pBGR-2 obtained above were recombined using Cloneexpress II kit (Novozam) to obtain plasmid 4. Plasmid 4 expresses gRNA4 with a target sequence of ttgtcacagtgtcacatcag.
Plasmid 5: plasmid 5 was obtained by using pBGR as a template, amplifying gene fragment gRNA5 with primer gRNA5-f, amplifying gene fragment pBGR-2 with primer pBGR-2-f, and recombining gene fragments gRNA5 and pBGR-2 obtained above with Cloneexpress II kit (Novozam). Plasmid 5 expresses gRNA5 with a target sequence of tggatgctctgatattacacagg.
Plasmid 6: the gene fragment gRNA6 was amplified using the primer gRNA6-f and the gene fragment pBGR-2-f using the primer pBGR as a template, and the gene fragments gRNA6 and pBGR-2 obtained above were recombined using Cloneexpress II kit (Novozam) to obtain plasmid 6. Plasmid 6 expresses gRNA6 with a target sequence of atatgtctctaattttggaa.
The primers used are shown in Table 3.
TABLE 3 primer sequences
Figure BDA0003209963010000111
Figure BDA0003209963010000121
3. Construction of GPP-1 Strain
After overnight culture of the developing saccharomyces cerevisiae TIB H1 in YPD liquid medium, competent cells were prepared and added in the following order: 240 μ L PEG (50% w/v), 36 μ L1.0 mol/L lithium acetate, 25 μ L salmon sperm DNA (sigma) DNA (2mg/mL), 50 μ L water and gene (P)Gal1-ERG20F96W-N127W-TErg20Expression element, PGal7-tHMG1-Thmmg1Expression element, plasmid 1); oscillating vigorously until the cells are completely mixed, preserving the heat at 30 ℃ for 30 minutes, and placing the mixture in a water bath at 4 ℃ for 20 minutes; centrifuging at 6000-; 100 mu L of sterile water is sucked into a reaction tube, the sterile water is gently suspended and precipitated, an SD plate without uracil addition is coated, after bacterial colonies grow up, the bacterial colonies are selected to be placed on the SD plate containing 5-fluoroorotic acid, and the bacterial colonies growing up in the plate are named as GPP-1 and stored.
4. Construction of GPP-2 Strain
After the saccharomyces cerevisiae GPP-1 which develops bacteria is cultured in a YPD liquid culture medium overnight, competent cells are prepared and added in the following sequence: 240 μ L PEG (50% w/v), 36 μ L1.0 mol/L lithium acetate, 25 μ L salmon sperm DNA (sigma) (2mg/mL), 50 μ L water and gene (T)ADH-mvaE-PGAL1-PGAL10-mvaS-m-TCYc1Expression element, plasmid 2); oscillating vigorously until fineMixing completely, keeping the temperature at 30 deg.C for 30 min, and placing in 4 deg.C water bath for 20 min; centrifuging at 6000-; 100 mu L of sterile water is sucked into a reaction tube, the sterile water is gently suspended and precipitated, an SD plate without uracil addition is coated, after bacterial colonies grow up, the bacterial colonies are selected to be placed on the SD plate containing 5-fluoroorotic acid, and the bacterial colonies growing up in the plate are named as GPP-2 and stored.
5. Construction of GPP-3 Strain
After the saccharomyces cerevisiae GPP-2 which develops bacteria is cultured in a YPD liquid culture medium overnight, competent cells are prepared and added in the following sequence: 240 μ L PEG (50% w/v), 36 μ L1.0 mol/L lithium acetate, 25 μ L salmon sperm DNA (sigma) (2mg/mL), 50 μ L water and gene (T)IDI1-IDI1-P6AL1-PGAL10-ERG12-TERG12Expression element, plasmid 3); oscillating vigorously until the cells are completely mixed, preserving the heat at 30 ℃ for 30 minutes, and placing the mixture in a water bath at 4 ℃ for 20 minutes; centrifuging at 6000-; 100 mu L of sterile water is sucked into a reaction tube, the sterile water is gently suspended and precipitated, an SD plate without uracil addition is coated, after bacterial colonies grow up, the bacterial colonies are selected to be placed on the SD plate containing 5-fluoroorotic acid, and the bacterial colonies growing up in the plate are named as GPP-3 and are stored.
6. Construction of GPP-4 Strain
After the saccharomyces cerevisiae GPP-3 which develops bacteria is cultured in a YPD liquid culture medium overnight, competent cells are prepared and added in the following sequence: 240 μ L PEG (50% w/v), 36 μ L1.0 mol/L lithium acetate, 25 μ L salmon sperm DNA (sigma) (2mg/mL), 50 μ L water and gene (T)ERG8-ERG8-PGAL1-PGAL10-ERG19-TERG19Expression element, plasmid 4); oscillating vigorously until the cells are completely mixed, preserving the heat at 30 ℃ for 30 minutes, and placing the mixture in a water bath at 4 ℃ for 20 minutes; centrifuging at 6000-; 100 mu L of sterile water is sucked into a reaction tube, the sterile water is gently suspended and precipitated, an SD plate without uracil addition is coated, after bacterial colonies grow up, the bacterial colonies are selected to be placed on the SD plate containing 5-fluoroorotic acid, and the bacterial colonies growing up in the plate are named as GPP-4 and stored.
7. Construction of GPP-5 Strain
After the saccharomyces cerevisiae GPP-4 which develops bacteria is cultured in a YPD liquid culture medium overnight, competent cells are prepared and added in the following sequence: 240 μ L PEG (50% w/v), 36 μ L1.0 mol/L lithium acetate, 25 μ L salmon sperm DNA (sigma) (2mg/mL), 50 μ L water and gene (Gal80 homologous recombination fragment, plasmid 5); oscillating vigorously until the cells are completely mixed, preserving the heat at 30 ℃ for 30 minutes, and placing the mixture in a water bath at 4 ℃ for 20 minutes; centrifuging at 6000-; 100 mu L of sterile water is sucked into a reaction tube, the sterile water is gently suspended and precipitated, an SD plate without uracil addition is coated, after bacterial colonies grow up, the bacterial colonies are selected to be placed on the SD plate containing 5-fluoroorotic acid, and the bacterial colonies growing up in the plate are named as GPP-5 and stored.
8. Construction of SLQ-1 Strain
After the saccharomyces cerevisiae GPP-5 which develops bacteria is cultured in a YPD liquid culture medium overnight, competent cells are prepared and added in the following sequence: 240 μ L PEG (50% w/v), 36 μ L1.0 mol/L lithium acetate, 25 μ L salmon sperm DNA (sigma) (2mg/mL), 50 μ L water and gene (P)Gal2-GerS_Pc-Tcyc1Expression element, plasmid 6); oscillating vigorously until the cells are completely mixed, preserving the heat at 30 ℃ for 30 minutes, and placing the mixture in a water bath at 4 ℃ for 20 minutes; centrifuging at 6000-; 100 mu.L of sterile water is sucked into a reaction tube, the sediment is gently suspended and coated with an SD plate without uracil addition, when bacterial colonies grow up, the bacterial colonies are picked and dropped into the SD plate containing 5-fluoroorotic acid, and the bacterial colonies growing up in the plate are named as SLQ-1 and stored.
9. Construction of SLQ-2 Strain
After the saccharomyces cerevisiae GPP-5 which develops bacteria is cultured in a YPD liquid culture medium overnight, competent cells are prepared and added in the following sequence: 240 μ L PEG (50% w/v), 36 μ L1.0 mol/L lithium acetate, 25 μ L salmon sperm DNA (sigma) (2mg/mL), 50 μ L water and gene (P)Gal2-GerS_Ob-Tcyc1Expression element, plasmid 6); oscillating vigorously until the cells are completely mixed, preserving the heat at 30 ℃ for 30 minutes, and placing the mixture in a water bath at 4 ℃ for 20 minutes; centrifuging at 6000-; 100 mu.L of sterile water is sucked into a reaction tube, the sediment is gently suspended and coated with an SD plate without uracil addition, when bacterial colonies grow up, the bacterial colonies are picked and dropped into the SD plate containing 5-fluoroorotic acid, and the bacterial colonies growing up in the plate are named as SLQ-2 and stored.
10. Construction of SLQ-3 Strain
After the saccharomyces cerevisiae GPP-5 which develops bacteria is cultured in a YPD liquid culture medium overnight, competent cells are prepared and added in the following sequence: 240 μ L PEG (50% w/v), 36 μ L1.0 mol/L lithium acetate, 25 μ L salmon sperm DNA (sigma) (2mg/mL), 50 μ L water and gene (P)Gal2-LS_Cu-Tcyc1Expression element, plasmid 6); oscillating vigorously until the cells are completely mixed, preserving the heat at 30 ℃ for 30 minutes, and placing the mixture in a water bath at 4 ℃ for 20 minutes; centrifuging at 6000-; 100 mu.L of sterile water is sucked into a reaction tube, the sediment is gently suspended and coated with an SD plate without uracil addition, when bacterial colonies grow up, the bacterial colonies are picked and dropped into the SD plate containing 5-fluoroorotic acid, and the bacterial colonies growing up in the plate are named as SLQ-3 and stored.
Example 3 application of recombinant bacteria in myrcene production
1. Engineering bacteria culture and product extraction
Respectively activating the engineered yeast strains SLQ-1, SLQ-2 and SLQ-3 prepared in example 2 in a Delft liquid culture medium, preparing seed solutions (30 ℃, 250rpm, 16h) in the Delft liquid culture medium, inoculating 1% of the seed solutions into a 100mL triangular flask containing 20mL Dellft liquid culture medium and 2mL sec-butylbenzene n-dodecane, culturing for 2-3 days at 30 ℃ and 250rpm, finally, transferring the liquid in the triangular flask to a 50mL centrifuge tube, centrifuging at 5000rpm for 5min, and collecting organic phases for later use.
2. Qualitative and quantitative analysis of myrcene produced by thalli
And (3) diluting the organic phase substance collected in the step (1) by 50 times by using normal hexane, and detecting by using GC-MS. GC-MS measurement conditions: the injection port temperature is 260 ℃, the injection volume is 1 mu L, the flow is not divided, and the solvent is delayed for 3 min; a chromatographic column: HP-5ms (30m 0.25 mM); chromatographic conditions are as follows: keeping the temperature at 60 ℃, 3min, 40 ℃/min to 150 ℃, 20 ℃/min to 220 ℃, 40 ℃/min to 260 ℃ for 2 min; MS conditions: full Scan: 50-750 amu. Qualitative and quantitative determinations were made with a standard of myrcene (Beijing Runzukang Biotech, Inc., M812782). The retention time of the myrcene standard substance corresponding to the peak value of HPCL peak is 8.0min according to the parameters. The organic phase material collected in step 1 peaked at 8.0min, indicating that all the organic phase material collected in step 1 contains myrcene.
The results are shown in FIG. 1, and the yield of each engineering bacterium is as follows when fermented for 3 days:
the yields of myrcene in SLQ-1, SLQ-2 and SLQ-3 were 21.7mg/L, 56.9mg/L and 17.3mg/L, respectively (relative to the fermentation broth).
This example demonstrates that myrcene synthase gene expression in Saccharomyces cerevisiae can produce myrcene; myrcene synthase genes with different host sources are adopted, and the yield of myrcene is different. Compared with the SLQ-1, SLQ-2 and SLQ-3 yields, the yield was the highest using a myrcene synthase gene (GerS Ob gene) derived from Ocimum basilicum after codon optimization.
The present invention has been described in detail above. It will be apparent to those skilled in the art that the invention can be practiced in a wide range of equivalent parameters, concentrations, and conditions without departing from the spirit and scope of the invention and without undue experimentation. While the invention has been described with reference to specific embodiments, it will be appreciated that the invention can be further modified. In general, this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains. The use of some of the essential features is possible within the scope of the claims attached below.
Sequence listing
<110> institute of biotechnology for Tianjin industry of Chinese academy of sciences
<120> recombinant saccharomyces cerevisiae and construction method and application thereof
<130> 212192
<160> 13
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2224
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
ataaggttta aaggcactga aacaataggc aagaagtagg cgagagccga catttatatt 60
gaattttcaa aaattcttac tttttttttg gatggacgca aagaagttta ataatcatat 120
tacatggcat taccaccata tacatatcca tatctaatct tacttatatg ttgtggaaat 180
gtaaagagcc ccattatctt agcctaaaaa aaccttctct ttggaacttt cagtaatacg 240
cttaactgct cattgctata ttgaagtacg gattagaagc cgccgagcgg gcgacagccc 300
tccgacggaa gactctcctc cgtgcgtcct cgtcttcacc ggtcgcgttc ctgaaacgca 360
gatgtgcctc gcgccgcact gctccgaaca ataaagattc tacaatacta gcttttatgg 420
ttatgaagag gaaaaattgg cagtaacctg gccccacaaa ccttcaaatt aacgaatcaa 480
attaacaacc ataggatgat aatgcgatta gttttttagc cttatttctg gggtaattaa 540
tcagcgaagc gatgattttt gatctattaa cagatatata aatggaaaag ctgcataacc 600
actttaacta atactttcaa cattttcagt ttgtattact tcttattcaa atgtcataaa 660
agtatcaaca aaaaattgtt aatatacctc tatactttaa cgtcaaggag aaaaaactat 720
aatggcttca gaaaaagaaa ttaggagaga gagattcttg aacgttttcc ctaaattagt 780
agaggaattg aacgcatcgc ttttggctta cggtatgcct aaggaagcat gtgactggta 840
tgcccactca ttgaactaca acactccagg cggtaagcta aatagaggtt tgtccgttgt 900
ggacacgtat gctattctct ccaacaagac cgttgaacaa ttggggcaag aagaatacga 960
aaaggttgcc attctaggtt ggtgcattga gttgttgcag gcttactggt tggtcgccga 1020
tgatatgatg gacaagtcca ttaccagaag aggccaacca tgttggtaca aggttcctga 1080
agttggggaa attgccatct gggacgcatt catgttagag gctgctatct acaagctttt 1140
gaaatctcac ttcagaaacg aaaaatacta catagatatc accgaattgt tccatgaggt 1200
caccttccaa accgaattgg gccaattgat ggacttaatc actgcacctg aagacaaagt 1260
cgacttgagt aagttctccc taaagaagca ctccttcata gttactttca agactgctta 1320
ctattctttc tacttgcctg tcgcattggc catgtacgtt gccggtatca cggatgaaaa 1380
ggatttgaaa caagccagag atgtcttgat tccattgggt gaatacttcc aaattcaaga 1440
tgactactta gactgcttcg gtaccccaga acagatcggt aagatcggta cagatatcca 1500
agataacaaa tgttcttggg taatcaacaa ggcattggaa cttgcttccg cagaacaaag 1560
aaagacttta gacgaaaatt acggtaagaa ggactcagtc gcagaagcca aatgcaaaaa 1620
gattttcaat gacttgaaaa ttgaacagct ataccacgaa tatgaagagt ctattgccaa 1680
ggatttgaag gccaaaattt ctcaggtcga tgagtctcgt ggcttcaaag ctgatgtctt 1740
aactgcgttc ttgaacaaag tttacaagag aagcaaatag aactaacgct aatcgataaa 1800
acattagatt tcaaactaga taaggaccat gtataagaac tatatacttc caatataata 1860
tagtataagc tttaagatag tatctctcga tctaccgttc cacgtgacta gtccaaggat 1920
tttttttaag ccaatgaaaa tgaagaaatg cgtgatcgga aattacgggt agtacgagaa 1980
ggaaacttga gccacccccc aaattttatt catataataa taggaaaagc aacgacctca 2040
tctctcgaac attgtttact tgagcaagtc cgattaagag taagttgtcg tacgttaaat 2100
acaaataatc aacaaaacac tacacaaaaa cttctacgat acacttttca atgaaacgga 2160
tattgatatg ctagtaaaag gacgagctca agagcgaaaa tataagtaaa gaattcgagt 2220
gcac 2224
<210> 2
<211> 2839
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
aatctgtaac aagcgccatt tttttttctg tatcgggccc tccttactgc tctccttccg 60
tgtaacgcgt tatgtttgcc agcttactat ccttcttgaa aatatgcact ctatatcttt 120
tagttcttaa ttgcaacaca tagatttgct gtataacgaa ttttatgcta ttttttaaat 180
ttggagttca gtgataaaag tgtcacagcg aatttcctca catgtaggga ccgaattgtt 240
tacaagttct ctgtaccacc atggagacat caaaaattga aaatctatgg aaagatatgg 300
acggtagcaa caagaatata gcacgagccg cggagttcat ttcgttactt ttgatatcac 360
tcacaactat tgcgaagcgc ttcagtgaaa aaatcataag gaaaagttgt aaatattatt 420
ggtagtattc gtttggtaaa gtagaggggg taatttttcc cctttatttt gttcatacat 480
tcttaaattg ctttgcctct ccttttggaa agctatactt cggagcactg ttgagcgaag 540
gctcattaga tatattttct gtcattttcc ttaacccaaa aataagggaa agggtccaaa 600
aagcgctcgg acaactgttg accgtgatcc gaaggactgg ctatacagtg ttcacaaaat 660
agccaagctg aaaataatgt gtagctatgt tcagttagtt tggctagcaa agatataaaa 720
gcaggtcgga aatatttatg ggcattatta tgcagagcat caacatgata aaaaaaaaca 780
gttgaatatt ccctcaaaaa tggctgcaga ccaattggtg aaaactgaag tcaccaagaa 840
gtcttttact gctcctgtac aaaaggcttc tacaccagtt ttaaccaata aaacagtcat 900
ttctggatcg aaagtcaaaa gtttatcatc tgcgcaatcg agctcatcag gaccttcatc 960
atctagtgag gaagatgatt cccgcgatat tgaaagcttg gataagaaaa tacgtccttt 1020
agaagaatta gaagcattat taagtagtgg aaatacaaaa caattgaaga acaaagaggt 1080
cgctgccttg gttattcacg gtaagttacc tttgtacgct ttggagaaaa aattaggtga 1140
tactacgaga gcggttgcgg tacgtaggaa ggctctttca attttggcag aagctcctgt 1200
attagcatct gatcgtttac catataaaaa ttatgactac gaccgcgtat ttggcgcttg 1260
ttgtgaaaat gttataggtt acatgccttt gcccgttggt gttataggcc ccttggttat 1320
cgatggtaca tcttatcata taccaatggc aactacagag ggttgtttgg tagcttctgc 1380
catgcgtggc tgtaaggcaa tcaatgctgg cggtggtgca acaactgttt taactaagga 1440
tggtatgaca agaggcccag tagtccgttt cccaactttg aaaagatctg gtgcctgtaa 1500
gatatggtta gactcagaag agggacaaaa cgcaattaaa aaagctttta actctacatc 1560
aagatttgca cgtctgcaac atattcaaac ttgtctagca ggagatttac tcttcatgag 1620
atttagaaca actactggtg acgcaatggg tatgaatatg atttctaaag gtgtcgaata 1680
ctcattaaag caaatggtag aagagtatgg ctgggaagat atggaggttg tctccgtttc 1740
tggtaactac tgtaccgaca aaaaaccagc tgccatcaac tggatcgaag gtcgtggtaa 1800
gagtgtcgtc gcagaagcta ctattcctgg tgatgttgtc agaaaagtgt taaaaagtga 1860
tgtttccgca ttggttgagt tgaacattgc taagaatttg gttggatctg caatggctgg 1920
gtctgttggt ggatttaacg cacatgcagc taatttagtg acagctgttt tcttggcatt 1980
aggacaagat cctgcacaaa atgttgaaag ttccaactgt ataacattga tgaaagaagt 2040
ggacggtgat ttgagaattt ccgtatccat gccatccatc gaagtaggta ccatcggtgg 2100
tggtactgtt ctagaaccac aaggtgccat gttggactta ttaggtgtaa gaggcccgca 2160
tgctaccgct cctggtacca acgcacgtca attagcaaga atagttgcct gtgccgtctt 2220
ggcaggtgaa ttatccttat gtgctgccct agcagccggc catttggttc aaagtcatat 2280
gacccacaac aggaaacctg ctgaaccaac aaaacctaac aatttggacg ccactgatat 2340
aaatcgtttg aaagatgggt ccgtcacctg cattaaatcc taaacttagt catacgtcat 2400
tggtattctc ttgaaaaaga agcacaacag caccatgtgt tacgtaaaat atttacttta 2460
tagtttgtac gtcataattt cttccatatt acaagttcgt gcatatatag aaagaattct 2520
gttgttgtaa ttgtcataac tattgagctt tacctgaaaa ttcaacgaaa aaaactcaaa 2580
aaccacatgc ttctcttgag tcatgcggtt cctttccctt atgagtgaaa atcttccttt 2640
tttagctatg tgcgccatcc gataaatgta ggagcaatga agcggaaagt caattttttc 2700
atacagtata cattaatatc tagtgtgtat tgactgtgat cgggaagatc ttcagggttg 2760
aattacaact cggcgactct ctcgaaattt ttcttaacgc gtccttgtac tgcgtctaac 2820
gcttttgcca cttggattt 2839
<210> 3
<211> 4779
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
ccgtgcaccg catcaaactt tctcggagga ttctttgcac cggttttcat tttcttccac 60
ggaataccaa gcccattcat gccggtagag gtgtggtcaa taagagcgac ctcatgctat 120
acctgagaaa gcaacctgac ctacaggaaa gagttactca agaataagaa ttttcgtttt 180
aaaacctaag agtcacttta aaatttgtat acacttattt tttttataac ttatttaata 240
ataaaaatca taaatcataa gaaattcgct cactgctttc taagatcgtt aagaattgca 300
agtgctctat cttggttcat tgtcttctgt cgcttaagtt gctgggccac ggcctcgact 360
tctttcccag tcgctcccac ggtcatagca agtgatcttg cttgaagtgc catgtgaccc 420
ttttgaatac cttctgaaac aagtgctcta agtgctgcca aattctgtgc aagtccaact 480
gctgcaacaa ctcttgaaag ttcctttgca tctgtaactg caagaagatc tgctgctgct 540
tgtgatttag gtagtacctt tgttgctcct ccaactgttg caagtgcaag aggaactgaa 600
atttctccaa taagttgttc tccatcaagt gtccatgatg taagtccttg atatcttcct 660
tctttaactg caaatgcatg acatgatgct gaaactgctc ttgtatcgtt tcctgttgcg 720
agtacgacgg cctctattcc gttcataatt cctttgttat gtgtaactgc tctataagga 780
tcaagtgatg catatcttga tgcaagcacg atcttctctg caatttctct tccgttagaa 840
ccctttgaaa gtcttgaaac aggaatggcc gtcttcattg taacaactga ttctgttgca 900
taattactga ggatgctgaa cagaatcttc tgctcggcga accattccct aaacagctca 960
gcaactcctt caagcattgc gttaacaatg tttgctccca ttgcatcttt aacatccacc 1020
aggaaatcaa cactcacgaa agactcgtcg aaggcgcggt actgcaaatc gcgaagaccg 1080
cctccacgct taacaattga aggatatgaa agttctgcct gctggaagat ttctgtttct 1140
ctaacttgaa gttcatcaat aagtgattct gcatctgcaa cgtcgtagaa gacaatttgt 1200
cctctcataa gtctttgttg gttgacagtc ttaaatcctt gggcgatctt tgctccgttt 1260
gaaagtgctg caataactga aggttcttct gttgccatag gaacaagata atctgtttca 1320
tcaactgtaa gatgaagtcc aactcccata ggaacttctg tttctgaaat ctgattctca 1380
atcatatggt ttgcaatttg tgatgaaagt gccgtattct cgaactcctt ctttgtatct 1440
gctgaaattt gtccttcgtt aagaagtgat gcaagtcttt cttcaggtga catctggtag 1500
aatcttgagt ttttcttctg ttgaggtctt tcaagaagca ttgctaaacc aagacctcca 1560
ccaatacaaa gtgacgcgac tccatatttc ttctccttct ggttaagttg atatgaaagt 1620
gatgtaagaa gacgcgctcc ggtagctccg attgcatgtc caagtgaaat tcctcctcca 1680
taaatattta ccttctcttc aggaagtgca agttctcttt gaacaacaat tgatgttgct 1740
gcaaatgctt cgttaatttc gtagaggtcg atctcctcag ttgtaagttg atttcgagcg 1800
aggagtttct gaattgcttt aataggtgaa attcccatat atgcaggatc aattccaact 1860
tcaactgaat ctctaataat tgcaagataa ggaagtccat gtgcttctgc atattcttgt 1920
gatgcaataa taagtgctga tgctccatcg ttaattgttg atgcgtttcc tgctgtaact 1980
gttccatcct ctttaaacac ggtcttaagt gtccctagct tctcaactga tgagttaggt 2040
ctaattccct cgtccttctc aacaagtgtt cctgaaactt caagaggtgc aatttcgtcg 2100
gcgaagattc cttctgcttg tgcttgtgct gctttaagtt gtgaatgcac agagaattga 2160
tcttgttctt ctcttgtaac gtggtacttc tctgctacat tctctgctgt aagtcccatt 2220
gcttggcccg agaatgcatc tgtaagtcca tcatacatca tagacgagaa aggtgcatca 2280
tatgattctg tttcatagtt aaatctttga agtttaggtg cttgtgacat attctcaatt 2340
cctcctgcaa taagaacttc tgcttctcca agttgaatga gctgctttgc aagaataact 2400
gctttcattc ctgatccaca aacctcattg accgtcatcg caggaatttc atgtgaaagt 2460
cctgagttaa ttgcaatttg tcttgcggga ttctgtccgt tgccggcctg gagtacgttc 2520
ccgaagatga cctggtcgat ttcttcgctg atcgtactgt gacgctttag taactgagtc 2580
gtgacgtggg ttccaagatc aactgctgaa acttgtgaaa gtgatccctt gtactttcca 2640
ataggtgttc taagtgcatc aataataacc acggtcttca tttatattga attttcaaaa 2700
attcttactt tttttttgga tggacgcaaa gaagtttaat aatcatatta catggcatta 2760
ccaccatata catatccata tacatatcca tatctaatct tacttatatg ttgtggaaat 2820
gtaaagagcc ccattatctt agcctaaaaa aaccttctct ttggaacttt cagtaatacg 2880
cttaactgct cattgctata ttgaagtacg gattagaagc cgccgagcgg gtgacagccc 2940
tccgaaggaa gactctcctc cgtgcgtcct cgtcttcacc ggtcgcgttc ctgaaacgca 3000
gatgtgcctc gcgccgcact gctccgaaca ataaagattc tacaatacta gcttttatgg 3060
ttatgaagag gaaaaattgg cagtaacctg gccccacaaa ccttcaaatg aacgaatcaa 3120
attaacaacc ataggatgat aatgcgatta gttttttagc cttatttctg gggtaattaa 3180
tcagcgaagc gatgattttt gatctattaa cagatatata aatgcaaaaa ctgcataacc 3240
actttaacta atactttcaa cattttcggt ttgtattact tcttattcaa atgtaataaa 3300
agtatcaaca aaaaattgtt aatatacctc tatactttaa cgtcaaggag aaaaaacatg 3360
acaattggaa ttgataagat ctcgttcttc gtgccacctt attatattga tatgacagca 3420
cttgcagaag caagaaacgt tgatcctgga aagttccaca ttggaattgg acaagatcaa 3480
atggcagtta accctatttc acaagatatt gttacatttg cagcaaacgc agcagaagca 3540
attcttacaa aggaggacaa agaaggaatt gatatggtta ttgttggaac agaatcatca 3600
attgatgaat caaaggccgc cgcagttgtt cttcatagac ttatgggtat tcaacctttc 3660
gcccgatcat ttgaaattaa agaaggatgt tatggagcaa cagcaggact tcaacttgca 3720
aagaatcacg ttgcacttca tcctgataag aaggtcttgg ttgttgcagc agatattgca 3780
aagtacggcc ttaactcagg aggagaacct acacaaggag ctggcgctgt cgcgatgctg 3840
gttgcatcag aacctagaat acttgccctg aaggaagata acgttatgct tacacaagat 3900
atttatgatt tctggcggcc tacaggacat ccttatccta tggttgatgg acctctttca 3960
aacgaaacat atattcaatc atttgcacaa gtttgggatg aacataagaa gcgcaccgga 4020
cttgatttcg ccgactatga tgcacttgca tttcatattc cttatacaaa gatgggtaag 4080
aaggctctac ttgcaaagat ctccgatcaa acagaagcgg agcaggagcg tattcttgcc 4140
cgttatgagg agagtataat atactcaaga agagttggaa acctttatac aggatcactt 4200
tatcttggac ttatttcact tcttgagaat gccacaacac ttacagcagg aaaccaaatt 4260
ggactcttct cttacggttc aggcgccgtt gctgagttct ttaccggtga acttgttgca 4320
ggatatcaga atcaccttca gaaggagact catcttgcac ttcttgataa cagaacagaa 4380
ctttcaattg cagaatatga agcaatgttt gcagaaacat tagacactga catcgaccag 4440
accttggagg acgagttaaa gtactccatc tctgcaatta acaacacagt tagatcatat 4500
agaaactgaa caggcccctt ttcctttgtc gatatcatgt aattagttat gtcacgctta 4560
cattcacgcc ctcctcccac atccgctcta accgaaaagg aaggagttag acaacctgaa 4620
gtctaggtcc ctatttattt tttttaatag ttatgttagt attaagaacg ttatttatat 4680
ttcaaatttt tctttttttt ctgtacaaac gcgtgtacgc atgtaacaag tttcttggca 4740
ttggcaaatc tctgctaaat gctgcgtaca gacggaaac 4779
<210> 4
<211> 3322
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
ggtacaggat acgctaattg cgctccaact accaaggttg ttgagggaac actggggcaa 60
taggctgtga agagaaaaaa aaaatgtgaa caatcaatgt atattcagag ttctgtaaat 120
aaataaagaa aataaagttt acatattact aaggattttt gtcgcctatt tttactattt 180
ttcaggtgaa atgaaacgtt ttatatcaca ttttgctatg ataacaaagt tattatgatt 240
tttatgtagc ctatattatt gacgcgttgt tatagcattc tatgaatttg cctgtcattt 300
tccacttcag aaaggtcatc taattgctcc caccagttga ataagtaatt ctcgcaaata 360
atcttaaacc aaggcgtaaa cttgtaactt gggtcagcaa acatagtttt caaatcattt 420
ggtgaaaccc atttgaagtc tctaacttca ttgacgtttg ggttgacagt caagttttct 480
ttagcgttga tcttataaaa taggatgtaa tcaatttcat gttcacccca tggttcattg 540
cttggtgcca tgtaatggat tctgtttaaa aagtgaaact taccccttgt cttagtttca 600
tcttctggaa tacctaattc atgatctagt tttctcaccg ccgcagtaat agcgccctta 660
atcttatcgt ctagcttacc cttcaaacct aattcgtcat caatacatag tggatgagag 720
cagcatgtgt tagtccaaag atcagggaaa gttatttttt cagtggctct ttgttgtaaa 780
agtaattcac cttgttcatt gaaaataaag acggagaatg cacgatgtag taaacccttt 840
tcaatatttt ccattaaatg acaaactttc ttggtaccgg caccaatagc attatcgtcc 900
caatccaaaa caatacaatt ttcattcatt aacttaattt gctcctcatc atgaccagaa 960
aaacatgttt ctccgctttc gtcatttgac gtctcactag atcgggtatt aggtctttgt 1020
tgtaatggaa taatttcagg aaactcttcc aaaatgtctt caggtgtttg gttttgcact 1080
aatttggcgt aactagatac tgcaccatgg ggcatactat tgttgtcggc agtcatttat 1140
attgaatttt caaaaattct tacttttttt ttggatggac gcaaagaagt ttaataatca 1200
tattacatgg cattaccacc atatacatat ccatatacat atccatatct aatcttactt 1260
atatgttgtg gaaatgtaaa gagccccatt atcttagcct aaaaaaacct tctctttgga 1320
actttcagta atacgcttaa ctgctcattg ctatattgaa gtacggatta gaagccgccg 1380
agcgggtgac agccctccga aggaagactc tcctccgtgc gtcctcgtct tcaccggtcg 1440
cgttcctgaa acgcagatgt gcctcgcgcc gcactgctcc gaacaataaa gattctacaa 1500
tactagcttt tatggttatg aagaggaaaa attggcagta acctggcccc acaaaccttc 1560
aaatgaacga atcaaattaa caaccatagg atgataatgc gattagtttt ttagccttat 1620
ttctggggta attaatcagc gaagcgatga tttttgatct attaacagat atataaatgc 1680
aaaaactgca taaccacttt aactaatact ttcaacattt tcggtttgta ttacttctta 1740
ttcaaatgta ataaaagtat caacaaaaaa ttgttaatat acctctatac tttaacgtca 1800
aggagaaaaa acatgtcatt accgttctta acttctgcac cgggaaaggt tattattttt 1860
ggtgaacact ctgctgtgta caacaagcct gccgtcgctg ctagtgtgtc tgcgttgaga 1920
acctacctgc taataagcga gtcatctgca ccagatacta ttgaattgga cttcccggac 1980
attagcttta atcataagtg gtccatcaat gatttcaatg ccatcaccga ggatcaagta 2040
aactcccaaa aattggccaa ggctcaacaa gccaccgatg gcttgtctca ggaactcgtt 2100
agtcttttgg atccgttgtt agctcaacta tccgaatcct tccactacca tgcagcgttt 2160
tgtttcctgt atatgtttgt ttgcctatgc ccccatgcca agaatattaa gttttcttta 2220
aagtctactt tacccatcgg tgctgggttg ggctcaagcg cctctatttc tgtatcactg 2280
gccttagcta tggcctactt gggggggtta ataggatcta atgacttgga aaagctgtca 2340
gaaaacgata agcatatagt gaatcaatgg gccttcatag gtgaaaagtg tattcacggt 2400
accccttcag gaatagataa cgctgtggcc acttatggta atgccctgct atttgaaaaa 2460
gactcacata atggaacaat aaacacaaac aattttaagt tcttagatga tttcccagcc 2520
attccaatga tcctaaccta tactagaatt ccaaggtcta caaaagatct tgttgctcgc 2580
gttcgtgtgt tggtcaccga gaaatttcct gaagttatga agccaattct agatgccatg 2640
ggtgaatgtg ccctacaagg cttagagatc atgactaagt taagtaaatg taaaggcacc 2700
gatgacgagg ctgtagaaac taataatgaa ctgtatgaac aactattgga attgataaga 2760
ataaatcatg gactgcttgt ctcaatcggt gtttctcatc ctggattaga acttattaaa 2820
aatctgagcg atgatttgag aattggctcc acaaaactta ccggtgctgg tggcggcggt 2880
tgctctttga ctttgttacg aagagacatt actcaagagc aaattgacag tttcaaaaag 2940
aaattgcaag atgattttag ttacgagaca tttgaaacag acttgggtgg gactggctgc 3000
tgtttgttaa gcgcaaaaaa tttgaataaa gatcttaaaa tcaaatccct agtattccaa 3060
ttatttgaaa ataaaactac cacaaagcaa caaattgacg atctattatt gccaggaaac 3120
acgaatttac catggacttc ataagctaat ttgcgatagg cattatttat tagttgtttt 3180
taatcttaac tgtgtatgaa gttttatgta ataaagatag aaagagaaac aaaaaaaaat 3240
ttttcgtagt atcaatcatg ggaagattcg cttttttttt ttgaattaca atagtatgtc 3300
tgatgtctgc aagaagtaac ag 3322
<210> 5
<211> 3890
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
ggttctgact cctactgagc tctattggag gtggcagaac cggtaccgga ggagaccgct 60
ataaccggtt tgagtgcaca ctttcaagct accacgcact ttatttatat ttaaatgaca 120
taaagttata tatctagaaa gtttatttat cgttctcagt accatcctca tcctagtatg 180
tatagcttgt acccattaaa cgaattttat catgccgccg aaaggaacaa tttcaagtac 240
tatcggaaga tgaatggtta gatgttaagc gcggtcactt caaacttcac atttataaag 300
atgtcacatg gaccactatt atctacctta agttatttat caagataagt ttccggatct 360
ttttctttcc taacacccca gtcagcctga gttacatcca gccattgaac cttagaaaat 420
cttttgtcat cagcggtttg agccctaaga tcaacatctt gcttagcaat cactgcaatg 480
gcgtcataac caccagcacc aggtattaag caagtaagaa ctccttttaa ggtctggcaa 540
tcatccaata agctagtttg tacgggaggt tcgatatcgg caccagattc tttagttatt 600
tttctaaagg aacgtctaat tgtggcaact gcatctctaa cttctgtgat ctcaggatac 660
ttttgacagg tacagtcatt cctctcaaga gactcaaata tctgatcgct gtaatcgtca 720
tgagtctcgt gtaagcgatc tagtttagat agtccatcca taaatctaga atttgcatga 780
tcgagttctg tatatatttt caagctttcc ggcatatgcg aatcatacca attttttacc 840
ttctggacca gttttactgt ttctgaacca ttcttaatat cgcccatcca taaagttaat 900
cccgaaggta aatggttact tttaatcgtt atattccagt cttcttcatt aaccaaatgc 960
gccagtttac tgccgtaagt agcacttcca atatctggca aattagagat taatgcgggt 1020
gggaatcttc tatatctgat agatccatat gctgccgccg ctacatcaaa cccgcttcca 1080
attttaccct gagcttgaca atgagcaact tgtgataaat tatgaataac ttctctatat 1140
ttgtctacat tattttccag gtccgataca aaaaaggagg ccaaagctgt agttaaaact 1200
gtgactaaac ctgccgagga gcccagccct gttttgggaa cttcttcaat tctgtgcgaa 1260
tgaaaactca atcttctgtt gccacgatgt tcggtaacgc tgtcctcctg agaatggtag 1320
gcatcatcag agaaaatatc aataacgaac aagtttctat tgcagtagtc gtccatgtta 1380
ggcttaaagt agctaaatac gttagcgata actttttcaa tgaaagggtt cttagatccg 1440
cctatcgaaa caggaatgaa gccagtttta ggacttatat ggtacagcca ctccccatct 1500
ttaaattgtt tacttttcac acgcacttca aacttatcag actcttgcaa tgaaccgtaa 1560
ggatgggcta cagcatgcat tcttgccgat aatccgacta caaatgcttc atatttcgga 1620
tctaaaacta aatatccacc agctagtaac gctttccctg gggcactgaa ggctctcaac 1680
tctgacattt atattgaatt ttcaaaaatt cttacttttt ttttggatgg acgcaaagaa 1740
gtttaataat catattacat ggcattacca ccatatacat atccatatac atatccatat 1800
ctaatcttac ttatatgttg tggaaatgta aagagcccca ttatcttagc ctaaaaaaac 1860
cttctctttg gaactttcag taatacgctt aactgctcat tgctatattg aagtacggat 1920
tagaagccgc cgagcgggtg acagccctcc gaaggaagac tctcctccgt gcgtcctcgt 1980
cttcaccggt cgcgttcctg aaacgcagat gtgcctcgcg ccgcactgct ccgaacaata 2040
aagattctac aatactagct tttatggtta tgaagaggaa aaattggcag taacctggcc 2100
ccacaaacct tcaaatgaac gaatcaaatt aacaaccata ggatgataat gcgattagtt 2160
ttttagcctt atttctgggg taattaatca gcgaagcgat gatttttgat ctattaacag 2220
atatataaat gcaaaaactg cataaccact ttaactaata ctttcaacat tttcggtttg 2280
tattacttct tattcaaatg taataaaagt atcaacaaaa aattgttaat atacctctat 2340
actttaacgt caaggagaaa aaacatgacc gtttacacag catccgttac cgcacccgtc 2400
aacatcgcaa cccttaagta ttgggggaaa agggacacga agttgaatct gcccaccaat 2460
tcgtccatat cagtgacttt atcgcaagat gacctcagaa cgttgacctc tgcggctact 2520
gcacctgagt ttgaacgcga cactttgtgg ttaaatggag aaccacacag catcgacaat 2580
gaaagaactc aaaattgtct gcgcgaccta cgccaattaa gaaaggaaat ggaatcgaag 2640
gacgcctcat tgcccacatt atctcaatgg aaactccaca ttgtctccga aaataacttt 2700
cctacagcag ctggtttagc ttcctccgct gctggctttg ctgcattggt ctctgcaatt 2760
gctaagttat accaattacc acagtcaact tcagaaatat ctagaatagc aagaaagggg 2820
tctggttcag cttgtagatc gttgtttggc ggatacgtgg cctgggaaat gggaaaagct 2880
gaagatggtc atgattccat ggcagtacaa atcgcagaca gctctgactg gcctcagatg 2940
aaagcttgtg tcctagttgt cagcgatatt aaaaaggatg tgagttccac tcagggtatg 3000
caattgaccg tggcaacctc cgaactattt aaagaaagaa ttgaacatgt cgtaccaaag 3060
agatttgaag tcatgcgtaa agccattgtt gaaaaagatt tcgccacctt tgcaaaggaa 3120
acaatgatgg attccaactc tttccatgcc acatgtttgg actctttccc tccaatattc 3180
tacatgaatg acacttccaa gcgtatcatc agttggtgcc acaccattaa tcagttttac 3240
ggagaaacaa tcgttgcata cacgtttgat gcaggtccaa atgctgtgtt gtactactta 3300
gctgaaaatg agtcgaaact ctttgcattt atctataaat tgtttggctc tgttcctgga 3360
tgggacaaga aatttactac tgagcagctt gaggctttca accatcaatt tgaatcatct 3420
aactttactg cacgtgaatt ggatcttgag ttgcaaaagg atgttgccag agtgatttta 3480
actcaagtcg gttcaggccc acaagaaaca aacgaatctt tgattgacgc aaagactggt 3540
ctaccaaagg aataaacagg ccccttttcc tttgtcgata tcatgtaatt agttatgtca 3600
cgcttacatt cacgccctcc tcccacatcc gctctaaccg aaaaggaagg agttagacaa 3660
cctgaagtct aggtccctat ttattttttt taatagttat gttagtatta agaacgttat 3720
ttatatttca aatttttctt ttttttctgt acaaacgcgt gtacgcatgt aacactcaga 3780
agtttgacag caagcaagtt catcattcga actagcctta ttgttttagt tcagtgacag 3840
cgaactgccg tactcgatgc tttatttctc acggtagagc ggaagaacag 3890
<210> 6
<211> 2709
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
cctaaaaaag acacatctaa ctgattagtt ttccgtttta ggatattgac gccaagcgtg 60
cgtctgattt cctgtactaa tccaaggagg tttacggacc aggggaactt tccagattca 120
gatcacagca atataggact agaaaatatc aggtagccgc actcaacttg taactggcaa 180
ctactttgca tcaaactcca attaaatgcg gtagaatctt ttcacaaaag gtactcaacg 240
tcaattcgga aagcttcctt ccggaatggc ttaagtaggt tgcaatttct ttttctatta 300
gtagctaaaa atgggtcacg tgatctatat tcgaaagggg cggttgcctc aggaaggcac 360
cggcggtctt tcgtccgtgc ggagatatct gcgccgttca ggggtccatg tgccttggac 420
gatattaagg cagaaggcag tatcggggcg gatcactccg aaccgagatt agttaagccc 480
ttcccatctc aagatgggga gcaaatggca ttatactcct gctagaaagt taactgtgca 540
catattctta aattatacaa cattctggag agctattgtt caaaaaacaa acatttcgca 600
ggctaaaatg tggagatagg ataagttttg tagacatata taaacaatca gtaattggat 660
tgaaaatttg gtgttgtgaa ttgctcttca ttatgcacct tattcaatta tcatcaagaa 720
tagtaatagt taagtaaaca caagattaac ataataaaaa aaataattct ttcataatga 780
gaagatctgg caattatcaa ccatctattt gggattttaa ttatgttcaa tccctcaata 840
caccatataa agaagaaaga tatttgacta gacatgctga attgattgtt caagttaaac 900
cattgttgga aaaaaaaatg gagcctgctc agcagttgga attgatagat gatttgaata 960
atttggggct gtcttacttt ttccaagata gaatcaaaca aatactgtct ttcatatatg 1020
atgaaaatca atgttttcat agcaatatca atgaccaagc tgaaaaaaga gatttgtatt 1080
ttactgcttt gggttttaga ttgttgagac aacatggttt tgatgtgtct caagaggttt 1140
ttgattgttt taaaaatgac aatggttctg atttcaaagc ttctttgtct gataatacta 1200
aaggtttgtt gcaattgtat gaagcttctt ttttggttag agaaggtgaa gatactttgg 1260
aacaagctag acagtttgct actaagttct tgagaagaaa gttagatgaa attgatgaca 1320
atcacctatt gtcttgtatt catcattctt tggaaattcc attgcattgg agaattcaaa 1380
gattggaagc tagatggttt ttggatgctt atgctactag acatgacatg aatcctgtta 1440
ttttagagtt ggctaagttg gactttaata ttatacaagc tactcatcaa gaagaattga 1500
aagatgtttc tagatggtgg caaaatacta gattggctga aaaattgcca tttgttagag 1560
atagattggt tgaatcttat ttttgggcta ttgctttgtt tgaaccacat caatatggtt 1620
atcaaagaag agttgctgcc aaaattatta ctttggctac atctattgat gatgtttatg 1680
atatatatgg tactttggat gaattgcagt tgtttactga taattttaga agatgggata 1740
ctgaatcttt gggtagactg ccatattcta tgcaattgtt ttacatggtc attcataact 1800
ttgtttctga attggcttat gaaattttga aagagaaagg tttcattgtc ataccatatt 1860
tgcaaagatc ttgggttgat ttggctgaat cttttttgaa agaagctaat tggtattatt 1920
ctggttatac tccatctttg gaagaatata ttgacaatgg ctctatatct attggtgctg 1980
ttgcagtttt gtctcaagtt tatttcactt tagcaaattc tatagaaaag cccaagattg 2040
agtctatgta taagtatcat catattttga gattgtctgg tttgttggtt agattgcatg 2100
atgatttggg tacttctttg tttgaaaaaa aaagaggtga tgttccaaaa gctgttgaaa 2160
tttgtatgaa agaaagaaat gttactgaag aagaagctga agaacatgtt aaatatttga 2220
ttagagaagc ttggaaagaa atgaatactg ctactactgc tgctggttgt ccatttatgg 2280
atgaattgaa tgttgctgct gctaatttgg gtagagctgc tcaatttgtt tatttggatg 2340
gtgatggtca tggtgttcaa cattctaaaa ttcatcaaca aatgggtggt ttgatgtttg 2400
aaccatatgt ttaaacaggc cccttttcct ttgtcgatat catgtaatta gttatgtcac 2460
gcttacattc acgccctcct cccacatccg ctctaaccga aaaggaagga gttagacaac 2520
ctgaagtcta ggtccctatt tatttttttt aatagttatg ttagtattaa gaacgttatt 2580
tatatttcaa atttttcttt tttttctgta caaacgcgtg tacgcatgta acattttatt 2640
tttgaggatt gggctgatca ttttccttac gtggattgag ccagcaatac agatcattat 2700
taaactgtt 2709
<210> 7
<211> 2676
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
cctaaaaaag acacatctaa ctgattagtt ttccgtttta ggatattgac gccaagcgtg 60
cgtctgattt cctgtactaa tccaaggagg tttacggacc aggggaactt tccagattca 120
gatcacagca atataggact agaaaatatc aggtagccgc actcaacttg taactggcaa 180
ctactttgca tcaaactcca attaaatgcg gtagaatctt ttcacaaaag gtactcaacg 240
tcaattcgga aagcttcctt ccggaatggc ttaagtaggt tgcaatttct ttttctatta 300
gtagctaaaa atgggtcacg tgatctatat tcgaaagggg cggttgcctc aggaaggcac 360
cggcggtctt tcgtccgtgc ggagatatct gcgccgttca ggggtccatg tgccttggac 420
gatattaagg cagaaggcag tatcggggcg gatcactccg aaccgagatt agttaagccc 480
ttcccatctc aagatgggga gcaaatggca ttatactcct gctagaaagt taactgtgca 540
catattctta aattatacaa cattctggag agctattgtt caaaaaacaa acatttcgca 600
ggctaaaatg tggagatagg ataagttttg tagacatata taaacaatca gtaattggat 660
tgaaaatttg gtgttgtgaa ttgctcttca ttatgcacct tattcaatta tcatcaagaa 720
tagtaatagt taagtaaaca caagattaac ataataaaaa aaataattct ttcataatgt 780
ctgcttgtac tccattggct tctgctatgc cattgtcttc tactccattg attaatggtg 840
ataactctca aaggaaaaac acaaggcagc atatggaaga gtcttcttct aaaagaagag 900
agtatttgtt ggaggaaact actagaaaat tgcagaggaa tgatactgag agtgtggaga 960
aattgaaatt gattgacaat atccaacagt tgggtattgg ttactatttt gaagatgcta 1020
ttaatgctgt tttgagatct ccattttcta ctggtgaaga agatttgttt actgctgctc 1080
tcagatttag attgttgaga cataatggta ttgaaatttc tcctgaaatt ttcttgaaat 1140
tcaaagatga aagaggtaaa tttgatgaat ctgatacttt gggtttgttg tctttgtatg 1200
aagcttctaa tttgggtgtt gctggtgaag aaatcttgga ggaagccatg gagtttgctg 1260
aagctagatt gagaagatct ttgtctgaac ctgctgctcc attgcatggt gaagttgctc 1320
aagctttgga tgttccaaga catttgagaa tggctagatt ggaagctaga agatttattg 1380
aacaatatgg taaacaatct gatcatgatg gtgatctatt ggagttggct attttggatt 1440
ataatcaagt tcaagctcaa catcaatctg aattgactga aattattaga tggtggaaag 1500
aattgggttt ggttgataaa ttgtcttttg gtagagatag accattggaa tgttttttgt 1560
ggactgttgg tttgttgcct gaaccaaaat attcttctgt tagaattgaa ttggccaaag 1620
ctatatctat tcttttggtt attgatgata tttttgatac ttatggtgaa atggatgatt 1680
tgattttgtt tactgatgct attagaagat gggatttgga ggcaatggag ggtttgcctg 1740
aatatatgaa aatctgttac atggctttgt acaatactac taatgaagtt tgctataaag 1800
ttttgagaga cactggtaga attgttttgt tgaatttgaa gtctacttgg attgatatga 1860
ttgaaggttt tatggaagaa gctaaatggt ttaatggtgg ttctgctcca aaattggaag 1920
aatatattga aaatggtgtt tctactgctg gtgcttatat ggcttttgct catatttttt 1980
ttttgattgg tgaaggtgtt actcatcaaa attctcaatt gtttactcaa aaaccatatc 2040
caaaagtttt ttctgctgct ggtagaatac tgagattgtg ggatgatttg ggtactgcta 2100
aagaagaaca agaaagaggt gatttggctt cttgtgttca attgtttatg aaagaaaaat 2160
ctcttactga agaagaagct agatctagaa tattggaaga aattaaaggt ttgtggaggg 2220
acttaaatgg tgaactagta tataataaaa acttgccatt gtctattatt aaagttgctt 2280
tgaatatggc tagggcttct caagttgtgt ataaacatga tcaagatact tacttttctt 2340
ctgtagataa ttatgttgat gctttgtttt ttactcaata aacaggcccc ttttcctttg 2400
tcgatatcat gtaattagtt atgtcacgct tacattcacg ccctcctccc acatccgctc 2460
taaccgaaaa ggaaggagtt agacaacctg aagtctaggt ccctatttat tttttttaat 2520
agttatgtta gtattaagaa cgttatttat atttcaaatt tttctttttt ttctgtacaa 2580
acgcgtgtac gcatgtaaca ttttattttt gaggattggg ctgatcattt tccttacgtg 2640
gattgagcca gcaatacaga tcattattaa actgtt 2676
<210> 8
<211> 2739
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
cctaaaaaag acacatctaa ctgattagtt ttccgtttta ggatattgac gccaagcgtg 60
cgtctgattt cctgtactaa tccaaggagg tttacggacc aggggaactt tccagattca 120
gatcacagca atataggact agaaaatatc aggtagccgc actcaacttg taactggcaa 180
ctactttgca tcaaactcca attaaatgcg gtagaatctt ttcacaaaag gtactcaacg 240
tcaattcgga aagcttcctt ccggaatggc ttaagtaggt tgcaatttct ttttctatta 300
gtagctaaaa atgggtcacg tgatctatat tcgaaagggg cggttgcctc aggaaggcac 360
cggcggtctt tcgtccgtgc ggagatatct gcgccgttca ggggtccatg tgccttggac 420
gatattaagg cagaaggcag tatcggggcg gatcactccg aaccgagatt agttaagccc 480
ttcccatctc aagatgggga gcaaatggca ttatactcct gctagaaagt taactgtgca 540
catattctta aattatacaa cattctggag agctattgtt caaaaaacaa acatttcgca 600
ggctaaaatg tggagatagg ataagttttg tagacatata taaacaatca gtaattggat 660
tgaaaatttg gtgttgtgaa ttgctcttca ttatgcacct tattcaatta tcatcaagaa 720
tagtaatagt taagtaaaca caagattaac ataataaaaa aaataattct ttcataatgg 780
acagaagatc tgctaactac caaccatcta tctgggatca cgattttttg caatctttga 840
actccaatta cactgatgaa acttacaaga gaagagaaga agaattgaaa ggtaaggtta 900
tgactactat caaggatgtt actgaaccat tgaaccaatt ggaattgatt gactctttgc 960
aaagattggg tttagcctac catttcgaaa ccgaaattag aaacattttg cacgacattt 1020
acaactctaa caacgattat gtctggagaa aggaaaactt gtacgctact tccttagaat 1080
tcagattgtt gagacaacac ggttacccag tttcccaaga agtcttcaac ggtttcaagg 1140
atgaccaagg tggtttcatc tgtgatgatt tcaagggtgt tttatccttg cacgaagctt 1200
cttacttctc tctcgaaggt gaatctatta tggaagaagc ctggcaattc acttcaaagc 1260
acttgaaaga agtcatgatt tctaagtcca agcaaggtga cgtttttgtc gctgaacaag 1320
ccaagcgtgg tttagaatta cctttgcact ggaaggtccc aatgttggaa gctagatggt 1380
tcattgatgt ctacgaaaag agggaagaca agaaccattt gttattagaa ttggctaagt 1440
tggaattcaa tgtcttgcaa gctatttacc aagaagaatt gaaggacgtc tccagatggt 1500
ggaaagatat tggtttgggt gaaaagttat ctttcgccag agactcctta gtcgcctcct 1560
tcgtttggtc catgggtatc gttttcgaac cacaatttgc ttactgccgt agaatcttga 1620
ccatcacttt cgctctaatc tctgttatcg acgacatcta cgacgtttac ggtactctgg 1680
acgaactgga attgtttgcc gatgctgtcg aaagatggga catcaactac gctttgaacc 1740
acttgccaga ctatatgaag atctgtttct tggctttgta caacctcgtt aacgaattca 1800
cctactacgt tttgaagcaa caagatttcg atattttacg ttccatcaag aatgcttggt 1860
tgagaaacat tcaagcttat ttggttgaag ctaaatggta ccacggtaag tacaccccaa 1920
ctttgggtga attcttggaa aacggtttgg tgtctatcgg tggtccaatg gttaccatga 1980
ccgcttactt gtccggtacc aacccaatca tcgaaaaaga gttggaattt ttggaatcga 2040
accaagacat ttcccattgg tctttcaaga ttcttagatt gcaagatgac ttgggcactt 2100
cttctgacga aatcagaaga ggtgacgttc caaagtctat tcaatgttac atgcacgaaa 2160
ccggtgcctc tgaagaagtt gctcgtgaac acatcaagga catgatgaga caaatgtgga 2220
agaaggtcaa cgcttacaga gctgacaagg acttcccatt gtctcaaacc accgtcgagt 2280
tcatcttgaa cgttgtaaga gtttcccact tcatgtacct gcatggtgat ggacacggtg 2340
ctcaaaacca agaaacaatg gatgtcgttt tcactttgtt gttccaacca attccattgg 2400
acgataagca cattgttgct acctctagtc cagtcactaa gggtacaggc cccttttcct 2460
ttgtcgatat catgtaatta gttatgtcac gcttacattc acgccctcct cccacatccg 2520
ctctaaccga aaaggaagga gttagacaac ctgaagtcta ggtccctatt tatttttttt 2580
aatagttatg ttagtattaa gaacgttatt tatatttcaa atttttcttt tttttctgta 2640
caaacgcgtg tacgcatgta acattttatt tttgaggatt gggctgatca ttttccttac 2700
gtggattgag ccagcaatac agatcattat taaactgtt 2739
<210> 9
<211> 600
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
acgatgtctc tgtttaaatg gcgcaagttt tccgctttgt aatatatatt tatacccctt 60
tcttctctcc cctgcaatat aatagtttaa ttctaatatt aataatatcc tatattttct 120
tcatttaccg gcgcactctc gcccgaacga cctcaaaatg tctgctacat tcataataac 180
caaaagctca taactttttt ttttgaacct gaatatatat acatcacata tcactgctgg 240
tccttgccga ccagcgtata caatctcgat agttggtttc ccgttctttc cactcccgtc 300
aagcatcttg ccctgtgctt ggcccccagt gcagcgaacg ttataaaaac gaatactgag 360
tatatatcta tgtaaaacaa ccatatcatt tcttgttctg aactttgttt acctaactag 420
ttttaaattt ccctttttcg tgcatgcggg tgttcttatt tattagcata ctacatttga 480
aatatcaaat ttccttagta gaaaagtgag agaaggtgca ctgacacaaa aaataaaatg 540
ctacgtataa ctgtcaaaac tttgcagcag cgggcatcct tccatcatag cttcaaacat 600
<210> 10
<211> 545
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 10
Met Arg Arg Ser Gly Asn Tyr Gln Pro Ser Ile Trp Asp Phe Asn Tyr
1 5 10 15
Val Gln Ser Leu Asn Thr Pro Tyr Lys Glu Glu Arg Tyr Leu Thr Arg
20 25 30
His Ala Glu Leu Ile Val Gln Val Lys Pro Leu Leu Glu Lys Lys Met
35 40 45
Glu Pro Ala Gln Gln Leu Glu Leu Ile Asp Asp Leu Asn Asn Leu Gly
50 55 60
Leu Ser Tyr Phe Phe Gln Asp Arg Ile Lys Gln Ile Leu Ser Phe Ile
65 70 75 80
Tyr Asp Glu Asn Gln Cys Phe His Ser Asn Ile Asn Asp Gln Ala Glu
85 90 95
Lys Arg Asp Leu Tyr Phe Thr Ala Leu Gly Phe Arg Leu Leu Arg Gln
100 105 110
His Gly Phe Asp Val Ser Gln Glu Val Phe Asp Cys Phe Lys Asn Asp
115 120 125
Asn Gly Ser Asp Phe Lys Ala Ser Leu Ser Asp Asn Thr Lys Gly Leu
130 135 140
Leu Gln Leu Tyr Glu Ala Ser Phe Leu Val Arg Glu Gly Glu Asp Thr
145 150 155 160
Leu Glu Gln Ala Arg Gln Phe Ala Thr Lys Phe Leu Arg Arg Lys Leu
165 170 175
Asp Glu Ile Asp Asp Asn His Leu Leu Ser Cys Ile His His Ser Leu
180 185 190
Glu Ile Pro Leu His Trp Arg Ile Gln Arg Leu Glu Ala Arg Trp Phe
195 200 205
Leu Asp Ala Tyr Ala Thr Arg His Asp Met Asn Pro Val Ile Leu Glu
210 215 220
Leu Ala Lys Leu Asp Phe Asn Ile Ile Gln Ala Thr His Gln Glu Glu
225 230 235 240
Leu Lys Asp Val Ser Arg Trp Trp Gln Asn Thr Arg Leu Ala Glu Lys
245 250 255
Leu Pro Phe Val Arg Asp Arg Leu Val Glu Ser Tyr Phe Trp Ala Ile
260 265 270
Ala Leu Phe Glu Pro His Gln Tyr Gly Tyr Gln Arg Arg Val Ala Ala
275 280 285
Lys Ile Ile Thr Leu Ala Thr Ser Ile Asp Asp Val Tyr Asp Ile Tyr
290 295 300
Gly Thr Leu Asp Glu Leu Gln Leu Phe Thr Asp Asn Phe Arg Arg Trp
305 310 315 320
Asp Thr Glu Ser Leu Gly Arg Leu Pro Tyr Ser Met Gln Leu Phe Tyr
325 330 335
Met Val Ile His Asn Phe Val Ser Glu Leu Ala Tyr Glu Ile Leu Lys
340 345 350
Glu Lys Gly Phe Ile Val Ile Pro Tyr Leu Gln Arg Ser Trp Val Asp
355 360 365
Leu Ala Glu Ser Phe Leu Lys Glu Ala Asn Trp Tyr Tyr Ser Gly Tyr
370 375 380
Thr Pro Ser Leu Glu Glu Tyr Ile Asp Asn Gly Ser Ile Ser Ile Gly
385 390 395 400
Ala Val Ala Val Leu Ser Gln Val Tyr Phe Thr Leu Ala Asn Ser Ile
405 410 415
Glu Lys Pro Lys Ile Glu Ser Met Tyr Lys Tyr His His Ile Leu Arg
420 425 430
Leu Ser Gly Leu Leu Val Arg Leu His Asp Asp Leu Gly Thr Ser Leu
435 440 445
Phe Glu Lys Lys Arg Gly Asp Val Pro Lys Ala Val Glu Ile Cys Met
450 455 460
Lys Glu Arg Asn Val Thr Glu Glu Glu Ala Glu Glu His Val Lys Tyr
465 470 475 480
Leu Ile Arg Glu Ala Trp Lys Glu Met Asn Thr Ala Thr Thr Ala Ala
485 490 495
Gly Cys Pro Phe Met Asp Glu Leu Asn Val Ala Ala Ala Asn Leu Gly
500 505 510
Arg Ala Ala Gln Phe Val Tyr Leu Asp Gly Asp Gly His Gly Val Gln
515 520 525
His Ser Lys Ile His Gln Gln Met Gly Gly Leu Met Phe Glu Pro Tyr
530 535 540
Val
545
<210> 11
<211> 534
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 11
Met Ser Ala Cys Thr Pro Leu Ala Ser Ala Met Pro Leu Ser Ser Thr
1 5 10 15
Pro Leu Ile Asn Gly Asp Asn Ser Gln Arg Lys Asn Thr Arg Gln His
20 25 30
Met Glu Glu Ser Ser Ser Lys Arg Arg Glu Tyr Leu Leu Glu Glu Thr
35 40 45
Thr Arg Lys Leu Gln Arg Asn Asp Thr Glu Ser Val Glu Lys Leu Lys
50 55 60
Leu Ile Asp Asn Ile Gln Gln Leu Gly Ile Gly Tyr Tyr Phe Glu Asp
65 70 75 80
Ala Ile Asn Ala Val Leu Arg Ser Pro Phe Ser Thr Gly Glu Glu Asp
85 90 95
Leu Phe Thr Ala Ala Leu Arg Phe Arg Leu Leu Arg His Asn Gly Ile
100 105 110
Glu Ile Ser Pro Glu Ile Phe Leu Lys Phe Lys Asp Glu Arg Gly Lys
115 120 125
Phe Asp Glu Ser Asp Thr Leu Gly Leu Leu Ser Leu Tyr Glu Ala Ser
130 135 140
Asn Leu Gly Val Ala Gly Glu Glu Ile Leu Glu Glu Ala Met Glu Phe
145 150 155 160
Ala Glu Ala Arg Leu Arg Arg Ser Leu Ser Glu Pro Ala Ala Pro Leu
165 170 175
His Gly Glu Val Ala Gln Ala Leu Asp Val Pro Arg His Leu Arg Met
180 185 190
Ala Arg Leu Glu Ala Arg Arg Phe Ile Glu Gln Tyr Gly Lys Gln Ser
195 200 205
Asp His Asp Gly Asp Leu Leu Glu Leu Ala Ile Leu Asp Tyr Asn Gln
210 215 220
Val Gln Ala Gln His Gln Ser Glu Leu Thr Glu Ile Ile Arg Trp Trp
225 230 235 240
Lys Glu Leu Gly Leu Val Asp Lys Leu Ser Phe Gly Arg Asp Arg Pro
245 250 255
Leu Glu Cys Phe Leu Trp Thr Val Gly Leu Leu Pro Glu Pro Lys Tyr
260 265 270
Ser Ser Val Arg Ile Glu Leu Ala Lys Ala Ile Ser Ile Leu Leu Val
275 280 285
Ile Asp Asp Ile Phe Asp Thr Tyr Gly Glu Met Asp Asp Leu Ile Leu
290 295 300
Phe Thr Asp Ala Ile Arg Arg Trp Asp Leu Glu Ala Met Glu Gly Leu
305 310 315 320
Pro Glu Tyr Met Lys Ile Cys Tyr Met Ala Leu Tyr Asn Thr Thr Asn
325 330 335
Glu Val Cys Tyr Lys Val Leu Arg Asp Thr Gly Arg Ile Val Leu Leu
340 345 350
Asn Leu Lys Ser Thr Trp Ile Asp Met Ile Glu Gly Phe Met Glu Glu
355 360 365
Ala Lys Trp Phe Asn Gly Gly Ser Ala Pro Lys Leu Glu Glu Tyr Ile
370 375 380
Glu Asn Gly Val Ser Thr Ala Gly Ala Tyr Met Ala Phe Ala His Ile
385 390 395 400
Phe Phe Leu Ile Gly Glu Gly Val Thr His Gln Asn Ser Gln Leu Phe
405 410 415
Thr Gln Lys Pro Tyr Pro Lys Val Phe Ser Ala Ala Gly Arg Ile Leu
420 425 430
Arg Leu Trp Asp Asp Leu Gly Thr Ala Lys Glu Glu Gln Glu Arg Gly
435 440 445
Asp Leu Ala Ser Cys Val Gln Leu Phe Met Lys Glu Lys Ser Leu Thr
450 455 460
Glu Glu Glu Ala Arg Ser Arg Ile Leu Glu Glu Ile Lys Gly Leu Trp
465 470 475 480
Arg Asp Leu Asn Gly Glu Leu Val Tyr Asn Lys Asn Leu Pro Leu Ser
485 490 495
Ile Ile Lys Val Ala Leu Asn Met Ala Arg Ala Ser Gln Val Val Tyr
500 505 510
Lys His Asp Gln Asp Thr Tyr Phe Ser Ser Val Asp Asn Tyr Val Asp
515 520 525
Ala Leu Phe Phe Thr Gln
530
<210> 12
<211> 556
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 12
Met Asp Arg Arg Ser Ala Asn Tyr Gln Pro Ser Ile Trp Asp His Asp
1 5 10 15
Phe Leu Gln Ser Leu Asn Ser Asn Tyr Thr Asp Glu Thr Tyr Lys Arg
20 25 30
Arg Glu Glu Glu Leu Lys Gly Lys Val Met Thr Thr Ile Lys Asp Val
35 40 45
Thr Glu Pro Leu Asn Gln Leu Glu Leu Ile Asp Ser Leu Gln Arg Leu
50 55 60
Gly Leu Ala Tyr His Phe Glu Thr Glu Ile Arg Asn Ile Leu His Asp
65 70 75 80
Ile Tyr Asn Ser Asn Asn Asp Tyr Val Trp Arg Lys Glu Asn Leu Tyr
85 90 95
Ala Thr Ser Leu Glu Phe Arg Leu Leu Arg Gln His Gly Tyr Pro Val
100 105 110
Ser Gln Glu Val Phe Asn Gly Phe Lys Asp Asp Gln Gly Gly Phe Ile
115 120 125
Cys Asp Asp Phe Lys Gly Val Leu Ser Leu His Glu Ala Ser Tyr Phe
130 135 140
Ser Leu Glu Gly Glu Ser Ile Met Glu Glu Ala Trp Gln Phe Thr Ser
145 150 155 160
Lys His Leu Lys Glu Val Met Ile Ser Lys Ser Lys Gln Gly Asp Val
165 170 175
Phe Val Ala Glu Gln Ala Lys Arg Gly Leu Glu Leu Pro Leu His Trp
180 185 190
Lys Val Pro Met Leu Glu Ala Arg Trp Phe Ile Asp Val Tyr Glu Lys
195 200 205
Arg Glu Asp Lys Asn His Leu Leu Leu Glu Leu Ala Lys Leu Glu Phe
210 215 220
Asn Val Leu Gln Ala Ile Tyr Gln Glu Glu Leu Lys Asp Val Ser Arg
225 230 235 240
Trp Trp Lys Asp Ile Gly Leu Gly Glu Lys Leu Ser Phe Ala Arg Asp
245 250 255
Ser Leu Val Ala Ser Phe Val Trp Ser Met Gly Ile Val Phe Glu Pro
260 265 270
Gln Phe Ala Tyr Cys Arg Arg Ile Leu Thr Ile Thr Phe Ala Leu Ile
275 280 285
Ser Val Ile Asp Asp Ile Tyr Asp Val Tyr Gly Thr Leu Asp Glu Leu
290 295 300
Glu Leu Phe Ala Asp Ala Val Glu Arg Trp Asp Ile Asn Tyr Ala Leu
305 310 315 320
Asn His Leu Pro Asp Tyr Met Lys Ile Cys Phe Leu Ala Leu Tyr Asn
325 330 335
Leu Val Asn Glu Phe Thr Tyr Tyr Val Leu Lys Gln Gln Asp Phe Asp
340 345 350
Ile Leu Arg Ser Ile Lys Asn Ala Trp Leu Arg Asn Ile Gln Ala Tyr
355 360 365
Leu Val Glu Ala Lys Trp Tyr His Gly Lys Tyr Thr Pro Thr Leu Gly
370 375 380
Glu Phe Leu Glu Asn Gly Leu Val Ser Ile Gly Gly Pro Met Val Thr
385 390 395 400
Met Thr Ala Tyr Leu Ser Gly Thr Asn Pro Ile Ile Glu Lys Glu Leu
405 410 415
Glu Phe Leu Glu Ser Asn Gln Asp Ile Ser His Trp Ser Phe Lys Ile
420 425 430
Leu Arg Leu Gln Asp Asp Leu Gly Thr Ser Ser Asp Glu Ile Arg Arg
435 440 445
Gly Asp Val Pro Lys Ser Ile Gln Cys Tyr Met His Glu Thr Gly Ala
450 455 460
Ser Glu Glu Val Ala Arg Glu His Ile Lys Asp Met Met Arg Gln Met
465 470 475 480
Trp Lys Lys Val Asn Ala Tyr Arg Ala Asp Lys Asp Phe Pro Leu Ser
485 490 495
Gln Thr Thr Val Glu Phe Ile Leu Asn Val Val Arg Val Ser His Phe
500 505 510
Met Tyr Leu His Gly Asp Gly His Gly Ala Gln Asn Gln Glu Thr Met
515 520 525
Asp Val Val Phe Thr Leu Leu Phe Gln Pro Ile Pro Leu Asp Asp Lys
530 535 540
His Ile Val Ala Thr Ser Ser Pro Val Thr Lys Gly
545 550 555
<210> 13
<211> 352
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 13
Met Ala Ser Glu Lys Glu Ile Arg Arg Glu Arg Phe Leu Asn Val Phe
1 5 10 15
Pro Lys Leu Val Glu Glu Leu Asn Ala Ser Leu Leu Ala Tyr Gly Met
20 25 30
Pro Lys Glu Ala Cys Asp Trp Tyr Ala His Ser Leu Asn Tyr Asn Thr
35 40 45
Pro Gly Gly Lys Leu Asn Arg Gly Leu Ser Val Val Asp Thr Tyr Ala
50 55 60
Ile Leu Ser Asn Lys Thr Val Glu Gln Leu Gly Gln Glu Glu Tyr Glu
65 70 75 80
Lys Val Ala Ile Leu Gly Trp Cys Ile Glu Leu Leu Gln Ala Tyr Trp
85 90 95
Leu Val Ala Asp Asp Met Met Asp Lys Ser Ile Thr Arg Arg Gly Gln
100 105 110
Pro Cys Trp Tyr Lys Val Pro Glu Val Gly Glu Ile Ala Ile Trp Asp
115 120 125
Ala Phe Met Leu Glu Ala Ala Ile Tyr Lys Leu Leu Lys Ser His Phe
130 135 140
Arg Asn Glu Lys Tyr Tyr Ile Asp Ile Thr Glu Leu Phe His Glu Val
145 150 155 160
Thr Phe Gln Thr Glu Leu Gly Gln Leu Met Asp Leu Ile Thr Ala Pro
165 170 175
Glu Asp Lys Val Asp Leu Ser Lys Phe Ser Leu Lys Lys His Ser Phe
180 185 190
Ile Val Thr Phe Lys Thr Ala Tyr Tyr Ser Phe Tyr Leu Pro Val Ala
195 200 205
Leu Ala Met Tyr Val Ala Gly Ile Thr Asp Glu Lys Asp Leu Lys Gln
210 215 220
Ala Arg Asp Val Leu Ile Pro Leu Gly Glu Tyr Phe Gln Ile Gln Asp
225 230 235 240
Asp Tyr Leu Asp Cys Phe Gly Thr Pro Glu Gln Ile Gly Lys Ile Gly
245 250 255
Thr Asp Ile Gln Asp Asn Lys Cys Ser Trp Val Ile Asn Lys Ala Leu
260 265 270
Glu Leu Ala Ser Ala Glu Gln Arg Lys Thr Leu Asp Glu Asn Tyr Gly
275 280 285
Lys Lys Asp Ser Val Ala Glu Ala Lys Cys Lys Lys Ile Phe Asn Asp
290 295 300
Leu Lys Ile Glu Gln Leu Tyr His Glu Tyr Glu Glu Ser Ile Ala Lys
305 310 315 320
Asp Leu Lys Ala Lys Ile Ser Gln Val Asp Glu Ser Arg Gly Phe Lys
325 330 335
Ala Asp Val Leu Thr Ala Phe Leu Asn Lys Val Tyr Lys Arg Ser Lys
340 345 350

Claims (10)

1. A construction method of recombinant saccharomyces cerevisiae for producing myrcene is characterized by comprising the following steps: the method comprises the following steps: and (3) introducing a geraniol synthetase gene and/or a limonene synthetase gene into saccharomyces cerevisiae to obtain the recombinant saccharomyces cerevisiae for producing myrcene.
2. The construction method according to claim 1, characterized in that: the geraniol synthase gene is derived from basil and/or perilla; the limonene synthetase gene is derived from wenzhou mandarin orange.
3. The construction method according to claim 1 or 2, characterized in that: the amino acid sequence of the geraniol synthase coded by the geraniol synthase gene is shown as SEQ ID No.10 and/or 11; the amino acid sequence of the limonene synthetase encoded by the limonene synthetase gene is shown as SEQ ID No. 12.
4. The construction method according to any one of claims 1 to 3, wherein:
the saccharomyces cerevisiae is capable of accumulating myrcene synthesis precursor geranyl diphosphate GPP.
5. The construction method according to any one of claims 1 to 4, wherein:
the saccharomyces cerevisiae is a bacterium obtained by improving the content and/or activity of farnesyl pyrophosphate synthetase ERG20, 3-hydroxy-3-methylglutaryl coenzyme A tHMG1, acetyl coenzyme A acyltransferase mvaE, HMG-CoA synthetase mvaS-m, isopentenyl pyrophosphate isomerase IDI1, mevalonate kinase ERG12, MVAP kinase ERG8 and/or MVAPP decarboxylase ERG19 in starting saccharomyces cerevisiae and/or reducing the expression of galactose regulator gene Ga180 gene in the starting saccharomyces cerevisiae.
6. The construction method according to any one of claims 1 to 5, wherein: the saccharomyces cerevisiae is obtained by modifying at least one of the following saccharomyces cerevisiae:
a1, introduction of farnesyl pyrophosphate synthetase gene 96-position and 127-position double-point mutant gene ERG20F96W/N127WA gene;
a2, introduction of tHMG1 gene;
a3, introducing mvaE gene;
a4, introducing mvaS-m gene;
a5, introduction of IDI1 gene;
a6, introduction of ERG12 gene;
a7, introduction of ERG8 gene;
a8, introduction of ERG19 gene;
a9, knock-out Gal80 gene.
7. A recombinant Saccharomyces cerevisiae constructed by the method of any one of claims 1 to 6.
8. A method of producing myrcene, characterized by: comprising culturing the recombinant Saccharomyces cerevisiae of claim 7 to obtain a fermentation product, i.e., myrcene.
9. Any one of the following applications is described below,
use of X1, the method of any one of claims 1 to 7, in the manufacture of a myrcene product;
use of X2, the method of any one of claims 1 to 7, for the production of myrcene;
use of X3, the recombinant saccharomyces cerevisiae of claim 8, for the preparation of a myrcene product;
use of X4, the recombinant saccharomyces cerevisiae according to claim 8, for the production of myrcene.
10. Any one of the following applications is described below,
the application of X5, geraniol synthase gene or limonene synthase gene in preparing myrcene products;
the use of X6, a geraniol synthase gene or a limonene synthase gene for the production of myrcene;
the application of X7, geraniol synthase or limonene synthase in preparing myrcene products;
use of X8, a geraniol synthase or a limonene synthase for the production of myrcene.
CN202110934151.4A 2021-08-13 2021-08-13 Recombinant saccharomyces cerevisiae and construction method and application thereof Pending CN113774079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110934151.4A CN113774079A (en) 2021-08-13 2021-08-13 Recombinant saccharomyces cerevisiae and construction method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110934151.4A CN113774079A (en) 2021-08-13 2021-08-13 Recombinant saccharomyces cerevisiae and construction method and application thereof

Publications (1)

Publication Number Publication Date
CN113774079A true CN113774079A (en) 2021-12-10

Family

ID=78837804

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110934151.4A Pending CN113774079A (en) 2021-08-13 2021-08-13 Recombinant saccharomyces cerevisiae and construction method and application thereof

Country Status (1)

Country Link
CN (1) CN113774079A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114606146A (en) * 2022-03-11 2022-06-10 江南大学 Yeast for producing D-limonene and application thereof
CN114774438A (en) * 2022-04-20 2022-07-22 华中农业大学 Osmanthus gene OfTPS380.1 and application thereof
CN115725638A (en) * 2022-10-27 2023-03-03 中国科学院天津工业生物技术研究所 Monoterpene production genetic engineering strain and application thereof
CN116064639A (en) * 2022-10-27 2023-05-05 中国科学院天津工业生物技术研究所 Monoterpene synthase, genetically engineered strain and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103571763A (en) * 2013-11-20 2014-02-12 江南大学 Saccharomyces cerevisiae capable of auto-synthesizing terpenoid substances and applications thereof
WO2017075538A1 (en) * 2015-10-29 2017-05-04 Amyris, Inc. Compositions and methods for production of myrcene
WO2017100655A1 (en) * 2015-12-10 2017-06-15 The Regents Of The University Of California Monoterpene-producing genetically modified host cells and methods of use of same
CN111434773A (en) * 2019-01-15 2020-07-21 天津大学 Recombinant yeast for high-yield sandalwood oil and construction method and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103571763A (en) * 2013-11-20 2014-02-12 江南大学 Saccharomyces cerevisiae capable of auto-synthesizing terpenoid substances and applications thereof
WO2017075538A1 (en) * 2015-10-29 2017-05-04 Amyris, Inc. Compositions and methods for production of myrcene
WO2017100655A1 (en) * 2015-12-10 2017-06-15 The Regents Of The University Of California Monoterpene-producing genetically modified host cells and methods of use of same
CN111434773A (en) * 2019-01-15 2020-07-21 天津大学 Recombinant yeast for high-yield sandalwood oil and construction method and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Q4JHG3.1: "Geraniol synthase", pages 1 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114606146A (en) * 2022-03-11 2022-06-10 江南大学 Yeast for producing D-limonene and application thereof
CN114606146B (en) * 2022-03-11 2023-03-17 江南大学 Yeast for producing D-limonene and application thereof
CN114774438A (en) * 2022-04-20 2022-07-22 华中农业大学 Osmanthus gene OfTPS380.1 and application thereof
CN115725638A (en) * 2022-10-27 2023-03-03 中国科学院天津工业生物技术研究所 Monoterpene production genetic engineering strain and application thereof
CN116064639A (en) * 2022-10-27 2023-05-05 中国科学院天津工业生物技术研究所 Monoterpene synthase, genetically engineered strain and application thereof

Similar Documents

Publication Publication Date Title
CN113774079A (en) Recombinant saccharomyces cerevisiae and construction method and application thereof
CN111434773B (en) Recombinant yeast for high-yield sandalwood oil and construction method and application thereof
CN103243066B (en) Bacterial strain for producing lycopene and application of bacterial strain
CN110607247B (en) Method for improving capacity of saccharomyces cerevisiae in synthesizing squalene
CN110878261B (en) Construction method of recombinant yarrowia lipolytica for synthesizing xylitol and strain thereof
CN113755354B (en) Recombinant saccharomyces cerevisiae for producing gastrodin by utilizing glucose and application thereof
CN107723252A (en) Produce the restructuring Yarrowia lipolytica and construction method of valencia orange alkene and nootkatone
CN112175848B (en) Yeast strain for producing patchouli alcohol and construction method and application thereof
CN111041041A (en) Saccharomyces cerevisiae recombinant strain for producing α -lupinene, 8-hydroxy- α -lupinene and zingerone and construction method thereof
CN114262702B (en) Application of ergothioneine synthesis gene in reconstructing ergothioneine metabolic pathway in corynebacterium glutamicum and method thereof
CN114058525A (en) High-yield squalene genetic engineering bacterium and construction method and application thereof
CN112175849A (en) Recombinant yeast with improved L-menthol yield
CN108034667A (en) A kind of red monascus alpha-amylase gene, its preparation method and application
CN112608936B (en) Promoter for regulating and controlling expression of exogenous gene of yeast, regulating and controlling method and application thereof
CN114107078A (en) High-yield valencene genetic engineering bacterium and construction method and application thereof
CN109136119B (en) Microorganisms and uses thereof
CN111154665B (en) Recombinant yarrowia lipolytica and construction method and application thereof
WO2023208037A1 (en) Nerolidol synthase and use thereof
CN114525215B (en) Recombinant strain for producing terpenoid, construction method thereof, method for producing terpenoid through fermentation and application of recombinant strain
CN113817757A (en) Recombinant yeast engineering strain for producing cherry glycoside and application
CN114277040A (en) Construction method and application of bacterial strain for efficiently synthesizing beta-carotene
CN113969288A (en) High-yield farnesol gene engineering bacterium and construction method and application thereof
CN110468091B (en) Microorganism and use thereof
CN115305254B (en) Terpenoid chassis microorganism and engineering bacterium as well as construction method and application thereof
CN112920959B (en) Method for increasing yield of L-menthol in saccharomycetes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination