CN114520270A - 一种间接带隙半导体光电探测器件及其制作方法 - Google Patents

一种间接带隙半导体光电探测器件及其制作方法 Download PDF

Info

Publication number
CN114520270A
CN114520270A CN202011305577.5A CN202011305577A CN114520270A CN 114520270 A CN114520270 A CN 114520270A CN 202011305577 A CN202011305577 A CN 202011305577A CN 114520270 A CN114520270 A CN 114520270A
Authority
CN
China
Prior art keywords
band
region
type
bandgap semiconductor
doped region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011305577.5A
Other languages
English (en)
Inventor
张耀辉
莫海锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Huatai Electronics Co Ltd
Original Assignee
Suzhou Huatai Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Huatai Electronics Co Ltd filed Critical Suzhou Huatai Electronics Co Ltd
Priority to CN202011305577.5A priority Critical patent/CN114520270A/zh
Publication of CN114520270A publication Critical patent/CN114520270A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种间接带隙半导体光电探测器件及其制作方法。所述光电探测器器件包括间隙带隙半导体形成的N型衬底、间隙带隙半导体形成的掺杂区域和间隙带隙半导体形成的P型区域,掺杂区域位于N型衬底和P型区域之间,且掺杂区域形成位于价带和导带之间的杂带。本发明降低工作电压,提高增益和效率,在3V工作电压时增益和APD在30V电压下的增益相当,并把附加噪声系数降低到APD的2%左右。

Description

一种间接带隙半导体光电探测器件及其制作方法
技术领域
本发明属于光电探测器技术领域,具体涉及一种降低工作电压、提高增益和效率的间接带隙半导体光电探测器件及其制作方法。
背景技术
传统光电探测器(APD)器件,如雪崩光电二极管(avalanche photodiode)器件的结构如图1所示,从下往上依次包括重掺杂的N型区域11、轻掺杂的P型区域12及重掺杂的P型区域13。
图2是间接带隙半导体能带的示意图,其中,标号21是导带的L能谷,标号22是导带的γ能谷,标号23是价带顶,标号24的箭头表示间接跃迁,标号25的箭头表示直接跃迁。标号23和标号21之间的能量差是间接带隙半导体的禁带宽度Eg。对于价带顶23的电子,只有获得了超过禁带宽度Eg的能量才能跃迁到导带,但由于需要遵守动量守恒,只能发生图2中标号25所示的直接跃迁,而不能发生标号24所示的间接跃迁,APD基于此原理,通过反向偏置的PN结高压强电场作用,让电子能够获得足够的能量,实现直接跃迁。
传统光电探测器(APD)器件,通过施加高的反向偏置电压,利用碰撞电离实现放大,获取高增益。传统APD器件的工作电压较高,通常高于30伏特,使得器件工作效率低;更重要的是,附加噪声会随着放大倍数的增加快速增加。
如何提供一种降低工作电压,提高增益、效率和附加噪声系数的光电探测器件,是一个急需解决的问题。
发明内容
本发明的主要目的在于提供一种间接带隙半导体光电探测器件,从而克服现有技术的不足。
本发明的另一目的在于提供一种间接带隙半导体光电探测器件的制作方法。
为实现前述发明目的,本发明采用的技术方案包括:一种间接带隙半导体光电探测器件,所述光电探测器器件包括间隙带隙半导体形成的N型衬底、间隙带隙半导体形成的掺杂区域和间隙带隙半导体形成的P型区域,所述掺杂区域位于所述N型衬底和P型区域之间,且所述掺杂区域形成位于价带和导带之间的杂带。
在一优选实施例中,所述掺杂区域为与所述N型衬底材料相同的掺杂区域。
在一优选实施例中,所述掺杂区域的掺杂浓度位于1E18cm2~1E20cm2之间。
在一优选实施例中,所述掺杂区域的厚度位于0.1μm~0.5μm之间。
在一优选实施例中,所述P型区域为掺杂了N型衬底材料的P型区域。
在一优选实施例中,所述P型区域的掺杂浓度比N型衬底的掺杂浓度高2%~10%,且所述P型区域的掺杂浓度位于1E18cm2~1E20cm2之间。
在一优选实施例中,所述P型区域的厚度位于0.1μm~0.5μm之间。
在一优选实施例中,所述光电探测器器件还包括P型接触区域,所述P型区域位于掺杂区域和P型接触区域之间。
本发明实施例提供了一种间接带隙半导体光电探测器件的制作方法,所述方法包括:采用间隙带隙半导体形成N型衬底和P型区域,且在间隙带隙半导体掺杂形成掺杂区域,所述掺杂区域位于所述N型衬底和P型区域之间,且所述掺杂区域形成位于价带和导带之间的杂带。
在一优选实施例中,所述方法还包括:采用间隙带隙半导体形成P型接触区域,所述P型区域位于掺杂区域和P型接触区域之间。
与现有技术相比较,本发明的有益效果至少在于:本发明通过在间接带隙半导体中掺杂杂质,以在禁带中靠近导带底区域形成杂带,通过对PN结二极管施加反向的偏置电压,实现高增益的光电探测,且降低工作电压,提高增益和效率,在3V工作电压时增益和APD在30V电压下的增益相当,并把附加噪声系数降低到APD的2%左右。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有雪崩光电二极管的结构示意图;
图2是传统间接带隙半导体的能带示意图;
图3是本发明一实施方式中光电探测器件的结构示意图;
图4是本发明间接带隙半导体的能带示意图。
具体实施方式
通过应连同所附图式一起阅读的以下具体实施方式将更完整地理解本发明。本文中揭示本发明的详细实施例;然而,应理解,所揭示的实施例仅具本发明的示范性,本发明可以各种形式来体现。因此,本文中所揭示的特定功能细节不应解释为具有限制性,而是仅解释为权利要求书的基础且解释为用于教示所属领域的技术人员在事实上任何适当详细实施例中以不同方式采用本发明的代表性基础。
如图3所示,本发明实施例所揭示的一种间接带隙半导体光电探测器件,包括由间隙带隙半导体形成的且由下往上依次设置的N型衬底31、掺杂区域32、P型区域33和P型接触区域34,其中,N型衬底31为重掺杂的N型衬底,其电阻率介于0.001Ω.cm~0.05Ω.cm之间。
掺杂区域32是和N型衬底31相同材料的轻掺杂区域,掺杂浓度介于1E18cm2~1E20cm2之间,厚度介于0.1μm~0.5μm之间。
P型区域33是掺杂了N型衬底31材料的P型区域,即补偿的P型区域,P型区域33的掺杂浓度比N型衬底31的掺杂浓度高2%~10%,介于1E18cm2~1E20cm2之间,厚度介于0.1μm~0.5μm之间。
P型接触区域34和N型衬底31上各自设置有电极,分别是P型接触区域的电极35和N型衬底的电极36。
微观粒子具有波粒二象性,自由粒子的运动可以使用频率为υ、波长为λ的平面波表示,即
Figure BDA0002788230440000031
其中A为常数,r是空间某点的矢径,k是平面波的波数,等于波长λ的倒数,为了同时描述平面波的方向,通常规定k是矢量,成为波数矢量,简称波矢,有波矢k组成的空间称为K空间。在晶体的周期势场中,通常用Bloch波描述离子在周期势场的运动。
本发明光电探测器件的关键之处在于在间接带隙半导体中掺杂,根据安德森局域化理论,所掺杂的杂质在导带下方、价带上方,即在价带和导带之间,形成非晶态的杂带,根据测不准原理,局域化的ΔK很大,使得杂带扩展至K空间原点。补偿间接带隙半导体,杂质导致其周期性结构破坏,电子的Bloch函数需要修正,在安德森局域,波函数无平移对称性,不再是描述电子态的好量子数。根据测不准原理,局域化的ΔK很大,从而杂质的能带在K方向扩展,在导带下方形成非晶态的杂带,杂带扩展至K空间原点。
图4是本发明间接带隙半导体的能带示意图,图中,标号41是导带最低的能谷,标号42是导带能谷,其波矢K和价带的最高能级相同,标号43是价带的最高能级,标号44是进行N型衬底掺杂以后,根据安德森局域化理论,扩展的杂带,标号45是电子获得能量后直接跃迁到杂带的过程,标号46表示电子获得能量从杂带跃迁到导带最低能级的过程。本发明的光电探测器件,通过在间接带隙半导体中掺杂杂质,在禁带中靠近导带底区域形成杂带,使得价带电子获得能量后,直接跃迁至杂带,杂带电子获得能量后,跃迁至导带。从价带跃迁到杂带是直接跃迁过程,电子获得的能量只需要大于杂带和价带的能量差,就能直接跃迁到杂带。同样,杂带中的电子,只需要获得的能量大于杂带和导带的能级差,即可从杂带跃迁到导带。本发明光电探测器件通过对PN结二极管施加反向的偏置电压,实现高增益的光电探测,且在3V的低电压压下就能够获得远远优于APD的增益。
本发明实施例所揭示的一种间接带隙半导体光电探测器件的制作方法,包括:采用间隙带隙半导体形成N型衬底31、P型区域33和P型接触区域34,且在间隙带隙半导体掺杂形成掺杂区域32,掺杂区域32位于N型衬底31和P型区域33之间,且掺杂区域32形成位于价带和导带之间的杂带,P型区域33位于掺杂区域32和P型接触区域34之间。
本发明的各方面、实施例、特征及实例应视为在所有方面为说明性的且不打算限制本发明,本发明的范围仅由权利要求书界定。在不背离所主张的本发明的精神及范围的情况下,所属领域的技术人员将明了其它实施例、修改及使用。
在本发明案中标题及章节的使用不意味着限制本发明;每一章节可应用于本发明的任何方面、实施例或特征。
除非另外具体陈述,否则术语“包含(include、includes、including)”、“具有(have、has或having)”的使用通常应理解为开放式的且不具限制性。
应理解,各步骤的次序或执行特定动作的次序并非十分重要,只要本发明教示保持可操作即可。此外,可同时进行两个或两个以上步骤或动作。
尽管已参考说明性实施例描述了本发明,但所属领域的技术人员将理解,在不背离本发明的精神及范围的情况下可做出各种其它改变、省略及/或添加且可用实质等效物替代所述实施例的元件。另外,可在不背离本发明的范围的情况下做出许多修改以使特定情形或材料适应本发明的教示。因此,本文并不打算将本发明限制于用于执行本发明的所揭示特定实施例,而是打算使本发明将包含归属于所附权利要求书的范围内的所有实施例。此外,除非具体陈述,否则术语第一、第二等的任何使用不表示任何次序或重要性,而是使用术语第一、第二等来区分一个元素与另一元素。

Claims (10)

1.一种间接带隙半导体光电探测器件,其特征在于,所述光电探测器器件包括间隙带隙半导体形成的N型衬底、间隙带隙半导体形成的掺杂区域和间隙带隙半导体形成的P型区域,所述掺杂区域位于所述N型衬底和P型区域之间,且所述掺杂区域形成位于价带和导带之间的杂带。
2.根据权利要求1所述的一种间接带隙半导体光电探测器件,其特征在于,所述掺杂区域为与所述N型衬底材料相同的掺杂区域。
3.根据权利要求1所述的一种间接带隙半导体光电探测器件,其特征在于,所述掺杂区域的掺杂浓度位于1E18cm2~1E20cm2之间。
4.根据权利要求1所述的一种间接带隙半导体光电探测器件,其特征在于,所述掺杂区域的厚度位于0.1μm~0.5μm之间。
5.根据权利要求1所述的一种间接带隙半导体光电探测器件,其特征在于,所述P型区域为掺杂了N型衬底材料的P型区域。
6.根据权利要求5所述的一种间接带隙半导体光电探测器件,其特征在于,所述P型区域的掺杂浓度比N型衬底的掺杂浓度高2%~10%,且所述P型区域的掺杂浓度位于1E18cm2~1E20cm2之间。
7.根据权利要求1所述的一种间接带隙半导体光电探测器件,其特征在于,所述P型区域的厚度位于0.1μm~0.5μm之间。
8.根据权利要求1所述的一种间接带隙半导体光电探测器件,其特征在于,所述光电探测器器件还包括P型接触区域,所述P型区域位于掺杂区域和P型接触区域之间。
9.一种间接带隙半导体光电探测器件的制作方法,其特征在于,所述方法包括:采用间隙带隙半导体形成N型衬底和P型区域,且在间隙带隙半导体掺杂形成掺杂区域,所述掺杂区域位于所述N型衬底和P型区域之间,且所述掺杂区域形成位于价带和导带之间的杂带。
10.根据权利要求9所述的制作方法,其特征在于,所述方法还包括:采用间隙带隙半导体形成P型接触区域,所述P型区域位于掺杂区域和P型接触区域之间。
CN202011305577.5A 2020-11-20 2020-11-20 一种间接带隙半导体光电探测器件及其制作方法 Pending CN114520270A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011305577.5A CN114520270A (zh) 2020-11-20 2020-11-20 一种间接带隙半导体光电探测器件及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011305577.5A CN114520270A (zh) 2020-11-20 2020-11-20 一种间接带隙半导体光电探测器件及其制作方法

Publications (1)

Publication Number Publication Date
CN114520270A true CN114520270A (zh) 2022-05-20

Family

ID=81594731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011305577.5A Pending CN114520270A (zh) 2020-11-20 2020-11-20 一种间接带隙半导体光电探测器件及其制作方法

Country Status (1)

Country Link
CN (1) CN114520270A (zh)

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1170799A (en) * 1966-07-15 1969-11-19 Ibm Semiconductor devices
US6288415B1 (en) * 1996-10-24 2001-09-11 University Of Surrey Optoelectronic semiconductor devices
US20020070416A1 (en) * 1999-12-09 2002-06-13 The Regents Of The University Of California Current isolating epitaxial buffer layers for high voltage photodiode array
US20050104064A1 (en) * 2002-03-01 2005-05-19 John Hegarty Semiconductor photodetector
WO2007053431A2 (en) * 2005-10-28 2007-05-10 Massachusetts Institute Of Technology Method and structure of germanium laser on silicon
US20070272297A1 (en) * 2006-05-24 2007-11-29 Sergei Krivoshlykov Disordered silicon nanocomposites for photovoltaics, solar cells and light emitting devices
JP2009117431A (ja) * 2007-11-02 2009-05-28 Univ Of Yamanashi pn接合型太陽電池およびその製造方法
US20090159854A1 (en) * 2005-12-13 2009-06-25 Universidad Politécnica de Madrid Suppression of non-radiative recombination in materials with deep centres
CN101557074A (zh) * 2008-04-10 2009-10-14 电子科技大学 硅基锗电注入激光器及制作方法
CN101933169A (zh) * 2008-02-01 2010-12-29 Insiava(控股)有限公司 包括异质结的半导体发光器件
WO2011002143A1 (ko) * 2009-07-02 2011-01-06 한국화학연구원 근적외선 감지 소자 및 그 제조방법
US20110248316A1 (en) * 2008-12-12 2011-10-13 Thales Infrared detector with extended spectral response in the visible field
US20110303292A1 (en) * 2009-02-20 2011-12-15 Saki Sonoda Light-absorbing material and photoelectric conversion element using the same
JP2012124404A (ja) * 2010-12-10 2012-06-28 Nippon Telegr & Teleph Corp <Ntt> フォトダイオードおよびその製造方法
US20130161653A1 (en) * 2011-12-23 2013-06-27 Seoul National University R&Db Foundation Electroluminescence device using indirect bandgap semiconductor
US20130250991A1 (en) * 2010-11-22 2013-09-26 The University Of Surrey Optoelectronic Devices
US20140239324A1 (en) * 2013-02-26 2014-08-28 The Board Of Trustees Of The Leland Standford Junior University Germanium electroluminescence device and fabrication method of the same
CN104638037A (zh) * 2015-02-14 2015-05-20 厦门大学 一种镍掺杂的具有pn结结构的单晶硅材料及其制备方法
CN104851932A (zh) * 2015-04-01 2015-08-19 中国科学院上海微系统与信息技术研究所 一种基于稀铋磷化物的中间带太阳能电池结构
CN105283964A (zh) * 2013-05-31 2016-01-27 泰科电子瑞典控股有限责任公司 高速光探测器
US20180277697A1 (en) * 2015-09-16 2018-09-27 Société Française De Détecteurs Infrarouges - Sofradir Photodetector with reduced dark current
CN110137300A (zh) * 2019-05-15 2019-08-16 苏州大学 一种超薄膜红外宽带热电子光电探测器
CN110212053A (zh) * 2019-05-29 2019-09-06 哈尔滨工业大学(深圳) 一种硅基叉指型光电探测器
WO2020081441A1 (en) * 2018-10-15 2020-04-23 Arizona Board Of Regents On Behalf Of Arizona State University True hot-carrier solar cell and hot-carrier transfer

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1170799A (en) * 1966-07-15 1969-11-19 Ibm Semiconductor devices
US6288415B1 (en) * 1996-10-24 2001-09-11 University Of Surrey Optoelectronic semiconductor devices
US20020070416A1 (en) * 1999-12-09 2002-06-13 The Regents Of The University Of California Current isolating epitaxial buffer layers for high voltage photodiode array
US20050104064A1 (en) * 2002-03-01 2005-05-19 John Hegarty Semiconductor photodetector
WO2007053431A2 (en) * 2005-10-28 2007-05-10 Massachusetts Institute Of Technology Method and structure of germanium laser on silicon
US20090159854A1 (en) * 2005-12-13 2009-06-25 Universidad Politécnica de Madrid Suppression of non-radiative recombination in materials with deep centres
US20070272297A1 (en) * 2006-05-24 2007-11-29 Sergei Krivoshlykov Disordered silicon nanocomposites for photovoltaics, solar cells and light emitting devices
JP2009117431A (ja) * 2007-11-02 2009-05-28 Univ Of Yamanashi pn接合型太陽電池およびその製造方法
CN101933169A (zh) * 2008-02-01 2010-12-29 Insiava(控股)有限公司 包括异质结的半导体发光器件
CN101557074A (zh) * 2008-04-10 2009-10-14 电子科技大学 硅基锗电注入激光器及制作方法
US20110248316A1 (en) * 2008-12-12 2011-10-13 Thales Infrared detector with extended spectral response in the visible field
US20110303292A1 (en) * 2009-02-20 2011-12-15 Saki Sonoda Light-absorbing material and photoelectric conversion element using the same
WO2011002143A1 (ko) * 2009-07-02 2011-01-06 한국화학연구원 근적외선 감지 소자 및 그 제조방법
US20130250991A1 (en) * 2010-11-22 2013-09-26 The University Of Surrey Optoelectronic Devices
JP2012124404A (ja) * 2010-12-10 2012-06-28 Nippon Telegr & Teleph Corp <Ntt> フォトダイオードおよびその製造方法
US20130161653A1 (en) * 2011-12-23 2013-06-27 Seoul National University R&Db Foundation Electroluminescence device using indirect bandgap semiconductor
US20140239324A1 (en) * 2013-02-26 2014-08-28 The Board Of Trustees Of The Leland Standford Junior University Germanium electroluminescence device and fabrication method of the same
CN105283964A (zh) * 2013-05-31 2016-01-27 泰科电子瑞典控股有限责任公司 高速光探测器
CN104638037A (zh) * 2015-02-14 2015-05-20 厦门大学 一种镍掺杂的具有pn结结构的单晶硅材料及其制备方法
CN104851932A (zh) * 2015-04-01 2015-08-19 中国科学院上海微系统与信息技术研究所 一种基于稀铋磷化物的中间带太阳能电池结构
US20180277697A1 (en) * 2015-09-16 2018-09-27 Société Française De Détecteurs Infrarouges - Sofradir Photodetector with reduced dark current
WO2020081441A1 (en) * 2018-10-15 2020-04-23 Arizona Board Of Regents On Behalf Of Arizona State University True hot-carrier solar cell and hot-carrier transfer
CN110137300A (zh) * 2019-05-15 2019-08-16 苏州大学 一种超薄膜红外宽带热电子光电探测器
CN110212053A (zh) * 2019-05-29 2019-09-06 哈尔滨工业大学(深圳) 一种硅基叉指型光电探测器

Similar Documents

Publication Publication Date Title
Li et al. Room temperature GaAsSb single nanowire infrared photodetectors
CN102113122B (zh) 整流器
Razeghi et al. Type-II InAs/GaSb photodiodes and focal plane arrays aimed at high operating temperatures
Zeng et al. InP/GaInP nanowire tunnel diodes
US11888079B2 (en) Electrical devices making use of counterdoped junctions
JP6593140B2 (ja) フォトダイオード
CN110660882B (zh) 一种栅控PIN结构GaN紫外探测器及其制备方法
Wang et al. Tunable black phosphorus heterojunction transistors for multifunctional optoelectronics
CN110047955A (zh) 一种AlGaN紫外雪崩光电二极管探测器及其制备方法
Imran et al. Molecular beam epitaxy growth of high mobility InN film for high-performance broadband heterointerface photodetectors
KR20070115901A (ko) 반절연성 산화아연 반도체 박막과 실리콘의 헤테로 접합을가지는 광다이오드
JP2014222709A (ja) 量子ドット型赤外線検出器、赤外線検出装置、及び赤外線検出方法
Maurya et al. UV to NIR tunable photodetector using Bi2Te2Se/n-GaN heterojunction
CN114520270A (zh) 一种间接带隙半导体光电探测器件及其制作方法
Parakh et al. Ensemble GaAsSb/GaAs axial configured nanowire-based separate absorption, charge, and multiplication avalanche near-infrared photodetectors
Singh et al. Investigation of optoelectronic properties in germanium nanowire integrated silicon substrate using kelvin probe force microscopy
Hampshire et al. The silicon-germanium np heterojunction
JPH0656900B2 (ja) 半導体光素子
Guclu et al. Voltage and frequency reliant interface traps and their lifetimes of the MPS structures interlayered with CdTe: PVA via the admittance method
KR102143778B1 (ko) 차원 혼합 포토 다이오드를 포함한 이미지 센서
Rajasekharan et al. Dimensional scaling effects on transport properties of ultrathin body pin diodes
Islam et al. Modeling of graphene/SiO2/Si (n) based metal-insulator-semiconductor solar cells
Yan et al. High performance self-powered photodetector based on van der Waals heterojunction
US20230114395A1 (en) Photodetector and integrated circuit
Lv et al. High performance InGaN/GaN visible-light field effect phototransistor using polarization induced virtual photogate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 215000 10-1f, creative industry park, 328 Xinghu street, Suzhou Industrial Park, Jiangsu Province

Applicant after: Suzhou Huatai Electronic Technology Co.,Ltd.

Address before: 215000 10-1f, creative industry park, 328 Xinghu street, Suzhou Industrial Park, Jiangsu Province

Applicant before: SUZHOU HUATAI ELECTRONIC TECHNOLOGY Co.,Ltd.

CB02 Change of applicant information