CN110137300A - 一种超薄膜红外宽带热电子光电探测器 - Google Patents

一种超薄膜红外宽带热电子光电探测器 Download PDF

Info

Publication number
CN110137300A
CN110137300A CN201910401930.0A CN201910401930A CN110137300A CN 110137300 A CN110137300 A CN 110137300A CN 201910401930 A CN201910401930 A CN 201910401930A CN 110137300 A CN110137300 A CN 110137300A
Authority
CN
China
Prior art keywords
thermoelectron
film
wideband
photodetector
ultrathin membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910401930.0A
Other languages
English (en)
Inventor
李孝峰
张程
吴绍龙
丁浩
李亮
乔文
陈林森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
SVG Tech Group Co Ltd
Original Assignee
Suzhou University
SVG Tech Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University, SVG Tech Group Co Ltd filed Critical Suzhou University
Priority to CN201910401930.0A priority Critical patent/CN110137300A/zh
Publication of CN110137300A publication Critical patent/CN110137300A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种超薄膜红外宽带热电子光电探测器,超薄膜红外宽带热电子光电探测器由硅基底、金属薄膜、顶部导电电极和底部导电电极组成,硅基底上端为金属薄膜,金属薄膜与硅基底一侧分别设有顶部导电电极和底部导电电极。本发明的有益效果是:利用具有红外宽带吸收性质的金属材料作为吸光层,只需要几十纳米厚的平面薄膜即可吸收大于20%的光;采用的金属薄膜极薄,和热电子的平均自由程相当,极大地提高了热电子的输运效率和光电探测器的响应度;金属和半导体的肖特基势垒可以通过接触界面和器件工艺来调节,实现红外波段的宽带探测。所设计的光电探测器只有金属薄膜和半导体基底构成,结构相当简单,所以制备容易、适合量产、成品率高。

Description

一种超薄膜红外宽带热电子光电探测器
技术领域
本发明涉及电子光电技术领域,具体为一种超薄膜红外宽带热电子光电探测器。
背景技术
传统的硅基光电探测器工作原理是:当入射光子能量高于半导体禁带宽度,硅中的价带电子吸收光子后跃迁至导带产生光生载流子,然后通过PN结、肖特基结或者隧道结等分离光生载流子实现光电探测。然而,由于硅材料对能量低于带隙的红外波段是透明的,所以硅光电探测器存在带宽的限制,无法在这个波段实现光电探测[Nanophotonics,2016,5(1):96-111]。
由于金属是没有带隙的,因此可以通过金属和硅接触形成的肖特基结来收集金属吸收光子后激发的热电子(电子能量大于周围环境下热平衡时的电子能量),扩展硅光电探测系统的响应波段,实现低于硅带隙的红外光子能量探测[Nanophotonics,2017,6(1):177-191]。基于金属吸收光子后产生热电子的光电探测器具有结构简单、工作波段、带宽和偏振依赖性可调等优点获得了广泛应用和关注[Nature Nanotechnology,2015,10(1):25-34]。然而,由于常规的贵金属如金和银等具有较高的反射率,器件中热电子的产生率和光电转换效率相当低。
如何提高金属的光吸收效率和热电子输运、收集效率成为限制热电子光电探测器中响应度的关键。如(申请号:201610617154.4)《一种偏振敏感型光电探测器》中介绍了一种基于金属等离激元结构的热电子光电探测器。利用热电子在不同偏振的入射光照射下产生率有差别实现对入射光偏振性的检测。如(申请号:201610291282.4)《一种基于硅纳米线阵列的自驱动肖特基结近红外光电探测器及其制备方法》中介绍了一种在硅纳米线外表面包覆一层金属铜膜的热电子光电探测器。通过在金属纳米结构中激发表面等离子共振显著地提升了金属的光吸收效率、热电子产生率和器件的响应度。然而,利用金属微纳结构通过激发表面等离子共振虽然可以提高热电子产生率,但是这些精心设计的微纳结构一般都具有亚波长尺寸,对纳米加工技术要求高,成本昂贵,不利于大面积批量制备;此外,利用多层电介质形成光子微腔(Nanoscale,2016,8:10323-10329)或者塔姆等离子(ACS Nano,2017,11:1919-1727)的平面系统由于涉及较厚的金属和较多的电介质层,光电探测器的整体尺寸较大、成品率和响应度不高。鉴于此,本发明旨在提供一种结构简单、易于批量制备的红外宽带热电子光电探测器。
发明内容
本发明的目的在于提供一种超薄膜红外宽带热电子光电探测器,以解决热电子光电探测器的光吸收效率不高的问题。
为实现上述目的,本发明提供如下技术方案:一种超薄膜红外宽带热电子光电探测器,所述超薄膜红外宽带热电子光电探测器由硅基底、金属薄膜、顶部导电电极和底部导电电极组成,所述硅基底上端为所述金属薄膜,所述金属薄膜与所述硅基底一侧分别设有顶部导电电极和底部导电电极。超薄膜红外宽带热电子光电探测器中的“超薄膜”是指金属薄膜厚度和热电子的平均自由程相当,此处的“相当”是指金属薄膜厚度和热电子的平均自由程为同一个数量级,金属薄膜厚度和热电子的平均自由程比值不超过10倍。硅基底和金属薄膜的接触面为平面,可使用镀膜或者吸附等工艺。
工作原理为:光照射到金属表面,部分入射光被吸收,吸收的光子将能量传递给金属中的自由电子,导致电子能量升高。当金属和半导体接触形成肖特基结,能量高于肖特基势垒的电子就会进入到半导体中,通过一个外电路将金属和半导体系统连接在一起,就可以检测到电流。基于热电子的光电探测器具有在室温下运行(不需要低温制冷)、可以探测到低于半导体带隙的红外光而避免使用昂贵的InGaAs和Ge探测器等优点。
优选的,所述金属薄膜为钛、铂、锡、钯、镍或铬的其中一种,并且该金属薄膜厚度为热电子平均自由程的0.1~10倍。
优选的,所述金属薄膜可以利用钛、铂、锡、钯、镍或铬组成的合金或者其氮化物、氧化物代替。
优选的,所述硅基底为N型或P型硅、材质为氮化镓或者二氧化钛。
优选的,所述硅基底也可以是有限厚度的半导体薄膜,半导体薄膜厚度为10~5000nm。
优选的,所述半导体薄膜的基底材料可以采用二氧化硅、聚甲基丙烯酯甲酯、聚酯薄膜或者聚合物材料。
优选的,所述金属薄膜上面设置多层电介质薄膜,二氧化硅、二氧化钛、氧化铝、非晶硅、氮化硅、氟化镁、硫化锌和氮化铝,实现特定波段的光电探测。
优选的,所述金属薄膜上面也可设置一层半导体薄膜,增加一个金属或半导体结,提高光电探测器的响应度。
优选的,所述金属薄膜下面可以设置多层电介质薄膜,如二氧化硅、二氧化钛、氧化铝、非晶硅、氮化硅、氟化镁、硫化锌和氮化铝实现特定波段的光电探测。
有益效果
1.本发明利用具有红外宽带吸收性质的金属材料作为吸光层,只需要几十纳米厚的平面薄膜即可吸收大于20%的光,本发明正是由于采用金属钛薄膜/硅基底构筑的2层平面结构设计,实现了红外波段的宽带光吸收。
2.本发明采用的金属薄膜极薄,和热电子的平均自由程相当,极大地提高了热电子的输运效率和光电探测器的响应度。
3.本发明中金属和半导体的肖特基势垒可以通过接触界面和器件工艺来调节,实现红外波段的宽带探测。
4.本发明所设计的光电探测器只有金属薄膜和半导体基底构成,结构相当简单,所以制备容易、适合量产、成品率高。
5.本发明所设计的光电探测器的光电响应对入射光角度和偏振不敏感,实用性强。
附图说明
图1为本发明设计的光电探测器结构示意图;
图2为本发明设计的光电探测器在非偏振光入射下的光学响应图;
图3为本发明设计的光电探测器暗态下的电流-电压响应图;
图4为本发明设计的光电探测器在不同波长光入射下的电流-时间响应图。
附图标记
1-硅基底,2-金属薄膜,3-顶部电极,4-底部电极。
具体实施方式
以下是本发明的具体实施例,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
实施例
如图1-4所示,一种超薄膜红外宽带热电子光电探测器,超薄膜红外宽带热电子光电探测器由硅基底1、金属薄膜2、顶部导电电极3和底部导电电极4组成,硅基底1上端为金属薄膜2,金属薄膜2与硅基底1一侧分别设有顶部导电电极3和底部导电电极4。
金属中热电子传输到肖特基界面的损失可以用指数衰减模型来描述,其中L是热电子的传输距离,λ是热电子的平均自由程。当金属厚度远大于平均自由程时,产生的热电子将在到达肖特基界面前全部热化损失,导致系统中没有电流产生。本技术方案相对于传统的热电子光电探测器通过构筑金属纳米结构,在系统中激发表面等离子共振提高器件的响应度。如申请号:201610617154.4)《一种偏振敏感型光电探测器》和申请号:201610291282.4《一种基于硅纳米线阵列的自驱动肖特基结近红外光电探测器及其制备方法》均利用金属光栅或者硅纳米线镀金属来设计金属纳米结构。这样的结构相对平面薄膜结构比较复杂,对纳米加工技术要求高,成本昂贵,不利于大面积批量制备。本发明中提出利用简单的平面结构即可实现在长波长处的热电子高效产生和收集,具有红外波段的光子探测能力。然后相对传统的Ge和InGaAs光电探测器,由于金属和半导体的制备加工工艺非常成熟,所以本发明的光电探测器成本急剧降低。
优选的,金属薄膜2为钛、铂、锡、钯、镍或铬的其中一种,并且该金属薄膜厚度为5~100nm。
优选的,金属薄膜2可以利用钛、铂、锡、钯、镍或铬组成的合金或者其氮化物、氧化物代替。
优选的,基底1为N型或P型硅、氮化镓或者二氧化钛。
优选的,硅基底1也可以是有限厚度的半导体薄膜,半导体薄膜厚度为10~5000nm。
优选的,半导体薄膜的基底材料可以采用二氧化硅、聚甲基丙烯酯甲酯、聚酯薄膜或者聚合物材料。
优选的,金属薄膜2上面设置多层电介质薄膜,二氧化硅、二氧化钛、氧化铝、非晶硅、氮化硅、氟化镁、硫化锌和氮化铝,实现特定波段的光电探测。
优选的,金属薄膜2上面也可设置一层半导体薄膜,增加一个金属或半导体结,提高光电探测器的响应度。
优选的,所述金属薄膜下面可以设置多层电介质薄膜,如二氧化硅、二氧化钛、氧化铝、非晶硅、氮化硅、氟化镁、硫化锌和氮化铝实现特定波段的光电探测。
本发明提供的这种超薄膜红外宽带热电子光电探测器,其由硅基底、金属薄膜和导电电极组成。硅基底是N型,1-10Ω·cm,在硅基底上通过电子束蒸镀方法得到金属薄膜,通过铟粒焊接在基底背部作为金属电极。
基于严格耦合波分析,图2显示了由钛薄膜(30nm)和硅基底构成的器件在非偏振光入射下的光学响应。器件在1100-2000nm波段的光吸收在25%左右。吸收的光子产生热电子,越过金属和半导体结被收集产生电流从而可进行光子探测。
如图3所示,利用半导体参数分析仪(B1500A)测得器件在暗态下的电流-电压响应。结合超连续谱白光激光器(NKT Photonics,SuperK EXTREME EXR-12)和声光调制滤波器(SuperK SELECT)。
图4显示了器件在波长为1300nm、1500nm、1700nm和1900nm光入射下的电流-时间响应,证明了器件在低于硅带隙的红外波段有宽带光电探测能力。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内的发明内容。

Claims (9)

1.一种超薄膜红外宽带热电子光电探测器,其特征在于:所述超薄膜红外宽带热电子光电探测器由硅基底(1)、金属薄膜(2)、顶部导电电极(3)和底部导电电极(4)组成,所述硅基底(1)上端为所述金属薄膜(2),所述金属薄膜(2)与所述硅基底(1)一侧分别设有顶部导电电极(3)和底部导电电极(4)。
2.根据权利要求1所述的超薄膜红外宽带热电子光电探测器,其特征在于:所述金属薄膜为钛、铂、锡、钯、镍或铬的其中一种,并且该金属薄膜厚度为热电子平均自由程的0.1~10倍。
3.根据权利要求1所述的超薄膜红外宽带热电子光电探测器,其特征在于:所述金属薄膜(2)利用钛、铂、锡、钯、镍或铬组成的合金或者其氮化物、氧化物代替。
4.根据权利要求1所述的超薄膜红外宽带热电子光电探测器,其特征在于:所述基底(1)为N型或P型硅、氮化镓或者二氧化钛。
5.根据权利要求1所述的超薄膜红外宽带热电子光电探测器,其特征在于:所述硅基底(1)替换为:厚度为10~5000nm的半导体薄膜。
6.根据权利要求5所述的超薄膜红外宽带热电子光电探测器,其特征在于:所述半导体薄膜的基底材料采用二氧化硅、聚甲基丙烯酯甲酯、聚酯薄膜或者聚合物材料。
7.根据权利要求1所述的超薄膜红外宽带热电子光电探测器,其特征在于:所述金属薄膜(2)上面设置多层电介质薄膜,二氧化硅、二氧化钛、氧化铝、非晶硅、氮化硅、氟化镁、硫化锌和氮化铝。
8.根据权利要求1所述的超薄膜红外宽带热电子光电探测器,其特征在于:所述金属薄膜(2)上面还设置有一层半导体薄膜,增加一个金属或半导体结。
9.根据权利要求1所述的超薄膜红外宽带热电子光电探测器,其特征在于:所述金属薄膜下面还设置有多层电介质薄膜,如二氧化硅、二氧化钛、氧化铝、非晶硅、氮化硅、氟化镁、硫化锌和氮化铝。
CN201910401930.0A 2019-05-15 2019-05-15 一种超薄膜红外宽带热电子光电探测器 Pending CN110137300A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910401930.0A CN110137300A (zh) 2019-05-15 2019-05-15 一种超薄膜红外宽带热电子光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910401930.0A CN110137300A (zh) 2019-05-15 2019-05-15 一种超薄膜红外宽带热电子光电探测器

Publications (1)

Publication Number Publication Date
CN110137300A true CN110137300A (zh) 2019-08-16

Family

ID=67574047

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910401930.0A Pending CN110137300A (zh) 2019-05-15 2019-05-15 一种超薄膜红外宽带热电子光电探测器

Country Status (1)

Country Link
CN (1) CN110137300A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599611A (zh) * 2020-12-14 2021-04-02 苏州大学 波长选择性响应的光电探测器的制备方法
CN113155281A (zh) * 2021-04-25 2021-07-23 核工业西南物理研究院 一种金属电阻探测器及核聚变等离子体物理研究装置
CN114361275A (zh) * 2021-12-17 2022-04-15 南昌大学 基于带晶界的铅盐半导体薄膜的室温超快红外探测器及其探测方法
WO2022088204A1 (zh) * 2020-10-30 2022-05-05 苏州大学 一种紫外-可见-近红外硅基光电探测器及其制备方法
CN114460151A (zh) * 2022-03-04 2022-05-10 苏州大学 一种无偏压酶促型葡萄糖光电化学传感电极及其制备方法
CN114520270A (zh) * 2020-11-20 2022-05-20 苏州华太电子技术有限公司 一种间接带隙半导体光电探测器件及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814873A (en) * 1994-07-05 1998-09-29 Nec Corporation Schottky barrier infrared sensor
CN1883050A (zh) * 2003-11-20 2006-12-20 斯欧普迪克尔股份有限公司 硅基肖特基垫垒红外光检测器
WO2013074542A1 (en) * 2011-11-14 2013-05-23 Pacific Integrated Energy, Inc. Devices, systems and methods for electromagnetic energy collection
TW201532300A (zh) * 2014-02-10 2015-08-16 Univ Nat Taiwan 光偵測器及其製作方法
CN106409938A (zh) * 2016-10-26 2017-02-15 东南大学 一种基于锥形超表面结构的光伏型光电探测器及其制备方法
CN109449237A (zh) * 2018-10-17 2019-03-08 东南大学 基于等离激元热电子的多层图案化光电转换器件及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814873A (en) * 1994-07-05 1998-09-29 Nec Corporation Schottky barrier infrared sensor
CN1883050A (zh) * 2003-11-20 2006-12-20 斯欧普迪克尔股份有限公司 硅基肖特基垫垒红外光检测器
WO2013074542A1 (en) * 2011-11-14 2013-05-23 Pacific Integrated Energy, Inc. Devices, systems and methods for electromagnetic energy collection
CN103946986A (zh) * 2011-11-14 2014-07-23 太平洋银泰格拉泰德能源公司 用于电磁能量收集的设备、系统和方法
TW201532300A (zh) * 2014-02-10 2015-08-16 Univ Nat Taiwan 光偵測器及其製作方法
CN106409938A (zh) * 2016-10-26 2017-02-15 东南大学 一种基于锥形超表面结构的光伏型光电探测器及其制备方法
CN109449237A (zh) * 2018-10-17 2019-03-08 东南大学 基于等离激元热电子的多层图案化光电转换器件及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022088204A1 (zh) * 2020-10-30 2022-05-05 苏州大学 一种紫外-可见-近红外硅基光电探测器及其制备方法
CN114520270A (zh) * 2020-11-20 2022-05-20 苏州华太电子技术有限公司 一种间接带隙半导体光电探测器件及其制作方法
CN112599611A (zh) * 2020-12-14 2021-04-02 苏州大学 波长选择性响应的光电探测器的制备方法
CN113155281A (zh) * 2021-04-25 2021-07-23 核工业西南物理研究院 一种金属电阻探测器及核聚变等离子体物理研究装置
CN114361275A (zh) * 2021-12-17 2022-04-15 南昌大学 基于带晶界的铅盐半导体薄膜的室温超快红外探测器及其探测方法
CN114460151A (zh) * 2022-03-04 2022-05-10 苏州大学 一种无偏压酶促型葡萄糖光电化学传感电极及其制备方法

Similar Documents

Publication Publication Date Title
CN110137300A (zh) 一种超薄膜红外宽带热电子光电探测器
Wang et al. Sensing infrared photons at room temperature: from bulk materials to atomic layers
Lin et al. High-performance self-powered photodetectors based on ZnO/ZnS core-shell nanorod arrays
Liu et al. Silicon/perovskite core–shell heterojunctions with light-trapping effect for sensitive self-driven near-infrared photodetectors
Benyahia et al. Self-powered photodetector with improved and broadband multispectral photoresponsivity based on ZnO-ZnS composite
Hsu et al. Tunable UV-and visible-light photoresponse based on p-ZnO nanostructures/n-ZnO/glass peppered with Au nanoparticles
Hosseini et al. Photo-detector diode based on thermally oxidized TiO2 nanostructures/p-Si heterojunction
CN109755331A (zh) 一种基于等离激元-光子模式耦合的窄带光电探测器
Wang et al. Self-powered, superior high gain silicon-based near-infrared photosensing for low-power light communication
Zhang et al. Flexible ultraviolet photodetector based on single ZnO microwire/polyaniline heterojunctions
CN110047957A (zh) 一种中红外光探测器及其制备方法
Wu et al. Core–shell silicon nanowire array–Cu nanofilm Schottky junction for a sensitive self-powered near-infrared photodetector
Liang et al. Stable and ultraviolet-enhanced broadband photodetectors based on Si nanowire arrays-Cs3Cu2I5 nanocrystals hybrid structures
CN110429144A (zh) 一种基于塔姆等离子的平面近红外光电探测器
Miao et al. Toward green optoelectronics: environmental-friendly colloidal quantum dots photodetectors
Yin et al. Enhanced performance of UV photodetector based on ZnO nanorod arrays via TiO2 as electrons trap layer
Yildirim et al. A comparative study of the ZnO Fibers-based photodetectors on n-Si and p-Si
Zhang et al. Visible-blind self-powered ultraviolet photodetector based on CuI/TiO2 nanostructured heterojunctions
Zhang et al. In-situ prepared WSe2/Si 2D-3D vertical heterojunction for high performance self-driven photodetector
Ahmed et al. Multi–wavelength photodetectors based on porous spin-coated and compact RF-sputtered NiO films grown over Si substrate: Effect of surface morphology
Zhang et al. Two-dimensional perovskite Sr2Nb3O10 nanosheets meet CuZnS film: facile fabrications and applications for high-performance self-powered UV photodetectors
Zhang et al. High-photosensitive ultraviolet photodetector based on an n-ZnO microwire/p-InGaN heterojunction
Jain et al. Heterostructured core-shell metal oxide-based nanobrushes for ultrafast UV photodetectors
Hao et al. Deep ultraviolet detectors based on wide bandgap semiconductors: a review
Park et al. Plasmonic nanoparticles on graphene absorber for broadband high responsivity 2D/3D photodiode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190816

RJ01 Rejection of invention patent application after publication