CN104638037A - 一种镍掺杂的具有pn结结构的单晶硅材料及其制备方法 - Google Patents

一种镍掺杂的具有pn结结构的单晶硅材料及其制备方法 Download PDF

Info

Publication number
CN104638037A
CN104638037A CN201510080450.0A CN201510080450A CN104638037A CN 104638037 A CN104638037 A CN 104638037A CN 201510080450 A CN201510080450 A CN 201510080450A CN 104638037 A CN104638037 A CN 104638037A
Authority
CN
China
Prior art keywords
nickel
doping
junction structure
substrate
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510080450.0A
Other languages
English (en)
Inventor
陈朝
陈蓉
范宝殿
郑将辉
蔡丽晗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201510080450.0A priority Critical patent/CN104638037A/zh
Publication of CN104638037A publication Critical patent/CN104638037A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种镍掺杂的具有pn结结构的单晶硅材料,包括有依次层叠设置的衬底和红外吸收层;所述衬底是p型单晶硅,所述红外吸收层是镍掺杂的n型硅中间带(Si:Ni)材料,其中镍的掺杂浓度是6×1019cm-3~6×1020cm-3,所述红外吸收层与衬底之间形成p-n结。本发明的镍掺杂的具有pn结结构的单晶硅材料具有较强的红外吸收能力,在室温状态下具有较高的光电探测率,可广泛应用于光纤通讯、探伤、诊断、跟踪、导航等医疗、空间、军事、民用等领域的红外探测器的制作。本发明还提供了上述材料的制备方法。

Description

一种镍掺杂的具有pn结结构的单晶硅材料及其制备方法
技术领域
本发明涉及半导体领域,特别涉及一种镍掺杂的具有pn结结构的用于红外探测器的单晶硅材料及其制备方法。
背景技术
红外探测器分为光子探测器和热探测器两种,光子探测器的主要优点是探测灵敏度高,响应速度快,具有较高的响应率,但光子探测器探测波段较窄,一般需要在低温下工作,需要复杂的制冷设备,不仅使得设备更加笨重而且还会增加成本。虽然单晶Si在当今半导体材料领域占据绝对的霸主地位,但Si材料由于其禁带宽度的限制,在非制冷红外探测器领域却一直都无法与其它半导体材料媲美。通过在Si的禁带中引入杂质带是增加Si材料红外吸收的一种方式。但一般来说在Si材料中引入过多的缺陷态会带来较高的自由载流子浓度,增加背景噪声,过大的背景噪声会淹没有用的光电信号,降低探测器的探测率,使得器件无法在室温下正常工作。如果能够基于单晶硅材料制作出能在室温下正常工作的红外探测器,则很有希望与现有成熟的Si工艺相结合,这将会大大降低红外探测器的成本,具有重要意义。
发明内容
本发明的目的在于克服现有技术之不足,提供一种镍掺杂的具有pn结结构的单晶硅材料及其制备方法,其中Ni掺杂n型Si中间带材料既作为红外光吸收材料,又能与p型Si衬底之间形成pn结。
本发明解决其技术问题所采用的技术方案是:一种镍掺杂的具有pn结结构的单晶硅材料,包括有依次层叠设置的衬底和红外吸收层;所述衬底是p型单晶硅(Si),所述红外吸收层是镍(Ni)掺杂的n型硅中间带(Si:Ni)材料,其中镍的掺杂浓度是6×1019cm-3~6×1020cm-3,所述红外吸收层与衬底之间形成p-n结。
优选的,所述衬底是掺硼(B)的p型单晶硅,其中硼的浓度为1×1012cm-3~1×1016cm-3
优选的,所述红外吸收层的厚度为100nm~800nm。
优选的,所述衬底的厚度是100um~500um。
优选的,所述p-n结的内建电势差为所述硅中间带材料与所述单晶硅之间的费米能级差。
优选的,上述材料可用于制备台面结构或平面结构的红外探测器。
一种镍掺杂的具有pn结结构的单晶硅材料的方法包括以下步骤:
(1)提供一单晶硅片,清洗备用;
(2)于所述单晶硅片一表面上形成一镍薄膜,其中所述镍薄膜与所述单晶硅片的厚度比为0.2~8:1000;
(3)采用一维线性连续激光对镍薄膜进行激光辐照;
(4)采用氢氟酸对激光辐照后的表面进行腐蚀,制得的镍掺杂的硅中间带(Si:Ni)材料形成红外吸收层,所述单晶硅片未掺杂镍的部分形成衬底;
优选的,所述镍薄膜是通过磁控溅射或蒸发镀膜的方式形成于所述单晶硅片表面上。
优选的,所述激光输入功率为900-1250W,激光器的扫描速率为2~10mm/s。
本发明的有益效果是:
1.通过在单晶Si中实现高浓度Ni掺杂,在单晶硅的禁带中形成Ni杂质带,该杂质带也称为Si禁带中的中间带。中间带的形成能实现材料对红外光波段吸收的目的,在1400nm~1750nm波段范围内探测率超过0.14V/W;
2.中间带的形成使得中间带材料的费米能级被钉扎在一个位置,中间带材料的费米能级与Si衬底的费米能级不在同一水平,因此在两者之间形成pn结,起到分离载流子的作用;
3.由于Ni在Si中是两性深能级杂质,通过两性深能级杂质的自补偿效应,降低自由载流子的浓度,抑制了热噪声,以本发明的材料为传感元件,制得的探测器能够在室温或者准室温状态工作,此外也能对暗电流有效的抑制,从而提高器件的探测率;
4.工艺技术简单,原料易得,成本低廉,可广泛应用于光纤、通讯、探伤、诊断、跟踪、导航等医疗、空间、军事、民用等领域的红外探测,有很大的应用前景和市场竞争力。
以下结合附图及实施例对本发明作进一步详细说明;但本发明的一种镍掺杂的具有pn结结构的用于红外探测器的单晶硅材料及其制备方法不局限于实施例。
附图说明
图1为本发明一种镍掺杂的具有pn结结构的单晶硅材料的结构示意图;
图2为本发明材料在常温下的光吸收谱的测试结果示意图,其中虚线是指一种镍掺杂的具有pn结结构的单晶硅材料,实线是指p型单晶硅衬底材料;
图3为本发明实施例1的材料在常温下的光谱响应光电信号测试结果示意图。
具体实施方式
实施例1
参考图1,一种镍掺杂的具有pn结结构的单晶硅材料,包括有衬底1及设置于衬底1一表面上的红外吸收层2。衬底1是掺硼的p型单晶硅,厚度是500um,其中B的浓度为1×1012cm-3。红外吸收层2是镍掺杂的硅中间带(Ni:Si)材料,厚度是500nm,镍的掺杂浓度是6×1019cm-3。衬底1和红外吸收层2之间形成pn结。
制备上述单晶硅材料的方法,包括以下步骤:
(1)提供一单晶硅片,通过标准清洗流程清洗备用;
(2)采用磁控溅射镀膜的方法于单晶硅片一表面上溅射形成一300nm厚的镍薄膜;
(3)采用一维线性连续激光器对镍薄膜进行激光辐照,激光输入功率为1000W,激光器的扫描速率为3mm/s;
(4)采用30wt%的氢氟酸对激光辐照后的表面进行腐蚀,制得的镍掺杂的硅中间带(Ni:Si)材料形成红外吸收层2,单晶硅片未掺杂镍的部分形成衬底1。
在单晶硅中通过高浓度的镍掺杂,可以在其禁带中形成镍的杂质带,该杂质带也称为硅禁带中的中间带,中间带的形成实现了材料对红外光波段吸收的目的。参考图2,本实施例中,镍掺杂的具有pn结结构的单晶硅材料相对于衬底,其在红外光波段的光吸收提高了2倍以上,适用于红外探测。以本实施例制得的材料上下平面加上电极,可形成红外探测器的传感元件。上下电极按照常规的硅器件工艺制作即可。参考图3,本实施例所制备的镍掺杂的具有pn结结构的单晶硅材料,在常温下1400nm~1750nm波段范围内的探测率超过0.15V/W。
实施例2
参考图1,一种镍掺杂的具有pn结结构的单晶硅材料,包括有衬底1及设置于衬底1一表面上的红外吸收层2。衬底1是掺硼的p型单晶硅,厚度是500um,其中B的浓度为1×1016cm-3。红外吸收层2是镍掺杂的n型硅中间带(Ni:Si)材料,厚度是300nm,镍的掺杂浓度是6×1020cm-3。衬底1和红外吸收层2之间形成pn结。
本实施例的制备方法同实施例1,在此不加以赘述。
在常温下测试该材料的光电响应信号,发现在1400nm~1750nm波段范围内该材料的光电响应超过0.14V/W。
上述实施例仅用来进一步说明本发明的一种镍掺杂的具有pn结结构的单晶硅材料及其制备方法,但本发明并不局限于实施例,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均落入本发明技术方案的保护范围内。

Claims (9)

1.一种镍掺杂的具有pn结结构的单晶硅材料,其特征在于包括有依次层叠设置的衬底和红外吸收层;所述衬底是p型单晶硅(Si),所述红外吸收层是镍(Ni)掺杂的n型硅中间带(Si:Ni)材料,其中镍的掺杂浓度是6×1019cm-3~6×1020cm-3,所述红外吸收层与衬底之间形成p-n结。
2.根据权利要求1所述的镍掺杂的具有pn结结构的单晶硅材料,其特征在于:所述衬底是掺硼(B)的p型单晶硅,其中硼的浓度为1×1012cm-3~1×1016cm-3
3.根据权利要求1所述的镍掺杂的具有pn结结构的单晶硅材料,其特征在于:所述红外吸收层的厚度为100nm~800nm。
4.根据权利要求1或3所述的镍掺杂的具有pn结结构的单晶硅材料,其特征在于:所述衬底的厚度是100um~500um。
5.根据权利要求1所述的镍掺杂的具有pn结结构的单晶硅材料,其特征在于:所述p-n结的内建电势差为所述硅中间带材料与所述单晶硅之间的费米能级差。
6.根据权利要求1所述的镍掺杂的具有pn结结构的单晶硅材料,其特征在于:用于制备台面结构或平面结构的红外探测器。
7.一种制备权利要求1-6任一项所述的镍掺杂的具有pn结结构的单晶硅材料的方法,其特征在于包括以下步骤:
(1)提供一单晶硅片,清洗备用;
(2)于所述单晶硅片一表面上形成一镍薄膜,其中所述镍薄膜与所述单晶硅片的厚度比为0.2~8:1000;
(3)采用一维线性连续激光对镍薄膜进行激光辐照;
(4)采用氢氟酸对激光辐照后的表面进行腐蚀,制得的镍掺杂的硅中间带(Si:Ni)材料形成红外吸收层,所述单晶硅片未掺杂镍的部分形成衬底。
8.根据权利要求7所述的制备方法,其特征在于:所述镍薄膜是通过磁控溅射或蒸发镀膜的方式形成于所述单晶硅片表面上。
9.根据权利要求7所述的制备方法,其特征在于:所述激光输入功率为900-1250W,激光器的扫描速率为2~10mm/s。
CN201510080450.0A 2015-02-14 2015-02-14 一种镍掺杂的具有pn结结构的单晶硅材料及其制备方法 Pending CN104638037A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510080450.0A CN104638037A (zh) 2015-02-14 2015-02-14 一种镍掺杂的具有pn结结构的单晶硅材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510080450.0A CN104638037A (zh) 2015-02-14 2015-02-14 一种镍掺杂的具有pn结结构的单晶硅材料及其制备方法

Publications (1)

Publication Number Publication Date
CN104638037A true CN104638037A (zh) 2015-05-20

Family

ID=53216551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510080450.0A Pending CN104638037A (zh) 2015-02-14 2015-02-14 一种镍掺杂的具有pn结结构的单晶硅材料及其制备方法

Country Status (1)

Country Link
CN (1) CN104638037A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112289893A (zh) * 2020-12-15 2021-01-29 杭州旭菱光伏电力科技有限公司 一种高效的太阳能板制作方法
CN114520270A (zh) * 2020-11-20 2022-05-20 苏州华太电子技术有限公司 一种间接带隙半导体光电探测器件及其制作方法
CN115084307A (zh) * 2022-08-18 2022-09-20 北京邮电大学 一种抗辐照加固单光子探测器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020096684A1 (en) * 1995-12-20 2002-07-25 Brandes George R. Amorphous silicon carbide thin film articles
US20050110108A1 (en) * 2003-11-20 2005-05-26 Sioptical, Inc. Silicon-based Schottky barrier infrared optical detector
CN103681900A (zh) * 2013-12-25 2014-03-26 厦门大学 一种Ni掺杂晶硅中间带材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020096684A1 (en) * 1995-12-20 2002-07-25 Brandes George R. Amorphous silicon carbide thin film articles
US20050110108A1 (en) * 2003-11-20 2005-05-26 Sioptical, Inc. Silicon-based Schottky barrier infrared optical detector
CN103681900A (zh) * 2013-12-25 2014-03-26 厦门大学 一种Ni掺杂晶硅中间带材料及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114520270A (zh) * 2020-11-20 2022-05-20 苏州华太电子技术有限公司 一种间接带隙半导体光电探测器件及其制作方法
CN112289893A (zh) * 2020-12-15 2021-01-29 杭州旭菱光伏电力科技有限公司 一种高效的太阳能板制作方法
CN115084307A (zh) * 2022-08-18 2022-09-20 北京邮电大学 一种抗辐照加固单光子探测器及其制备方法
CN115084307B (zh) * 2022-08-18 2022-10-28 北京邮电大学 一种抗辐照加固单光子探测器及其制备方法

Similar Documents

Publication Publication Date Title
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
Wang et al. All-oxide NiO/Ga2O3 p–n junction for self-powered UV photodetector
Varshney et al. Current advances in solar-blind photodetection technology: Using Ga 2 O 3 and AlGaN
Cao et al. High-performance UV–vis photodetectors based on electrospun ZnO nanofiber-solution processed perovskite hybrid structures
Cao et al. Novel perovskite/TiO 2/Si trilayer heterojunctions for high-performance self-powered ultraviolet-visible-near infrared (UV-Vis-NIR) photodetectors
CN102290481B (zh) 具有宽光谱响应的硅探测器结构及其制作方法
Salem et al. Reactive PLD of ZnO thin film for optoelectronic application.
CN106409987B (zh) 基于Ir2O3/Ga2O3的深紫外APD探测二极管及其制作方法
Chen et al. Ga2O3-based solar-blind position-sensitive detector for noncontact measurement and optoelectronic demodulation
Liu et al. Polycrystalline perovskite CH3NH3PbCl3/amorphous Ga2O3 hybrid structure for high-speed, low-dark current and self-powered UVA photodetector
Liang et al. Self‐powered broadband kesterite photodetector with ultrahigh specific detectivity for weak light applications
CN102569484A (zh) InAs/GaSb二类超晶格红外探测器
CN102694052B (zh) 半导体器件及其制造方法
CN109244246B (zh) 一种基于拓扑绝缘体硒化铋电极的宽波段光电探测器
CN104638037A (zh) 一种镍掺杂的具有pn结结构的单晶硅材料及其制备方法
He et al. High photon detection efficiency InGaAs/InP single photon avalanche diode at 250 K
Chaoudhary et al. Laser ablation fabrication of a p-nio/n-si heterojunction for broadband and self-powered UV–visible–nir photodetection
Zhao et al. Photo-diodes based on CH3NH3PbCl3 perovskite single crystals by epitaxial growth for ultraviolet photo-detection
Zhang et al. Improving the performance of ultra-flexible perovskite photodetectors through cation engineering
Hu et al. Improved photoelectric performance with self-powered characteristics through TiO2 surface passivation in an α-Ga2O3 nanorod array deep ultraviolet photodetector
Zhang et al. Centimeter-size single crystals of 2D hybrid perovskites for shortwave light photodetection with a low detection limit
Qi et al. A deep-ultraviolet photodetector of a β-Ga2O3/CuBiI4 heterojunction highlighting ultra-high sensitivity and responsivity
Hao et al. Deep ultraviolet detectors based on wide bandgap semiconductors: a review
CN109148159A (zh) 基于α/β-Ga2O3相结的自供电日盲紫外探测器
CN108346713B (zh) 可见-短波红外探测器及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150520

RJ01 Rejection of invention patent application after publication