CN103681900A - 一种Ni掺杂晶硅中间带材料及其制备方法 - Google Patents

一种Ni掺杂晶硅中间带材料及其制备方法 Download PDF

Info

Publication number
CN103681900A
CN103681900A CN201310726455.7A CN201310726455A CN103681900A CN 103681900 A CN103681900 A CN 103681900A CN 201310726455 A CN201310726455 A CN 201310726455A CN 103681900 A CN103681900 A CN 103681900A
Authority
CN
China
Prior art keywords
intermediate zone
crystalline silicon
zone material
preparation
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310726455.7A
Other languages
English (en)
Other versions
CN103681900B (zh
Inventor
陈朝
陈蓉
范宝殿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201310726455.7A priority Critical patent/CN103681900B/zh
Publication of CN103681900A publication Critical patent/CN103681900A/zh
Application granted granted Critical
Publication of CN103681900B publication Critical patent/CN103681900B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种Ni掺杂晶硅中间带材料及其制备方法,涉及晶体硅。所述Ni掺杂晶硅中间带材料的载体为晶体硅,在晶体硅中掺杂Ni杂质,Ni元素在晶体硅中的浓度大于5.9×1019cm-3,掺杂Ni杂质形成杂质中间带。使用磁控溅射法或蒸发镀膜法在硅片表面制备一层Ni薄膜;使用一维线型连续激光对Ni薄膜进行激光辐照;用氢氟酸溶液对激光辐照后的硅片进行腐蚀后,得Ni掺杂晶硅中间带材料。Ni掺杂晶硅中间带材料能明显提高红外光谱的吸收,提高少子寿命,使用该材料制备的中间带电池能明显提高太阳能电池对红外部分太阳光的利用率,减少电池的发热,提高电池效率,成本低,制作快速简便。

Description

一种Ni掺杂晶硅中间带材料及其制备方法
技术领域
本发明涉及晶体硅,尤其涉及一种Ni掺杂晶硅中间带材料及其制备方法。
背景技术
太阳能光伏发电是未来最理想的洁净可再生能源之一,近些年太阳电池的研究主要围绕降低电池生产成本和提高太阳电池效率两个大方向而进行。通过能带工程在硅的禁带中引入新的中间能带,能够提高硅材料对可见光范围的吸收和拓展红外吸收范围,在不改变开路电压的同时提高短路电流,从而大幅提高硅基中间带太阳电池的光电转换效率。
目前在半导体中引入中间带主要有两种方式:(1)量子点中间带,即利用能带剪裁或量子尺寸效应来产生中间带;(2)杂质中间带,即掺入高浓度的深能级杂质形成杂质中间带。通过在一种材料中注入其它的元素形成中间带,技术更简单成本相对较低,且很有希望能将该技术应用于目前主流的太阳电池材料Si中,易实现规模化生产。
要获得杂质中间带,需要采用非平衡态技术,使深能级杂质的掺杂浓度高于Mott极限浓度(Luque Antonio,MartíAntonio,Antolín Elisa,Tablero César.Intermediate bands versus levels innon-radiative recombination[J].Physica B:Condensed Matter2006;382(1):320-327)。目前已报道的成功在硅中引入杂质中间带的元素金属有钛(Olea J,Toledano-Luque M,Pastor D,San-Andrés E,Mártil I,González-Díaz G.High quality Ti-implanted Si layers above the Mottlimit[J].Journal of Applied Physics2010;107(10):103524-5),非金属元素有、硫、硒和碲;而以金属作为深能级杂质进行过饱和掺杂所采用的非平衡态技术主要是:先采用离子注入,再进行脉冲激光退火。
发明内容
本发明的目的在于提供通过一维线型连续激光辐照掺杂制备的一种Ni掺杂晶硅中间带材料及其制备方法。
所述Ni掺杂晶硅中间带材料的载体为晶体硅,在晶体硅中掺杂Ni杂质,Ni元素在晶体硅中的浓度大于5.9×1019cm-3,掺杂Ni杂质形成杂质中间带。
所述Ni掺杂晶硅中间带材料的制备方法,包括如下步骤:
1)使用磁控溅射法或蒸发镀膜法在硅片表面制备一层Ni薄膜;
2)使用一维线型连续激光对Ni薄膜进行激光辐照;
3)用氢氟酸溶液对激光辐照后的硅片进行腐蚀后,得Ni掺杂晶硅中间带材料。
在步骤1)中,所述硅片的厚度可为200~500μm,所述Ni薄膜厚度与硅片厚度之比可为(1~3)∶1000。
在步骤2)中,所述激光辐照所用的激光包括但不限于YAG:Nd一维线型连续激光,激光器输入功率可为900~1250W;激光器的扫描速率可为2~10mm/s。
在步骤3)中,所述氢氟酸溶液的质量浓度可为10%~40%;所述腐蚀的时间可为5~15min。
本发明具有以下效果:
1)本发明所述Ni掺杂晶硅中间带材料能明显提高红外光谱的吸收,提高少子寿命,使用该材料制备的中间带电池能明显提高太阳能电池对红外部分太阳光的利用率,减少电池的发热,提高电池效率,成本低,制作快速简便;由于该材料是硅基光电材料,故易与硅基的光电器件集成,也易与硅微电子加工工艺兼容,有利于实现产业化。
2)本发明制备的的Ni掺杂晶体硅中间带材料的少子寿命从10μs以下提高到50~200μs(测试仪器为WT1000B少子寿命测试仪);与未经掺杂处理的原始硅片相比,经过处理后得到的Ni掺杂晶体硅中间带材料对1~3μm波段红外光的吸收率提高了30%以上。这种材料不仅提高了硅材料的光吸收,还提高材料的少子寿命,使用该材料制作的太阳能电池能够大大提高电池的效率。同时该材料还能用于制作光电探测器。
3)本发明所提供的制备方法解决了Ni杂质在硅材料中超过Mott极限浓度的掺杂问题。
附图说明
图1是原始硅片少子寿命的测试结果。
图2是本发明实施例1所得中间带材料少子寿命的测试结果。
图3是本发明实施例2所得中间带材料少子寿命的测试结果。
图4是本发明实施例3所得中间带材料少子寿命的测试结果。
具体实施方式
本发明提供一种含有Ni杂质中间带的晶体硅材料的制备方法,包括如下步骤:
1)使用磁控溅射法或蒸发镀膜法在硅片表面制备一层Ni薄膜;所述硅片的厚度可为200~500μm,所述Ni薄膜厚度与硅片厚度之比可为(1~3)∶1000。
2)使用一维线型连续激光对Ni薄膜进行激光辐照;所述激光辐照所用的激光包括但不限于YAG:Nd一维线型连续激光,激光器输入功率可为900~1250W;激光器的扫描速率可为2~10mm/s。
3)用氢氟酸溶液对激光辐照后的硅片进行腐蚀后,得Ni掺杂晶硅中间带材料。所述氢氟酸溶液的质量浓度可为10%~40%;所述腐蚀的时间可为5~15min。
以下实施例将结合附图对本发明作进一步的说明。
实施例1
本实施例提供一种含有Ni杂质中间带的晶体硅材料及其制备方法,其制备方法包括如下步骤:
步骤1:取一硅片,硅片的厚度200μm,晶相、电阻率等相关参数没有特别要求,达到普通实验用硅片的规格即可,采用标准清洗流程对硅片进行清洗。
步骤2:使用磁控溅射镀膜的方法在硅片表面溅射一层250nm厚的Ni薄膜;
步骤3:将YAG:Nd一维线型连续激光器的功率设置为900W,扫描速度设置为4mm/s,对硅片上镀有Ni薄膜的一面进行连续激光辐照扫描;
步骤4:采用质量浓度为30%的氢氟酸溶液对激光辐照后的硅片腐蚀5min。
经以上步骤处理得到的Ni掺杂晶硅中间带材料,晶硅材料表面Ni杂质的注入浓度大于5.9×1019cm-3,对1~3μm波段红外光的吸收率提高了30%以上,该材料的少子寿命从10μs以下(见图1)提高到约167μs(见图2)。
实施例2
本实施例提供一种含有Ni杂质中间带的晶体硅材料及其制备方法,包括如下步骤:
步骤1:取一硅片,硅片的厚度约200μm,晶相、电阻率等相关参数没有特别要求,达到普通实验用硅片的规格即可,采用标准清洗流程对硅片进行清洗。
步骤2:使用磁控溅射镀膜的方法在硅片表面溅射一层300nm厚的Ni薄膜;
步骤3:将YAG:Nd一维线型连续激光器的功率设置为1000瓦,扫描速度设置为3mm/s,对硅片上镀有Ni薄膜的一面进行连续激光辐照扫描;
步骤4:采用质量浓度为30%的氢氟酸溶液对激光辐照后的硅片腐蚀10min。
经以上步骤处理得到的Ni掺杂晶硅中间带材料,晶硅材料表面Ni杂质的注入浓度大于5.9×1019cm-3,对1~3μm波段红外光的吸收率提高了30%以上,该材料的少子寿命从10μs以下(见图1)提高到约194μs(见图3)。
实施例3
本发明提供一种含有Ni杂质中间带的晶体硅材料及其制备方法,包括如下步骤:
步骤1:取一硅片,硅片的厚度约400μm,晶相、电阻率等相关参数没有特别要求,达到普通实验用硅片的规格即可,采用标准清洗流程对硅片进行清洗。
步骤2:使用蒸发镀膜的方法在硅片表面镀一层450nm厚的Ni薄膜;
步骤3:将YAG:Nd一维线型连续激光器的功率设置为1200W,扫描速度设置为2mm/s,对硅片上镀有Ni薄膜的一面进行连续激光辐照扫描;
步骤4:采用质量浓度为40%的氢氟酸溶液对激光辐照后的硅片腐蚀10min。
经以上步骤处理得到的Ni掺杂晶硅中间带材料,晶硅材料表面Ni杂质的注入浓度大于5.9×1019cm-3,对1~3μm波段红外光的吸收率提高了30%以上,该材料的少子寿命从10μs以下(见图1)提高到约86μs(见图4)。

Claims (7)

1.一种Ni掺杂晶硅中间带材料,其特征在于其载体为晶体硅,在晶体硅中掺杂Ni杂质,Ni元素在晶体硅中的浓度大于5.9×1019cm-3,掺杂Ni杂质形成杂质中间带。
2.如权利要求1所述一种Ni掺杂晶硅中间带材料的制备方法,其特征在于包括如下步骤:
1)使用磁控溅射法或蒸发镀膜法在硅片表面制备一层Ni薄膜;
2)使用一维线型连续激光对Ni薄膜进行激光辐照;
3)用氢氟酸溶液对激光辐照后的硅片进行腐蚀后,得Ni掺杂晶硅中间带材料。
3.如权利要求2所述一种Ni掺杂晶硅中间带材料的制备方法,其特征在于在步骤1)中,所述硅片的厚度为200~500μm。
4.如权利要求2所述一种Ni掺杂晶硅中间带材料的制备方法,其特征在于在步骤1)中,所述Ni薄膜厚度与硅片厚度之比为1~3∶1000。
5.如权利要求2所述一种Ni掺杂晶硅中间带材料的制备方法,其特征在于在步骤2)中,所述激光辐照所用的激光包括但不限于YAG:Nd一维线型连续激光,激光器输入功率为900~1250W;激光器的扫描速率为2~10mm/s。
6.如权利要求2所述一种Ni掺杂晶硅中间带材料的制备方法,其特征在于在步骤3)中,所述氢氟酸溶液的质量浓度为10%~40%。
7.如权利要求2所述一种Ni掺杂晶硅中间带材料的制备方法,其特征在于在步骤3)中,所述腐蚀的时间为5~15min。
CN201310726455.7A 2013-12-25 2013-12-25 一种Ni掺杂晶硅中间带材料及其制备方法 Expired - Fee Related CN103681900B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310726455.7A CN103681900B (zh) 2013-12-25 2013-12-25 一种Ni掺杂晶硅中间带材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310726455.7A CN103681900B (zh) 2013-12-25 2013-12-25 一种Ni掺杂晶硅中间带材料及其制备方法

Publications (2)

Publication Number Publication Date
CN103681900A true CN103681900A (zh) 2014-03-26
CN103681900B CN103681900B (zh) 2016-05-04

Family

ID=50318823

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310726455.7A Expired - Fee Related CN103681900B (zh) 2013-12-25 2013-12-25 一种Ni掺杂晶硅中间带材料及其制备方法

Country Status (1)

Country Link
CN (1) CN103681900B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638037A (zh) * 2015-02-14 2015-05-20 厦门大学 一种镍掺杂的具有pn结结构的单晶硅材料及其制备方法
CN104851932A (zh) * 2015-04-01 2015-08-19 中国科学院上海微系统与信息技术研究所 一种基于稀铋磷化物的中间带太阳能电池结构
CN105779965A (zh) * 2016-01-21 2016-07-20 北京师范大学 一种利用粒子束调控技术制备多孔掺杂类金刚石薄膜的方法
CN112289893A (zh) * 2020-12-15 2021-01-29 杭州旭菱光伏电力科技有限公司 一种高效的太阳能板制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399106A (zh) * 2008-10-15 2009-04-01 中国科学院新疆理化技术研究所 金和镍掺杂单晶硅片式负温度系数热敏电阻及其制备方法
CN102496638A (zh) * 2011-11-28 2012-06-13 中国科学院半导体研究所 深能级杂质掺杂的晶体硅红外探测器及其制备方法
CN102790077A (zh) * 2012-08-24 2012-11-21 电子科技大学 一种绝缘栅双极型晶体管
CN103334155A (zh) * 2013-07-11 2013-10-02 厦门大学 一种含有钛杂质中间带的晶体硅材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399106A (zh) * 2008-10-15 2009-04-01 中国科学院新疆理化技术研究所 金和镍掺杂单晶硅片式负温度系数热敏电阻及其制备方法
CN102496638A (zh) * 2011-11-28 2012-06-13 中国科学院半导体研究所 深能级杂质掺杂的晶体硅红外探测器及其制备方法
CN102790077A (zh) * 2012-08-24 2012-11-21 电子科技大学 一种绝缘栅双极型晶体管
CN103334155A (zh) * 2013-07-11 2013-10-02 厦门大学 一种含有钛杂质中间带的晶体硅材料及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638037A (zh) * 2015-02-14 2015-05-20 厦门大学 一种镍掺杂的具有pn结结构的单晶硅材料及其制备方法
CN104851932A (zh) * 2015-04-01 2015-08-19 中国科学院上海微系统与信息技术研究所 一种基于稀铋磷化物的中间带太阳能电池结构
CN105779965A (zh) * 2016-01-21 2016-07-20 北京师范大学 一种利用粒子束调控技术制备多孔掺杂类金刚石薄膜的方法
CN105779965B (zh) * 2016-01-21 2019-08-20 北京师范大学 一种利用粒子束调控技术制备多孔掺杂类金刚石薄膜的方法
CN112289893A (zh) * 2020-12-15 2021-01-29 杭州旭菱光伏电力科技有限公司 一种高效的太阳能板制作方法

Also Published As

Publication number Publication date
CN103681900B (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
Liu et al. Nanoscale microstructure and chemistry of Cu2ZnSnS4/CdS interface in kesterite Cu2ZnSnS4 solar cells
Gostein et al. Light soaking effects on photovoltaic modules: Overview and literature review
Kuwahara et al. Realization of nitride-based solar cell on freestanding GaN substrate
CN103681900A (zh) 一种Ni掺杂晶硅中间带材料及其制备方法
Fu et al. Fabrication of two domain Cu2O (0 1 1) films on MgO (0 0 1) by pulsed laser deposition
Dore et al. Performance potential of low-defect density silicon thin-film solar cells obtained by electron beam evaporation and laser crystallisation
Karaagac et al. Heterojunction solar cells with integrated Si and ZnO nanowires and a chalcopyrite thin film
Kim et al. High photo‐conversion efficiency in double‐graded Cu (In, Ga)(S, Se) 2 thin film solar cells with two‐step sulfurization post‐treatment
CN103268852A (zh) 一种超饱和掺杂半导体薄膜的制备方法
Babu et al. Effect of sodium doping on graded Cu (In1− xGax) Se2 thin films prepared by chemical spray pyrolysis
Wang et al. Investigation of pulsed non-melt laser annealing on the film properties and performance of Cu (In, Ga) Se2 solar cells
Kim et al. Microstructure, stress and optical properties of CdTe thin films laser-annealed by using an 808-nm diode laser: Effect of the laser scanning velocity
Lu et al. Improving GaP solar cell performance by passivating the surface using AlxGa1-xP epi-layer
CN106229362A (zh) 一种铜铟镓硒薄膜制备方法及铜铟镓硒薄膜
CN103334155B (zh) 一种含有钛杂质中间带的晶体硅材料及其制备方法
JP2008251726A (ja) 太陽電池セルの製造方法
Daghestani et al. THz generation from a nanocrystalline silicon-based photoconductive device
CN102191563B (zh) 共掺杂的硅基杂质中间带材料的制备方法
Li et al. Vapour‐Phase and Solid‐Phase Epitaxy of Silicon on Solid‐Phase Crystallised Seed Layers for Solar Cells Application
CN101924147A (zh) 一种InAs红外光伏电池及液相外延的制备方法
Fujimura et al. Low-temperature fabrication technologies of Si solar cell by sputter epitaxy method
CN101707215A (zh) 一种在氮化铝晶体上的欧姆接触电极结构及制备方法
Xu et al. The preparation of AZO/a-Si/c-Si heterojunction structure on p-type silicon substrate for solar cell application
Andrä et al. Multicrystalline silicon thin film solar cells based on a two-step liquid phase laser crystallization process
Liu et al. Reduction of threading dislocation density in sputtered Ge/Si (100) epitaxial films by continuous-wave diode laser-induced recrystallization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160504

Termination date: 20211225

CF01 Termination of patent right due to non-payment of annual fee