CN114477137A - 一种碳材料包裹的碳纳米管复合材料及其制备和应用 - Google Patents

一种碳材料包裹的碳纳米管复合材料及其制备和应用 Download PDF

Info

Publication number
CN114477137A
CN114477137A CN202011259067.9A CN202011259067A CN114477137A CN 114477137 A CN114477137 A CN 114477137A CN 202011259067 A CN202011259067 A CN 202011259067A CN 114477137 A CN114477137 A CN 114477137A
Authority
CN
China
Prior art keywords
carbon
lead
parts
battery
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011259067.9A
Other languages
English (en)
Other versions
CN114477137B (zh
Inventor
阎景旺
李先锋
席耀宁
张华民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN202011259067.9A priority Critical patent/CN114477137B/zh
Publication of CN114477137A publication Critical patent/CN114477137A/zh
Application granted granted Critical
Publication of CN114477137B publication Critical patent/CN114477137B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及铅炭电池,特别涉及一种碳材料包裹的碳纳米管复合材料及其制备和应用,于水热反应中釜加入蔗糖或葡萄糖水溶液和碳纳米管水热反应,固体产物经干燥后再次分散于聚乙烯吡咯烷酮(PVP)水溶液中,干燥;在N2气氛环境中在烧结,将烧结后的产物CO2气氛环境中在活化,得到复合材料。本发明减小铅炭电池充电过程氢气析出的峰值电流密度,减轻电池硫酸盐化,延长电池循环寿命。

Description

一种碳材料包裹的碳纳米管复合材料及其制备和应用
技术领域
本发明涉及铅炭电池领域,特别涉及储能电池与启停电池领域。
技术背景
由于铅炭电池具有优异的循环稳定性和低廉的开发成本而成为一种重要的储能技术逐渐受到企业和研究人员的重视。铅炭电池通过向传统铅酸电池负极添加活性炭类材料来提高负极的导电性,有效的减缓了电池充放电过程中负极放电产物硫酸铅晶粒的聚集和长大。然而碳材料的引入带来的最直接的问题是电池充电末期负极大量析出氢气导致电解液干涸,这一现象轻则影响电池寿命,重则导致氢气聚集致使电池发生爆炸。
发明内容
为了解决上述问题,本发明提供了一种碳材料包裹的碳纳米管复合材料及其制备和应用。
一种碳材料包裹的碳纳米管复合材料的制备方法,其特征在于:
1)于水热反应中釜加入浓度为0.1-1mol/l的蔗糖或葡萄糖水溶液和碳纳米管,碳纳米管的质量为蔗糖水溶液质量的0.05%-0.2%,进行水热反应,水热反应时间为8-24小时;水热反应温度为140-240℃;
2)将步骤1)制得的固体产物洗涤干燥,然后再次分散于质量浓度为1-10%的聚乙烯吡咯烷酮(PVP)水溶液中,其中固体产物质量为聚乙烯吡咯烷酮溶液质量的2%-20%;充分搅拌后将固体物质取出干燥;
3)将步骤2)获得的固体物质转移至N2气氛环境中在600-1200℃条件下烧结2-12小时,优选750-850℃烧结4-6小时,将烧结后的产物转移至CO2气氛环境中在600-1200℃条件下活化2-12小时,优选750-850℃活化4-6小时;得到碳材料包裹的碳纳米管复合材料。
所述碳纳米管长度为10-1000nm,外径为2-50nm的单壁或多壁碳碳纳米管,碳材料包裹的碳纳米管复合碳球的直径为0.5-5μm。
所述制备方法制备获得的复合材料。
所述的复合材料在铅炭电池电极中的应用。
按重量份数计,铅炭电池电极的材料组成为:500-800份铅粉、1-20份所述的复合碳材料、6-10份硫酸钡、0.1-0.5份长度为0.1-5mm、直径为100nm-5μm的聚丙烯短纤维。
铅炭电池电极的制备过程为:(1)按重量份数计,将500-800份铅粉、1-20份权利要求1-5任一所述的复合碳材料、6-10份硫酸钡、0.1-0.5份长度为0.1-5mm、直径为100nm-5μm的聚丙烯短纤维用高速搅拌机进行预混,边搅拌边向预混的粉料中加入50-100份去离子水,持续搅拌1-60min得到铅膏;(2)将铅膏刮涂到金属铅板栅上,经干燥固化干燥得到铅炭电池负极;固化温度30-50℃,湿度为70-95%,固化时间为10-30小时;干燥温度为60-120℃,时间为10-30小时。
金属铅板栅的尺寸为长0.5-1000mm、宽0.2-80mm、厚0.5-4mm。
所述铅炭电池电极为铅炭电池负极。
本发明的有益效果:
本发明首先采用水热法制备复合碳材料,利用CNT增加所制备的复合碳材料的导电性,随后在复合碳材料表面引入聚乙烯吡咯烷酮(PVP),并通过烧结过程得到覆盖了碳壳层的复合碳材料。由PVP形成的碳壳层在不影响内部复合碳材料的导电性的前提下有效地覆盖了内部复合碳材料表面的析氢活性位点,有效地减小了电池充电过程中氢气的析出的峰值电流,析氢电流减小后电池充电过程中氢气的产生量明显减小。
附图说明
图1为实施例1-7和对比例的三电极体系LSV测试结果图。
具体实施方式
下面结合实施例详述本发明。
如无特别说明,实施例中的原料通过商业购买,不经处理直接使用;所用的仪器设备,采用厂家推荐使用参数。
实施例中,铅炭电池的循环寿命使用蓝电充放电仪和新威充放电测试仪测试。
实施例1
步骤1:采用如下方法制备碳材料-碳纳米微球复合材料:
1)将10.269g蔗糖充分溶解于50ml超纯水中,随后向其中加入2g质量浓度为5%的长度为100nm直径10nm的多壁碳碳纳米管,将混合溶液充分搅拌5分钟后转移至额定容积为100ml的聚四氟水热釜中,将水热釜转移至烘箱中180℃条件下保温12小时;
2)将5g步骤1)制得的固体产物用超纯水进行离心洗涤,所得到的产物经烘干后再次分散于200ml质量浓度为5%的聚乙烯吡咯烷酮(PVP)水溶液中。充分搅拌30分钟后将固体物质取出于90℃条件下烘干12小时,产物为平均直径3μm的内含碳碳纳米管的碳球材料;
3)将步骤2)的烘干产物转移至N2气氛环境中在800℃条件下烧结5小时,将烧结后的产物转移至CO2气氛环境中在800℃条件下活化5小时。得到CNT-碳纳米微球复合材料,复合碳球材料的平均直径为3μm。
步骤2:采用如下步骤制备铅炭电池电极:
1)将10g铅粉、0.15g步骤1制备的CNT-碳纳米微球复合材料、0.14g硫酸钡、0.005g长度为5mm直径0.5-1.5μm的聚丙烯短纤维用高速搅拌机进行预混,边搅拌边向预混的粉料中加入1.4g去离子水,持续搅拌10min得到铅膏;
2)将0.21g步骤1)制备的铅膏刮涂到镂空金属铅板栅的一个空格内,板栅尺寸为长105mm宽14mm厚2mm,板栅包含15个相同的纵向排列的镂空空格,每个空格的内径尺寸为长12mm,宽6mm,厚2mm,经干燥固化干燥得到铅炭电池负极。固化温度40℃,湿度为80%,固化时间为20小时;干燥温度为80℃,时间为24小时;
3)采用与步骤2的1)和2)相同的工艺,与其不同之处在于正极制备过程中不添加任何碳材料(即不添加CNT-碳纳米微球复合材料)制备铅炭电池正极,正极的涂膏量为0.36g,取制备的负极、正极、商用汞-硫酸亚汞参比电极进行三电极体系LSV测试,所制备的正极作为三电极体系的对电极,所制备的负极作为三电极体系的工作电极,三电极体系中所采用的硫酸电解液为70g密度为1.275g/ml的硫酸电解液,测试范围是(-1)V至(-1.6)V,测试结果如图1。所制备的电极材料在电极电位为-1.6V的条件下析氢电流为159.1581mA。将该三电极体系使用软胶塞进行固定,使用实验室专用商业石腊模将三电极体系分别独立充分密封,随后在工作电极的胶塞处插入一导气管,导气管整体穿过胶塞,导气管位于工作电极腔室内部的一端穿过胶塞的长度为5mm,处于液面上方,导气管位于工作电极腔室外部的一端引入排水法测试气体体积的设备中,将导气管穿过的胶塞内外表面和导气管与商用排水法测试气体体积装置之间的各种连接处均用商用AB胶密封牢固,目的是保障由工作电极端产生的气体完全被导入商用排水法气体体积测量装置中,利用该装置对工作电极端产生的气体体积进行收集,并计算产气速率,测试过程中电池系统置于25℃恒温环境中,对电池两端施加恒定2.4V电压持续48小时,经计算,该配方碳材料的铅炭电池产气速率为0.27ml/(wh·h)。
实施例2
过程同实施例1,与其不同之处在于,铅炭电池:按照实施例1的要求,不改变其他条件,将所添加的商用CNT的规格改为长度为10nm,直径为2nm的单壁碳碳纳米管。所制备的电极材料在电极电位为-1.6V的条件下析氢电流为98.08545mA。该配方碳材料的铅炭电池产气速率为0.24ml/(wh·h)。
实施例3
过程同实施例1,与其不同之处在于,铅炭电池:按照实施例1的要求,不改变其他条件,将所添加的商用CNT的规格改为长度为1000nm,直径为50nm的多壁碳碳纳米管。所制备的电极材料在电极电位为-1.6V的条件下析氢电流为330.7894mA。该配方碳材料的铅炭电池产气速率为0.37ml/(wh·h)。
实施例4
过程同实施例1,与其不同之处在于,铅炭电池:按照实施例1的要求,不改变其他条件,将蔗糖的添加量改为3.423g。所制备的电极材料在电极电位为-1.6V的条件下析氢电流为244.2810mA。该配方碳材料的铅炭电池产气速率为0.26ml/(wh·h)。
实施例5
过程同实施例1,与其不同之处在于,铅炭电池:按照实施例1的要求,不改变其他条件,将蔗糖的添加量改为20.538g。所制备的电极材料在电极电位为-1.6V的条件下析氢电流为116.3085mA。该配方碳材料的铅炭电池产气速率为0.27ml/(wh·h)。
实施例6
过程同实施例1,与其不同之处在于,铅炭电池:按照实施例1的要求,不改变其他条件,将水热反应得到的产物经烘干后再次分散于200ml质量浓度为2%的聚乙烯吡咯烷酮(PVP)水溶液中。所制备的电极材料在电极电位为-1.6V的条件下析氢电流为352.2215mA。该配方碳材料的铅炭电池产气速率为0.41ml/(wh·h)。
实施例7
过程同实施例1,与其不同之处在于,铅炭电池:按照实施例1的要求,不改变其他条件,将水热反应得到的产物经烘干后再次分散于200ml质量浓度为10%的聚乙烯吡咯烷酮(PVP)水溶液中。所制备的电极材料在电极电位为-1.6V的条件下析氢电流为314.5346mA。该配方碳材料的铅炭电池产气速率为0.44ml/(wh·h)。
对比例1
铅炭电池:按照实施例1的要求,不改变其他条件,不进行步骤1的材料制备,直接在步骤2负极的制备过程中添加0.15g商用活性炭作为铅炭电池添加剂材料替代CNT-碳纳米微球复合材料。所制备的电极材料在电极电位为-1.6V的条件下析氢电流为764.7795mA。该配方碳材料的铅炭电池产气速率为0.51ml/(wh·h)。
对比例2(省略步骤2的技术方案)
铅炭电池:按照实施例1的要求,不改变其他条件,不进行步骤1的2)步骤,将步骤3)改为“将步骤1)的烘干产物转移至N2气氛环境中在800℃条件下烧结5小时,将烧结后的产物转移至CO2气氛环境中在800℃条件下活化5小时”。所制备的电极材料在电极电位为-1.6V的条件下析氢电流为733.5642mA。该配方碳材料的铅炭电池产气速率为0.50ml/(wh·h)。由于对比例的试验方法中并未引入PVP烧结而成的碳壳,导致复合碳材料的析氢位点充分暴露,电池充电过程中析氢电流较大且析氢速率较高。
对比例3(PVP引入量超过上限的量)
过程同实施例1,与其不同之处在于,铅炭电池:按照实施例1的要求,不改变其他条件,将水热反应得到的产物经烘干后再次分散于200ml质量浓度为15%的聚乙烯吡咯烷酮(PVP)水溶液中。所制备的电极材料在电极电位为-1.6V的条件下析氢电流为114.5346mA。该配方碳材料的铅炭电池产气速率为0.24ml/(wh·h)。但是PVP的过量引入导致烧结得到的碳壳过厚,反而增大了碳材料的内阻,不利于内层复合碳材料发挥其导电性优势。
通过对比不同实施例和对比例中电池的析氢电流和产气速率本发明采用水热法制高导电性备复合碳材料,在复合碳材料表面引入聚乙烯吡咯烷酮,并进行烧结处理,利用PVP形成的碳壳层在不影响内部复合碳材料的导电性的前提下充分覆盖内部复合碳材料表面的析氢活性位点,有效地减小了电池充电过程中氢气的析出的峰值电流,析氢电流减小后电池充电过程中氢气的产生量明显减小。

Claims (8)

1.一种碳材料包裹的碳纳米管复合材料的制备方法,其特征在于:
1)于水热反应中釜加入浓度为0.1-1mol/l的蔗糖或葡萄糖水溶液和碳纳米管,碳纳米管的质量为蔗糖水溶液质量的0.05%-0.2%,进行水热反应,水热反应时间为8-24小时;水热反应温度为140-240℃;
2)将步骤1)制得的固体产物洗涤干燥,然后再次分散于质量浓度为1-10%的聚乙烯吡咯烷酮(PVP)水溶液中,其中固体产物质量为聚乙烯吡咯烷酮溶液质量的2%-20%;充分搅拌后将固体物质取出干燥;
3)将步骤2)获得的固体物质转移至N2气氛环境中在600-1200℃条件下烧结2-12小时,优选750-850℃烧结4-6小时,将烧结后的产物转移至CO2气氛环境中在600-1200℃条件下活化2-12小时,优选750-850℃活化4-6小时;得到碳材料包裹的碳纳米管复合材料。
2.按照权利要求1所述的制备方法,其特征在于:所述碳纳米管长度为10-1000nm,外径为2-50nm的单壁或多壁碳碳纳米管,碳材料包裹的碳纳米管复合碳球的直径为0.5-5μm。
3.一种权利要求1-2任一所述制备方法制备获得的复合材料。
4.一种权利要求3所述的复合材料在铅炭电池电极中的应用。
5.按照权利要求4所述的应用,其特征在于:
按重量份数计,铅炭电池电极的材料组成为:500-800份铅粉、1-20份所述的复合碳材料、6-10份硫酸钡、0.1-0.5份长度为0.1-5mm、直径为100nm-5μm的聚丙烯短纤维。
6.按照权利要求5所述的应用,其特征在于:
铅炭电池电极的制备过程为:(1)按重量份数计,将500-800份铅粉、1-20份权利要求1-5任一所述的复合碳材料、6-10份硫酸钡、0.1-0.5份长度为0.1-5mm、直径为100nm-5μm的聚丙烯短纤维用高速搅拌机进行预混,边搅拌边向预混的粉料中加入50-100份去离子水,持续搅拌1-60min得到铅膏;
(2)将铅膏刮涂到金属铅板栅上,经干燥固化干燥得到铅炭电池负极;固化温度30-50℃,湿度为70-95%,固化时间为10-30小时;干燥温度为60-120℃,时间为10-30小时。
7.按照权利要求6所述的应用,其特征在于:金属铅板栅的尺寸为长0.5-1000mm、宽0.2-80mm、厚0.5-4mm。
8.按照权利要求4-7任一所述的应用,其特征在于:所述铅炭电池电极为铅炭电池负极。
CN202011259067.9A 2020-11-12 2020-11-12 一种碳材料包裹的碳纳米管复合材料及其制备和应用 Active CN114477137B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011259067.9A CN114477137B (zh) 2020-11-12 2020-11-12 一种碳材料包裹的碳纳米管复合材料及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011259067.9A CN114477137B (zh) 2020-11-12 2020-11-12 一种碳材料包裹的碳纳米管复合材料及其制备和应用

Publications (2)

Publication Number Publication Date
CN114477137A true CN114477137A (zh) 2022-05-13
CN114477137B CN114477137B (zh) 2023-06-23

Family

ID=81491449

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011259067.9A Active CN114477137B (zh) 2020-11-12 2020-11-12 一种碳材料包裹的碳纳米管复合材料及其制备和应用

Country Status (1)

Country Link
CN (1) CN114477137B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284080A (ja) * 1997-02-04 1998-10-23 Mitsubishi Chem Corp リチウムイオン二次電池
US20150270579A1 (en) * 2014-03-24 2015-09-24 Julian Devante Energy Storage Apparatus and Method
CN107634210A (zh) * 2017-09-22 2018-01-26 常州大学 一种高性能的锂/钠电池负极材料及其制备方法
US20180053939A1 (en) * 2015-03-05 2018-02-22 Arkema France Use of a liquid composition of carbon-based nanofillers for lead battery electrode formulations
CN108630937A (zh) * 2018-05-10 2018-10-09 浙江工业大学 一种铅炭电池负极铅膏及负极板
CN110970603A (zh) * 2018-09-30 2020-04-07 山东欧铂新材料有限公司 一种铅炭电池负极用多功能活性炭复合材料及其制备方法、铅炭电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284080A (ja) * 1997-02-04 1998-10-23 Mitsubishi Chem Corp リチウムイオン二次電池
US20150270579A1 (en) * 2014-03-24 2015-09-24 Julian Devante Energy Storage Apparatus and Method
US20180053939A1 (en) * 2015-03-05 2018-02-22 Arkema France Use of a liquid composition of carbon-based nanofillers for lead battery electrode formulations
CN107634210A (zh) * 2017-09-22 2018-01-26 常州大学 一种高性能的锂/钠电池负极材料及其制备方法
CN108630937A (zh) * 2018-05-10 2018-10-09 浙江工业大学 一种铅炭电池负极铅膏及负极板
CN110970603A (zh) * 2018-09-30 2020-04-07 山东欧铂新材料有限公司 一种铅炭电池负极用多功能活性炭复合材料及其制备方法、铅炭电池

Also Published As

Publication number Publication date
CN114477137B (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
CN108394884A (zh) 一种壳聚糖基高比表面积氮/磷共掺杂碳纳米片的制备方法
CN111153448B (zh) 竹/木基纳米纤维素限域过渡金属氧化物电极材料的制备方法及应用
CN109103426A (zh) 一种用于高性能启停铅炭超级电池的负极板铅膏及其制备方法
CN107768637B (zh) 一种多孔石墨烯/碳纳米管锂硫正极材料的制备方法
CN112382794A (zh) 一种石墨负极锂离子电池的制备方法
CN110854379B (zh) 一种硅碳复合负极材料及其制备方法、负极极片、锂离子电池
CN105161675A (zh) 一种锂电池钛酸锂负极浆料的制备方法
CN103074007A (zh) 锂离子电池硅负极用水性粘合剂及硅负极的制备方法
CN106025228A (zh) 碳包裹SnO2纳米颗粒负载在石墨烯上的纳米复合材料及其制备方法
CN107673348A (zh) 一种生物质基多孔无定型碳纳米球钠离子电池
CN103456931A (zh) 基于高强度氧化石墨烯凝胶的铅炭电池负极材料的制备方法
CN111477855A (zh) 一种介孔碳包覆MoS2的钠离子电池负极材料及其制法
CN113422011A (zh) 碳纳米管中管@二氧化锰纳米片复合材料及其制备和应用
CN109950503B (zh) 一种CoMoOx/碳/硫复合纳米材料的制备方法、锂离子电池负极及锂离子半电池
CN113454815A (zh) 负极复合材料、负极、电子化学装置和电子装置
US11225418B2 (en) Method of preparing carbon-graphene-lead composite particles
CN109721108A (zh) 一种多孔硫化钴纳米花及其制备方法和应用
CN108511692A (zh) 一种锂离子电池电极及其制备方法
CN110970606B (zh) 氮掺杂中空球形碳包覆硫正极材料及其制备方法和应用
CN109713247A (zh) 离子掺杂、原位包覆的镍钴锰酸锂正极材料及其制备方法
CN114477137B (zh) 一种碳材料包裹的碳纳米管复合材料及其制备和应用
CN108400304B (zh) 一种铅酸蓄电池正极铅膏
CN113903915B (zh) 一种石墨烯包覆多孔氧化铅-硫化铅复合材料的制备方法
CN114477174B (zh) 一种复合碳材料及其制备和铅炭电池中的应用
CN108417905A (zh) 一种黄原胶胶体电解液及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant